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Abstract

Primate visual systems support an elaborate specialization for processing color information. Concentrating on the hue component, we

observe that, contrary to Mondrian-like assumptions, hue varies in a smooth manner for ecologically important natural imagery. To represent

these smooth variations, and to support those information processing tasks that utilize hue, a piecewise smooth hue field is postulated. The

geometry of hue-patch interactions is developed analogously to orientation-patch interactions in texture. The result is a model for long-range

(horizontal) interactions in the color domain, the power of which is demonstrated on a number of examples. Implications for computer image

processing, computer vision, visual neurophysiology and psychophysics are discussed.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The visual world is a rich source of color-coded

information. Ripe red fruit standing out from a background

of green leaves immediately suggests one advantage of

color selectivity to frugivore primates (Sumner & Mollon,

2000a,b), and the elaborate physiological specialization for

processing color attests to its use. Photoreceptors evolved

differential spectral responses, and cytochrome oxidase

staining has revealed anatomical blobs in cortex. Neurons

with opponent receptive field structure provide maps.

But there is much more to the cortical processing of

color: neural selectivities differ with context (Wachtler,

Sejnowski, & Albright, 2003), and filling-in phenomena

(Redies & Spillmann, 1981) suggest boundary and surface

material interactions. The interaction between surface

geometry, reflectivity, and light sources must matter

(Beck, 1972; Horn, 1986a); at some level, color-constant

behaviors emerge (Zeki, 1993) in a manner such that, as

Helmholtz famously observed, the illuminant is discounted.

Artists have intuitively exploited this (Albers, 1987), and

experience in computer graphics indicates how critical it

can be. All of the above, taken together, suggest a much

broader and deeper role for color processing in the inference

of scene structure than the simple detection of ripe fruit, and

our goal in this paper is to sketch one part of a this broader

view of color processing.

We concentrate almost entirely on hue, and illustrate, in

Section 2, different putative roles for it. Although hue

played a fascinating role in the discovery of color opponent

processing, it is surprisingly understudied in computer

vision (Forsyth & Ponce, 2002). But the time is right to

consider hue more directly, because neurophysiological

evidence of hue maps is now emerging (Hanazawa,

Komatsu, & Murakami, 2000; Wachtler et al., 2003; Xiao,

Wang, & Felleman, 2003). In particular, it is unlikely that

trichromaticity would have re-evolved without providing

basic information processing advantages. We argue, in

particular, that when the full variability of fruit imagery is

considered, the detection problem becomes rather more

subtle. This serves, in turn, as a bridge to more abstract

questions about the inferences of scene structure.

Our paper is mainly theoretical, and relies on an analogy

between two physiological specializations in visual cortex.

While differences between the cytochrome oxidase blobs

and the interblobs in visual cortex are normally stressed, we

shall take the opposite tack and stress a similarity. One

primary biophysical difference—metabolic capability—is
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beyond the context of this paper, and has been considered

elsewhere (Allman & Zucker, 1990).

The analogy that we shall exploit is based on long-range

horizontal connections. In essence, the standard functional

distinction is as follows: neurons in the blobs are not

orientationally selective while neurons in the interblobs are.

Furthermore, the common view holds, neurons in the blobs

are tuned for color (and contrast); while interblob neurons are

not (Livingstone & Hubel, 1984a). While this is of course a

crude oversimplification, conceptually it supported a ‘par-

allel pathways’ view of early vision, with color processing

proceeding separately from (and in parallel with) spatial

processing (Ts’o & Gilbert, 1988; Zeki, 1993). The existence

of separate systems of long-range horizontal connections to

support sensory integration within—but not between—these

systems has further supported the parallel pathways view.

Our goal is not to challenge the parallel pathways view at

this time, although our study of hue does reveal limitations to

it: some aspects of processing are most naturally expressed

within the hue system and some between the hue and

orientationally selective systems. Nor are the implications of

our research limited to V1; the specialization projects

naturally into V2 and beyond (Heywood, Gadoti, & Cowey,

1992; Kiper, Fenstemaker, & Gegenfurtner, 1997; Komatsu,

1998; Livingstone & Hubel, 1984a; Roe & Ts’o, 1999; Xiao

et al., 2003; Zeki, 1993). Rather, in more general terms, we

seek first to understand the basic structure of hue and its uses

as a way to inform the search for its natural neurophysio-

logical implementation. Thus, we exploit a generic

interpretation of the long-range horizontal connections as

the substrate for sensory integration. But we place a deeper

technical interpretation on this than is normally done, in the

following sense. One reads frequently that long-range

horizontal connections allow ‘like’ properties to be

supported by like properties in their surround. For example,

color connections support color connections, and shape

connections support shape connections. More specifically,

in V1 it is held that like (e.g. vertical) orientations

support like (e.g. vertical) orientations, because boundaries

‘typically’ continue along the same direction (Field, Hayes,

& Hess, 1993; Livingstone & Hubel, 1984b; T’So, Gilbert,

& Wiesel, 1986). (Just think of the edge of a Manhattan

skyscraper.) Similarly, long-range horizontal connections

preferentially couple red/green opponent cells in one

cytochrome oxidase blob to those in another ‘red/green

blob’, and not to the ‘blue/yellow blobs’. Long-range

horizontal connections, in short, are taken to connect like

properties with like properties. But there exists significant

variation in the actual long-range connections from this

presupposed ideal, and the question is whether this variation

is noise or is functionally significant.

Our deeper analysis of the connections within the

interblob system is based on a proof that a functionally

significant interpretation is sufficient to explain the orien-

tation-based, interblob variations, predicting the variation

through second-order statistics (Ben-Shahar & Zucker,

2004a). To continue the above parenthetic comment, our

model exploits the observation that there are few man-made

skyscrapers in the rain forest. Therefore (and this is the

central point) one must study sensory integration in the

context of general curves rather than straight lines. This

requires a deeper theory of what ‘like properties’ are, and

our theory for the orientation systems (boundaries along one

dimension; textures and shading in two) is briefly sketched

in Section 3. In this paper, we show formally that something

analogous holds for the color system: while some fruits

ripen to a uniform hue, some vary, and the intermediate case

is clearly not constant. The analogy with hair patterns

provides a conceptual dual: some are constant or slowly

varying, and some vary more rapidly. All involve singular-

ities, either point-wise, as around the crown of the head, or

along curves. Another example: embarrassment causes

facial blushing but, again, not uniformly (Ekman, 2001).

