
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998 549

Practical Pushing Planning for
Rearrangement Tasks

Ohad Ben-Shahar and Ehud Rivlin

Abstract—In this paper, we address the problem ofpractical
manipulation planning for rearrangement tasks of manymovable
objects. We study a special case of the rearrangement task,
where the only allowed manipulation is pushing. While problems
of this kind are known to be PSPACE-hard, we search for
algorithms that can provide practical planning time for most
common scenarios. We present a hierarchical classification of
manipulation problems into several classes, each characterized
by properties of the plans that can solve it. Such a classification
allows one to consider each class individually, to analyze and
exploit properties of each class, and to suggest individual planning
methods accordingly. Following this classification, we suggest
algorithms for two of the defined classes. Both items have been
tested in a simulated environment, with up to 32 movable objects
and 66 combined DOF. We present simulations results (with up
to 10 movables), statistical data from 1000 randomly generated
problems, as well as some experimental results using a real
platform.

I. INTRODUCTION

REARRANGEMENT of objects in a given workspace
is a basic manipulation task. The applications of a re-

arrangement system are numerous, ranging from fine assembly
planning to household maintenance tasks. However, the high
complexity of the underlying planning problem prevents the
realization of a complete system that can handle scenarios
of many objects. In this paper, we address the problem
of planning a rearrangement plan while considering several
special features.

In the light of the above, the first feature we are interested in
deals with the number of objects that the system can handle.
Wilfong [17] showed that motion planning in the presence
of movable objects is PSPACE-hard. This result convinced
other researchers to concentrate first on constrained versions
of the problem, namely with cases of one or few movable
objects only [1], [3], [6], [8], [12], [14], [17]. Different from
previous works, in this study we are interested in problems
which engagemany movable objects, as happens in most
practical scenarios. Undoubtedly, complete/optimal algorithms
that solve such problems are not expected to be practical,
hence we seek for practical methods even at the expense of
completeness/optimality.

Manuscript received January 10, 1997; revised January 15, 1998. This paper
was first published in theProceedings of the 13th International Conference on
Robotics and Automation, Minneapolis, MN, 1996, pp. 172–177. This paper
was recommended for publication by Associate Editor M. Peshkin and Editor
V. Lumelsky upon evaluation of the reviewers’ comments.

The authors are with the Center for Intelligent Systems, Department
of Computer Science, Technion, Israel (e-mail: obs@cs.technion.ac.il;
ehudr@cs.technion.ac.il).

Publisher Item Identifier S 1042-296X(98)04615-1.

A second feature which we introduce into our study is the
fact that we allow our robot to manipulate the objects only
by pushingthem (rather than grasping them). This constraint
is motivated by several observations: The action of pushing
allows easier manipulation of larger and heavier objects. It
permits easier simultaneous manipulation of groups of objects,
and most importantly, it can be realized with simple and
cheap robot structures. In that sense, the pushing manipulation
allows any mobile robot to be the manipulator of the system.
Then again, the action of pushing has many disadvantages
over grasping, which make it less widely used after all.
The action of pushing is inherently restricted to a support
surface and does not allow the robot to exploit the third
dimension while manipulating the object. In addition, pushing
is different from grasping by the fact that it might bring the
object into irreversible configurations (e.g., corners) which we
call trap points [6]. Hence, unlike with grasping, planning
is essential for systems that rearrange objects by pushing.
Finally, the action of pushing is mechanically unstable and
thus various control problems arise. As it is emphasized in
the subsequent sections, this study focuses on planning issues
that emerge from the former two points, while assuming
that the control problems have been solved separately by an
external component. Note that some undesirable aspects of the
mechanics of pushing might be minimized by an appropriate
choice of the pusher geometry.

The major contribution of this paper is twofold—the
presentation of a novel formal classification of manipula-
tion/rearrangement problems and the development of two
practical planning algorithms. The presented classification
allows to consider each class individually, to analyze and
exploit properties of each class, and to suggest individual
practical planning methods accordingly. The suggested
algorithms correspond to two of the defined classes. Both
algorithms can solve rearrangement problems ofmany
movable objects amidst cluttered environment. Different from
some previous works in the area [1], [16], our methods provide
detailed manipulation plans, including any intermediate motion
of the pusher while changing contact configuration with the
pushed movables. While being specifically designed for the
pushing manipulation, both algorithms are fully compatible
with other manipulations too (e.g., grasping).

II. PROBLEM FORMULATION

Let be a set of bodies com-
posing the environment. is a robot (i.e., capable of self
movement), represents the union of allimmovablestatic

1042–296X/98$10.00 1998 IEEE

550 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

bodies (i.e., obstacles), and is a collection of
movablerigid objects.

Each of the participating dynamic objects has its own
configuration space. Let and be the configura-
tion spaces of and , respectively. Since any pushing
manipulation must be carried out in a context of some support
surface, we consider to have two or three dimensions
only. Let be the composite configuration space of
and all movable objects. Each vector in is a composite
configuration for and

. Along with the above configuration spaces we
will also use the following projection operators:

Let denote aconfiguration path(C-path) between
and . It is clear that not every C-path is a

pushing C-pathfrom to and that a constrained definition
is needed. A brief discussion on that issue is outlined in
Section IV.

Using most of the above we define the rearrangement
planning problem as follows:

Given (a description of the environment), an initial
composite configuration and some goal composite
configuration , find a pushing C-path ,
or report whether no such path exists.
Rather than an AI decision problem, this definition is

phrased in terms of motion planning problems since we are
interested in solutions that fully describe the motion of the
robot while it is realizing the rearrangement plan. In addition
to any pushing motion, these solutions should include any
intermediate motions that change the contact configuration
of the robot with the currently pushed object, as well as
any motion that moves the robot from one object to another.
Note that nothing in this definition constraints the robot from
pushing more than one object simultaneously.

III. RELATED WORK

The problem of object rearrangement in general, and the
special variation addressed in this paper, relate to several
research areas in robotics and AI. The most notable area
is the one ofmanipulation planning, or motion planning in
the presence of movable objects. As mentioned earlier, this
variation of the basic motion planning problem was proved to
be PSPACE-hard [17]. This result convinced other researchers
to concentrate first on constrained versions of the problem,
namely with cases of one or few movable objects alone.
A generalized approach for the manipulation planning was
proposed in [2], [3], [14], and [15]. They defined the solution
as a special path—amanipulation path—in the composite
configuration space of the robot and all movable objects, and
applied the exact cell decomposition methodology in order
to calculate that path. While being exact and complete, this
approach has several limitations. It allows the manipulation

of only one movable at a time and it is inherently limited
to grasping manipulation. Even more important is the fact
that this approach cannot practically handle scenarios ofmany
movable objects due to its high (exponential) computational
complexity.

When dealing with rearrangement problems, one may find
many common aspects toassembly planningtoo. However, the
state of the art research in the area of assembly planning [9] ad-
dresses problems with different characteristics than ours. Most
such research ignores the manipulator, its geometry, and any
constraints on the allowed manipulation (e.g., pushing only).
The ultimate assembly planner should be able to generate
plans directly from a CAD model of the goal assembly [18].
consequently, assembly planning tends to ignore the initial
configuration of the parts and assumes that they come from
infinity. We, on the other hand, are interested inrearrangement
of parts, i.e., changing their common configuration from a
given initial configuration to a givengoal configuration. In
that sense, as well in the others, our rearrangement planning
problem is a generalization of the assembly planning problem.

