IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998 549

Practical Pushing Planning for
Rearrangement Tasks

Ohad Ben-Shahar and Ehud Rivlin

Abstract—n this paper, we address the problem ofpractical A second feature which we introduce into our study is the
manipulation planning for rearrangement tasks ofmanymovable fact that we allow our robot to manipulate the objects only
objects. We study a special case of the rearrangement task, by pushingthem (rather than grasping them). This constraint

h h ly all ipulation i hing. Whil I
\gf fﬁ?st k?n?jn Zrz c:(\:\]/g\njlwzn ?Q ||cE)ueat||3cg1P|:C|oE_sh;r:g We' ig{;?fhe%? is motivated by several observations: The action of pushing

algorithms that can provide practical planning time for most allows easier manipulation of larger and heavier objects. It
common scenarios. We present a hierarchical classification of permits easier simultaneous manipulation of groups of objects,

manipulation problems into several classes, each characterized and most importantly, it can be realized with simple and
by properties of the plans that can solve it. Such a classification cheap robot structures. In that sense, the pushing manipulation

allows one to consider each class individually, to analyze and I bil bot to be th ioulat fth ;
exploit properties of each class, and to suggest individual planning &/'0WS @ny mobiie robot to be the manipuiator of the system.

methods accordingly. Following this classification, we suggest 1h€n again, the action of pushing has many disadvantages
algorithms for two of the defined classes. Both items have beenover grasping, which make it less widely used after all.

tested in a simulated environment, with up to 32 movable objects The action of pushing is inherently restricted to a support
and 66 combined DO.F..We present simulations results (with up surface and does not allow the robot to exploit the third
to 10 movables), statistical data from 1000 randomly generated dimension while manipulating the object. In addition, pushing
problems, as well as some experimental results using a real ; s - X b
platform. is different from grasping by the fact that it might bring the
object into irreversible configurations (e.g., corners) which we
call trap points [6]. Hence, unlike with grasping, planning
is essential for systems that rearrange objects by pushing.
EARRANGEMENT of objects in a given workspacefinally, the action of pushing is mechanically unstable and
is a basic manipulation task. The applications of a r¢nus various control problems arise. As it is emphasized in
arrangement system are numerous, ranging from fine assemhly subsequent sections, this study focuses on planning issues
planning to household maintenance tasks. However, the higlat emerge from the former two points, while assuming
complexity of the underlying planning problem prevents thgat the control problems have been solved separately by an
realization of a complete system that can handle scenarigernal component. Note that some undesirable aspects of the
of many objects. In this paper, we address the problefechanics of pushing might be minimized by an appropriate
of planning a rearrangement plan while considering sevegtoice of the pusher geometry.
special features. The major contribution of this paper is twofold—the
In the light of the above, the first feature we are interested fjtesentation of a novel formal classification of manipula-
deals with the number of objects that the system can handign/rearrangement problems and the development of two
Wilfong [17] showed that motion planning in the presencgractical planning algorithms. The presented classification
of movable objects is PSPACE-hard. This result convinceglows to consider each class individually, to analyze and
other researchers to concentrate first on constrained versigggloit properties of each class, and to suggest individual
of the problem, namely with cases of one or few movablgractical planning methods accordingly. The suggested
objects only [1], [3], [6], [8], [12], [14], [17]. Different from algorithms correspond to two of the defined classes. Both
previous works, in this study we are interested in problemggorithms can solve rearrangement problems rony
which engagemany movable objects, as happens in moshovable objects amidst cluttered environment. Different from
practical scenarios. Undoubtedly, complete/optimal algorithresme previous works in the area [1], [16], our methods provide
that solve such problems are not expected to be practicgétailed manipulation plans, including any intermediate motion
hence we seek for practical methods even at the expenseypthe pusher while changing contact configuration with the
completeness/optimality. pushed movables. While being specifically designed for the

Manuscript received January 10, 1997; revised January 15, 1998. This paBg§hmg manipulation, both algorithms are fully compatible

was first published in throceedings of the 13th International Conference oWVith other manipulations too (e.g., grasping).
Robotics and AutomatigrMinneapolis, MN, 1996, pp. 172-177. This paper
was recommended for publication by Associate Editor M. Peshkin and Editor
V. Lumelsky upon evaluation of the reviewers’ comments. IIl. PROBLEM FORMULATION
The authors are with the Center for Intelligent Systems, Department| ot B3 — {’R,I,Ml,---,/\/ln} be a set of bodies com-

of Computer Science, Technion, Israel (e-mail: obs@cs.technion.ac.il;
ehudr@fs.techmon.acl”). (@ posing the environmentR is a robot (i.e., capable of self

Publisher Item Identifier S 1042-296X(98)04615-1. movement),Z represents the union of alinmovablestatic

I. INTRODUCTION

1042-296X/98$10.00] 1998 IEEE

550 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

bodies (i.e., obstacles), aqd\1,,---,M,,} is a collection of of only one movable at a time and it is inherently limited
movablerigid objects. to grasping manipulation. Even more important is the fact
Each of the participating dynamic objects has its owthat this approach cannot practically handle scenariosasfy
configuration space. Let’Si and CSy;, be the configura- movable objects due to its high (exponential) computational
tion spaces ofR and M;, respectively. Since any pushingcomplexity.
manipulation must be carried out in a context of some supportWhen dealing with rearrangement problems, one may find
surface, we considef'S,,, to have two or three dimensionsmany common aspects &ssembly planningpo. However, the
only. Let CCS be the composite configuration space®f state of the art research in the area of assembly planning [9] ad-
and all movable objects. Each vectorGrCS is acomposite dresses problems with different characteristics than ours. Most

configuration@ = (qr,qmy,- > 9M,) for qr € CSk and such research ignores the manipulator, its geometry, and any
am; € CSu,. Along with the above configuration spaces weonstraints on the allowed manipulation (e.g., pushing only).
will also use the following projection operators: The ultimate assembly planner should be able to generate

plans directly from a CAD model of the goal assembly [18].

Hg: COS = CSg consequently, assembly planning tends to ignore the initial
Hr(Q) = Ug(qr,am1, -, dM,) = dR configuration of the parts and assumes that they come from

s COS — CSyy, infinity. We, on the other hand, are interesteddarrangement

of parts, i.e., changing their common configuration from a

given initial configuration to a givergoal configuration. In

Let P(Q1,Q2) denote aconfiguration path(C-path) between that sense, as well in the others, our rearrangement planning

Q1 and Q,. It is clear that not every C-patR(Q;,Q-) is a problem is a generalization of the assembly planning problem.

pushing C-pattirom @; to » and that a constrained definition When dealing with rearrangement problems of many mov-

is needed. A brief discussion on that issue is outlined f&ble objects, one has to handle configuration spaces of many

I, (@) =y, (R, A - My) = AM;-

Section V. DOF. Such scenarios received less attention due to the high
Using most of the above we define the rearrangemetamplexity involved. Barraquand and Latombe [4], [5] ad-

planning problem as follows: dressed the large DOF motion planning problem byr@ba-
Given B (a description of the environment), an initial bilistically resolution-completestochastic approach. They de-
composite configuration@, and some goal composite f|neq simple numencgl poteryual f|.elds over a discretized
configuration Q¢, find a pushing C-path P(Qo, Qc), version of Fhe compo.sne.conﬁguranon space, searched for a
or report whether no such path exists. solution using a hill-climbing like search, and used a Monte-

Rather than an Al decision problem, this definition igarlo alg.orithm to escape from local minima. Such a method
phrased in terms of motion planning problems since we aran provide faSt solut|on.s for some large DOF problems (the
interested in solutions that fully describe the motion of th%uthorfs experlmlenttr(]ad V\{['tré.Up tqﬂﬁ Dogggd sé)ertvedlgs th:
robot while it is realizing the rearrangement plan. In additio%"“'"s'.S or several other studies with farge robots [10] an
to any pushing motion, these solutions should include a Iti-arm manlpulf':ltlon plannlng [l.l]’ [.12]'. However, the fact.
intermediate motions that change the contact configurati I the core of this method is a hill climbing segrch ma.\k.e.s It
of the robot with the currently pushed object, as well roblematlc_for our [(lnd qf problems dug to the |rrever5|b|l.|ty
any motion that moves the robot from one object to anothj[:. the pushing manipulation and the existence of trap points.

Note that nothing in this definition constraints the robot fro a(jld;Flon, absuccess Ln Lhe. random sglarclh Seems totr?eed
pushing more than one object simultaneously. a soltion subspace which 15 comparably farge, sometning
which is not true for cluttered environments or rearrangement

problems of many movable objects.