The result is that hue variation is like texture and shading

variation: the structure is in the flow. We call the basis for

this flow the hue field, and illustrate it in Section 2.

The technical contribution in this paper is a derivation of

a differential-geometric model for hue interaction that

makes this concept of hue flow concrete, and an illustration

of how it can be applied in a range of scene applications.

This provides a beginning for a more complete model of

color processing, because it suggests how a color (specifi-

cally hue) Gestalt might emerge. To return to the opening

example of finding ripe fruits in trees, current evidence

suggests that there is much more to the feeding behavior of

many primates than the detection of individual ripe fruits. In

particular, differentiating young nutrient-rich leaves from

more difficult-to-digest surrounds underscores the need to

process extremely complex arrangements of color and shape

simultaneously (Dominy & Lucas, 2001).

2. The hue field

Consider the HSV color space, in which a color image is

a mapping C : R2 !S1 £ ½0; 1�2; where S1 is the unit

circle (see Fig. 1). The hue component across the image is a

mapping H :R2 !S1 and thus can be represented as a unit

length vector field over the image plane, henceforth called

the hue field. Displays of the hue field reveal that it may vary

greatly, albeit smoothly, even within perceptually coherent

objects (see Fig. 2; many other examples will follow).

Thehuefield hasdeep roots in the psychology ofperception

and the subjective experience of color, from Hering’s

opponent hues theory (Hering, 1878/1964) and Munsell’s

book of colors (Munsell, 1905), to accumulating psycho-

physicalevidence oncolor sensitivity (De Valois& De Valois,

1990). Neurophysiological findings for color opponent

cells, color specificity in V4, and perceptual impairments

such as achromatopsia (Spillmann & Werner, 1990)

indirectly imply the existence of neural structures that

explicitly encode the hue; explicit evidence for them has
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now been found in V1 and V2 (Hanazawa et al., 2000;

Wachtler et al., 2003; Xiao et al., 2003).

Despite the prevalence of apples in our shops, color, even

in modern analyses, is usually taken to be piecewise

constant, as we now review. That it actually varies in many

natural images, as shown above, gives rise to a number of

problems in processing color imagery. The situation is

strongly analogous to orientationally defined textures, such

as hair patterns, as we review in the final part of this section.

Curiously, most earlier analyses of these textures also

assumed they were piecewise-constant.

2.1. Hue and its uses

Scene geometry, light sources, and surface properties

conspire in the formation of images. Nevertheless, percep-

tually, we seem able to make relevant inferences about these

different aspects of scene structure almost without effort;

one normally needs an ‘artist’s eye’ to notice when our

perceptual mechanisms fail.

There are two basic approaches to determining which

aspects of color are used. Physiologists and psychophysi-

cists seek to determine which aspects and representations

of color are explicitly used by our visual systems. This

bottom-up approach is complemented by a top-down
Fig. 1. The HSV color representation in S1 £ ½0; 1�2 and the color wheel.

Fig. 2. Color images, and their hue fields, are typically piecewise smooth. Most importantly, their hue can vary smoothly even within perceptually coherent

objects. Thus, a representation sufficiently rich to support these variations is necessary. (A) A natural image of an apple with varying hue. (B) The

corresponding hue field (see Section 3). Note how it changes smoothly across the apple’s surface. (C) A 3D representation of the hue filed, where hue is

represented as height. Identifying the top face with the bottom (since hue is a circle) leads to the space XYH W R2 £S1 in which the image’s hue is a

submanifold. (D) A natural image of peppers with a region of interest. (E) The hue field of the peppers image in the region of interest is piecewise smooth. In

general, occlusion boundaries between objects in the world induce hue singularities (up to some blurring from the imaging process) that must be preserved in

every processing of the color information. This, in effect, defines the computational task that we shall be facing.
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approach of trying to understand which information

processing tasks depend on color, and why.

We believe these two complementary approaches are

best combined into a hybrid, in which different aspects from

each are combined. From neurophysiology, we take the

observation that hue is a viable representation, and the

existence of long-range horizontal connections that could

support hue good continuation. From psychophysics, we

take color constancy and filling-in phenomena. Hans

Wallach observed that color constancy, like perceived

lightness, is mainly the result of ratios computed at edges

(Palmer, 1999), which implicates processes of edge

detection and segmentation along surface borders. If edges

are incorrect, then lightness and constancies are likely to be

incorrect. But constancies are rather subtle, and more

primitive information processing tasks relate to the role that

color plays for primates in finding food. This, too, raises

questions about segmentation, with detection as the goal.

Several of these different tasks are now reviewed, with

the aim of demonstrating how local measurements are

insufficient for these different tasks in general. Rather, the

fact that hue can smoothly vary over an object leads us back

to characterizing and seeking smooth hue representations.

The foundation of the problem is to determine what is a

coherent hue distribution and what are its singularities.

2.1.1. Image segmentation and color borders

The first example in Section 1—detecting ripe fruits

against a background of green foliage—is the classical one.

The computation is local, and hue is taken to be effectively

constant (see Fig. 3). Statistical detection models

classify pixels based on their spatiochromatic structure

(Fine, MacLeod, & Boynton, 2003; Gegenfurtner & Rieger,

2000) possibly applied at different levels, from the photo-

pigments (Sumner & Mollon, 2000a) to color opponent and

double-opponent cortical receptive fields (Shapley &

Hawken, 2002; Wachtler et al., 2003). Such receptive fields

could reflect the statistics of natural scenes (Bell &

Sejnowski, 1997; Simoncelli & Olshausen, 2001; Tailor,

Finkel, & Buchsbaum, 2000; Wachtler, Lee, & Sejnowski,

2001). As we show, however, much of the information about

hue flows involves spatial organization as well, which

suggests its statistical signature would be rather higher-order.

If arranged into proper circuitry, circular-surround

receptive field models may underlie color edge detection

(Shapley & Hawken, 2002) reflecting all of the questions

regarding the circuitry underlying simple and complex

cell receptive fields. Michaels (1981) first identified such

receptive fields, and similar color edge detectors have

also been developed in computer vision; see, e.g. (Novak

& Shafer, 1987; Ohta, Kanade, & Sakai, 1980) to

support color image segmentation.