When dealing with rearrangement problems of many mov-
able objects, one has to handle configuration spaces of many
DOF. Such scenarios received less attention due to the high
complexity involved. Barraquand and Latombe [4], [5] ad-
dressed the large DOF motion planning problem by aproba-
bilistically resolution-completestochastic approach. They de-
fined simple numerical potential fields over a discretized
version of the composite configuration space, searched for a
solution using a hill-climbing like search, and used a Monte-
Carlo algorithm to escape from local minima. Such a method
can provide fast solutions for some large DOF problems (the
authors experimented with up to 31 DOF) and served as the
basis for several other studies with large DOF robots [10] and
multi-arm manipulation planning [11], [12]. However, the fact
that the core of this method is a hill climbing search makes it
problematic for our kind of problems due to the irreversibility
of the pushing manipulation and the existence of trap points.
In addition, a success in the random search seems to need
a solution subspace which is comparably large, something
which is not true for cluttered environments or rearrangement
problems of many movable objects.

Despite the great deal of motion planning research, not much
work has been done directly in the area of pushing planning.
Akella and Mason [1] analyzed the series of pushes needed
to bring a convex polygon to a desired configuration. While
using pushing manipulation, this problem is a very constrained
version of the rearrangement problem. They allowed only
one convex movable object, used a simplified fence-like
pusher, and ignored any other geometrical constraints (e.g.,
obstacles). A comprehensive study was carried out by Lynch
and Mason [16] where both mechanics, control and planning
issues were considered. Their planning method was based
on a best-first search over an inexact representation of the
configuration space, which aimed at finding a path to some
neighborhood of the specified goal. They considered again
only limited number of DOF by allowing only one movable
object. It was also assumed that the fence-like pusher can
change the contact configuration (chosen from a discrete

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 551

(a) (b) (c) (d)

Fig. 1. Pushing C-paths versus general configuration paths. (a) Three placements of a robot and one movable object, both with one degree of freedom (one
axis of motion). (b) The composite configuration space of the problem and a pushing C-path fromQ1 to Q2. (c) Another C-path fromQ1 to Q2 which is
not a pushing C-path. Note that this C-path includes self movement of M. (d) No pushing path can be found fromQ2 to Q1 (note that the longer path is
a pulling path). Similar conclusion can be drawn regarding a pushing path fromQ2 to Q3, though different reasons apply.

set) at any time, with no restrictions. As mentioned before,
in this paper we are interested in multi-object problems,
where the solutions inherently integrate the motion of the
pusher, including all intermediate motions between contact
configurations. On the other hand, we are less interested in the
mechanics of pushing, and assume that its effects are handled
by an external component.

Finally, a somewhat different problem was addressed by
Chen and Hwang [7] who presented a practical, heuristic, and
inexact solution for many movableobstacles. Their method
is primarily a motion planning method (rather than rearrange-
ment planning) in which movable obstacles can be pushed
away by the robot whenever they stand in its way to the goal.

IV. BASIC PUSHING PLANNING

In our foregoing paper [6], we presented a potential-field
method for planning a pushing manipulation by a mobile
robot which tries to rearrange several movable objects in its
work space. That method was designed to solve rearrangement
problems as defined in Section II, and it is resolution complete,
optimal and flexible. However, it has only limited practical
use due to the high complexity involved. This section briefly
describes that algorithm since we use it as a building block in
the practical algorithms described herein.

A. Pushing C-Paths

Given a pushing rearrangement problem as formulated in
Section II, a planner that can solve it should find an appropriate
C-path that represents the rearrangement plan. As mentioned
earlier, it is clear that not every C-path is apushing
C-pathfrom to , and that a constrained/refined definition
is needed. Examples of C-paths and pushing C-paths are given
in Fig. 1.

In general, we expect an appropriate C-path to have a
structure of amanipulation path, as defined in [2], [3], [14],
and [15]. However, several differences do apply. First, one
should note that pushing force can be applied only in specific
directions (i.e., one cannot push an object by moving away
from it). This observation implies that any C-path segment
that corresponds to pushing a movable object, cannot have an
arbitrary direction in the configuration space. Second, while
Laumondet al. defined eachtransfer pathto manipulate only

onemovable object, the general pushing C-path should allow,
in our view, a simultaneous manipulation of several objects.
Finally, while Laumondet al. defined each transfer path to
represent arigid manipulation (i.e., a manipulation during
which the geometric relationship between the manipulator and
the object remains constant), we findnon rigid manipulations
to be more realistic, especially in the context of pushing
manipulation.

B. Basic Algorithm

Having the above loosely described properties of the re-
quired pushing C-path, we solve the pushing rearrangement
problem with a two-phase procedure, while using adiscretized
version of the composite configuration space of the robot and
all movable objects.

The first phase, called thecost mappingphase, carries
out a Dijkstra like propagation procedure which assigns a
cost value to each cell of thefree configuration space. The
propagation is carried outbackward, originating from the
goal configuration(s). Each step of the propagation selects one
cell, the one with the minimal cost, from the wave front and
“floods” a subset of its neighbors. This subset, which we call
theadmissible neighbors, is carefully determined using several
factors such as the mechanical model of the manipulation
(which is assumed to be analyzed separately by an external
component), constraints on the allowed manipulations (e.g.,
what contact points between the robot and the objects are al-
lowed during the manipulation), and the maximum number of
movables that the robot can push simultaneously. In addition,
artificial constraints can be integrated into that mechanism,
as elaborated in [6]. When the propagation is finished, every
free cell in the configuration space is assigned the cost of the
cheapestpushing C-path that connects it to the “closest” goal
configuration. The cost metric itself can integrate many useful
factors, such as the total pushed weight, the local passability
of the support surface, and others.

The cost mapping phase is a preprocessing phase that must
be executed only upon a change in the environmentor the
set of goal configurations. Otherwise, it can be executed only
once, producing a fully mapped free space (or a potential field).
Given such space and an initial composite configuration of the
robot and all movable objects, a specific rearrangement plan is
constructed by therestoration phase. That phase carries out a

552 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Fig. 2. Pushing plan for rearrangement of two movable objects, where the
robot is allowed to push both objects simultaneously, if such a manipulation
is found useful.

variation of a hill climbing procedure which starts at the initial
configuration and ends at the first reached local minimum after
following only admissible neighbors. The mapping process
guarantees that every local minimum in the composite space
is also a global minimum, hence one of the goals. The result
of the restoration phase is a description of an appropriate C-
path which represents the rearrangement plan. The projection
of this C-path over yields the motion plan which the
robot should execute in order to realize the solution.

Figs. 2 and 3 illustrate two selected results of the basic
planning algorithm, as produced by our planner in [6]. The
first is a pushing rearrangement plan where the robot could
choose to push more than one object simultaneously. The
second corresponds to a pushing rearrangement problem for
which non rigid rotational pushings are required in order to
achieve the goal. Both examples demonstrate the apparent
differences between a manipulation path and a pushing C-path,
as discussed in the previous subsection.

The above rearrangement planning method is resolution-
complete and provides optimal solutions. Equally important
is the fact that this method is easily implementable and very
flexible, allowing constraints to be described usinglocal terms,
via admissible neighborhood relationships between configu-
ration cells, rather than using global terms. Consequently,
spatially varying constraints can be integrated as easily as
spatially invariant ones1. Despite its advantages, this method is
impractical due to its exponential space and time complexities.
A complexity analysis, and a discussion of other limitations of
the method can be found in [6]. It is this impractical behavior
that motivated the study in this paper.