Despite the great deal of motion planning research, not much

The problem of object rearrangement in general, and tisork has been done directly in the area of pushing planning.
special variation addressed in this paper, relate to seveidella and Mason [1] analyzed the series of pushes needed
research areas in robotics and Al. The most notable ateabring a convex polygon to a desired configuration. While
is the one ofmanipulation planning or motion planning in using pushing manipulation, this problem is a very constrained
the presence of movable objects. As mentioned earlier, thigrsion of the rearrangement problem. They allowed only
variation of the basic motion planning problem was proved fne convex movable object, used a simplified fence-like
be PSPACE-hard [17]. This result convinced other researchprssher, and ignored any other geometrical constraints (e.g.,
to concentrate first on constrained versions of the probleohstacles). A comprehensive study was carried out by Lynch
namely with cases of one or few movable objects alonand Mason [16] where both mechanics, control and planning
A generalized approach for the manipulation planning wassues were considered. Their planning method was based
proposed in [2], [3], [14], and [15]. They defined the solutiomn a best-firstsearch over an inexact representation of the
as a special path—ananipulation path—in the composite configuration space, which aimed at finding a path to some
configuration space of the robot and all movable objects, andighborhood of the specified goal. They considered again
applied the exact cell decomposition methodology in ordenly limited number of DOF by allowing only one movable
to calculate that path. While being exact and complete, thabject. It was also assumed that the fence-like pusher can
approach has several limitations. It allows the manipulatiahange the contact configuration (chosen from a discrete

Ill. RELATED WORK

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 551

@) (b) © (d)

Fig. 1. Pushing C-paths versus general configuration paths. (a) Three placements of a robot and one movable object, both with one degree of freedom (one
axis of motion). (b) The composite configuration space of the problem and a pushing C-pat® frean()2. (c) Another C-path from); to Q2 which is

not a pushing C-path. Note that this C-path includes self movement of M. (d) No pushing path can be fourghftond); (note that the longer path is

a pulling path). Similar conclusion can be drawn regarding a pushing path @ernto @3, though different reasons apply.

set) at any time, with no restrictions. As mentioned beforenemovable object, the general pushing C-path should allow,

in this paper we are interested in multi-object problem#) our view, a simultaneous manipulation of several objects.

where the solutions inherently integrate the motion of theinally, while Laumondet al. defined each transfer path to

pusher, including all intermediate motions between contagpresent arigid manipulation (i.e., a manipulation during

configurations. On the other hand, we are less interested in igich the geometric relationship between the manipulator and

mechanics of pushing, and assume that its effects are handhez object remains constant), we findn rigid manipulations

by an external component. to be more realistic, especially in the context of pushing
Finally, a somewhat different problem was addressed byanipulation.

Chen and Hwang [7] who presented a practical, heuristic, and

inexact solution for many movablebstacles Their method B. Basic Algorithm

is primarily a motion p_Ianmng method (rather than rearrange- aving the above loosely described properties of the re-

ment planning) in which movable obstacles can be pushed. . .

away by the robot whenever they stand in its way to the gogluwed pus_hmg C-path, we solve the pL_Jshmg r_earra_ngement

problem with a two-phase procedure, while usindjscretized

version of the composite configuration space of the robot and

IV. BASIC PUSHING PLANNING all movable objects.

In our foregoing paper [6], we presented a potential-field The fi.r.st pha'se, called theost mappingphqse, carries
method for planning a pushing manipulation by a mobil@Ut & Dijkstra like propagation proce_dure_whlch assigns a
robot which tries to rearrange several movable objects in ﬁ83t Val;’_e to_ each _Cz” ofbthﬁzke € conflgu_rau?n s?ace. t-r:he
work space. That method was designed to solve rearrange agation is carried oubackward originating from the

problems as defined in Section II, and it is resolution complel%Oal configuration(s). Each step of the propagation selects one

optimal and flexible. However, it has only limited practicafe"’ the one with the minimal cost, from the wave front and

use due to the high complexity involved. This section briefl Ioods”_a subset_of Its r_lelghbors. This su_bset, W.h'Ch we call
describes that algorithm since we use it as a building block jA¢ admissible neighborss carefully determined using several
the practical algorithms described herein actors such as the mechanical model of the manipulation

(which is assumed to be analyzed separately by an external
) component), constraints on the allowed manipulations (e.g.,
A. Pushing C-Paths what contact points between the robot and the objects are al-
Given a pushing rearrangement problem as formulated lowed during the manipulation), and the maximum number of
Section I, a planner that can solve it should find an appropriateovables that the robot can push simultaneously. In addition,
C-path that represents the rearrangement plan. As mentioagificial constraints can be integrated into that mechanism,
earlier, it is clear that not every C-paf((J1, J2) is apushing as elaborated in [6]. When the propagation is finished, every
C-pathfrom ¢ to)2, and that a constrained/refined definitioriree cell in the configuration space is assigned the cost of the
is needed. Examples of C-paths and pushing C-paths are giebrapespushing C-path that connects it to the “closest” goal
in Fig. 1. configuration. The cost metric itself can integrate many useful
In general, we expect an appropriate C-path to havefactors, such as the total pushed weight, the local passability
structure of amanipulation pathas defined in [2], [3], [14], of the support surface, and others.
and [15]. However, several differences do apply. First, one The cost mapping phase is a preprocessing phase that must
should note that pushing force can be applied only in specifie executed only upon a change in the environniBitor the
directions (i.e., one cannot push an object by moving awagt of goal configurations. Otherwise, it can be executed only
from it). This observation implies that any C-path segmewince, producing a fully mapped free space (or a potential field).
that corresponds to pushing a movable object, cannot haveGimen such space and an initial composite configuration of the
arbitrary direction in the configuration space. Second, whileobot and all movable objects, a specific rearrangement plan is
Laumondet al. defined eactransfer pathto manipulate only constructed by theestoration phaseThat phase carries out a

552 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Fig. 2. Pushing plan for rearrangement of two movable objects, where {
robot is allowed to push both objects simultaneously, if such a manipulati ¥ |
is found useful.

variation of a hill climbing procedure which starts at the initia] «
configuration and ends at the first reached local minimum aff *'Eu . .t:. . . . -I:l . . I.J. .
following only admissible neighbors. The mapping proceq
guarantees that every local minimum in the composite spd
is also a global minimum, hence one of the goals. The res
of the restoration phase is a description of an appropriate | . E . . . 5 . J
path which represents the rearrangement plan. The projecq , IJ_ > y * g g I.I : ! 'I.r
of this C-path overCSg vyields the motion plan which the1
robot should execute in order to realize the solution.
Figs. 2 and 3 illustrate two selected results of the bag = - = a v L

planning algorithm, as produced by our planner in [6]. Th u. : u. 3 'I'J " :.I_I =

first is a pushing rearrangement plan where the robot coy . ' . .
choose to push more than one object simultaneously. T
second corresponds to a pushing rearrangement problem
which non rigid rotational pushings are required in order :I i ui h . = . =R
achieve the goal. Both examples demonstrate the appa ,: . .
differences between a manipulation path and a pushing C-p4 - . e, . * . .
as discussed in the previous subsection. o i g F & = it a
The above rearrangement planning method is resolutid
complete and provides optimal solutions. Equally importa F
is the fact that this method is easily implementable and ve ~F - - - Py
flexible, allowing constraints to be described udiocal terms, .) s) . .
via admissible neighborhood relationships between config
ration cells, rather than using global terms. Consequent
spatially varying constraints can be integrated as easily as

spatially invariant onés Despite its advantages, this method i§/9- 3. Planning with non rigid rotational pushings: (a) details the movable
object while (b)-(e) show all the allowed pushings (relative contact point

|mpractlca|. due to |ts_ exponent!al Spqce and time Qomp]eXItlea%d the pushing outcome). The rest of the figure outlines a pushing plan that
A complexity analysis, and a discussion of other limitations efianeuvers the object in a cluttered environment.

the method can be found in [6]. It is this impractical behavior

that motivated the study in this paper. classification, we present practical algorithms and planners for
two of the defined classes.

Definition 1: A manipulation of a movable object; is
lled nonpreemptive iff (1) M; is manipulated from its
hitial configuration to its goal configuration and (2) while
ing so, no other movabl&1; changes its configuration (i.e.,

Providing practical solutions for the general problem definecda
in Section Il might be a difficult task. Hence, we take a
alternative approach that may allow a gradual study of t
general problem and provide practical solutions for proble Sdoes not move).

of increasing difficulty. In this section, we divide the set o Let PP" be the set of alpushingrearrangement problems
all rearrangement problems into some hierarchical cla338§.n movable objects. We start the classification BP"

This. class_ification is practically independ_ent of the.specif ith a definition of two basic classes. These classes, as well
manipulation chosen to rearrange the objects, thus it may € the others to come, are based on characteristics of the

useful for manipulations other than pushing too. Following thﬁearrangememlansthat solve their problems

1For example, this feature allows to model a variable friction distribution, D?f'mt'on 2: A pUSh'ng rearrangemem prObIem is called
something which has been avoided in most related pushing research. flat if the pusher can choosany permutation of nonpreemp-

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 553

11| ri

A

Fig. 4. SP? problem.

pushing problems will be denoted I%P.