The performance of segmentation algorithms is limited

by the thresholding (or signal detection criterion), and

typically a fixed value is sought (Healey, 1992; Novak &

Shafer, 1987; Ohta et al., 1980). This approach, of course,

encounters difficulties when color varies, as may be the case

for single natural objects (recall the apple in Fig. 2).

Attempts to use (possibly different) distributions at each

local retinotopic point do not solve the problem, which

Fig. 3. Illustration of the classical problem of recognizing red berries against a background of green foliage. Shown are the color image (left inset panel), with

its hue field (right inset panel). Such tasks are naturally expressed in a local signal detection framework. While this example, which was photographed in bright

sunlight, is relatively unchallenging, the task in general is one of detecting the berries when noise obscures the measurements.
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suggests there does not exist a purely local solution (Ruzon

& Tomasi, 1999).

As a second example examine Fig. 4, which shows a

peach in different configurations. Peaches, like the apple

shown previously, vary in color, and therefore proper

thresholds based on local information may not exist.

Apples and peaches raise the issue of understanding the

relationship between the evolution of color vision and

diet, since it has been presumed for more than a century

that the origin of color vision has been the detection of

ripe fruits against a background of leaves (Allen, 1879).

Comparing berries to peaches begins to reveal how

complex this detection task might be. However, the

relationship between color vision and diet is a topic that is

currently undergoing a fascinating development (Dominy

& Lucas, 2001; Lucas et al., 2003). Foraging advantages,

in particular, are emerging as a link between the red–

green subsystem and the detection of young, nutrient-rich

leaves amid more mature foliage (Dominy & Lucas,

2001). However, the biology of leaves also leads directly

to color-varying objects. The apparent color is due to

the differential absorption of light by a leaf, e.g. for

photosynthesis. Pigmentation also plays a definitive role

in apparent color. There are two classes of carotenoid

pigments, depending on whether they contain oxygen or

not. Carotenes do not and make red and orange colors,

while xanthophylls do have oxygen and are generally

yellow. Beta-carotene gives carrots their color and

zeanthin is the gold of corn. However, the fall foliage

in New England illustrates clearly how variable this

pigmentation can be—both in time and in space—thereby

underlining the need to be able to process color-varying

stimuli. Such advantages supplement the ones discussed

above in detecting fruit against foliage (Sumner &

Mollon, 2000a). Fig. 5 illustrates this variable green–red

shift in a dramatic instance. Foliage, like fruit, gives rise

to a rich, non-constant color Gestalt.

A second important aspect of considering hue is also

apparent in Fig. 5. Since the hue is dictated largely by

pigmentation, is remains somewhat invariant to light source

effects such as shadowing and highlights. Re-examining

the apple in Fig. 2 provides another example of this

phenomenon. Taking this observation together with those

from the leaf and the fruit examples above, it follows that

Fig. 4. Peach images, and their hue fields, are piecewise smooth (but not necessarily constant), demonstrating that hue can vary smoothly within otherwise

perceptually coherent objects. Proper representations of hue, that make these variations explicit, are therefore necessary, and segmentation algorithms must be

developed that can tolerate such variation within the object but not between object and background. (Top) Image of a peach with a blowup of the color variation

and its associated hue field. Such fields should remain coherent to support recognition of the peach. (Bottom) Illustration of a boundary between the peach

(occluded) and a leaf (occluder). Such boundaries are more plausible for segmentation.
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mechanisms for determining smooth color flows could have

a tremendous evolutionary advantage.

We show next that similar issues arise in lightness

algorithms.

2.1.2. Lightness computations and thresholding

Helmholtz suggested discounting the illuminant by a

process of unconscious inference, and lightness algorithms

implement this with the assumption that color changes

abruptly while lighting changes smoothly. Retinex theory

(Land, 1977; Land & McCann, 1971) applied to Mondrian

images leads to the standard implementation (Horn, 1986b):

since (by assumption) small, slow changes in illumination

are due to light source effects such as shadowing, and large,

abrupt changes to surface reflectance effects, such as edges

between Mondrian patches, thresholding the logarithmic

brightness image (or related edge maps) can isolate the

edges as large jumps. While this works for some situations,

revisions subsequently led to taking thresholded values for

the gradient of the chromaticity field and comparing their

location with luminance thresholds (Blake, 1985; Funt &

Barnard, 1998). But problems remain around slow changes

(e.g. shadows), which appear in this model as steps of edges

(the number of steps depends on the threshold). Barnard,

Finlayson, and Funt (1997) suggest reasoning about these

sequences of step edges, a sort of heuristic return to

Helmholtz, but this is, of course, just one aspect of

the problem of slow changes discussed above. Our approach

is to model these slow changes directly.

The confounding of information between shading and

color confuses lightness algorithms, with the basic question

remaining how to separate reflectance edges from illumina-

tion edges. The dominant approach—segregating different

variations into two classes, abrupt and slow, by threshold-

ing—was also used as the basis for texture segmentation,

which we discuss below. This is actually a corollary to the

analogy set up in Section 1: in effect, Mondrian patterns are

as informative to general lightness computations as piece-

wise-constant orientation fields are to general orientation-

based texture segmentation.

2.1.3. Image denoising and diffusion

Our next example comes from image processing, and

illustrates the practical need to process color imagery to

remove noise.

Following early attempts to denoise color images through

independent smoothing of the RGB channels, practically all

contemporary approaches focus on a variety of filtering

processes applied to the color data. While some studies

explore vector median and directional filters (Astola,

Haavisto, & Nuevo, 1990; Trahanias & Venetsanopoulos,

1993), most color image enhancement algorithms are based

on a form of anisotropic diffusion (Perona & Malik, 1990; ter

Haar Romeny, 1994; Weickert, 1997), either on an explicit

vectorial representation of the color, or based on differential

geometrical properties of a manifold representation in a

higher dimensional space (Kimmel, Malladi, & Sochen,

2000; Kimmel & Sochen, 2000; Sapiro & Ringach, 1996;

Fig. 5. Illustration of color variation in leaves of poison ivy (Rhus radicans L.). The red coloration of the leaf is due to the accessory carotenoid pigments, which

broaden the range of wavelengths absorbed in photosynthesis and also serve to protect the sites of chlorophyll synthesis during leaf growth. Although this is a

mature leaf, it illustrates similar biophysics to the young leaves important in some primate diets. Insets show a single leaf enlargement and its hue field. Notice

that the hue field varies slowly with pigment variation and is largely invariant to lighting changes. (Color variations may not produce well in print. Please refer

to the electronic version and view image on a monitor.)
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Sochen, Kimmel, & Malladi, 1998; Tang, Sapiro, & Caselles,

2001; Yezzi, 1998). While diffusion in color space can work

within very smooth regions, it does have the tendency to blur

inappropriately (see Fig. 6). Thus, the requirement is not just

for techniques that yield smooth color variations, but rather

for ones that smooth only when appropriate. Unconstrained

blurring reveals, in a sense, problems which are the opposite

of trying to find a single, global threshold.

