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Abstract 

This paper outlines a set of problems associated with 
constructing a robust, domain-independent vision- 
based navigation system suitable for both structured 
and unstructured environments. The system utilizes 
visual tracking to  monitor a set of automatically se- 
lected image features (markers), and employs vision- 
based control to guide the motion of the robot from the 
image trajectory of a set of markers. An environment 
is represented as a graph which may be constructed ei- 
ther under human control (e.g. by giving the system a 
tour) or autonomously as the system explores. In this 
paper, we review the system architecture and present 
two image-based mobile robot controllers for following 
visually-defined trajectories. 

1 Introduction 

Since early work in the 1 9 7 0 ’ ~ ~  such as SRI’S Shakey[23] 
and Moravec’s Cart[22], there have been great strides 
in the development of vision-based navigation methods 
for mobile robots operating both indoors and outdoors. 
Much of the efficiency and robustness of the recent sys- 
tems can be attributed to  the use of special purpose 
architectures and algorithms that are tailored to ex- 
ploit domain specific image cues. For example, road 
followers rely on finding the road boundary and lane 
markers [3, 121 or landmarks [6, 18, 19, 201 whereas 
mobile robots navigating in hallways have exploited 

range-finders or vision-based reconstruction techniques 
can be used to  determine the free-space or traversable 
regions independent of the domain. However, these 
methods require a tremendous amount of computation, 
have limited resolution, and are difficult to maintain 
over large spatial extent due to integral odometric er- 
ror. 

Instead, our aim is to develop a vision-based navigation 
system capable of performing tasks in environments 
ranging from the usual “corridor and room” building 
to  large open areas such as auditoriums, warehouses, 
parking lots, or open terrain. Although vision pro- 
vides a huge amount of data, we quickly focus attention 
on small portions of the image which are easily distin- 
guished from their local (in the image) surroundings, 
and track these patches through image sequences. Vi- 
sual tracking of this type has proven to  be simple to 
perform [2, 101, yet it is robust and it reduces image 
information to a time history of a small set of feature 
locations. Consequently, the set of nominal robot paths 
in our system is represented in terms of the image tra- 
jectories of tracked features. During subsequent navi- 
gation, the image motion of observed features in com- 
parison to  stored feature trajectories provides direct 
feedback for robot motion control. As features leave 
the robot’s field of view, new features in the map are 
acquired by predicting their expected image location; 
once acquired, these features are tracked and used to  
control robot motion. In this way, the robot operates in 
a controlled, closed-loop manner during all operations. 

uniform texture of the floor [l3i, floor/wa11 features 
[177 1 5 1 7  and Overhead lights i71. The remainder of this paper expands on these ideas 

and presents preliminary results on two motion control However, 

algorithms for implementing tour following. these domain specializations lead to impressive perfor- 
mance, they do so by imposing particular sensor cues 
and representations on low-level navigation. As a re- 
sult, a system that works in one domain may require 
substantial redesign before it can be used in another. 

2 Navigation Using Tracked Markers 

Throughout this article, we assume a non-holonomic One path toward achieving domain-independence 
mobile system with kinematics equivalent to a unicycle. would be to utilize geometric reconstruction. In par- 

ticular, dense surface descriptions produced by either The system in the x - - 2  and rotates about 
the y (gravity) axis. It is equipped with a unit focal 
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Figure 1: A navigation example showing the environment (left), the sequence-based representation (upper right), and the 
graph (lower right). The robot starts at point a observing the markers ml through m5. As it moves to position 
b, m5 falls out of view, but the robot is able to acquire m6. As it continues its motion from b to c,  it notes that 
there is a corridor opening between m2 and m4; this information is added as an annotation to the sequence. As 
it reaches c it is forced to drop m3 and m4, but acquires m7. At this point, it could have chosen instead to move 
down the corridor to the right. A later traversal moving to position e would add a branch point to the graph as 
shown by the dotted line. 

in the plane is therefore given by r = ( z , z ,19 )~  E R3 
where ( z , z )  denotes the position of the robot in the 
plane and 6’ denotes its orientation. The kinematics of 
the system are 

(i, i,e) = (-s sin(e), s CO@), U) (1) 

where s and w are the linear and angular velocity of the 
robot body. Note that the camera is fixed and points in 
the “forward” ( z  axis) direction. Also, for the sake of 
simplicity we assume that the camera has an unlimited 
field of view. In practice, providing the system with 
an independent pan axis for the camera would achieve 
nearly the same results. 

We assume that the robot has already acquired data 
about a set of nominal paths through the environment. 
Here we briefly summarize the important aspects of 
that representation and refer the reader to [26, 8, 101 
for more details on the techniques used to  acquire it. 