V. PROBLEMS CLASSIFICATION AND EXAMPLES

Providing practical solutions for the general problem defined
in Section II might be a difficult task. Hence, we take an
alternative approach that may allow a gradual study of the
general problem and provide practical solutions for problems
of increasing difficulty. In this section, we divide the set of
all rearrangement problems into some hierarchical classes.
This classification is practically independent of the specific
manipulation chosen to rearrange the objects, thus it may be
useful for manipulations other than pushing too. Following this

1For example, this feature allows to model a variable friction distribution,
something which has been avoided in most related pushing research.

Fig. 3. Planning with non rigid rotational pushings: (a) details the movable
object while (b)–(e) show all the allowed pushings (relative contact point
and the pushing outcome). The rest of the figure outlines a pushing plan that
maneuvers the object in a cluttered environment.

classification, we present practical algorithms and planners for
two of the defined classes.

In what follows we use the following auxiliary definition:
Definition 1: A manipulation of a movable object is

called nonpreemptive iff (1) is manipulated from its
initial configuration to its goal configuration, and (2) while
doing so, no other movable changes its configuration (i.e.,
it does not move).

Let be the set of allpushingrearrangement problems
of movable objects. We start the classification of
with a definition of two basic classes. These classes, as well
as the others to come, are based on characteristics of the
rearrangementplans that solve their problems.

Definition 2: A pushing rearrangement problem is called
flat if the pusher can chooseany permutation of nonpreemp-

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 553

Fig. 4. SP
2 problem.

tive pushings in order to achieve the goal. The class of all flat
pushing problems will be denoted by .

Definition 3: A pushing rearrangement plan is called-
sequential if it can be described as a sequence of robot
operations, each of which pushes at mostmovable objects
simultaneously. A pushing problem is called-sequential if
it can be solved by an -sequential plan. The class of all

-sequential problems will be denoted by .
Intuitively, represents very easy problems while

might contain very difficult problems (in terms of finding
a rearrangement solution). Indeed, both classes bound our
problems’ domain on both extremes—the most constrained
and the most general (note that). Being the more
general, is probably the more interesting class to deal
with. However, we foundno previousmotion planningwork
that addresses -like problems2. In the same spirit, and
because of the high complexity involved, this paper will deal
only with problems. We hope that the formalization of

may lay the ground for future research in that direction
An example for an problem is given in Fig. 4.

Following the discussion above, we next define a series of
classes for problems of increasing difficulties, all are subsets
of .

Definition 4: A pushing rearrangement plan is calledlinear
if it can be described as a sequence of nonpreemptive pushings.
A pushing problem is called linear if it can be solved by a
linear plan. The class of all linear problems will be denoted
by .

Both and try to constrain the problem by forcing
it to be decomposed of similarserializable rearrangement
subgoals [13]. However, since an appropriate
permutation of nonpreemptive pushings is not known a priori
for linear problems. Examples of flat and linear problems are
given in Fig. 5. The first practical algorithm suggested in this
paper is designed for linear problems.

The next step in classifying our problems is focused at
, a class which contains problems in various degrees

of difficulty. Following our guideline to define classes by
characteristics of rearrangement plans, we formalize a re-
arrangement approach which seems to apply for many practical
cases. Given a non linear rearrangement task, it if often

2This common practice doesn’t hold for the assembly planning literature
(e.g., [9]), where subassemblies are often used. Nevertheless, even in that
context, assembly plans are not generalSP

m>1 sequences, since once
they are assembled, subassemblies are usually not broken. A more general
approach, and one that is most appropriate forSP

m>1 problems, should
allow to break down a subassembly and manipulate its individual components,
if such a manipulation is proven useful. Such a generalSP

m manipulation
was illustrated in Fig. 2.

Fig. 5. A Flat (P1) and two Linear (P2, P3) problems.

possible to reduce it to a linear problem by applying a small
“perturbation” to the initial configuration of some of the
movable objects. More precisely, given a 1-sequential problem

, it is often possible to reduce it to a sequence of

two linear problems , with
being rather “close” to . Examples of such reduction are
given in Fig. 6.

Formalizing this approach, we define the set as follows:
Definition 5: A pushing rearrangement plan is called

-linear if it can be described as a sequence oftwo
linear plans , with
-neighborhood(. A pushing problem is called-linear

if it can be solved by an-linear plan. The class of all-linear
problems will be denoted by .

The -neighborhood of a composite configuration
is defined as its neighborhood of “radius”

:

-neighborhood

Each value of defines a different class of pushing problems.
It is clear that if and that
creates the class of linear problems. It is also clear that

.
The following generalization of does allow us to fill

up the gap between and :
Definition 6: A pushing rearrangement plan is called
-linear (pronounced - -linear) if it can be described as

a sequence of linear plans
, with -neighborhood . A pushing

problem is called -linear if it can be solved by an -linear
plan. The class of all -linear problems will be denoted by

.
Naturally, . It is also clear that any

rearrangement plan of length (i.e., a plan of robot steps)
can be described as a plan, for .

Concluding this section, a general view of our classification
is illustrated in Fig. 7.

554 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Fig. 6. LP� problems. All figures include an illustration ofQperturb (middle row, shaded), from which the problem becomes linear.

Fig. 7. Classification ofPPn.

VI. DEALING WITH PROBLEMS

Given a flat pushing problem as , one can easily find
an appropriate pushing plan that solves it. Assuming that
movables are involved, choose an arbitrary permutation of
its elements and then create an independent plan for each,
while treating all others as stationary obstacles. Each such
sub-plan can be constructed using our basic pushing planner
[6] (see Section IV). Since it operates on one movable object
at a time, each run of the basic pushing planner is constant
in time and space (for a predetermined discretization rate),
hence we get total time complexity and total space
complexity.

Although solved easily, flat problems are less common in
real world scenarios. In this section, we consider the class of
linear problems and provide a practical, complete planner that
solves them.

A. Planning Issues and Overview

Given a linear problem, a naive way of solving it would
be to scan all possible non preemptive pushing permutations,
looking for one that solves the problem. The pushing of each
movable object in a permutation can be planned with the
planner of Section IV. However, this naive approach has two
main problems which we need to address.

The first problem is the existence of permutations which
yields an exponential search time in the average case. A
remedy might come from the following observation. Many
linear rearrangement problems containinherentconstraints on
the order of non preemptive pushings that may solve them.
For example, let us consider problem P2 in Fig. 5. Considering
movables and alone (i.e., when ignoring all other movable
objects), we can confidently say that must not be pushed
before . Hence, any permutation in which stands before

cannot be a solution. Similarly, we can examineany two
movables and extract a list of precedence constraints which can
be represented in a graph. After constructing such a precedence
graph in polynomial time, it can be used to filter out many
illegal permutations, using a topological-sort like procedure.
While worst case behavior remains exponential, it appears that
this approach allows many linear problems to be solved out
within practical time (see Section IX).

A second problem, which we call thecontact-modeproblem,
is unique to the pushing domain. As mentioned above, each
non preemptive pushing in a given permutation can be planned
with an underlying planner, as the one in Section IV. However,

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 555

Fig. 8. Contact mode problems. While executingW ! X ! Y , the contact mode configuration of the pusher with movableX, prior to handling movable
Y , is crucial (in that example, pushing is allowed only from the middle point of a movable’s edge).

a careless usage of such a planner might result in a planning
failure, even if the given permutation is a valid solution (see
Fig. 8).