Sometimes, however, hue does spread across otherwise

natural boundaries. Next, we consider possible physical

causes to this phenomenon.

2.1.4. Color bleeding

The detection view (Section 2.1.1) emphasizes point-

wise information. Fine et al. (2003) connect this to surfaces:

‘Two pixels that fall on the same surface are likely to have

the same luminance and color, and two pixels that fall on

different surfaces are likely to differ in both luminance and

color’ (p. 1283). Thus, on average for some class of scenes,

there is an alignment of chromatic and luminance variations

(Fig. 2D). But hue may cross between surfaces, as the

following phenomenon demonstrates.

Color bleeding is the result of one colored surface

reflecting light onto another. This type of inter-reflection

demonstrates an advantage to separating chromatic variation

from luminance variation (see Fig. 7). Although we do not

often notice color bleeding effects as salient, artists have been

concerned with reproducing it (Baxandall, 1995), and da

Vinci wrote about it.1 It follows, then, that color bleeding

does carry some information. One clue is that Fine et al.’s

conclusion above derives from a database of images with few

deep shadows (Fine et al., 2003). However, when shadows or

shading or related types of inhomogeneous illumination are

considered, pure or near-pure luminance variations can arise,

and humans are sensitive to this psychophysically (Kingdom,

2003). Separating luminance and chrominance, and compar-

ing and contrasting their relative structure, provides

information about both surface color and light-source

placement that differs from—and supplements—that of

cast or attached shadows. We shall return to this topic.

2.2. The analogy to orientation flows

While the apparent structure of hue may seem quite

different from texture (Fig. 8), we claim that there is a sense

in which hue fields are strongly analogous to oriented

texture fields. To start with the obvious, both are related to

descriptions of surface coverings, and therefore both can be

modeled as (two-dimensional) fields. Both orientation and

hue take values in the unit circle S1: But the analogy

becomes much more informative when one considers

the segmentation task described earlier. We now review

the segmentation of oriented textures, and show how it leads

to the consideration of second-order (flow) models invol-

ving curvature. This suggests that some notion of curvature

must underlie hue fields as well.

Fig. 6. Color denoising of the apple image (from Fig. 2). (A) Original image. (B) Noisy image. (C) Result of color diffusion in RGB space (Kimmel et al., 2000;

Sochen et al., 1998). Note that although the noise is not yet removed, the color structure across the apple is completely blurred and distorted, as is the case

across the apple’s boundaries.

Fig. 7. An example of color bleeding. It is most prominent in the deep

concavity between the sphere and the tabletop. Notice how it is elongated in

the direction of the light source and, in particular, how it differs from the cast

shadow. The hue field shown here is based purely on local measurements of

hue. While this local field is sufficient for us to view quickly, a more careful

examination reveals noise in particular places and, more generally, the

subtlety in localizing the hue borders between different regions.

1 Baxandall (1995) claims that da Vinci intended to dedicate an entire

section of his treatise on shadow to deal with it (p. 110).
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Orientation-based texture segmentation is the process

of detecting texture boundaries, or abrupt changes in

orientation that align to form a curve. This is a well-studied

problem in visual psychophysics, and most formulations

(Landy & Bergen, 1991; Mussap & Levi, 1999; Nothdurft,

1991) seek those points where the change in orientation

between perceptually coherent regions (i.e. across percep-

tual boundaries) greatly exceeds that within coherent

regions, quantities sometimes called orientation contrasts

(see Fig. 9). These models predict that segmentation occurs

reliably if and only if the ratio Dubetween=Duwithin is

significantly larger than 1. However, we have been able to

show that this ratio is not a complete description of texture

segmentation (see Fig. 10). In this example, 7u (and thus,

Duwithin) is constant within the figure and within the ground,

and Dubetween ¼ 188 is constant across the figure’s edges

(a square). Nevertheless, the saliency of the top edge is

significantly higher than that of the bottom edge, which is

hardly detectable without scrutiny.

We have conducted a large computational and

psychophysical study of orientation-based texture segmen-

tation in which we generalized the classical results using

piecewise-constant patterns to smoothly varying ones. In

brief, two curvatures are required to specify the local flow

of orientation textures, one which describes it in the

direction tangent to the flow at a point and another, which

describes it in the direction normal to the flow. The

fingerprint image illustrates how richly flows can curve,

and also illustrates the point singularities that emerge.

These point singularities differ from the one-dimensional

singularities along borders, but are also important. These

texture curvatures are described in detail in Ben-Shahar

and Zucker (2003) and the psychophysical results in

Ben-Shahar and Zucker (2004b).

The second sense in which texture segmentation is

like hue segmentation involves the refinement of local

measurements. Since the overall flow structure holds over

a neighborhood rather than just in a point, a technique

Fig. 8. Examples of orientation flows. (A) Fluid flows and fingerprints are

just two examples of orientation flows, whose line and point singularities

are significant precursors to their interpretation and understanding. Other

natural examples of include surface markings, such as the hair on a primate,

the grass on a field, the pattern of stripes on a zebra. (B) Line drawings are

another example of oriented texture patterns. These examples illustrate how

the texture lines on a surface smoothly curving away from the observer

tangentially approach the boundary (so-called ‘folds’, right), while those on

surfaces abruptly ‘cut’ off from the viewer approach the boundary

transversely (left).
Fig. 9. Standard models for orientation-based texture segmentation predict

that it depends on the relationship between two orientation gradients, one

within and the other between perceptually coherent regions (after

Ben-Shahar and Zucker (2004b)).

Fig. 10. A demonstration that Dubetween and Duwithin are insufficient to

determine the perceptual outcome of orientation-based texture segmenta-

tion. Duwithin is constant within the figure and within the ground, and

Dubetween is constant across the figure’s edges (a square). Nevertheless, the

saliency of the top edge is significantly higher than that of the bottom edge.