The set of nominal paths is represented as a directed 
graph (the map) based on the recorded visual tra- 
jectories of tracked features which we call markers. 
We represent the trajectory of marker i as a function 
mi(t),bi _< t 5 ei, where t = bi is the time of marker 
acquisition, and t = ei is the time a t  which the marker 
is lost. In general, the range of the functions mi(t) 
depends on the marker type. For the purposes of this 
article we assume each marker is a point feature charac- 
terized by an image location and thus mi : R+ -+ Et2. 
Arcs of the graph correspond to  the trajectories of col- 
lections of markers called sequences, and the nodes of 
the graph correspond to  the initiation or termination 
of a sequence. More formally, a sequence, S j ,  is de- 
fined by a set of markers Sj = {mj,, . . . , mjn} which 

are simultaneously visible over some non-empty in- 
terval dom(Sj) = [max(bj,, . . . , bjn),min(ej,,. . . ,ej,)]. 
We write S j ( t )  = (mjl(t), . . . , mj,(t)), t E dom(Sj) to 
denote the feature trajectory of the sequence. We as- 
sume that every marker belongs to a sequence at every 
time point, and that sequences are maximal - that 
is, if Sj is a sequence, there is no S k ,  k # j such that 
Sj C s k .  Note that with this particular set of defini- 
tions, it follows that one sequence ends and another 
begins if and only if a marker is acquired or lost. Also 
note that the arcs are directed since markers that are 
visible while going in one direction, may not be visible 
in the other direction. 

Finally, we assume that the time history of the con- 
trol inputs to  the system during sequence generation is 
stored with the sequence. 

3 Visual Tracking and Motion Control 

3.1 Epipolar Geometry for Mobile Systems 
Consider first the perspective projection of an arbitrary 
point feature i. If the feature’s homogeneous coor- 
dinates in two distinct images are denoted by mi = 
( U ! ,  U:, 1) and m: = (U:,  U;, l), it is well-known that 
the two measurements must satisfy the following bilin- 
ear form known as the epipolar constraint 

(m:)tF12m: = o (2) 

where F ~ z  is a 3 x 3 matrix of rank 2 [5 ] .  When the 
camera’s internal parameters are known, F ~ z  can be 
expressed as FIZ = skew(tl2)R12 where R12 E SO(3) 
and tlz E R3 denote the rotation and translation be- 
tween the camera locations at which the correspond- 
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ing images were acquired, and slcew(tl2) is the skew- 
symmetric matrix whose elements are given by t12 [21]. 
For the constrained motions of a mobile system oper- 
ating in the x - z plane it follows that F 1 2  takes on the 
simplified form 

-t* 0 
t,S 0 t ,S-  t x C l  (3) 

1 0 0 1 
0 fl 

0 f4 0 
= [ f 2  0 11. (4) 

where S = sin812, C = cos012, 812 is the relative angle 
of rotation about the vertical axis which parameterizes 
R12, and ti2 = (L,O,t , ) t .  

Given three or more corresponding points, F12 can be 
estimated as follows. First, the epipolar constraint can 
be expressed as a:f = 0 where f = [fl,  f2 ,  f 3 ,  f4It and 
at = [ ut vs vf.5 vf vi” 1 .  We then construct the 
positive semi-definite matrix 

n 

A = ai at. (5) 
i=l  

The best estimate in a least squares sense for f is the 
eigenvector of the matrix A associated with its smallest 
eigenvalue. 

We can relate this to the geometry of the system as 
follows. Given F12,  we see that t 1 2  = ~ [ f 4 , 0 ,  -fl] for 
some real value K .  Since K is unknown, we can think of 
tl2 as defining the line joining the two robot locations. 
Henceforth, we will denote the direction of this line by 
$12 which is ambiguous modulo T .  We can solve for 812 

by first solving the linear system 

a,nd then computing 012 = tan-lS/C. It is possible 
to show that estimation of 812 is always well-defined 
(provided all points do not lie on the horizon line), 
however t12 is not well-defined when the centers of the 
two cameras are coincident. 

3.1.1 Feed-Forward Marker Acquisition: To 
transition between sequences as the robot moves along 
a trajectory it is necessary to acquire landmarks as they 
come into view. This problem, which is closely related 
to the image transfer problem [l, 11, 271, can be solved 
as follows [8]. For simplicity, suppose that S1 and S2 
are two “snapshots” (e.g. the first and last images) from 
a fixed sequence Sj  which contains four or more points. 
Let s3 denote a snapshot from a sequence s k ,  k # j 
which shares a t  least three points with S j .  It follows 
that, from the three shared points, we can compute two 
fundamental matrices: F 1 3  and F23  from S1, S2, and 
s3. 