Definition 3: A pushing rearrangement plan is called
sequential if it can be described as a sequence of robot
operations, each of which pushes at mesmovable objects
simultaneously. A pushing problem is called-sequential if Fi9- 5 A Flat (P1) and two Linear (P2, P3) problems.
it can be solved by amn-sequential plan. The class of all

m-sequential problems will be denoted B5y>™. possible to reduce it to a linear problem by applying a small
Intuitively, 77 represents very easy problems whii#™ «perturbatiori to the initial configuration of some of the
might contain very difficult problems (in terms of findingmovable objects. More precisely, given a 1-sequential problem
a rearrangement solution). Indeed, both classes bound oursp* L . :
X) . — Qg¢, it is often possible to reduce it to a sequence of
problems’ domain on both extremes—the most constrainéd i | P P ith
and the most general (note th&P"™ = PP"). Being the more WO linéar problemsy = Qpervur, = Qcy With Qpercurn

general,SP™ is probably the more interesting class to dedl€ind rather “close” too. Examples of such reduction are
with. However, we founcho previousmotion planningwork given n F'g 6. i i
that addresse§7™>-like problem&. In the same spirit, and Formfa_hzmg this apprqach, we define the £&1c as f(_)llows:
because of the high complexity involved, this paper will deal ,Def'n't',on,& A pushing rgarrangement plan is called
only with SP! problems. We hope that the formalization of linear if it carflpbe descrlbgg as a sequence wio
SP™ may lay the ground for future research in that directiohnear plansQo = Qperiwn — Qo With Qperpun, €
An example for anSP? problem is given in Fig. 4. e-neighborhood@o). A pushing problem is called-linear
Following the discussion above, we next define a series ibft can be solved by ar-linear plan. The class of attlinear

classes for problems of increasing difficulties, all are subsdtblems will be denoted by Pe.
of SPL. The e-neighborhood of a composite configuratio)y =

Definition 4: A pushing rearrangement plan is calletear (47 @, -~ -» @,) IS defined as its neighborhood of “radius”
if it can be described as a sequence of nonpreemptive pushirfgs.
A pushing problem is called linear if it can be solved by a
linear plan. The class of all linear problems will be denotedneighborhoodq., gy, . -, qy,)

by LP. 2 : —% | <e V1<i<
= 1\9r>qmy yQmy,) ¢ |9my Om,| S € St>ng.
Both FP and LP try to constrain the problem by forcing {() | | }

it to be decomposed of similaserializable rearrangement , : .
subgoals[13]. However, FP C LP since an appropriate Each value ot defines a different class of pushing problems.
) ' It. is clear thatLPeg C LPe if ¢g < ¢ and thate = 0

permutation of nonpreemptive pushings is not known a prioc”reates the clas§P of linear problems. It is also clear that
for linear problems. Examples of flat and linear problems afsepl \ LPo £ 0 '
given in Fig. 5. The first practical algorithm suggested in this The follgowing éeneralization of Pe does allow us to fill

paper is designed for linear problems. p the gap betwee P, and SP:

The next step in classifying our problems is focused a Definition 6: A pushing rearrangement plan is called

SP'\ LP, a class which contains problems in various degrees . : o)
N . S ' e*-linear (pronouncede-k-linear) if it can be described as
of difficulty. Following our guideline to define classes by op P
—_—

isti - sequence of: linear plansQ, <% @, &£ @, &£ ...
characteristics of rearrangement plans, we formalize a f&- qmp _ p 0 1 2 _
arrangement approach which seems to apply for many practi€al-1 — Qc, With Q; € e-neighborhood?;_.). A pushing

cases. Given a non linear rearrangement task, it if oft@fioblem is callect™-linear if it can be solved by an*-linear
plan. The class of alt*-linear problems will be denoted by
2This common practice doesn't hold for the assembly planning Iiteratuﬁpck_
(e.g., [9]), where subassemblies are often used. Nevertheless, even in that N . 1
context, assembly plans are not geneS#™>! sequences, since once ai\latura”y* LPe® = LPe. It '_S also clear that anys’P
they are assembled, subassemblies are usually not broken. A more ger@arrangement plan of leng# (i.e., a plan ofK robot steps)

approach, and one that is most appropriate §6™>" problems, should can be described as &Pc* plan, fork < K.

allow to break down a subassembly and manipulate its individual components,C ludi hi . I vi f | ificati
if such a manipulation is proven useful. Such a gen&fBI™ manipulation oncluading this section, a general view of our classification

was illustrated in Fig. 2. is illustrated in Fig. 7.

Pl P3

554 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

A |

o ' P4 P5 . P6

el

ICle

]

Fig. 6. LPe problems. All figures include an illustration @#,c.cur, (Middle row, shaded), from which the problem becomes linear.

A. Planning Issues and Overview

Given a linear problem, a naive way of solving it would
be to scan all possible non preemptive pushing permutations,
looking for one that solves the problem. The pushing of each
movable object in a permutation can be planned with the
planner of Section IV. However, this naive approach has two
main problems which we need to address.

The first problem is the existence of permutations which
yields an exponential search time in the average case. A
remedy might come from the following observation. Many
linear rearrangement problems contaiherentconstraints on
the order of non preemptive pushings that may solve them.

VI. DEALING WITH LP PROBLEMS For example, let us consider problem P2 in Fig. 5. Considering

Given a flat pushing problem a1, one can easily find movables4 andC alone (i.e., when ignoring all other movable
an appropriate pushing plan that solves it. Assuming thatobjects), we can confidently say tha@t must not be pushed
movables are involved, choose an arbitrary permutation lg¢fore A. Hence, any permutation in whiofi' stands before
its elements and then create an independent plan for eadhgannot be a solution. Similarly, we can examimey two
while treating all others as stationary obstacles. Each sutievables and extract a list of precedence constraints which can
sub-plan can be constructed using our basic pushing planherrepresented in a graph. After constructing such a precedence
[6] (see Section 1V). Since it operates on one movable objeg@aph in polynomial time, it can be used to filter out many
at a time, each run of the basic pushing planner is constdllggal permutations, using a topological-sort like procedure.
in time and space (for a predetermined discretization rat&Yhile worst case behavior remains exponential, it appears that
hence we ge©(n) total time complexity and)(1) total space this approach allows many linear problems to be solved out
complexity. within practical time (see Section IX).

Although solved easily, flat problems are less common in A second problem, which we call thentact-modgroblem,
real world scenarios. In this section, we consider the classisfunique to the pushing domain. As mentioned above, each
linear problems and provide a practical, complete planner thain preemptive pushing in a given permutation can be planned
solves them. with an underlying planner, as the one in Section 1V. However,

Fig. 7. Classification ofPP".

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 555

4 i 154 B4 B4

Fig. 8. Contact mode problems. While executing — X — Y, the contact mode configuration of the pusher with movableprior to handling movable
Y, is crucial (in that example, pushing is allowed only from the middle point of a movable’'s edge).

a careless usage of such a planner might result in a planning Proof: Assumed;,(Ea4,) > 0. Then there must be some
failure, even if the given permutation is a valid solution (se81; # M; that precedes\; in any permutation that solves

Fig. 8). F,. In practical terms, no permutation that soh@scan have
M, as its first element. If every node &% (S,Qo,Qc)

B. Precedence Graphs of Rearrangement Problems maintains that property theno movable can be the first in
Formalizing the above discussion, let us first define tfY Non preemptive pushing permutation that solifgsi.e.,

graph of precedence constraints which we extract from a givBf linéar solution exists. _ -
In order to algorithmically construct the maximal prece-

problem. ; .
Definition 7: Given an initial configuratiorf}, and a set of denc_e graph O_f a given problem, we need two auxiliary
eventss = {Ex,,- -+, Exq, } which should all occur in order functions. The first, which we call FREEZE, M, q), freezes

to achieve some goal configuratied;, a precedence graph & movable obj/ect at a given configuratignand returns a new
of S under Qp and Q¢ is a directed grapl (S, Qo, Q) = enwronment[_whlch mcorpqrates that change. The second,
(V, E) which has a node for each possible event (ke=) SPushable(), is formally defined as follows:
and a directed edge frofi, 0 Eq, if Eaq, must precede | Definition 8: GivenZ, R, and one _movable\/t, the pre_d—
E, in order to achieva)c, regardless of any other event, '¢at€ IsPushableR, Z, M., qo, ¢c) indicates whetherM s

A directed edge fromE,,, to En,, does notguarantee pushable fromgg to qg, i.e., whether or not there exists a

a successful occurrence @, after Exq, (Such a success pushing plan that brings1 from go t0 gc-
might depend on a third event or some global context) Using these two functions, the maximal precedence graph

but it certainly indicates thaf,,. must not happerbefore of a given problem can be constructed by the following proce-

Ea,, regardless of any other event or criterion. A precedengé‘re' Note again that this graph, and its pregedence cons_traints,
graph which expresses all inherent precedences, betweerfdf| €Xtractedrom the problem, rather than imposed on it, as
pairs of events in a given problem will be calledaximal "2PPens in many other search problems

and will be denoted byG¥ (S, Qo,Qc). Naturally, Eay. MPG(Z, R, 5, Qo, Qc) o

in the definition corresponds to the non preemptive pushingf©" €ach element of{ (M;, M;) : M;, M; € S A1 # jjdo

of movable M;. Intuitively, unlessG¥ (S, Qo, Q¢) is edge- egin

less, the corresponding problem cannot be flat. Similarly, if 90 Iaz,(Qo)

G} (S,Qo,Qc) is not a DAG, the problem cannot be linear. 96 1y, (Qc)

This last observation is formally expressed in the following I N FREEZEL//\/’%H%(QO))

two equivalent Lemmasd(.(-) denotes the in-degree of a I (ISPushableR.Z’, M;, go,qc) == FALSE) then
node): construct the edgé/, — Eaq,

Lemma 1: Given a rearrangement problefy and its max- L' — FREEZEI’M“HM(QG))

imal precedence grap&¥ (5, Qo, Qc) if (IsPushableR,Z’, M;, qo,9c) == FALSE) then
construct the edgé&/r,, — Ea,
Pyoe LP = ElE'.,M7 e F st din(EMi) =0. end.