B. Precedence Graphs of Rearrangement Problems

Formalizing the above discussion, let us first define the
graph of precedence constraints which we extract from a given
problem.

Definition 7: Given an initial configuration and a set of
events which should all occur in order
to achieve some goal configuration , a precedence graph
of under and is a directed graph

which has a node for each possible event (i.e.,)
and a directed edge from to if must precede

in order to achieve , regardless of any other event.
A directed edge from to does not guarantee

a successful occurrence of after (such a success
might depend on a third event or some global context),
but it certainly indicates that must not happenbefore

, regardless of any other event or criterion. A precedence
graph which expresses all inherent precedences, between all
pairs of events in a given problem will be calledmaximal
and will be denoted by . Naturally,
in the definition corresponds to the non preemptive pushing
of movable . Intuitively, unless is edge-
less, the corresponding problem cannot be flat. Similarly, if

is not a DAG, the problem cannot be linear.
This last observation is formally expressed in the following
two equivalent Lemmas (denotes the in-degree of a
node):

Lemma 1: Given a rearrangement problem and its max-
imal precedence graph

s.t.

Lemma 2: Given a pushing problem and its maximal
precedence graph

has a directed cycle

Proof: Assume . Then there must be some
that precedes in any permutation that solves

. In practical terms, no permutation that solvescan have
as its first element. If every node of

maintains that property thenno movable can be the first in
any non preemptive pushing permutation that solves, i.e.,
no linear solution exists.

In order to algorithmically construct the maximal prece-
dence graph of a given problem, we need two auxiliary
functions. The first, which we call FREEZE , freezes
a movable object at a given configuration, and returns a new
environment which incorporates that change. The second,
IsPushable(), is formally defined as follows:

Definition 8: Given , and one movable , the pred-
icate IsPushable indicates whether is
pushable from to , i.e., whether or not there exists a
pushing plan that brings from to .

Using these two functions, the maximal precedence graph
of a given problem can be constructed by the following proce-
dure. Note again that this graph, and its precedence constraints,
are extractedfrom the problem, rather than imposed on it, as
happens in many other search problems
MPG
for each element of do
begin

FREEZE
if (IsPushable FALSE) then

construct the edge
FREEZE

if (IsPushable FALSE) then
construct the edge

end.
Each iteration of the above routine treatsonly twomovables,

one is considered as an obstacle while a pushing plan is
searched for the other. Two situations are checked for each
such combination—first in which is frozen in its initial

556 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Fig. 9. Maximal precedence graph of problems P3, P5, and P6.

configuration, and second in which is frozen in its goal
configuration. For each of the two situations a pushing path
is searched for the “free” movable and an appropriate
precedence edge is constructed upon a failure.

The observant reader would note that IsPushable(), by def-
inition, is not concerned with the initial or goal configuration
of the robot. Careful examination shows that this is exactly
the case when we build the maximal precedence graph. As
the two events and are considered in isolation, we
cannot predict the exact a priori configuration of the robot
before actually trying to push a specific movable, nor can we
know the best posteriori configuration for it. Thus, the best
we can do is to ignore these configurations and test for an
arbitrary pushing path, as done by IsPushable().

The implementation of IsPushable() is fairly a variation of
the cost mapping phase of the basic algorithm in Section IV,
with both time and space complexities being constant (for a
predetermined discretization rate). Consequently, each itera-
tion of the MPG() routine is of constant time complexity,
leading to a total complexity of , the same as the
space complexity of . Moreover, most of the
computations can be done in parallel as each precedence edge
is totally independent of the others. Fig. 9 shows the maximal
precedence graphs of problems P2, P5, and P6, as produced
by MPG().

As mentioned before, we are going to use
to sort the non preemptive pushing events via a topological
sort like procedure. While its value in saving search time is
not definite, the following discussion shows that the maximal
precedence graph has a true potential in dramatically narrow-
ing the search. In order to do that we first observe that since
our solution is apermutationof the non preemptive pushing
events, we don’t have to use as our search space. Rather,
we can use an alternative, more “compact” space, which we
call the permutation netand define as follows:

Definition 9: Given a finite set , its per-
mutation net is a directed, labeled, acyclic graph

. is the set of all subsets of. Each two nodes
and are connected by the directed edge if

.
A permutation net has nodes and

edges. It is obvious that such a
graph contains exactly one root (the empty subset) and exactly
one sink (the whole set), and that any path from the root to
the sink is a uniquepermutationof . Fig. 10 illustrates the
permutation net of a four elements set.

Having a linear problem in hand, each node of
represents the set of objects already pushed to their goal

configuration, and each edge represents the action
of non preemptive pushing of (in that way, eachedge

Fig. 10. TheNP fa; b; c; dg permutation net.

of the permutation net corresponds to a specificnodeof the
precedence graph). Our problem’s solution, if it exists, must
reside as a directed path ofedges in so the problem
of finding a linear pushing plan can thus be regarded as finding
such a path. Although seems to be a relatively limited
search space when compared to , it is still exponentially
large in , which makes all forms of exhaustive search
unrealistic. While cannot make the size of

polynomial, it does allow for major reduction in the
search space, as shown by the following Lemma (see [19] for
the proof):

Lemma 3: Each precedence graph’s edge marks one fourth
of the number of permutation net’s nodes and at least one
fourth of its edges as inadmissible for the search.

Unfortunately, different precedence edges do not necessarily
mark distinct sets of inadmissible elements of the permutation
net. It is clear, however, that precedence edges, forming
a Hamiltonian path, transform the permutation net into a linear
list which preserves the only permutation that might solve the
problem.

Fig. 11 illustrates the result of applying the maximal prece-
dence graph of P2 to its permutation net. In addition to a
meaningful reduction in size, it is important to note that in this
case the remaining net containsonly solution permutations.
In other words, searching the remaining net in a depth first
search (DFS) like approach will require no backtracking.
Although this property is not guaranteed, we found that many
practical problems requires no or only little backtracking while
searching thereducedpermutation net, allowing a very fast
planning. Naturally, if optimal solutions are required, and
memory resources are available, the DFS can be replaced with
a breadth first search (BFS) over the reduced permutations
net. In doing that, one has to take into consideration that the
precedence graph might contain no or only small number of
edges, leading to relatively large size reduced permutation net.

C. The LPLAN Algorithm

Following the discussion above, we can now derive a
practical linear planner as a precedence guided DFS over
the permutation net of a given problem. Instead of building
the reduced netbefore the search, we will do itduring the
search—by preceding each step of the DFS with an appropriate
test over the maximal precedence graph. Following Lemma
1, such a test should allow the DFS to move down the

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 557

Fig. 11. The reduced permutation net of P2.

permutation net only through those edges whose corresponding
node in the precedence graph has zero in-degree. After going
down such an edge and planning the non preemptive pushing
of the chosen movable (say), we can safely remove
and its corresponding (in-going and out-going) edges from
the precedence graph, and use the remaining graph as the
precedence graph of the remaining sub-problem (the one that
excludes). If backtracking is needed, the precedence graph
should be reconstructed accordingly.

While the above scheme represents the skeleton ofLPLAN ,
the planner for linear problems, it must be further refined to
handle the contact-mode problem (see p. 17 of this paper).
As mentioned before, the configuration that the robot achieves
after pushing one movable might play a crucial role in the
success to push the next movable. Furthermore, the effect of
the chosen configuration might be noticed only much latter
in the pushing permutation. Hence, we found it necessary
to consider each of the possible final configurations that the
robot can achieve after pushing the current movable. Since
the pushing plan for each movable object is done with a basic
planner which works in a discretized configuration space, the
number of such configurations is finite.