Let mi denote the coordinates of a fourth point to  be 
located in S3 given its known locations mi in S1 and 
mi in S2. This location is given by solving the linear 
svstem 

(7) 

for the first two components of mi. Figure 2 shows an 
example of this type of point prediction. 

It is important to note that this system does not aIways 
have a unique solution: there are certain geometric con- 
ditions which lead to  a degenerate linear system. More 
discussion on this point can be found in [8]. 

3.2 Motion Control 
In order to formalize the motion control problem, we 
now suppose that the robot is traversing an arc in 
the map corresponding to a stored sequence while 
tracking a corresponding set of markers. Recall that 
we assume the following information is available from 
the previously taken “tour:” (1) a reference sequence 
S, : IR+ + IR” which is of fixed dimension n/2 >= 3; 
and (2) a record ( s r ( t ) ,wr ( t ) ,  t E [O,m) of the input 
control values to  the system when S ,  was “recorded.” 
It is important to  note that due to wheel slippage, it 
is not possible, via the kinematic equations, to simply 
integrate using the recorded sequence of s and w to 
compute the position of the robot. 

As the robot moves, it observes a sequence of “current” 
marker values S, : R+ + Et” which correspond to 
those in S, (that is, they arise from the projections of 
the same points in the world). Our goal is to choose 
a control strategy such that IlS,(t) - S,(t)1l2 + 0 as 
t + Co. 

3.2.1 Geometry-Based Feedback: Consider a 
camera which is currently at position and orientation 
r1 with snapshot S1 = S , ( t )  and a reference position 
and orientation r2 with snapshot S2 = S , ( t ) .  From the 
results of the previous section, one possible strategy to  
move the robot to  the desired location (r2) would be to 
compute F12 using S1 and S2, use this in turn to  com- 
pute $12 which parameterizes the line joining r1 and 
r2, and to move along this line until r2 is reached. Un- 
fortunately, due to  the ambiguity modulo 7r in $12 we 
do not know the direction to  move on this line. Fur- 
thermore, the calculation of $12 breaks down as the 
robot nears r2. 

Both of these problems can be solved by using the error 
El2 = IlSl(t) - S2(t)1I2, where S2(t) is the reprojection 
of S2(t) to  an image plane rotated about the y axis 
by 012. We can disambiguate 1J12 by moving in the di- 
rection that causes El2 to  decrease. Furthermore, a 
decreasing E12 implies that  the robot moves closer to 
the desired position r2 which in turn means that calcu- 
lation of $12 becomes less reliable. Therefore, we can 

h h 
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a. b. 

Figure 2: The top row shows two training images taken about one meter apart with the robot looking in the same direction. 
The remaining images were taken at equal intervals as the robot moved forward approximately ten feet from its 
position in Figure b. During training the image coordinates of all four features marked in Figure 2.a were known 
initially, then tracked to their positions in Figure 2.b. The crosses in the subsequent three images indicate the 
robot’s predictions of the feature location. 

Standard Deviation = 0.0 pixels Standard Deviation = 0.5 pixels Standard Deviation = 1.5 pixels 

Figure 3: At the top, simulation tests of the geometry-based control algorithm under various noise conditions. At the 
bottom, simulation tests of the Jacobian-based control algorithms under the same conditions. The figures show 
the location of the controlled system (solid line) as well as the reference trajectory (dashed line). 
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use E12 to  bias the effect of $12 on the control of the 
robot. We can then control the robot by a policy of 
the form, 

s ( t )  = S T ( t )  + K2(E12 cOs($12) - .) (9) 
w ( t )  = + x$12 (10) 

where ~ 1 ,  6 2  and r are design parameters. We can view 
X as a continuous switch which determines how close 
to the reference trajectory $12 is active in altering the 
heading of the robot. The value of r determines how 
closely the robot “follows” the setpoint on the reference 
trajectory and I E ~  is a gain. 

Figure 3(top row) shows some simulated trajectories of 
a robot following the same reference trajectory under 
different noise conditions with ~1 = K.L = 1000 and 
r = 0.005. The camera is modeled as having a 30 de- 
gree field of view divided into 600 pixels. Noise was 
zero mean Gaussian noise of the given standard devia- 
tion. As is clear from the the figures, the method works 
well under low noise conditions, but quickly breaks 
down as more noise is introduced. It also exhibits an 
odd “switching” behavior a t  the start of the trajectory. 
This is due to the fact that speed control (s) is designed 
for a setpoint “ahead” of the robot; if this is not the 
case, the robot backs up until the point is sufficiently 
far ahead to begin chasing it. 