Each iteration of the above routine treatdy twomovables,
one is considered as an obstacle while a pushing plan is
searched for the other. Two situations are checked for each
GM(S,Qo, Q) has a directed cycles Py € PP\ LP. such combination—first in whicb\1; is frozen in its initial

Lemma 2: Given a pushing problent; and its maximal
precedence grapt¥ (S, Qo, Qc)

556 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

a ()
i y,

Fig. 9. Maximal precedence graph of problems P3, P5, and P6.

configuration, and second in whick1; is frozen in its goal

configuration. For each of the two situations a pushing path

is searched for the “free” movabla1; and an appropriate

precedence edge is constructed upon a failure. Fig. 10. TheNp{a,b,c,d} permutation net.
The observant reader would note that IsPushable(), by def-

inition, is not concerned with the initial or goal configuration

of the robot Careful examination shows that this is exactl

the case when we build the maximal precedence graph. réa_cedence graph). Our problem’s_ solution, if it exists, must
the two eventd/ ;. and E . are considered in isolation, Weres!de_as a Q|rected pa_th ofedges iNVp(5) so the proble_m .
cannot predict thé exact aj priori configuration of the rob&f finding a linear pushing plan can thus be regarded as flndmg
before actually trying to push a specific movable, nor can v?émh a path. AlthougWr(5) seems to be a relatively limited

know the best posteriori configuration for it. Thus, the be Farch space when compared6’s, itis still exponentially

we can do is to ignore these configurations and test for g€ in n, Wh_'Ch Jr\?akes all forms of exhaustive _search
arbitrary pushing path, as done by IsPushable(). unrealistic. WhileG3 (S, Qo, Q¢) cannot make the size of

. . e L p(S) polynomial, it does allow for major reduction in the
The implementation of IsPushable() is fairly a variation oij arch space, as shown by the following Lemma (see [19] for

the cost mapping phase of the basic algorithm in Section 1V,
: . o . the proof):

with both time and space complexities being constant (for L 3 Each d h's ed K fourth

predetermined discretization rate). Consequently, each iter?-tﬁmma b acf prece ter;_ce gra{? S ed g€ mezr stolne ;)ur

tion of the MPG() routine is of constant time complexityO € number of permutation nets nodes and at least one

leading to a total complexity of0(n?), the same as thefoﬁﬂ; OI Its te?ge;ﬁas |n?dm|ss(|jble for (tjhe sc(ejarch.t i
space complexity o5 (S, Qo Qc). Moreover, most of the nfortunately, different precedence edges do not necessarily

computations can be done in parallel as each precedence iy ék distinct sets of inadmissible elements of the permutation

is totally independent of the others. Fig. 9 shows the maximal Itis clear, however, thai— 1 precedence edges, forming

precedence graphs of problems P2, P5, and P6, as prodﬂ%é-bamiltonian path, transform the permutation net into a linear
by MPG() T ' ist which preserves the only permutation that might solve the

; . roblem.
As mentioned before, we are going to US& (S, Qq, Qg prot . . .
to sort the non preemptive pushing eventsé)lv(ia a topol())gic IF'g' 11 illustrates the _result of applymg the max'm."’?' prece-
sort like procedure. While its value in saving search time ence graph of P.2 tp |t§ pe_rr_nu_tanon net. In add|t|or_1 to_a
not definite, the following discussion shows that the maximgfeanlngful reduction in size, it is important to note that in this

precedence graph has a true potential in dramatically narroigc the remaining net contaipsly solution permutations.

ing the search. In order to do that we first observe that sinI Othﬁr \Igvggjs,l'iearchlng tr;]e r(?lrwa|n|ng net |nba Eteptr:(.flrst
our solution is apermutationof the non preemptive pushingSearc () like approach will require no backtracking.

events, we don’t have to ug&C'S as our search space. Rathel’A‘Ithough this property is not guaranteed, we found that many

we can use an alternative, more “compact” space, which ﬁéa"“ﬁ?' prt(;]ble:jns redquwes rtlot_o ' Onlyt“mﬁ ba_xcktrackmg \;vh[:e
call the permutation netand define as follows: searching thaeducedpermutalion net, allowing a very fas

Definition 9: Given a finite se6 = {my, - - - ,my.}, its per- planning. Naturally, if opti_mal solutions are required, andl
mutation net is a directed, labeled, acy7clic 7graﬁﬁp(5) _ memory resources are available, the DFS can be replaced_wnh
(V,E). V = 25 is the set of all subsets . Each two nodes a breadth' first search (BFS) over .the reduped p'ermutatlons
v 7and v; are connected by the directed edge™ v, if net. In doing that, one has to tf’;\ke into consideration that the
U: g {m;:} — 0, 7 precedence graph might contain no or only small number of

A permutation net hasy™" ,(*) = 2" nodes and edges, leading to relatively large size reduced permutation net.

Yoot () = n-2""! edges. It is obvious that such a

T

graph contains exactly one root (the empty subset) and exaéfly The LPLAN Algorithm

one sink (the whole set), and that any path from the root toFollowing the discussion above, we can now derive a
the sink is a uniquepermutationof S. Flg 10 illustrates the prac[ica| linear p|anner as a precedence gu|ded DFS over
permutation net of a four elements set. the permutation net of a given problem. Instead of building
Having a linear problem in hand, each node Bf(S) the reduced nebeforethe search, we will do itluring the
represents the set of objects already pushed to their ggahrch—by preceding each step of the DFS with an appropriate
configuration, and each edge My v; represents the actiontest over the maximal precedence graph. Following Lemma
of non preemptive pushing oM, (in that way, eacledge 1, such a test should allow the DFS to move down the

f the permutation net corresponds to a specifice of the

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 557

Definition 10: GivenZ, R, and one movablé, the func-

// \ tion PushCPath(R,Z, M, o, Q) returns either

1) a pushing C-path that represents the pushingoWwith

a i b d
//< >< lb R from Qo to Qg (both belong toCSkr x CSyy);
. . 2) NULL—if no such pushing C-path exists.
S ad o bd

~ab

Sy 1 While PushCPath() can be implemented wathy planner
\ [/ that agrees with the above definition, we use the planner from
abd our previous work [6]. Although its complexity is exponential
k with the number of objects, using it for one movable alone
abed yields aO(1) complexity.

Finally, in order to avoid the contact-mode problem,
LPLAN considersevery possible contact configuration that
‘R may achieve after pushing the current candidite . If an
permutation net only through those edges whose correspondifgropriate C-path is found, Plan() invokes itself recursively.
node in the precedence graph has zero in-degree. After going
down such an edge and planning the non preemptive pushi§gdpiscussion
of the chosen movable (sayt;), we can safely removeé ..,
and its corresponding (in-going and out-going) edges from
the precedence graph, and use the remaining graph as
precedence graph of the remaining sub-problem (the one t
excludesM;). If backtracking is needed, the precedence gra
should be reconstructed accordingly.

Fig. 11. The reduced permutation net of P2.

The LPLAN search algorithm is guided by the precedence
aeoh’s edges which impose onhecessaryconditions and

qy be insufficient. However, the use of the precedences
rp]ormation is embedded within a depth-first like search over

he permutation net so a linear solution is guaranteed to be
found, if one exists. Naturally, since our underlying planner

While the above scheme represents the skeletafPbAN , ks i di tized f i LPLAN i |
the planner for linear problems, it must be further refined el\rgzglitilgnacorlﬁglr:uleze configuration space, IS only
handle the contact-mode problem (see p. 17 of this pa . i .