Following is the high level code for LPLAN, the algorithm
for solving problems

Algorithm LPLAN
MPG .

Perm NULL
Call Plan

end.
The main part of the initialization phase is the construction

of the maximal precedence graph. The core planning routine is
the Plan() procedure, which recursively handles the planning
of the next nonpreemptive C-path. As mentioned before, each
such nonpreemptive pushing C-path corresponds to following
one edge of the permutation net. Algorithm continues on the
bottom of the next page.

Plan() receives the current configuration achieved so far
() and the precedence graph of the remaining sub-
problem . It first filters out all movables that, according
to the precedence graph, must not be manipulated at the
current level. For each remaining movable, Plan() tries to
plan a pushing C-Path from its initial configuration to its goal
configuration. The non preemptive pushing planning of each
movables is handled by an underlying planner, referenced here
as the PushCPath() function, and defined formally as follows.

Definition 10: Given , and one movable , the func-
tion PushCPath returns either

1) a pushing C-path that represents the pushing ofwith
from to (both belong to);

2) NULL—if no such pushing C-path exists.

While PushCPath() can be implemented withany planner
that agrees with the above definition, we use the planner from
our previous work [6]. Although its complexity is exponential
with the number of objects, using it for one movable alone
yields a complexity.

Finally, in order to avoid the contact-mode problem,
LPLAN considersevery possible contact configuration that

may achieve after pushing the current candidate . If an
appropriate C-path is found, Plan() invokes itself recursively.

D. Discussion

The LPLAN search algorithm is guided by the precedence
graph’s edges which impose onlynecessaryconditions and
may be insufficient. However, the use of the precedences
information is embedded within a depth-first like search over
the permutation net so a linear solution is guaranteed to be
found, if one exists. Naturally, since our underlying planner
works in a discretized configuration space, LPLAN is only
resolution complete.

Following Lemma 3, it is clear that additional precedence
constraints limit the search further and allow LPLAN to exhibit
better worst-case behavior. On the other hand, some easy look-
ing linear problems that have precedence graphs with no edges,
might cause LPLAN to work harder. Such a degenerate graph
is expected, for example, for every problem which incorporates
severalnarrow passages connecting two adjacent meadows. If
all those passages are occupied by movable objects during one
of the initial or goal configurations, then the problem becomes
nonflat and LPLAN becomes no more than a DFS, which is
expected to backtrack until encountering a solution.

A necessary condition for LPLAN to succeed is the ability
to push each movablealone (i.e., while ignoring all others)
to its goal. Such a test can be realized in linear time as
part of the high level code of LPLAN, using the IsPushable()
function. However, it is easy to see that when a movable is
trapped in such a way, the precedence graph of the problem
is guaranteed to contain many 2-edges cycles, all involving
the same “problematic” object. Following Lemma 2, we shall
conclude that the problem is not “linearly solvable”.

Additional Improvements:While the above formal code
of Plan() provides the core algorithm, it does not specify
several important details that prevent LPLAN from producing
inefficient pushing plans. Most notable is the loosely defined
order by which LPLAN selects candidate movables from
the CURRENTset. While other criteria are possible too, we
choose to sort the candidates inCURRENTby their distance
from . This allows the planner to prefer close
movables, minimizing the “length” of the planned C-path.

VII. D EALING WITH PROBLEMS

Given an -linear pushing rearrangement problem, its solu-
tion can no longer be represented as a path in the permutation

558 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

net, unless an appropriateperturbationhas preceded it. Fol-
lowing Definition 5, the perturbed configuration
should be searched in a small neighborhood of the initial con-
figuration. However, even if we are using a discretized version
of the configuration space, this neighborhood is exponential
in size, making any kind of exhaustive search impractical.
The following two subsections propose a practical, heuristic
way, of finding . Instead of searching the whole
-neighborhood of , we try to decide which movable should

be perturbed, and incrementally search for an appropriate
perturbation for each of these candidates. Since the projection
of the -neighborhood on each is constant in size (for
any given), the total searching time becomes polynomial with
the number of movables. A complete complexity discussion is
included in Section IX.

A. Choosing Movables to be Perturbed

Let us examine two specificpartial precedence graphs,
which we call the initial precedence graph and thegoal
precedence graph. The initial precedence graph, denoted by

, represents all precedences following from
the initial configuration. Similarly, the goal precedence graph,
denoted by , represents all precedences fol-
lowing from the goal configuration. The routines used to
construct those graphs are both derived from the MPG()
routine (Section VI-B), each preserving only the relevant tests.
On the bottom of the next page is the code for building the

TABLE I
EXAMPLES OF �(Mi)

initial precedence graph. The goal precedence graph is built
similarly. Using , the initial precedence graph,
we define the following measure:

Literally, counts the number of movables such that
stands in their way to the goal. For example, the values

of for the movables of problems P4, P5, and P6 (from
Fig. 6) are presented in Table I.

Having the values of , we heuristically mark the
candidates for perturbation by looking for movables whose

. While this criterion is effective, it is somewhat
too strong, since sometimes we can achieve an appropriate
perturbation by affecting only a subset of those candidates
(e.g., in problem P5 only one movable should be perturbed in
order to make the problem linear). Consequently, we build the
perturbation in an iterative manner. During each iteration we
choose the movable with the maximal and perturb
its configuration. Then we update both precedence graphs and
move to the next iteration. The loop is terminated as soon

Procedure Plan Level)
CURRENT .
if CURRENT then

returnFAILURE
for each CURRENTdo

PermLevel
,

not connected to

for each do
FREEZE

if Level then
CONTACTS All-Contacts

else
CONTACTS

FROM
for each configurationGOAL CONTACTSdo

PATH PushCPath
if (PATH Null) then continue to next iteration

GOAL .

FREEZE
if (Plan Level SUCCESS) then

returnSUCCESS
end for

end for
returnFAILURE

end

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 559

Fig. 12. Running Perturb-Configuration() on problem P6. Applying LPLAN to the result will yield the linear solution(D ! A ! B ! C).

as a cycle-free maximal precedence graph is obtained or no
appropriate perturbation is found.

On the bottom of the next page is a description of the routine
that creates the perturbed configuration. TheHandledset keeps
track of the movables which were already perturbed. This
information is used by thePerturb() routine, which introduces
the actual perturbation to a given movable and updates both
precedence graphs to reflect the new configuration accordingly.
The select() operator arbitrary selects a member from a given
set. As mentioned for LPLAN, this selection may be replaced
with a more deterministic one in order to prevent inefficient

results. The operator “unites” two graphs, and it is
used in order to build the maximal precedence graph from
both partial graphs. Finally, the Reachable() operator returns
a set of all movables that the robot can reach from a given
configuration. This can be easily calculated by flooding the
free space of the robot from its current configuration. Fig. 12
demonstrates the action of Perturb-Configuration() on problem
P6. For P6, success is achieved only after the initial precedence
graph becomes edge-less. However, this is not a necessary
condition, and termination can be obtained earlier. After
creating the perturbation, we are supposed to be left with a
cycle-free maximal precedence graph. Such a graph, and its
corresponding rearrangement problem, can now be given to
LPLAN in order to check whether a linear plan can solve it.