3.2.2 Jacobian-based feedback: A second ap- 
proach to controlling the robot is to consider adapta- 
tions of classical “visual servoing” techniques to a non- 
holonomic system operating in the plane. Methods for 
holonomic problems of this form have been developed 
by many authors [14, 9, 4, 241; several recent articles 
describing adaptations of these ideas to non-holonomic 
systems can be found in [16]. 

Suppose that an observed marker mi has image coor- 
dinates mi = ( u , u ) ~  E IR2 and external coordinates 
Pi = ( X ,  Y, Z)t E IR3 expressed in the camera frame of 
reference. The point Pi and its projection are related 
bv 

It follows that the velocity of the projection, mi, due 
to  robot motion v = i is 

i = J ~ ( u , u , z ) v .  (12) -uu Z 

This is a planar version of the so-called Image Jacobian 
or Interaction Matrix expressed as a function of ob- 
served values U and v and the unknown value 2. More 
generally, if S ,  is comprised of markers with image co- 
ordinates {mi}, the evolution of S ,  as a function of the 
motion of the system can be written by “stacking” the 

Image Jacobians for the individual markers leading to 
the general form 

S ,  = Jv (13) 
where J E depends now on the image coordi- 
nates and depth of every observed point. Since the 
motion of the system is already stabilized by encoder 
feedback, it is usually possible to  model system dynam- 
ics as a pu.re time delay and to  choose a control input 
U = (5, z,  B)t[14]. Under these conditions, given a fixed 
setpoint S* = S,(s), feedback systems of the general 
form 

u(t) = - ~ ( J ~ J ) - ~ J ~  (sc(t) - s*), (14) 
will, in the absence of noise, uncertainty about J and 
the given dynamics, be locally asymptotically stable for 
an appropriate choice of the “gain” k. 

There are three issues which arise when implementing 
a controller of this form. First, since J is a function of 
the distance from the robot to the observed feature, we 
must develop an estimation procedure for this quantity 
which preserves stability. In our case, since we have 
the complete tour a t  our disposal, it is not difficult to 
compute registered values for 2 for every observation 
for the pre-learned sequence. These values can then be 
modified online using any of a number of estimation 
methods [24]. 

A second issue is to  map this control vector to the non- 
holonomic kinematics. There are several possibilities in 
this case [25]. We have chosen the following mapping 

s ( t )  = s,(t) + i. (16) 
w ( t )  = K(w, ( t )  + e ( t ) )  - qKk (17) 

where q and IE are design parameters chosen to “tune” 
the system. Note that K ,  which ranges from 0 when x 
is large to  1 when x is small, acts as a continuous switch 
active about the value 151 = K .  The expression 5K acts 
as a “limiter” so that the value of j. does not become 
too large and destabilize the system. Thus, intuitively 
this policy simply heads toward the current reference 
setpoint when it is far off the path, but then begins to 
mimic the reference once it is within approximately 6 1  

units of the underlying path. 

A final issue which arises is the fact that the results 
of (14) deteriorate rapidly when the orientation differ- 
ence between the controlled system and the reference 
are large. However, recall that we can easily compute 
e,, using epipolar methods and we can use this value 
to  rotate observed data into the frame of the reference 
trajectory as described in the previous section. In prac- 
tice, we do this, apply (14) to  the modified values, and 
adjust the control policy for w to  be 

w ( t )  = K(w,(t) + e C , ( t ) )  - VKk (18) 
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We then “tune” the controller for a nominal capture re- 
gion. Figure 3( bottom row) shows several simulations 
of this controller with varying noise levels. We have 
chosen 17 = .012 and K. = 10. In general this method ap- 
pears have much higher accuracy for comparable noise 
levels than the geometry-based method, although this 
fact is not surprising given that it makes use of an ex- 
plicitly calculated value for the depth of each point. 

4 Conclusion 

We have described a system for domain independent 
mobile robot navigation in which naturally occurring 
features of the environment are used as markers or 
landmarks. During a tour, features are automatically 
selected, and a representation useful for subsequent 
navigation is automatically constructed. When nav- 
igating, features are acquired as they come into the 
robot’s field of view, tracked over time, and used to 
control the robot’s motion. Two feedback controllers 
for this purpose have been described. Simulation re- 
sults suggest that a modification of a traditional image- 
based control system will work near the desired trajec- 
tory. Far from the initial trajectory, a novel approach 
based on projective geometry can be used to move the 
system into the capture region of the Jacobian-based 
control. We are currently working to test these ideas on 
a real mobile system. We are also working to develop a 
theoretical basis for the stability of the described sys- 
tem. 
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