P (b 'S pap FSFollowmg Lemma 3, it is clear that additional precedence

As mention fore, th nfiguration that the r hiev . L. o
af?er %uts?lir?; gﬁeo ri’otv:btlzeo m?guh? tp?ayt aat:truiia?br(())ﬁj(i:n ?h(ggnstralnts limit the search further and allow LPLAN to exhibit

success to push the next movable. Furthermore, the ef“fectb&m.ar worst-case behavior. On the other hand, Some easy look-
the chosen configuration might be noticed only much lattd} linear problems that have precedence graphs with no edges,
rp'ght cause LPLAN to work harder. Such a degenerate graph

in the pushing permutation. Hence, we found it necessa ted. f le. f bl hich i t
to consider each of the possible final configurations that t pexpected, Tor example, Tor every probiem which incorporates
Everalnarrow passages connecting two adjacent meadows. If

robot can achieve after pushing the current movable. Sing th ied b ble obiects duri
the pushing plan for each movable object is done with a ba OSE€ passages are occupied by movable ObJects during one

planner which works in a discretized configuration space R the initial or goal configurations, then the problem becomes
number of such configurations is finite " "nonflat and LPLAN becomes no more than a DFS, which is

S : .. __expected to backtrack until encountering a solution.
Following is the high level code for LPLAN, the algorithm " . .
for solvvi\gggLIP prob:gms v gor! A necessary condition for LPLAN to succeed is the ability

: o to push each movablealone (i.e., while ignoring all others)
Alggrn_h?wGLfPéAl;I (_(Ihhﬁéfz_éjglé C’JA/;"}’QO’QG) to its goal. Such a test can be realized in linear time as
Vo B PP R0 G part of the high level code of LPLAN, using the IsPushable()

Perm«— NULL : L ;
Call Plar(Z, R, S, Qo, Qc:, G, 1) function. However, it is easy to see that when a movable is
end T TR trapped in such a way, the precedence graph of the problem

The main part of the initialization phase is the constructiol guarantfzed to Cor_'t"f,‘m marny 2-edges cycles, all involving
of the maximal precedence graph. The core planning routinetkilg same "problematic ObJ?Ct' Fo“llpwmg Lemma 2 we shall
the Plan() procedure, which recursively handles the plannin(éomlu.d.e that the problem is npt linearly solvable”.

of the next nonpreemptive C-path. As mentioned before, eac dditional ImprovementsWhile the above formal code

such nonpreemptive pushing C-path corresponds to followif Plan() provides th? core algorithm, it does not speglfy
one edge of the permutation net. Algorithm continues on t veral important details that prevent LPLAN from producing
bottom of the next page inefficient pushing plans. Most notable is the loosely defined

Plan() receives the current configuration achieved so ?der by which LPLAN selects candidate movables from

©) and the precedence graph of the remaining su e CURRENTset. While other criteria are possible too, we
current o . . .
problem (G). It first filters out all movables that, accordin choose to sort the candidates@QURRENTDy their distance

g .
to the precedence graph, must not be manipulated at {Fl%m HR(QC“?T?“t.)‘.Th'S aI‘!ows tr,‘,e planner to prefer close
current level. For each remaining movable, Plan() tries {Bovables, minimizing the “length” of the planned C-path.
plan a pushing C-Path from its initial configuration to its goal
configuration. The non preemptive pushing planning of each
movables is handled by an underlying planner, referenced heré&iven ane-linear pushing rearrangement problem, its solu-
as the PushCPath() function, and defined formally as followtson can no longer be represented as a path in the permutation

VII. DEALING WITH £Pe¢ PROBLEMS

558 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

net, unless an appropriaterturbationhas preceded it. Fol- TABLE |
lowing Definition 5, the perturbed configuratio® e ExawpLES OF (M)
should be searched in a small neighborhood of the initial corroblem P4 P5 P6

figuration. However, even if we are using a discretized versiop2it {4 % ° % s } L R } > I < } DHAlS
of the configuration space, this neighborhood is exponentiat

in size, making any kind of exhaustive search impractical.

The following two subsections propose a practical, heuristiitial precedence graph. The goal precedence graph is built
way, of finding Qpertun,. Instead of searching the wholegimilarly. UsingGL(E, Qo, Qc), the initial precedence graph,
e-neighborhood of)o, we try to decide which movable shouldye define the following measure:

be perturbed, and incrementally search for an appropriate

perturbation for each of these candidates. Since the projection N — I

of the e-neighborhood on eac'Sy,, is constant in size (for M) = dows (Ea, € GP(S: Q0. Q).
any givene), the total searching time becomes polynomial wit
the number of movables. A complete complexity discussion
included in Section IX.

Eiterally, B(M;) counts the number of movables such that
}% stands in their way to the goal. For example, the values
of 3(M,) for the movables of problems P4, P5, and P6 (from
) Fig. 6) are presented in Table I.
A. Choosing Movables to be Perturbed Having the values of3(AM;), we heuristically mark the

Let us examine two specifipartial precedence graphs,candidates for perturbation by looking for movables whose
which we call theinitial precedence graph and tlgoal A(M;) > 0. While this criterion is effective, it is somewhat
precedence graph. The initial precedence graph, denotedtdy strong, since sometimes we can achieve an appropriate
GL(S,Q0,Qq), represents all precedences following fronperturbation by affecting only a subset of those candidates
theinitial configuration. Similarly, the goal precedence graplfe.g., in problem P5 only one movable should be perturbed in
denoted byG%(S,Qo, Qc), represents all precedences folerder to make the problem linear). Consequently, we build the
lowing from the goal configuration. The routines used toperturbation in an iterative manner. During each iteration we
construct those graphs are both derived from the MPG{hoose the movablé1; with the maximal3(AM;) and perturb
routine (Section VI-B), each preserving only the relevant tesits configuration. Then we update both precedence graphs and
On the bottom of the next page is the code for building theove to the next iteration. The loop is terminated as soon

Procedure Plan(Z, R, S, Qcurrent, @soal, @ = (Gv, G), Leve)
CURRENT«— {Mz EMZ- e Gy A din(EMi) = 0}
if (CURRENT== §) then
return FAILURE
for each M € CURRENTdo
PernLeve] — Mc
G = (Gly, Gy) — (Gv \ {Bar.)
{ e € Gg:enot connected t&E 1. })
Itlnp —7
for each M; € {M € 5 : M # M} do
Itmp ‘_FREEZHItmpa Mj7 Hl\lj (chrrent))
if (Level< n) then
CONTACTS—AIl-Contact§ R, M¢, Iz, (Qgoal))
else
CONTACTS— (I p(Qgoat): Wz (Qgoat))
FROM «— (HR(chrrent)7 H]W(,' (chrrent))
for each configurationGOAL € CONTACTSdo
PATH — PushCPat{RR, Z.,,,, Mc, FROM,GOAL)
if (PATH == Null) then continue to next iteration
Qnew - Q(‘,urrent
HR(Qnew) — HR(GOAL)
Hl\l(y (Qnew) — HJW(: (ngal)
Itmp HFREEZEI, MC7 Hl\l(; (ngal))
If (Plar(ItHlP? R? S \ {MC}7 Qnewv ngah le LeVGH— 1) = SUCCESS then
return SUCCESS
end for
end for
return FAILURE
end

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 559

N N SN / s N N N
i, s 1 B s I = | [N LB
i’ % L \. Y N RN Y
[S—— B, [[[{
) \}D)/ \{‘i"/‘ u \'1/ U \ID/
Ve \/—\’ ~, /—\ N s m ~, 7 \/_\ N
| ‘[',\ —_— [‘S/ By ’%‘\V]'(/\ \I‘A ‘%\\1}4 ; \7['? j ‘\\I;E/
Maximal (\L T\D lXTD l\ T\) l\ T
Y Y - 4 ™~)s N TN
e /) NS) N U/)
lterarion 0 : 1 2 3

Fig. 12. Running Perturb-Configuration() on problem P6. Applying LPLAN to the result will yield the linear soluflor» A — B — C).

as a cycle-free maximal precedence graph is obtained or Bolntroducing an Appropriate Perturbation

appropriate perturbation is found. - _After a candidate was chosen, it should be assigned an ap-

On the bottom of the next page is a description of the routifgopriate perturbation. Definition 5 constrains the perturbation
that creates the perturbed cpnﬂguraﬂon. Hamdledset keeps to a well defined neighborhood, yet not every configuration in
Frack Of_th(? movables which were alllready.pe.rturbed. Thifat neighborhood can serve for our purpose. The required per-
information is used by thBerturb() routine, which introduces trhed configuration should fulfill the followings conditions.
the actual perturbation to a given movable and updates botrl) It should open the way for all other movables which
precedence graphs to reflect the new configuration accordingly. must precedeM...q when pushed to their goal, and
The selecf) operator arbitrary selects a member from a given 0 path to the goal is currently blocked Mcand.

set. As mentioned for LPLAN, this selection may be replaced 2) It must not create new blocks for movables which are
with a more deterministic one in order to prevent inefficient already able to reach their goal

results. Thegrfﬂp11 operator “unites” two graphs, and it is 3) It must be realizable bpushingM..,,.q from its current
used in order to build the maximal precedence graph from configuration.

