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Abstract

A central question in the geometry of finite metric spaces is how well can an arbitrary metric space
be “faithfully preserved” by a mapping into Euclidean space. In this paper1 we present an algorithmic
embedding which obtains a new strong measure of faithful preservation: not only does it (approximately)
preserve distances between pairs of points, but also the volume of any set of k points. Such embeddings
are known as volume preserving embeddings. We provide the first volume preserving embedding that
obtains constant average volume distortion for sets of any fixed size. Moreover, our embedding provides
constant bounds on all bounded moments of the volume distortion while maintaining the best possible
worst-case volume distortion.

Feige, in his seminal work on volume preserving embeddings defined the volume of a set S =
{v1, . . . , vk} of points in a general metric space: the product of the distances from vi to {v1, . . . , vi−1},
normalized by 1

(k−1)! , where the ordering of the points is that given by Prim’s minimum spanning tree
algorithm. Feige also related this notion to the maximal Euclidean volume that a Lipschitz embedding of
S into Euclidean space can achieve. Syntactically this definition is similar to the computation of volume
in Euclidean spaces, which however is invariant to the order in which the points are taken. We show that
a similar robustness property holds for Feige’s definition: the use of any other order in the product affects
volume1/(k−1) by only a constant factor. Our robustness result is of independent interest as it presents a
new competitive analysis for the greedy algorithm on a variant of the online Steiner tree problem where
the cost of buying an edge is logarithmic in its length. This robustness property allows us to obtain our
results on volume preserving embedding.

1 Introduction

Recent years have seen a large outpouring of work in analysis, geometry and theoretical computer science
on metric space embeddings guaranteed to introduce only small distortion into the distances between pairs
of points.

Euclidean space is not only a metric space, it is also equipped with higher dimensional volumes. General
metrics do not carry such structure. However, a general definition for the volume of a set of points in an
arbitrary metric was developed by Feige [Fei00].
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In this paper we extend the study of metric embeddings into Euclidean space by first, showing a ro-
bustness property of the general volume definition. Using this robustness property, together with existing
metric embedding methods, to show an embedding that guarantees small distortion not only on pairs, but
also on the volumes of sets of points. The robustness property (see Theorem 2) is that the minimization over
permutations in the volume definition affects it by only a constant. This result is of independent interest
as it provides an analysis for the greedy algorithm on a variant of the online Steiner tree problem, where
the cost of buying an edge is logarithmic in its length. We show that the greedy algorithm has a constant
competitive ratio to the optimum. Our main application of Theorem 2 is an algorithmic embedding (see
Theorem 3) with constant average distortion for sets of any fixed size. In fact, our bound on the average
distortion scales logarithmically with the size of the set. Moreover this bound holds even for higher mo-
ments of the distortion (the `q-distortion), while the embedding still maintains the best possible worst case
distortion bound, simultaneously. Hence our embedding generalizes both [KLMN04] and [ABN11] (see
Related Work below).

Volume in general metric spaces.

Let dE denote Euclidean distance, and let affspan denote the affine span of a point set. The (n − 1)-
dimensional Euclidean volume of the convex hull of points X = {v1, . . . , vn} ⊆ Rd is

φE(X) =
1

(n− 1)!

n∏
i=2

dE(vi, affspan(v1, . . . , vi−1)).

This definition is, of course, independent of the order of the points.

Feige’s notion of volume. Let (X, dX) be a finite metric space, X = {v1, . . . , vn}. Let Sn be the sym-
metric group on n symbols, and let πP ∈ Sn be an order in which the points of X may be adjoined to a
minimum spanning tree by Prim’s algorithm. (Thus vπP (1) is an arbitrary point, vπP (2) is the closest point
to it, etc.) Feige’s notion of the volume of X is (we have normalized by a factor of (n− 1)!):

φF (X) =
1

(n− 1)!

n∏
i=2

dX(vπP (i), {vπP (1), . . . , vπP (i−1)}). (1)

πP minimizes the above expression (1) (see Section 2).
It should be noted that even if X is a subset of Euclidean space, φE and φF do not agree. (The latter

can be arbitrarily larger than the former, for instance, a very thin triangle.) The actual relationship that Feige
found between these notions is nontrivial. Let L2(X) be the set of non-expansive embeddings from X into
Euclidean space. Feige proved the following:

Theorem 1 (Feige). For any n point metric space (X, d):

1 ≤

[
φF (X)

supf∈L2(X) φE(f(X))

]1/(n−1)
≤ 2.