B. Introducing an Appropriate Perturbation

After a candidate was chosen, it should be assigned an ap-
propriate perturbation. Definition 5 constrains the perturbation
to a well defined neighborhood, yet not every configuration in
that neighborhood can serve for our purpose. The required per-
turbed configuration should fulfill the followings conditions.

1) It should open the way for all other movables which
must precede when pushed to their goal, and
whose path to the goal is currently blocked by .

2) It must not create new blocks for movables which are
already able to reach their goal.

3) It must be realizable bypushing from its current
configuration.

4) It must not be a trap point (see Section I), unless it
coincides with the goal configuration of .

Given , and assuming a discretized configuration space, the-
neighborhood of the initial configuration contains no more than

configurations of . We currently choose
to check all those configurations although it may be possible
to use heuristics to focus only on some of them. In any case,
many of those configurations can be effortlessly filtered out
during the search as they represent collisions with obstacles
or they cannot be realized by pushing. Furthermore, we
build the list of -neighborhood configurations while sorting
them according to their “pushing distance” from the initial

IPG()
for each element of do begin

FREEZE
if (IsPushable FALSE) then

construct the edge
end

560 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

configuration of . This can be done by aforward
propagation of a cost wave function in ,
which originates from the current composite configuration of

and (when all other movables are frozen during
this propagation). Since only-neighborhood’s configurations
should be considered, the propagation can terminate at any
configuration which lies farther than.

Every configuration surviving the initial filtering should be
checked for consistency with the other requirements. This can
be done by updating both the initial and goal precedence
graphs in accordance with the currently checked configuration,
an action which can be realized inlinear time. There is
no need to build both graphs from scratch since only those
precedence edges which enter or leave might have
been changed. After updating the graphs, the evaluation of the
current configuration is primarily done by checking whether

became zero. However, this is an insufficient con-
dition. Additional tests must be considered in order to verify
that the perturbed configuration didn’t invalidate previous
perturbations. This can be done by checking the updated
maximal precedence graph (obtained by a union of and

) and looking for cycles between and the nodes of
previously handled movables (stored in theHandledset). We
choose to test only for cycles of two nodes in order to keep this
test linear in complexity. Empirically, this still allows good
detection for most cases.

C. The ELPAN Algorithm

Following the subsections above, our practical algorithm
for -linear pushing rearrangement problems,ELPLAN , is a
concatenation ofPerturb-Configuration() andLPLAN

Algorithm ELPLAN
Perturb-Configuration()

if NULL then
LPLAN(

end.
While LPLAN is complete with regard to linear problems,

ELPLAN is opportunistic and may fail for several reasons.
First, Perturb-Configuration() may fail due to a bad choice of

. Second, it may succeed and create a perturbation for which
the maximal precedence graph is free of cycles, while the
problem remains nonlinear. Finally, Perturb-Configuration()
does not include any backtracking or lookahead. Hence, it
might choose a “wrong perturbation” for a movable, in such
a way that it prevents a later candidate from being perturbed
appropriately. We consider a practical method to handle that
problem a future research topic.

VIII. I MPLEMENTATION AND RESULTS

In this section, we present several simulated planning results
of LPLAN and ELPLAN, as obtained with our implemented
planner. Since we primarily study issues of high level planning
and planning practicality, we find simulations to be as infor-
mative as real world experiments. Furthermore, a simulator
allows us to avoid many other problems not relevant to our
study but such that tend to appear in real world experiments.
We do, however, present one real world experiment with a
mobile robot and several chairs acting as movable objects.

A. The Planner

The practical pushing planner (PPP) is implemented in
and runs on a Sun 4/460 computer, equipped with a 50 MHz
SuperSPARC processor. Since its two supported algorithms,
ELPLAN and LPLAN, are hierarchically depended, PPP is
not a priori required to decide what class a problem belongs
to. Rather, every problem is submitted to ELPLAN which
decides whether or not to apply some perturbation and then
transfers the result to LPLAN. The input of PPP is a graphical
description of the static environment , the shape of all
movables, and the two composite configuration, and ,
which define the rearrangement problem. The output of PPP
is a full animated rearrangement solution, if exists, including
any intermediate motion of the robot which is required while
changing contact mode or moving from one movable to
another.3

3While here we give the pushing plans in figures, the interested reader
may view PPP’s actual animated output at http://www.cs.technion.ac.il/�obs/
projects.html#PPP.

Procedure Perturb-Configuration ()

IPG()
GPG()

loop

if contains no cyclesthen
return andSUCCESS

Reachable Handled
if then returnFAILURE

Select
Perturb(Handled)

if NULL then returnFAILURE
Handled Handled

end loop
end

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 561

Fig. 13. A linear problem with eight movables and its solution.

PPP uses a discretized space to describe all its geometric
objects. This is mainly since it uses a discretized configuration
space planner [6] to handle individual objects (see Section IV).
Hence, while the planner allows the user to define the shape of
each movable, their geometry is subjected to the discretization
too.

The robot in PPP’s simulations is illustrated as a circular
one, occupying one cell of the discretized environment. This
was done in order to better discriminate it from the movable
objects, and it is not a constraint imposed by the algorithm. The
pushing contact modes of the robot with each movable object
are derived automatically using a center of friction (COF)
which is specified by the user. All pushing manipulations were
constrained to translations only due to a similar limitation
imposed by the underlying planner. Consequently, all movable
objects, as well as the robot, were defined as having 2 DOF.
In no way, however, this is a limitation of the algorithms
presented in this paper. As shown in Fig. 3, limited nonrigid
rotational pushing capabilities can be integrated into PPP even
with the underlying planner of [6].

B. Simulations Results

We present here selected results of problems that have
up to eight movable objects (18 combined DOF). However,
problems with up to 32 movable objects (66 combined DOF)
were successfully tested too. These results are omitted here

due to space limitation and presented only in [6]. All figures
show major planning steps of each solution. All planning steps
are ordered left to right and top to bottom. Transit paths [15]
are marked by arrows. Some planning steps, which correspond
to nonpreemptive pushes, were omitted (marked by two dots
between adjacent steps).

Fig. 13 shows a linear problem with eight movables and
its solution. As this problem is linear, ELPLAN introduced
no perturbation before calling LPLAN. Planning time for this
problem was 26.32 s. The Plan() routine was called nine times
during the execution, which means that it backtracked only
once.

Fig. 14 shows the solution for problem P4 (see Fig. 6). As
expected, first handles movable . It clears the passage
and pushes the other three movables to their goal. Only
then returns to in order to push it back to its goal
configuration. Note the somewhat redundant manipulation of
movable , needed in order to allow to reach its own
final configuration. For P4, as well as for the other-linear
problems presented here, we choose an-neighborhood of
radius ’s diameter. The perturbed configuration, from
which the problem becomes linear, is marked by a brighter
frame. Planning time for this problem was 11.65 s. The Plan()
routine was called four times during the execution, which
means that no backtracking occurred.

562 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

Fig. 14. AnLP� plan for problem P4. The perturbed configuration, from
which the solution is linear, is marked by a brighter frame.

Fig. 15 shows the solution for problem P6 (see Fig. 6). Note
that if movable was perturbed to the right, no linear solution
could have been found. PPP was able to find that correct
perturbation in spite of the fact that approached movable

from the left, being able to first push it only to the right.
Planning time for this problem was 97 s and the Plan() routine
was called seven times during the execution, which means that
it backtracked three times.