both partial graphs. Finally, the Reachable() operator returns4) It must not be a trap point (see Section I), unless it
a set of all movables that the robot can reach from a given coincides with the goal configuration &1 ,yq.
configuration. This can be easily calculated by flooding th®ivene¢, and assuming a discretized configuration spaces-the
free space of the robot from its current configuration. Fig. JZighborhood of the initial configuration contains no more than
demonstrates the action of Perturb-Configuration() on proble(D’(cM'S DOFy configurations ofAM..,a. We currently choose
P6. For P6, success is achieved only after the initial precedemns&heck all those configurations although it may be possible
graph becomes edge-less. However, this is not a necessgaryse heuristics to focus only on some of them. In any case,
condition, and termination can be obtained earlier. Aftenany of those configurations can be effortlessly filtered out
creating the perturbation, we are supposed to be left withdaring the search as they represent collisions with obstacles
cycle-free maximal precedence graph. Such a graph, anddtsthey cannot be realized by pushing. Furthermore, we
corresponding rearrangement problem, can now be givenhiaild the list of -neighborhood configurations while sorting
LPLAN in order to check whether a linear plan can solve itthem according to their “pushing distance” from the initial

IPG(Iv Rv Sv Q07 QG)

for each element of{ (M, M;): M;, M; € S Ai # j} do begin
qo0 — 11a7,(Qo)
9 — U, (Qa)
7' —FREEZHZ, M;,3;.(Qo))
if (IsPushableR,Z’, M;, g0, gc) == FALSE) then

construct the edgé/q, — Eaq;
end

560 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

configuration of M.,,q. This can be done by #dorward . Second, it may succeed and create a perturbation for which

propagation of a cost wave function 6Sg x CSy...,.,» the maximal precedence graph is free of cycles, while the

which originates from the current composite configuration gfroblem remains nonlinear. Finally, Perturb-Configuration()

R and M...a (Wwhen all other movables are frozen duringloes not include any backtracking or lookahead. Hence, it

this propagation). Since onktneighborhood’s configurations might choose a “wrong perturbation” for a movable, in such

should be considered, the propagation can terminate at anway that it prevents a later candidate from being perturbed

configuration which lies farther than appropriately. We consider a practical method to handle that
Every configuration surviving the initial filtering should beproblem a future research topic.

checked for consistency with the other requirements. This can

be done by updating both the initial and goal precedence VIIL. | MPLEMENTATION AND RESULTS

graphs in accordance with the currently checked configuration,

an action which can be realized iinear time There is

no need to build both graphs from scratch since only thoSE LPLAN _and ELPL_AN,_as obtal_ned with our |mplementgd

precedence edges which enter or ledUg,__, might have planner. S_lnce we pnmanly stu_dy issues o_f high level pla_nnlng
been changed. After updating the graphs, the evaluation of fH%d planning rl)ractli:dahty, we find S|mular:|0ns to be as m;‘or-
current configuration is primarily done by checking whethdPative as real world experiments. Furthermore, a simulator
B(Meand) became zero. However, this is an insufficient corftllows us to avoid many other proplems not relevant to our
dition. Additional tests must be considered in order to verifgiudy but such that tend to appear in real world experiments.

that the perturbed configuration didn't invalidate previou € F’O’ however, present one real_world experlment_wnh a
perturbations. This can be done by checking the updat%}?b'le robot and several chairs acting as movable objects.
maximal precedence graph (obtained by a union@f and
G%) and looking for cycles betweeki,,__, and the nodes of A- The Planner
previously handled movables (stored in tHandledset). We The practical pushing planner (PPP) is implemented’in
choose to test only for cycles of two nodes in order to keep thisid runs on a Sun 4/460 computer, equipped with a 50 MHz
test linear in complexity. Empirically, this still allows goodSuperSPARC processor. Since its two supported algorithms,
detection for most cases. ELPLAN and LPLAN, are hierarchically depended, PPP is
not a priori required to decide what class a problem belongs
_ to. Rather, every problem is submitted to ELPLAN which
C. The ELPAN Algorithm decides whether or not to apply some perturbation and then
Following the subsections above, our practical algorithtnansfers the result to LPLAN. The input of PPP is a graphical
for e-linear pushing rearrangement probleriB§,PLAN, is a description of the static environmeif), the shape of all

In this section, we present several simulated planning results

concatenation oPerturb-Configuration() and LPLAN movables, and the two composite configurati@a, and Q,
Algorithm ELPLAN (Z,R,S = {M;y,---, M, },Q0,Qg) Which define the rearrangement problem. The output of PPP
Qpersurl, < Perturb-Configuratiod, R, S, Qo, Qc) is a full animated rearrangement solution, if exists, including
if Qperturb 7 NULL then any intermediate motion of the robot which is required while
LPLAN(Z, R, S, Qperturb, Qc) changing contact mode or moving from one movable to
end. another

While LPLAN is complete with regard to linear problems, , , _ o _
While here we give the pushing plans in figures, the interested reader

ELPLAN is opportunistic and may fail for several reasongn,y view PPP's actual animated output at htp://www.cs.technion-acbt/
First, Perturb-Configuration() may fail due to a bad choice @fojects.htmi#PPP.

Procedure Perturb-Configuration (Z, R, S, Qinit, Qgoa1)
Q(‘,urrent — Qinit
G! — IPGZ, R, S, Qinit; Qgoal)
GG — GPGQ, 727 S; Qinit7 ngal)
Handled — 0

loop
. I graph a .
if G U G contains no cyclethen

return Qcurrent aNdSUCCESS
D — Max({8(M,): M, eReachabléR,Z, S, Qcurrent) \ Handled)
if (D == 0) then return FAILURE
Meand — Selec@{/\/tz : /j(Mz) == D})
Q(‘,urrent — PerturbMCandaIa Ra Sa chrrenta ngala GI’ GGa Handled
if (Qeurrent == NULL) then return FAILURE
Handled— HandledU { M ana}
end loop
end

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 561

.- a
e
b N
b L’
; ; v
T EEE———] b4 i N 0 A
38 3 B " ..
‘ c c
, ;
... “..
..”.

Fig. 13. A linear problem with eight movables and its solution.

PPP uses a discretized space to describe all its geomediie to space limitation and presented only in [6]. All figures
objects. This is mainly since it uses a discretized configuratishow major planning steps of each solution. All planning steps
space planner [6] to handle individual objects (see Section \gre ordered left to right and top to bottom. Transit paths [15]
Hence, while the planner allows the user to define the shapeagé marked by arrows. Some planning steps, which correspond
each movable, their geometry is subjected to the discretizati@nonpreemptive pushes, were omitted (marked by two dots
too. between adjacent steps).

The robot in PPP’s simulations s illustrated as a circular gig. 13 shows a linear problem with eight movables and
one, occupying one cell of the discretized environment. Thig sojution. As this problem is linear, ELPLAN introduced
was done in order to better discriminate it from the movablg, heryrhation before calling LPLAN. Planning time for this

objects, and itis nota constraintimposed by the algorithm. The, 0 was 26.32 s. The Plan() routine was called nine times
pushing contact modes of the robot with each movable obj ring the execution, which means that it backtracked only
are derived automatically using a center of friction (CO '

which IS specified by thg user. All pushing mampulatlpn; were Fig. 14 shows the solution for problem P4 (see Fig. 6). As
constrained to translations only due to a similar limitation

. d by th derlvi | C tly, all bqxpected,R first handles movable3. It clears the passage
IMposed by the Lnderlying pranner. L.onsequenty, all mova ed pushes the other three movables to their goal. Only

objects, as well as the robot, were defined as having 2 DGH!

In no way, however, this is a limitation of the algorithms then_R re_turns 05 in order to push it back to_its gpal
presented in this paper As shown in Fig. 3, limited nonrigid configuration. Note the somewhat redundant manipulation of

rotational pushing capabilities can be integrated into PPP ey8Rvable B, needed in order to allowR to reach its own

with the underlying planner of [6]. final configuration. For P4, as well as for the othelinear
_ _ problems presented here, we choose eameighborhood of
B. Simulations Results radiuse = 3-R’s diameter. The perturbed configuration, from

We present here selected results of problems that hawgich the problem becomes linear, is marked by a brighter
up to eight movable objects (18 combined DOF). Howeveirame. Planning time for this problem was 11.65 s. The Plan()
problems with up to 32 movable objects (66 combined DOFputine was called four times during the execution, which
were successfully tested too. These results are omitted hereans that no backtracking occurred.

562 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Fig. 14. An LPe plan for problem P4. The perturbed configuration, from---
which the solution is linear, is marked by a brighter frame.
Fig. 15 shows the solution for problem P6 (see Fig. 6). Notj
that if movableC was perturbed to the right, no linear solution
could have been found. PPP was able to find that corre i
perturbation in spite of the fact th& approached movable

C from the left, being able to first push it only to the right.
Planning time for this problem was 97 s and the Plan() routirfi. 15. An LPe plan for problem P6. The perturbed configuration, from
was called seven times during the execution, which means tH3f" the solution is linear, is marked by a brighter frame.

it backtracked three times.

