splitsvm v.0.9 ~~~~~~~~~~~~~~ Dependancies: ````````````` trove-2.0.2.jar (included in the lib/ directory) compiling: ````````````` > ant jar This will produce splitsvm.jar Using: ````````````` Note that splitsvm is used only for SVM *prediction*. For training, you need an external SVM package. Currently, YAMCHA and LIBSVM models are supported. Once you have a LIBSVM / YAMCHA model, you need to convert it into a splitsvm model. This is done by a supplied python script (required python2.5 in order to run). libsvm usage `````````````` assuming you have a libsvm model called 'abc.mod' (1) convert it to splitsvm format: > python/mksplitsvm.py libsvm abc.mod abc this will create a file called abc.spltmod (you can run the mksplitsvm.py script without any parameters to get its usage instructions) If desired (though not neccesary) you can then convert the model to a binary form, so that it loads faster (about twice as fast): > java -cp splitsvm.jar yg.classifier.splitsvm.io.MakeBinaryModel abc.spltmod (2) change your code to use splitsvm instead of libsvm for classification libsvm code: """ import libsvm.svm; import libsvm.svm_model; import libsvm.svm_node; public class LIBSVMExample { public static void main(String[] args) { svm_model m = svm.svm_load_model("abc.mod"); svm_node[] x = ... // whatever int p = svm.svm_predict(m, x); } } """ splitsvm code: """ import yg.classifier.splitsvm.FastMulticlassModel; import yg.classifier.splitsvm.wrappers.FastLibSVM; import libsvm.svm_node; public class SplitSVMExample { public static void main(String[] args) { FastMulticlassModel m = svm.svm_load_model("abc.spltmod"); svm_node[] x = ... // whatever int p = FastLibSVM.svm_predict(m, x); } } """