C. Real World Experiment

While the results presented above are all simulations, we
also tested our planner in a realistic scenario using a mobile
platform. For this purpose, we integrated PPP with the control
environment of the NOMAD-200 mobile robot from Nomadic.
The planner used a coarse representation of the lab where the
robot carried out a rearrangement plan for five chairs. The
robot was directed remotely via a wireless Ethernet link. Some
snapshots from one execution are presented in Fig. 16. The
pushing plan is illustrated in Fig. 17.

The experiments showed the applicability of the planner for
real scenarios involving many movable objects. However, they
also emphasized the great importance of sensory feedback.
Lacking such a feedback, each experiment must be preceded
with an accurate calibration of the robot and the movables,
both for position and orientation. Although small odometry
errors are acceptable in most cases of indoornavigation, this
is not the case for pushing. Missing the correct contact mode
(for a push) can be critical. While in this study we assumed that
the mechanical model is handled separately, there is no doubt
that the integration of sensory information with the mechanical
model is an issue of major importance as well. We see all these
directions as avenues for future research.

Fig. 15. AnLP� plan for problem P6. The perturbed configuration, from
which the solution is linear, is marked by a brighter frame.

Fig. 16. Some snapshots from a real world experiment.

IX. COMPLEXITY, PERFORMANCE AND PRACTICALITY

The algorithms presented in this paper are motivated by
the need for practical planners. To achieve this goal, both
algorithms break the multidimensional problem into a set of
low dimensional subproblems, each of which is solved by an
underlying planner. While our underlying planner [6] has an
exponential time and space complexity in the general case, we
have used it to plan pushing C-paths for one movable at a time,
having a constant running time for each movable. In addition,
the core of both algorithms is a constraints based search. Here

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 563

Fig. 17. The pushing plan for the real world experiment. Note that the
workspace shown in the previous snapshots was roughly discretized and cells
were marked as obstacles even if only part of them contains an actual obstacle.

we do notimposeconstraintson the problem but ratherextract
themfrom the problem during a preprocessing phase. Although
no new information is added during this phase, the extraction
of inherent precedence constraints dramatically narrows the
search.

Although the theoretical complexity of LPLAN, and con-
sequently of ELPLAN, is exponential in the number of mov-
ables, in many practical cases LPLAN is expected to back-
track rarely, requiring only iterations of the Plan() routine.
In these cases, the construction of the maximal precedence
graph consumes most of the planning time, leading to a

time complexity. ELPLAN’s worst case complexity
is dominated by that of LPLAN. The preceding phase of
Perturb-Configuration() includes at mostiterations, each of
which activates a cycle detector, a reachability scanner, and
a “perturbation generator.” The Perturb() routine dominates
the overall performance of Perturb-Configuration(), though its
theoretical complexity outperforms the complexity of the cycle
detector. Hence, while thetheoreticalcomplexity of Perturb-
Configuration() is , its practical performance becomes

as a result of the complexity
of the Perturb() routine.

In order to verify that our planning algorithms exhibit
practical behavior, we tested them over a large set of randomly
generated problems (see Fig. 18), using simulated environment
like the one described in Section VIII. Our problem generator
created maze-like problems with “rooms” and “corridors,” and
chose the initial and goal configurations randomly. In order to
reduce the number of trivial problems, problematic areas (e.g.,
narrow passages) were given a higher probability for being
occupied with movables. Furthermore, each generated problem
was first submitted to a flat-problem planner and considered
non trivial only upon its failure.

Using this mechanism, we tried to confirm not only the
claim for practical planning time, but the following claims as
well:

1) The precedence graph may serve as a decent detector
of linear problems, i.e., in most cases, a cycle free
precedence graph correctly indicates a linear problem.

Fig. 18. Example of a randomly generated pushing rearrangement problem.

2) The precedence graph has the ability to filter out most
of the erroneous search paths in the permutation net.
Consequently, in most cases, the precedence graph can
prevent backtracking during the search, allowing the
planner to find a solution within practical time limits.

3) Although it is exponential in principle, the time needed
to search the reduced permutation net is usually much
smaller than the polynomial components of the al-
gorithms. Hence, in practical terms, both algorithms
present practical, polynomial behavior.

4) The perturbation approach has a good ability to handle
non linear problems.

The following tables summarize a comprehensive test of
about 1 000 problems with up to ten movable objects (22
combined DOF). All problems were generated with the same
environmental complexity (e.g., density of corridors) and the
same discretization rate, while the number of movables was
gradually increased. Each problem was allocated up to
Plan() calls. Had the planner reached that limit, a failure was
announced.

Table II summarizes some characteristics of the problems.
The classification of problems into the appropriate class was
based on their maximal precedence graph and the complete-
ness of LPLAN, i.e., every problem with a cycle free prece-
dence graph,andwhich LPLAN had solved, was identified as
linear, while all others were counted as nonlinear.

Table II shows that on the average, only 9% of all problems
were classified incorrectly by the algorithm. This reinforces
claim 1. It is interesting to note that the number of such
incorrect classifications wasinsensitive to the number of
participating movables. Also shown in Table II is the fact
that on the average, 75% of all sequential problems were
successfully solved by the perturbation approach, while the
total success rate was 85%. One should note that many
planning failures were caused by incorrect classification of
sequential problems into linear ones. The normalized success
rate row presents the expected success rate for a correct
classification. While all these results reinforce claim 4 above,
it is important to add that as expected, the success rate tends
to decrease as more movables share the problem.

Table III represents the second part of our experiment:
measuring the role of the precedence graph in the overall
performance of PPP. For that purpose we submitted each
problem to PPP twice. First with a full calculated precedence
graph, and secondly with a null precedence graph. We were
mainly interested in three measures—how many times the

564 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 4, AUGUST 1998

TABLE II
EXECUTION CHARACTERISTICS FOR THERANDOMLY GENERATED PROBLEMS (THREE TO TEN MOVABLES). THE NORMALIZED SUCCESSRATE, CALCULATED AS

(% LINEAR+% SEQUENTIAL �% SUCCESSsequential), REFLECTS THESUCCESSRATE FOR PERFECT CLASSIFICATION, WITH NO LINEARLY TREATED

SEQUENTIAL PROBLEMS

TABLE III
PERFORMANCEMEASURES WITH AND WITHOUT PRECEDENCE GRAPHS

TABLE IV
TIME PERFORMANCE OF THEALGORITHM

planner called the Plan() routine, how many times did it
call the underlying planner PushCPath(), and what portion of
problems reached their resource limit. All of the above, unlike
PPP’s execution time, are platform independent and represent
relevant issues of performance and practicality. Note that for
the precedence-graph based performance we have normalized
the number of PushCPath() calls by adding all calls during the
building of the precedence graphs.

Table III clearly shows that unless a problem is easy, if not
trivial, the time penalty for calculating its precedence graph is
only a fraction of a brute force search over a non constrained
permutation net. The same holds for the number of Plan()’s
backtracks, which drops back to zero as soon as a precedence
graph participates in the planning. Equally important is the
fact that without the precedence graph, an increasing portion
of problems reached their resource limit and failed. All these
results strongly support claim 2 and the crucial role of the
precedence graph in making our method a practical one.

Finally, Table IV represents the average planning time spent
on each problem and how was that time divided between the
major parts of the computation: the precedence graph con-

struction routine, the PerturbConfiguration() routine and the
Plan() search routine. One should note that the (theoretically
exponential) search time of Plan() was always much smaller
than the (polynomial) time needed to build the precedence
graph. In practice, this leads to practical planning time for
most problems, as stated in claim 3 above.