C. Real World Experiment

While the results presented above are all simulations,
also tested our planner in a realistic scenario using a mobi
platform. For this purpose, we integrated PPP with the contr¢
environment of the NOMAD-200 mobile robot from Nomadic.
The planner used a coarse representation of the lab where
robot carried out a rearrangement plan for five chairs. Th
robot was directed remotely via a wireless Ethernet link. Som=
snapshots from one execution are presented in Fig. 16. TI
pushing plan is illustrated in Fig. 17.

The experiments showed the applicability of the planner 6
real scenarios involving many movable objects. However, they
also emphasized the great importance of sensory feedback.|X. COMPLEXITY, PERFORMANCE AND PRACTICALITY

Lacking such a feedback, each experiment must be precederl*lhe algorithms presented in this paper are motivated by
with an accurate calibration of the robot and the movable

both for position and orientation. Although small odometr&e n_eed for practical pla_nhers. _To achieve th!s goal, both
errors are acceptable in most cases of indurigation this algorithms break the multidimensional problem into a set of

is not the case for pushing. Missing the correct contact motfV dimensional subproblems, each of which is solved by an
(for a push) can be critical. While in this study we assumed tnaderlying planner. While our underlying planner [6] has an
the mechanical model is handled separately, there is no dokponential time and space complexity in the general case, we
that the integration of sensory information with the mechanichfve used it to plan pushing C-paths for one movable at a time,
model is an issue of major importance as well. We see all thésaving a constant running time for each movable. In addition,
directions as avenues for future research. the core of both algorithms is a constraints based search. Here

L

l’,g. 16. Some snapshots from a real world experiment.

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 563

Fig. 18. Example of a randomly generated pushing rearrangement problem.

2) The precedence graph has the ability to filter out most
of the erroneous search paths in the permutation net.
Fig. 17. The pushing plan for the real world experiment. Note that the Consequently’ in most cases, the precedence graph can

workspace shown in the previous snapshots was roughly discretized and cells ~prevent backtracking during the search, allowing the
were marked as obstacles even if only part of them contains an actual obstacle. planner to find a solution within practical time limits.

3) Although it is exponential in principle, the time needed
to search the reduced permutation net is usually much
smaller than the polynomial components of the al-
gorithms. Hence, in practical terms, both algorithms
present practical, polynomial behavior.

we do notimposeconstrainton the problem but rathezxtract
themfromthe problem during a preprocessing phase. Although
no new information is added during this phase, the extraction
gzallcgﬁrent precedence constraints dramatically narrows the4) The perturbation approach has a good ability to handle

Although the theoretical complexity of LPLAN, and con non linear problems.
9 plexiy ' The following tables summarize a comprehensive test of

ly of ELPLAN, i ial in th f - . -
sequently o , Is exponential in the number of mov bout 1000 problems with up to ten movable objects (22

ables, in many pr'actlcal cases I‘.PLAN Is expected to.baccombined DOF). All problems were generated with the same
track rarely, requiring onlyn iterations of the Plan() routine.

. . environmental complexity (e.g., density of corridors) and the
In these cases, the construction of the maximal precedence . o A

. . . same discretization rate, while the number of movables was
graph consumes most of the planning time, leading to~a

O(n?) time complexity. ELPLAN'S worst case complexitygradua”y increased. Each problem was allocated um%o

is dominated by that of LPLAN. The preceding phase OFf>lan() calls. Had the planner reached that limit, a failure was

: announced.

Perturb-Cpnﬂguraﬂon() includes at mosuterat.pns, each of Table Il summarizes some characteristics of the problems.
er'Ch actlvgtes a cycle d(itector, a reachab|llty scanner, a'PIqe classification of problems into the appropriate class was
a “perturbation generator.” The Perturb() routine dominat Sised on their maximal precedence graph and the complete-
the overall performance of Perturb-Configuration(), though its . 4

. . . fiess of LPLAN, i.e., every problem with a cycle free prece-
theoretical complexity outperforms the complexity of the cyclgence graphandwhich LPLAN had solved, was identified as
detector. Hence, while théheoretical complexity of Perturb- '

Configuration() isO(n?), its practical performance becomes"near’ while all others were counted as nonlinear.

n
7 ' , . Table 1l shows that on the average, only 9% of all problems
O(eM*POFR2) as a result of thed (™ *POFn) complexity g y =5 P

of the Perturb() routine. were classified incorrectly by the algorithm. This reinforces

| der t v that lanni lqorith h.b.claim 1. It is interesting to note that the number of such

n order 1o yenfy at our pfanning -algornthms exn Itir?correct classifications wagsensitiveto the number of
practical behavior, we testgd them oyera!arge setof rgndo é(rticipating movables. Also shown in Table Il is the fact
generated pmb'e”_‘s (S‘?e Fig. _18)’ using simulated environm on the average, 75% of all sequential problems were
like the one de_scrlbed in Sect!on“VIII. O,E” pro“blem gen?rat%bccessfully solved by the perturbation approach, while the
created maze-like problems with “rooms” and “corridors,” anfl . ¢ \ccess rate was 85%. One should note that many
ch(;)se thhe |n|t|alband ?ogl_clonflggjlranons ra:)r:domly. In order Hanning failures were caused by incorrect classification of
reduce the number o tnwg probiems, pro emat.|g areas (e_'ge'quential problems into linear ones. The normalized success
narrow pas_sages) were given a higher probability for be"ilgte row presents the expected success rate for a correct
occu;fyed with movables. ;urtherrTl]ore, elach generated p,mblgl@ssiﬁcation. While all these results reinforce claim 4 above,
was |_rs_t submitted to_ a gt-prob em planner and conS|derﬁqS important to add that as expected, the success rate tends
non t.r|V|th(.)nIy unr?n .|ts failure. , . | hto decrease as more movables share the problem.

Using this mechanism, we tried to confirm not only the apie i represents the second part of our experiment:
claim for practical planning timebut the following claims as measuring the role of the precedence graph in the overall
well performance of PPP. For that purpose we submitted each

1) The precedence graph may serve as a decent deteptoblem to PPP twice. First with a full calculated precedence

of linear problems, i.e., in most cases, a cycle fregraph, and secondly with a null precedence graph. We were
precedence graph correctly indicates a linear problemmainly interested in three measures—how many times the

564 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

TABLE I
EXECUTION CHARACTERISTICS FOR THERANDOMLY GENERATED PROBLEMS (THREE TO TEN MOVABLES). THE NORMALIZED SUCCESSRATE, CALCULATED AS
(% LINEAR +% SEQUENTIAL % SUCCESSsequential), REFLECTS THE SUCCESSRATE FOR PERFECT CLASSIFICATION, WITH NO LINEARLY TREATED
SEQUENTIAL PROBLEMS

Number Of Movables 3 4 5 6 7 8 9 10 Total Avg.
Percent of Linear problems 80% | 76% | 66% | 82% | 56% | 62% | 74% | 70% 1%
Percent of Sequential problems 20% | 24% | 34% | 18% | 44% | 38% | 26% | 30% 29%
Planning success rate - total 94% | 88% | 84% | 92% | 72% | 80% | 90% | 82% | 85%
Linearly treated sequential problems 4% 6% 6% 6% | 22% | 14% | 6% 8% 9%
Planning success rate - sequential problems || 88% | 77% | 71% | 80% | 73% | 75% | 80% | 54% 75%
Planning success rate - normalized total 98% | 94% { 90% | 96% | 88% | 91% | 95% | 86% 92%
TABLE 11l

PERFORMANCE MEASURES WITH AND WITHOUT PRECEDENCE GRAPHS

Performance with precedence graphs

Number Of Movables 3 4 5 6 7 8 9 10
Zero Plan() backtracks 97% | 93% | 93% | 91% | 89% 81% 85% 7%
1-n Plan() backtracks 2% | 4% | 4% 4% 7% 7% 5% 4%
n-n? Plan() backtracks 1% 0% | 0% 4% 0% 5% 3% 4%
More than n? Plan() backtracks 0% 3% | 3% 1% 4% 7% 7% 15%
Average number of Plan() calls 29 5.5 7.3 10.8 7.1 47.0 72.9 172.8
Average number of PushCPath() calls 3.0 7.3 9.9 20.2 9.6 142.7 | 361.0 823.0
Normalized number of PushCPath() calls || 9.0 | 19.3 | 29.9 | 50.2 51.6 198.7 | 433.0 913.0
Problems that reached resource limit 0% 2% 2% 2% 0% 6% 6% 14%
Performance without precedence graphs
Number Of Movables 3 4 5 6 7 8 9 10
Zero Plan() backtracks 92% | 80% | 76% | 70% | 46% 46% 50% 50%
1-n Plan() backtracks 0% | 10% | 6% 8% 12% 8% 8% 6%
n-n? Plan() backtracks 4% 0% | 4% 4% 16% 6% 6% 2%
More than n? Plan() backtracks 4% | 10% | 14% | 18% | 26% 40% 40% 40%
Average number of Plan() calls 3.8 7.2 | 207 | 46.1 97.2 184.3 168.6 373.8
Average number of PushCPath() calls 9.0 21 76.5 | 244.7 | 532.1 | 1318.7 | 1684.4 | 3234.5
Problems that reached resource limit 4% 2% | 10% | 16% | 22% 28% 20% 32%
TABLE IV

TIME PERFORMANCE OF THEALGORITHM

Planning time

Number Of Movables 3 4 5 6 7 8 9 10

Total planning time (seconds) 20.2 | 35.2 | 61.2 | 74.8 | 112 | 204 | 178 [289
For the precedence graph calculation 53% | 55% | 60% | 72% | 70% | 47% | 67% | 55%
For the PerturbConfiguration() routine || 24% | 22% | 17% | 14% | 17% | 12% | 12% | 25%
For the Plan() search routine 23% | 23% | 23% | 14% | 13% | 11% | 21% | 20%

planner called the Plan() routine, how many times did dtruction routine, the PerturbConfiguration() routine and the
call the underlying planner PushCPath(), and what portion Bfan() search routine. One should note that the (theoretically
problems reached their resource limit. All of the above, unlikexponential) search time of Plan() was always much smaller
PPP’s execution time, are platform independent and represth@n the (polynomial) time needed to build the precedence
relevant issues of performance and practicality. Note that f@faph. In practice, this leads to practical planning time for
the precedence-graph based performance we have normal@@§t problems, as stated in claim 3 above.
the number of PushCPath() calls by adding all calls during the
building of the precedence graphs.