This is because of jumps in the curvature, which are larger at the top than at

the bottom (after Ben-Shahar and Zucker (2004b)).
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must be available to refine local, noisy measurements

into globally coherent wholes. We have developed a

relaxation procedure that takes initial noisy measure-

ments and relaxes them to a smooth flow almost

everywhere (Ben-Shahar & Zucker, 2003). It is necess-

ary, of course, that the relaxation does not regularize true

discontinuities or singularities away (see Fig. 11).

The third analogy between texture and hue was

presented in the introductory argument: just as the

long-range horizontal connections within the interblob

system are a sufficient substrate for boundary, texture,

and shading computations, we submit that the substrate

for processing hue interactions will be similar.

While discussing the analogies between orientation

and hue, we must caution that there are differences as

well. One is suggested in Fig. 8 (bottom). Forshorten-

ing generically bends apparent surface textures, or

shading (Breton & Zucker, 1996), to meet boundaries

tangentially, for smooth surfaces folding away from the

viewer (Ben-Shahar, Huggins, & Zucker, 2002; Hug-

gins, Chen, Belhumeur, & Zucker, 2001; Huggins &

Zucker, 2001), but we have seen no generic counterpart

to this forshortening effect for hue.

2.2.1. Replacing the constant color assumption

The brief discussion of lightness and segmentation

algorithms above illustrates how common a ‘piecewise-

constant color’ assumption is in computational vision.

The brief discussion of orientation-based texture segmenta-

tion suggested how common a ‘piecewise-constant orien-

tation’ assumption was in visual psychophysics (for more

detailed review, see Ben-Shahar and Zucker (2004b)). And a

consequence of this constancy assumption is normally made

regarding the long-range horizontal connections between

interblob neurons: in the strictest form, only like (i.e.

constant) orientations are supported. Although the long-

range horizontal connections between neurons in the

cytochrome oxidase blobs are not nearly as well studied as

those between the interblobs, the same view is being adapted.

Quoting T’so and Gilbert: “Like the specificity of the

interblob connections for columns of matched orientation

preference, among the blob connections we found a

specificity of blob connections for receptive field type and

color selectivity” (Ts’o & Gilbert, 1988, p. 1726). However,

our examination of natural images shows how rich and varied

colors can be, just as orientation flows are essentially never

constant.2

As we shall now show, this variation is naturally

modeled in terms of hue flows. The basic idea is the

following: if hue behaves like orientation, two nearby

Fig. 11. A relaxation procedure that enforces good continuation of orientation through curvature results in a coherent orientation flow. (A) A supersonic fluid

flow and ROI. (B) Initial measurements are both noisy and non-dense. (C) Convergence state of the relaxation process. Notice the well-defined line singularity,

as well as the preservation of the flow boundary. (D) Fingerprint image and ROI around one of the point singularities. (E) Noisy initial measurements. (F)

Convergence state of the relaxation process. Note the well-defined singularity (after Ben-Shahar and Zucker (2003)).

2 The smooth surface variation around ‘fold’ type edges reveals how rare

and non-generic constant orientation flows are; for an orientation flow to be

constant, the flow, the surface, and the viewer must all be in a special

arrangement. Just imagine a pin-striped shirt; while the stripes are parallel

and straight on the cloth, they rarely are in images because the surface slants

and curves.
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color patches should be mutually coherent if their hue

orientations posses mutual geometrical good continuation.

This amounts to assessing the degree to which each hue

measurement is geometrically compatible with the

context in which it is embedded, and whether or not

that context is part of a single whole.

3. Hue geometry and hue curvatures

Recall our earlier definition of the hue field. In HSV color

space, a color image is a mapping C : R2 !S1 £ ½0; 1�2;

where S1 is the unit circle. The hue component across the

image is a mapping H : R2 !S1 and thus gives rise to a

unit length vector (hue) field over the image plane.

An extension of the vector field representation that

makes tools from differential geometry readily available is

that of the frame field (O’Neill, 1966). More specifically, by

attaching a frame field {HT ;HN} to each point in the

image domain, we now not only represent the hue vector

itself, but also a local coordinate system in which all other

vectors can be represented in a natural, object centered view

(Fig. 12). Perhaps the most important vectors (other than the

frame vectors themselves) are the covariant derivatives of

HT and HN : These covariant derivatives represent

the initial rate of change of the frame in any given direction

V, a quantity which in the {HT ;HN} coordinates is

captured by Cartan’s connection equation (O’Neill, 1966):

7VHT

7VHN

 !
¼

0 w12ðVÞ

2w12ðVÞ 0

" #
HT

HN

 !
ð1Þ

The coefficient w12ðVÞ is a function of the tangent

vector V ; which represents the fact that the local

behavior of the flow depends on the direction along

which it is measured. Fortunately, w12ðVÞ is a 1-form and

thus linear. This allows us to fully represent it with two

scalars at each point since

w12ðVÞ ¼ w12ðaH1 þ bH2Þ ¼ aw12ðH1Þ þ bw12ðH2Þ:

The freedom in selecting a basis {H1;H2} for

the representation of the tangent vectors V is naturally

resolved by making, once again, the choice ofH1 ¼ HT and

H2 ¼ HN : This yields the following two scalars:

kT W w12ðHT Þ; kN W w12ðHNÞ: ð2Þ

We callkT the hue’s tangential curvature andkN the hue’s

normal curvature—they represent the rate of change of the

hue in the tangential and normal directions, respectively.

Since HT and HN are rigidly coupled, we can rewrite the

two curvatures in terms of HT only using the standard curl

ð7£Þ and divergence ð7·Þ operators:

kT ¼ k7 £HT k; kN ¼ 7·HT ð3Þ

However, more useful is the expression of the hue

curvatures in terms of the hue ðHÞ itself and its gradient

(7H; measured relative to a fixed coordinate system):

kT ¼ 7H·ðcos H; sin HÞ;

kN ¼ 7H·ð2sin H; cos HÞ:

ð4Þ

Viewed this way, it is clear that if kT and kN were known

functions of position q;Eq. (4) could be viewed as a PDE and

be solved for HðqÞ: This of course raises the question of the

degree to which kT and kN are independent, which indeed

leads to the following observation (proofs omitted for space

considerations; they follow with minor alterations from those

in Ben-Shahar and Zucker (2003)):

Proposition 1. Unless kT and kN both equal zero, they

cannot be simultaneously constant in a neighborhood

around q; however small, or else the induced hue function

will be non-integrable.