X. CONCLUSION

Planning a sequence of pushing manipulations is a PSPACE-
hard problem effortlessly solved by humans in everyday life.
In this paper, we have suggested a practical approach to handle
pushing planning for rearrangement tasks with many movable
objects.

The contributions of our study span several topics. We
have introduced a novel hierarchical classification of the
manipulation problems domain. In our classification, problems
are characterized by properties of the plans that can solve them.
This allows for a closer, more direct, link between the different
classes and their planning algorithms, as well as providing
some insight into the algorithms themselves.

BEN-SHAHAR AND RIVLIN: PRACTICAL PUSHING PLANNING FOR REARRANGEMENT TASKS 565

Based on this classification, we have presented new manip-
ulation/pushing planning algorithms for problems that belong
to two of the defined classes. Our methods break the multidi-
mensional problem into a set of low dimensional subproblems,
extract precedence constraints directly from the given problem,
and use those to narrow the search. This allows to solve
problems of many movable objects with joint number of DOF
never handled before.

While being fully compatible with any manipulation, our
algorithms are specifically designed to support the particular
manipulation of pushing, whose unique characteristics require
special care even at the planning level (trap-points, contact-
mode problems, etc.). In addition, our algorithms differ from
previous works by providing complete description of the
pushing plan, including any intermediate motion of the robot
between different contact modes, or different movable objects.

Finally, we have presented two tools—the permutation net
and the precedence graph—which allow a clear and simple
graph representation for different aspects of our problems.
Both tools are manipulation independent, hence may be ap-
plied to other manipulations as well.

We have implemented our algorithms into PPP, a practical
pushing planner. We have tested it in a simulated environment
with problems of up to 32 movable objects and a 66 combined
DOF. The planner has been integrated with the Nomad-200
environment, and experiments testing the applicability of the
planner in real scenarios involving several movable objects
have been run.

While PPP was implemented using an underlying planner
from our previous study, the planning algorithms themselves
(LPLAN and ELPLAN) are totally independent of that choice.
In that sense, a better underlying pushing planner may provide
more complicated pushing manipulations (such as rotational
pushing), hence contributes to PPP’s overall performance.
In the same spirit, PPP may easily be extended to support
grasping simply by plugging a planner that supports grasping
manipulation into PushCPath(). Changing PPP in that way, it
has easily solved nonlinear manipulation problems, including
the frequently addressed Sussman anomaly, and assembly-
planning like problems.

The work presented in this paper embodies many directions
for future research. On the planning level, these include the
development of a practical algorithm for non sequential
problems, and research into the yet unexplored (in the motion
planning context) area of problems. On the imple-
mentation level, we have no doubt that many issues must be
addressed before a robust, real world rearrangement system
can be realized. Developing a method to deal with incomplete
knowledge and a scheme to exploit sensory information in
order to achieve stable and predictable pushing manipulations
are some of these future research directions.

REFERENCES

[1] S. Akella and M. T. Mason, “Posing polygonal objects in the plane
by pushing,” inProc. IEEE Int. Conf. Robot. Automat., May, 1992, pp.
2255–2262.

[2] R. Alami, J. P. Laumond, and T. Simeon, “Two manipulation planning
algorithms,”The Algorithmic Foundations of Robotics, K. Goldberg, D.
Halpern, J. C. Latombe, and R. Wolson, Eds. Boston, MA: A. K.
Peters, 1995.

[3] R. Alami, T. Simeon, and J. P. Laumond, “A geometrical approach to
planing manipulation tasks, the case of discrete placements and grasps,”
Int. Symp. Robot. Res., 1989, pp. 453–463.

[4] J. Barraquand and J. C. Latombe, “A monte-carlo algorithm for path
planning with many degrees of freedom,”IEEE Int. Conf. Robot.
Automat., 1990, pp. 1712–1717.

[5] , “Robot motion planning: A distributed representation approach,”
Int. J. Robot. Res., vol. 6, no. 10, pp. 628–649, Dec. 1991.

[6] O. Ben-Shahar and E. Rivlin, “To push or not to push—Part I. On the
rearrangement of movable objects by a mobile robot,” CIS Rep. 9516,
Technion, Haifa, Israel, July 1995.

[7] P. C. Chen and Y. K. Hwang, “Practical path planning among movable
obstacles,”IEEE Int. Conf. Robot. Automat., 1991, pp. 444–449.

[8] B. Dacre-Wright, J. P. Laumond, and R. Alami, “Motion planning for
a robot and a movable object amidst polygonal obstacles,”IEEE Int.
Conf. Robot. Automat., May 1992, pp. 2474–2480.

[9] L. S. Homem de Mello and S. Lee, Eds.,Computer-Aided Mechanical
Assembly Planning. Norwell, MA: Kluwer, 1991.

[10] L. Kavraki and J. C. Latombe, “Randomized preprocessing of config-
uration space for fast path planning,”IEEE Int. Conf. Robot. Automat.,
1994, pp. 2138–2145.

[11] Y. Koga, T. Lastennet, J. C. Latobme, and T. Y. Li, “Multi-arm
manipulation planning,”9th Int. Symp. Automat. Robot. Contruction,
June 1992.

[12] Y. Koga and J. C. Latombe, “On multi-arm manipulation planning,”
IEEE Int. Conf. Robot. Automat., 1994, pp. 945–952.

[13] R. E. Korf, “Planning as search: A quantitative approach,”Artificial
Intell., vol. 33, pp. 65–89, 1987.

[14] J. P. Laumond and R. Alami, “A new geometrical approach to planing
manipulation tasks, the case of a circular robot and a movable circular
object amidst polygonal obstacles,” Tech. Rep. 88314, LAAS, Toulouse,
France, 1988,

[15] , “A geometrical approach to planing manipulation tasks in
robotics,” Tech. Rep. 89261, LAAS, Toulouse, France, 1989,

[16] K. M. Lynch and M. T. Mason, “Stabe pushing: Mechanics, control-
lability, and planning,”1st Workshop Algorithmic Foundation Robot.,
1995.

[17] G. T. Wilfong, “Motion planning in the presence of movable obstacles,”
in Proc. ACM Symp. Computat. Geometry ASCG, 1988, pp. 279–288.

[18] J. D. Wolter, “On automatic generation of assembly plans,”Computer-
Aided Mechanical Assembly Planning, L. S. Homem de Mello and S.
Lee, Eds. Norwell, MA: Kluwer, 1991, ch. 11, pp. 263–288.

[19] O. Ben-Shahar and E. Rivlin, “To push or not to push—Part III,” CIS
Rep., Technion, Haifa, Israel, Oct. 1995.

Ohad Ben-Shahar received the B.Sc. and M.Sc.
degrees in computer science from the Technion,
Israel Institute of Technology, Haifa, in 1989 and
1996, respectively, and is currently pursuing the
Ph.D. degree in computer science at Yale University,
New Haven, CT.

His research interests are computer vision and
robot motion/manipulation planning.

Ehud Rivlin received the B.Sc. and M.Sc. degrees
in computer science and the M.B.A. degree from
Hebrew University, Jerusalem, Israel, and the Ph.D.
degree from the University of Maryland, College
Park.

He is an Assistant Professor in the Computer
Science Department, Technion, Israel Institute of
Technology, Haifa. His current research interests are
in machine vision and robot navigation.