Table Il clearly shows that unless a problem is easy, if not X. CONCLUSION

trivial, the time penalty for calculating its precedence graph is Planning a sequence of pushing manipulations is a PSPACE-
only a frqctlon of a brute force search over a non constralnﬁgrd problem effortlessly solved by humans in everyday life.
permutation net. The same holds for the number of Plan(}$this paper, we have suggested a practical approach to handle
backtracks, which drops back to zero as soon as a precedeigghing planning for rearrangement tasks with many movable
graph participates in the planning. Equally important is th@ojects.
fact that without the precedence graph, an increasing portionthe contributions of our study span several topics. We
of problems reached their resource limit and failed. All thesgave introduced a novel hierarchical classification of the
results strongly support claim 2 and the crucial role of th@anipulation problems domain. In our classification, problems
precedence graph in making our method a practical one. are characterized by properties of the plans that can solve them.
Finally, Table IV represents the average planning time spefiiis allows for a closer, more direct, link between the different
on each problem and how was that time divided between tblasses and their planning algorithms, as well as providing
major parts of the computation: the precedence graph c@ome insight into the algorithms themselves.

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS

Based on this classification, we have presented new manify
ulation/pushing planning algorithms for problems that belong
to two of the defined classes. Our methods break the multidi-
mensional problem into a set of low dimensional subproblemg3]
extract precedence constraints directly from the given problem,
and use those to narrow the search. This allows to solvg;
problems of many movable objects with joint number of DOF
never handled before. 5]

While being fully compatible with any manipulation, our
algorithms are specifically designed to support the particuldfl
manipulation of pushing, whose unique characteristics require
special care even at the planning level (trap-points, contact#
mode problems, etc.). In addition, our algorithms differ from[B]
previous works by providing complete description of the
pushing plan, including any intermediate motion of the robot
beMQenmﬁmemcomaanMeºemnunmmmeOMeaﬁl

Finally, we have presented two tools—the permutation ngb;
and the precedence graph—which allow a clear and simple
graph representation for different aspects of our problenﬁl]
Both tools are manipulation independent, hence may be ap-
plied to other manipulations as well.

We have implemented our algorithms into PPP, a practic[alllz]
pushing planner. We have tested it in a simulated environmeis]
with problems of up to 32 movable objects and a 66 combin ﬂ]
DOF. The planner has been integrated with the Nomad-200
environment, and experiments testing the applicability of the
planner in real scenarios involving several movable objec[tl%]
have been run.

While PPP was implemented using an underlying plann&]
from our previous study, the planning algorithms themselves
(LPLAN and ELPLAN) are totally independent of that choice[17]
In that sense, a better underlying pushing planner may provrijlq%
more complicated pushing manipulations (such as rotationa
pushing), hence contributes to PPP’s overall performance.
In the same spirit, PPP may easily be extended to suppHﬁ]
grasping simply by plugging a planner that supports grasping
manipulation into PushCPath(). Changing PPP in that way, it
has easily solved nonlinear manipulation problems, including
the frequently addressed Sussman anomaly, and assem °
planning like problems.

The work presented in this paper embodies many directio
for future research. On the planning level, these include t
development of a practical algorithm for ndf¢ sequential
problems, and research into the yet unexplored (in the moti
planning context) area o§P"”! problems. On the imple-
mentation level, we have no doubt that many issues must
addressed before a robust, real world rearrangement system
can be realized. Developing a method to deal with incomplete
knowledge and a scheme to exploit sensory information in
order to achieve stable and predictable pushing manipulatid
are some of these future research directions.

REFERENCES

[1] S. Akella and M. T. Mason, “Posing polygonal objects in the plan:
by pushing,” inProc. IEEE Int. Conf. Robot. AutomaMay, 1992, pp.
2255-2262.

)~

565

R. Alami, J. P. Laumond, and T. Simeon, “Two manipulation planning
algorithms,”The Algorithmic Foundations of Robotjds. Goldberg, D.
Halpern, J. C. Latombe, and R. Wolson, Eds. Boston, MA: A. K.
Peters, 1995.

R. Alami, T. Simeon, and J. P. Laumond, “A geometrical approach to
planing manipulation tasks, the case of discrete placements and grasps,”
Int. Symp. Robot. Res1989, pp. 453-463.

J. Barraquand and J. C. Latombe, “A monte-carlo algorithm for path
planning with many degrees of freedomlEEE Int. Conf. Robot.
Automat, 1990, pp. 1712-1717.

, “Robot motion planning: A distributed representation approach,”
Int. J. Robot. Resvol. 6, no. 10, pp. 628-649, Dec. 1991.

O. Ben-Shahar and E. Rivlin, “To push or not to push—Part I. On the
rearrangement of movable objects by a mobile robot,” CIS Rep. 9516,
Technion, Haifa, Israel, July 1995.

P. C. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,lEEE Int. Conf. Robot. Automatl991, pp. 444-449.

B. Dacre-Wright, J. P. Laumond, and R. Alami, “Mation planning for
a robot and a movable object amidst polygonal obstaclé=EE Int.
Conf. Robot. AutomatMay 1992, pp. 2474-2480.

L. S. Homem de Mello and S. Lee, Ed€pmputer-Aided Mechanical
Assembly Planning Norwell, MA: Kluwer, 1991.

L. Kavraki and J. C. Latombe, “Randomized preprocessing of config-
uration space for fast path planningBEE Int. Conf. Robot. Automat.
1994, pp. 2138-2145.

Y. Koga, T. Lastennet, J. C. Latobme, and T. Y. Li, “Multi-arm
manipulation planning,”9th Int. Symp. Automat. Robot. Contruction
June 1992.

Y. Koga and J. C. Latombe, “On multi-arm manipulation planning,”
IEEE Int. Conf. Robot. Automat1994, pp. 945-952.

R. E. Korf, “Planning as search: A quantitative approachutificial
Intell., vol. 33, pp. 65-89, 1987.

J. P. Laumond and R. Alami, “A new geometrical approach to planing
manipulation tasks, the case of a circular robot and a movable circular
object amidst polygonal obstacles,” Tech. Rep. 88314, LAAS, Toulouse,
France, 1988,

, “A geometrical approach to planing manipulation tasks in
robotics,” Tech. Rep. 89261, LAAS, Toulouse, France, 1989,

K. M. Lynch and M. T. Mason, “Stabe pushing: Mechanics, control-
lability, and planning,”1st Workshop Algorithmic Foundation Rohot.
1995.

G. T. Wilfong, “Motion planning in the presence of movable obstacles,”
in Proc. ACM Symp. Computat. Geometry ASQ@88, pp. 279-288.

J. D. Wolter, “On automatic generation of assembly pla@ymputer-
Aided Mechanical Assembly Plannjng. S. Homem de Mello and S.
Lee, Eds. Norwell, MA: Kluwer, 1991, ch. 11, pp. 263-288.

O. Ben-Shahar and E. Rivlin, “To push or not to push—Part IIl,” CIS
Rep., Technion, Haifa, Israel, Oct. 1995.

Ohad Ben-Shahar received the B.Sc. and M.Sc.
degrees in computer science from the Technion,
Israel Institute of Technology, Haifa, in 1989 and
1996, respectively, and is currently pursuing the
Ph.D. degree in computer science at Yale University,
New Haven, CT.

His research interests are computer vision and
robot motion/manipulation planning.

|

Ehud Rivlin received the B.Sc. and M.Sc. degrees
in computer science and the M.B.A. degree from
Hebrew University, Jerusalem, Israel, and the Ph.D.
degree from the University of Maryland, College

Park.

He is an Assistant Professor in the Computer
Science Department, Technion, Israel Institute of
Technology, Haifa. His current research interests are
in machine vision and robot navigation.