This observation has an important implication: unless the

hue function is constant, at least one of its curvatures must

vary, or the two curvatures need to covary in any

neighborhood of the color image. Formally, this is

characterized by the following constraints:

Proposition 2. Given any hue field {HT ;HN}; its

curvature functions kT and kN must satisfy the

relationship

7kT ·HN 2 7kN·HT ¼ k2
T þ k2

N :

Fig. 12. Any smooth hue field (depicted here with the set of locally parallel

lines), can be represented as a differentiable frame field which is

everywhere tangent (and normal) to the streamlines of the flow. An

infinitesimal translation of the frame in a direction V rotates it by some

angle determined by the connection form of the frame field. Since HT ;HN

are unit length, their covariant derivative lies in a normal direction,

regardless of V : Since the connection form is a linear operator, it is fully

characterized by two numbers obtained by projection onto two independent

directions. The natural choice to use the directions defined by the frame

itself yields the two hue curvatures kT and kN : This diagram also suggests a

relationship between hue fields and texture flows (Ben-Shahar & Zucker,

2003).

O. Ben-Shahar, S.W. Zucker / Neural Networks 17 (2004) 753–771762



4. A model for hue coherence

Since the local behavior of the hue is characterized (up to

Euclidean transformation) by a pair of curvatures, it is

natural to conclude that nearby measurements of hue should

relate to each other based on these curvatures. Put

differently, measuring a particular curvature pair

ðkT ðqÞ; kNðqÞÞ at a point q should induce a field of coherent

measurements, i.e. a hue function ~Hðx; yÞ; in the neighbor-

hood of q: Coherence of HðqÞ to its spatial context Hðx; yÞ

can then be determined by examining how well Hðx; yÞ fits
~Hðx; yÞ around q:

Clearly, the local coherence model ~Hðx; yÞ should be a

function of the local hue curvatures ðkT ðqÞ;kNðqÞÞ; it should

agree with these curvatures at q; and it should extend around

q according to some variation in both curvatures (as a

consequence of Propositions 1 and 2). While many such

models are possible, the fact that the hue field is a unit length

vector field over the image plane implies that it takes the

form of a texture flow (Ben-Shahar & Zucker, 2003).

Consequently, we adopt the same curvature-tuned local

model developed recently for texture flows. Viewed as a

surface in a three-dimensional space whose Z axis

represents the hue (as in Fig. 2C), this model takes the

form of a right helicoid:3

Hðx; yÞ ¼ tan21 kT ðqÞx þ kNðqÞy

1 þ kNðqÞx 2 kT ðqÞy

� �
: ð5Þ

This local model possesses many properties that suit

good continuation, an in particular it is both a minimal

surface in the ðx; y; ~Hðx; yÞÞ surface representation, and a

critical point of the p-harmonic energy for all p: It is also the

only local model that does not bias the changes in one hue

curvature relative to the other, i.e. it satisfies

kT ðx; yÞ

kNðx; yÞ
¼ const ¼

kT ðqÞ

kNðqÞ
:

Examples of the model for different curvature tuning is

illustrated in Fig. 13. A detailed technical account on the

development of the model in the texture flow domain can be

found in Ben-Shahar and Zucker (2003).

5. A contextual approach to color denoising

The advantage of having a model for the local behavior

of ‘good’ hue flows lies in the ability to assess the degree to

which a particular pixel is compatible, or consistent, with

the context in which it is embedded. This, in turn, can be

used to remove spurious measurements and replace them

with consistent ones such that local ambiguity is reduced

and global structures become coherent.

There are a few different frameworks in which one can

pursue this task while maximizing some measure of global

consistency or coherence over a domain of interest. Such

frameworks include relaxation labeling (Hummel &

Zucker, 1983; Kittler & Illingworh, 1985), recurrent

neural networks (Hopfield & Tank, 1985), and belief

propagation networks (Pearl, 1988). Here, we present

results using a relaxation labeling network, because it has

been shown that such networks are (i) equivalent to

polymatrix games (Miller & Zucker, 1992) and (ii) have a

biophysically plausible realization (Miller & Zucker,

1999). The nodes i ¼ ðx; yÞ of our network are the

image pixels, its labels at each node are drawn from the

set A ¼ {ðH;kT ; kNÞlH [ ½2p;pÞ;kT ; kN [ ½2K;K�}

(after it has been quantized appropriately), and each label

is assigned a confidence, or probability piðlÞ such that at

each node
P

l[^ piðlÞ ¼ 1: The relaxation process itself

drives an initial confidence distribution p0
i ðlÞ to a final

(possibly ambiguous) distribution p1
i ðlÞ: What governs the

dynamics of this process, and ultimately its convergence

state, are the compatibility relationships rijðl;l
0Þ between

different labels at different nodes. In our case, these

compatibilities represent the degree to which two nearby

pixels have consistent hue values. (It is these compatibil-

ities that serve as a model for the long-range horizontal

connections, as we discuss later.) Viewing the problem

from a geometrical point of view we derive these

Fig. 13. A local model for coherent local behavior of the hue can be depicted both as (A) a height function that wraps itself to ½2p;pÞ (hence the apparent

discontinuity), and as (B–D) a unit length vector field in the image plane. Different orientation and curvature tunings at the central pixel (marked with red)

yield different local behaviors around it, and the three variations shown correspond qualitatively to (A) kT . 0 and kN . 0; (B) kT . 0 and kN ¼ 0; (C)

kT ¼ 0 and kN ¼ 0: All three fields are tuned to the same hue value of H ¼ 458:

3 Unlike texture flows, however, the local model for the hue function is

not a double helicoid since the hue function takes values in [p,p) where

texture flows are constrained to [2(p/2),(p/2)). The basic properties and

proofs (Ben-Shahar & Zucker, 2003) carry through, however.
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compatibilities from the geometrical (helicoidal) model

described above. Examples of a variety of compatibility

fields for a single hue value and different combinations of

hue curvatures are illustrated in Fig. 14. Note in particular

the relationship between curvature tuning and the rotational

organization in the hue domain.

With the network structure, labels, and compatibilities all

designed, one can compute the support siðlÞ that label l at

node i gathers from its neighborhood. We define siðlÞ to be

siðlÞ ¼
P

j

P
l0 rijðl; l

0Þpjðl
0Þ and use it to update the

confidence piðlÞ by gradient ascent followed by a

confidences normalization P

ptþ1
i ðlÞˆP½pt

iðlÞ þ dst
iðlÞ� ð6Þ

where d is the gradient ascent step size. The relaxation

labeling theory (Hummel & Zucker, 1983; Pelillo, 1997)

ensures that such a rule will converge to a consistent

labeling while extremizing the average local consistency

over the entire image.

6. Experimental results

We applied the proposed model for hue good continu-

ation and the corresponding relaxation labeling network to

a number of the previous examples. We first consider the

question of denoising images, because this is the easiest to

demonstrate. We then show results from hue and shading

flow relaxations, and conclude with implications to

neurophysiology and psychophysics.

6.1. Denoising images

Removing noise from the color channels of images is a

challenging image processing problem, and in this section

we illustrate our approach on a variety of synthetic and

natural inputs. In all cases, we quantized the hue uniformly

to 32 equivalence classes and curvatures to 5 (as in Fig. 14).

Step size was set to d ¼ 0:5:

Fig. 15 illustrates the relaxation behavior around

different kinds of synthetic color edges. Since our approach

effectively considers only the coherent context (as defined

through the geometrical model and the derived

compatibilities) of each pixel, neither noisy pixels, nor

information across edges, affect the support gathered by

each label. This ensures not only the reliable elimination of

noisy labels (or, as is necessarily true due to confidence

normalization, their replacement with coherent ones), but

also the robust preservation of edges. In this sense, the

performance on the image in 15E–J is of particular interest

because the input represents an edge configuration that a

typical non-linear diffusion is likely to distort. More

specifically, note how the hue profiles along the two

sides of the perceptual edge create a cross-like configur-

ation in the hue domain (best seen in Fig. 15H). Since in the

proximity of the cross-point the hue gradient is very small

the diffusion conduction increases and smoothing is

encouraged. In practice, this leads to the collapse of the

edge from the inside out and to a distortion of the

underlying structure. As is illustrated in the figure, this

does not happen with our approach.

Fig. 14. A collection of 9 £ 9 hue compatibility fields for H ¼ 08 (the red color), where both kT and kN are selected from the set {20.2, 20.1, 0.0, 0.1, 0.2}.

Each field represents all compatible hue values in the neighborhood of the central label; on the left these compatible values are depicted as color pixels while on

the right they are depicted as hues fields. Due to quantization, especially that of curvatures, a given label at the center may be compatible with more than one

label at the same nearby location in its neighborhood, an outcome depicted by multiplicity of vectors at certain positions in the fields. Since this aspect of the

compatibilities cannot be depicted with the color representation, the fields on the left show only the most compatible hue value at each position. Note how

higher curvature values introduce more variations into the fields, and how changing the curvature tuning while keeping constant the ‘total variation’ measure of

k2
T þ k2

N amounts to a rotational transformation of the field. It is these hue compatibility fields that serve as an abstract model for hue-based long-range

horizontal connections.
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Fig. 16 illustrates the results of our denoising approach

on the apple image from Fig. 2. To emphasize

the contribution of our method, which currently acts on

the hue channel, here we show the result for a corruption

along the hue dimension. In this, as well in all other images

we tested, full reconstruction was achieved after 30

iterations or less. Unlike typical diffusion processes,

which contain no natural indicators for stopping the

progress along the scale space, in our approach conver-

gence is readily signaled by convergence of the average

local consistency (Fig. 15D). Fig. 17 demonstrates the

stability of the process once convergence has been

achieved, and how additional iterations do not distort

essential structure.

Fig. 16. Color denoising of the apple image (from Fig. 2). (A) Original image. (B) Noisy image. (C) Result of 25 denoising iterations. Compare to Fig. 6C.

Fig. 17. Stability of hue field after convergence of the local average consistency. (A) A detail from noisy Peppers image from the same ROI marked in Fig. 2A

(but further zoomed in to allow better depiction of the hue field). (B) The corresponding hue field. (C) The result of 20 iterations. (D) The result of 50 iterations

is virtually identical. (E) The denoised color image.

Fig. 15. Color denoising on synthetic color images. (A) is a color step edge. (B) is a noisy version of it. (C) shows the result of 20 iterations of relaxation

labeling. The noise is completely eliminated while the edge structure is preserved. (D) is the graph of the average local consistency as a function of iteration.

It illustrates that convergence on this input was effectively achieved at the 12th iteration, at which the distribution of assignments piðlÞ reached a steady state.

(E–G) illustrates the denoising result on a different configuration of color edge. This time steady state (panel G) was achieved after 30 iterations. This example

is particularly important because most anisotropic diffusion schemes are likely to fail on its cross-like edge configuration. This cross-configuration is most

apparent in panel H, where the hue values are represented as height (and the top face of the cube should be identified with its bottom). Since around the cross the

hue gradient is very small, the diffusion is not suppressed and the edge collapses. Thus, even without noise (shown again in panel I), diffusion of such a

configuration yields an undesired distortion of the structure, as shown in panel J (compare to panel G with the result of our approach). Here, we used the

Beltrami flow for RGB images (Kimmel et al., 2000; Sochen et al., 1998), but similar results were obtained with other orientation diffusion schemes as well

(Sapiro & Ringach, 1996; Tang, Sapiro, & Caselles, 2000).
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Lastly, Fig. 18 demonstrates the result of using our

approach on a variety of natural images. In all cases,

the noise was completely removed, and convergence

achieved, after 30 iterations of relaxation labeling or less.

6.2. Fruit and foliage imagery

As described in Section 2.1.1, primates can utilize color

image analysis for both finding fruits and edible leaves

against a background of foliage. In both cases, a

complicated Gestalt is required.

We begin with the task of detecting berries in noisy

images. Such noise might arise from reduced lighting, dirt,

or other natural obscurations. Observe first that, since the

berries can occupy only (spatially) small portions of the

image, a linear smoothing process (to remove the noise)

would tend to blur them away. Our relaxation system

sharpens the hue differences from background (see Fig. 19).

The second example illustrates the natural color

variations indicative of edible leaves. Again, the relaxation

process takes noisy local measurements into a piecewise

smooth, coherent flow (Fig. 20). Although we might stress

that this leaf is not edible, the chemistry underlying the

pigmentation is consistent.

6.3. Hue and shading interactions

Our next example illustrates a few of the advantages of

comparing hue flows to shading flows, concentrating on

information relevant to inferring different aspects of scene

structure. The concepts are illustrated in Fig. 21. We show

both hue flows and shading flows,4 thereby illustrating hue

and intensity differences and possible interactions.

First observe that in both cases the initial (local)

measurements are noisy, and that the relaxation process

maps them to a piecewise smooth result. For the hue flow

note that it is most pronounced in the concavity between the

Fig. 18. Color denoising of the Lena, Sidney, and Peppers images. (A) Original image. (B) Noisy image. (C) Convergence state of the relaxation process.

4 Recall that the shading flow is the tangent field of the level curves for

image intensity.
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Fig. 19. The detection of (noisy) berries from a (noisy) foliage background. Notice how the additive noise corrupts the local hue field measurements (top), as

might occur in a low-light situation, and how the relaxation process (bottom) reduces the noise to make the detection essentially trivial.

Fig. 20. The relaxation process achieves a smooth coherent flow from noisy incoherent measurements of a leaf. Compare relaxed hue flow to the original one in

Fig. 5 (also shown in red beneath the black arrows in the bottom right panel).

O. Ben-Shahar, S.W. Zucker / Neural Networks 17 (2004) 753–771 767



ball and the tabletop and results from inter-reflection

(Langer, 1999). It is elongated in the (projection onto the

tabletop of the) direction of the source. While such hue

bleeding is not necessarily salient perceptually, notice

that it does capture some information about the scene

configuration. Perhaps this is why artists have worked so

diligently to represent it.

Second, notice how the apparent specularity on the ball

has a roughly constant hue but a very different brightness.

Thirdly, observe that the shading flow captures rather

different information from the hue flow. We displayed the

hue flow superimposed on the intensity image so that these

differences would be pronounced (top panels in Fig. 21).

Notice in particular how the hue flows across the shadow

away from the object, indicating the constant ground plane.

The lower panels represent the shading flow information

geometrically, composed with local edge measurements

(in green, bottom panels). The right shading flow corres-

ponds to a fold-type boundary. Note that the (green)

boundary segments have not been relaxed, to illustrate the

feedback possible to boundary re-enforcement from shading

or hue fields. However, much remains to be developed

regarding hue-shading-boundary interactions.

6.4. Neurophysiological and psychophysical implications

A number of different types of predictions arise from

experiments suggested by the model presented in this paper.

We begin with neurophysiological considerations. Perhaps

the most basic of these derive from interpreting the hue

compatibility fields (Fig. 14) directly as projection fields

derived from the long-range horizontal connections. Just as

surround effects have elaborated our understanding of long-

range connections in the interblob regions of V1 for

orientation, one would expect analogous effects in color.

While chromatic contextual effects are classical, they are

normally expressed by presenting a constant (in hue)

annulus surrounding a (possibly different) central patch

(Wachtler et al., 2003). This is analogous to pop-out

configurations in orientation, when a single misaligned line

segment is presented in an otherwise constant field of lines.

But smooth orientation flows differ from these pop-out

configurations and, returning to hue, the compatibility fields

above suggest using surround annuli of smoothly varying

hue. Since the spatially varying fields that we show are

supportive of the central hue, we predict in particular that

excitatory as well as inhibitory effects will be seen.

Our next class of predictions relate to visual psycho-

physics. It clearly suggests an examination of color (and

hue, in particular) segmentation from a geometrical point of

view, similar to recent findings for orientation-based texture

Fig. 21. Illustration of hue and shading flows; see text for description.

Fig. 22. A modified Ehrenstein illusion shows how color filling-in can occur

between boundaries of different colors, thus suggesting a link between the

approach proposed in this paper and the psychology of color perception.

This illusion best viewed on a fluorescent (e.g. CRT) display.
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segmentation (Ben-Shahar & Zucker, 2004b). Versions of

these experiments can be formulated in hue to test for

sensitivity to both hue and hue-curvature changes. These

can be compared with existing information about color-

based contour integration (Beaudot & Mullen, 2003;

Mullen, Beaudot, & McIlhagga, 2000), the latter of which

includes evidence for a curvature dependency.

Finally, higher-level effects should be manifest with

varying hue as well. We show one example of a filling-in

phenomenon in Fig. 22 but many related versions of this

exist.

Examining all these directions are part of our future

research in this area.

7. Summary and conclusions

We have presented a theoretical framework for hue

interactions within color imagery. Our approach is based on

principles of perceptual organization, and in particular on

the application of good continuation to the two-dimensional

field of the hue channel represented as an orientation

(or position within the ‘color circle’) for each retinotopic

position. Based on a notion of hue curvature, we derived a

formal model for the local behavior of coherent hue. This

extends the most studied class of color patterns from those

in which the color is essentially constant and changes only

at boundaries to those that allow smooth variations. We

illustrate how natural images often enjoy smooth hue

variations, and demonstrate, for a number of different

examples, how this allows for rich hue-field descriptions

and robust processing while preserving the underlying flow

structures in the color image. The need to preserve a variety

of singularities separates our approach from (related)

orientation diffusion models.

The neurobiological substrate to support these compu-

tations is taken to be the long-range horizontal connec-

tions. One motivation for our work was that such

connections exist between cells in the cytochrome oxidase

blobs as they exist between cells in the interblobs, and we

are seeking to develop theories and applications of color

good continuation as rich as those for orientation good

continuation. Our earlier theory for interblob orientation

integration provided the mathematical foundations for this

hue model.

The hue dimension is a natural candidate for application

of the principle of good continuation, and different

applications in finding hue boundaries, color bleeding, and

denoising extend its use beyond straightforward image

segmentation. The resultant hue boundaries could support

rich lightness computations, and interactions between

the hue field, the shading flow, and boundaries provides

information about shape and light source placement.

Our model for hue good continuation illustrates the

contribution of top-down computational research: it creates

theoretical connections between information processing

tasks and the neural substrates that could carry them out.

But the argument is only one of sufficiency, and the

computational exploration of hue and its many uses, from

the detection of nutrient foliage by primates to psycho-

physical demonstrations of hue-variant filling-in, is just

beginning. Since the anatomical and physiological data for

blob connections are not as complete as those for interblob

connections, models such as the one presented here remain

largely theoretical. While the geometry that we describe

was analogous to V1 structures, it may well be realized in

V2, or in V1/V2 interactions, or beyond. Thus, it stands as

a class of predictions for connections to be confirmed. And,

we hope, it provides additional motivation to find them.
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