Thus, remarkably, φF (X) is characterized to within a factor of 2 (after normalizing for dimension) by
the Euclidean embeddings of X .
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Our work, part I: Robustness of the metric volume. What we show first is that Feige’s definition is
insensitive to the minimization over permutations implicit in Equation (1), and so also a generalized version
of Theorem 1 can be obtained.

Theorem 2. There is a constant C such that for any n-point metric space (X, d), and with πP defined as
above, and for every π ∈ Sn:

1 ≤
( ∏n

i=2 dX(vπ(i), {vπ(1), . . . , vπ(i−1)})∏n
i=2 dX(vπP (i), {vπP (1), . . . , vπP (i−1)})

)1/(n−1)

≤ C.

An alternative interpretation of this result can be presented as the analysis of the following online prob-
lem. Consider the following variant of the online metric Steiner tree problem [IW91]. Given a complete
weighted graph (V,E), at each time unit i, the adversary outputs a vertex vi ∈ V and an online algorithm can
buy edges Ei ⊆ E. At each time unit i, the edges bought E1, . . . , Ei must induce a connected graph among
the current set of vertices v1, . . . , vi. The competitive ratio of an online algorithm is the worst ratio between
the cost of the edges bought and the cost of the edges bought by the optimal offline algorithm. This problem
has been well-studied when the cost of buying an edge is proportional to its length. Imase and Waxman
prove that the greedy algorithm is O(log n) competitive, and shown that this bound is asymptotically tight.
It is natural to consider a variant where the cost of buying is a concave function of the edge length. In this
case a better result may be possible. In particular we analyze the case where this cost function is logarithmic
in edge length. Such a logarithmic cost function may capture the economy-of-scale effects where buying
multiplicatively longer edges costs only additively more. In Section 2.1, we prove the following corollary
of Theorem 2,

Corollary 1. Given a complete weighted graph with arbitrary weights which are at least 2, the greedy
algorithm is O(1)-competitive for the Online Metric Steiner Tree with logarithmic edge costs.

Our work, part II: Volume Preserving Embeddings We use Theorem 2 and recent results on metric
embeddings [ABN11] to show an algorithm that provides a non-contractive embedding into Euclidean space
that faithfully preserves volume in the following sense: the embedding obtains simultaneously bothO(log k)
average volume distortion and O(log n) worst case volume distortion for sets of size k.

Given an n point metric space (X, d) an injective mapping f : X → L2 is called an embedding. An
embedding is (k − 1)-dimensional non-contractive if for any S ∈

(
X
k

)
: φE(f(S)) ≥ φF (S).

Let f be a (k − 1)-dimensional non-contractive embedding. For a set S ⊆
(
X
k

)
define the (k − 1)-

dimensional distortion of S under f as:

distf (S) =

[
φE(f(S))

φF (S)

]1/(k−1)
.

For 2 ≤ k ≤ n define the (k − 1)-dimensional distortion of f as

dist(k−1)(f) = max
S∈(Xk )

distf (S)

More generally, for 2 ≤ k ≤ n and 1 ≤ q ≤ ∞, define the (k − 1)-dimensional `q-distortion of f as:

dist(k−1)q (f) = ES∼(Xk )[distf (S)q]1/q
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where the expectation is taken according to the uniform distribution over
(
X
k

)
. Observe that the notion of

(k− 1)-dimensional distortion is expressed by dist
(k−1)
∞ (f) and the average (k− 1)-dimensional distortion

is expressed by the dist
(k−1)
1 (f)-distortion.

It is worth noting that Feige’s definition of volume is related to the maximum volume obtained by non-
expansive embeddings, while the definition of average distortion and `q-distortion are using non-contractive
embeddings. We note that these definitions are crucial in order to capture the coarse geometric notion
described above and achieve results that significantly beat the usual worst case lower bounds (which depend
on the size of the metric). It is clear that one can modify the definition to allow arbitrary embeddings (in
particular non-contractive) by defining distortions normalized by taking their ratio with respect to the largest
contraction.2

Our main theorem on volume preserving embeddings is:

Theorem 3. For any metric space (X, d) on n points and any 2 ≤ k ≤ n, there exists a map f : X →
L2 such that for any 1 ≤ q ≤ ∞, dist

(k−1)
q (f) ∈ O(min{dq/(k − 1)e · log k, log n}). In particular,

dist
(k−1)
∞ (f) ∈ O(log n) and dist

(k−1)
1 (f) ∈ O(log k).

On top of the robustness property of the general volume definition of Theorem 2 the proof of Theorem 3
builds on the embedding techniques developed in [ABN11] (in the context of pairwise distortion) along with
combinatorial arguments that enable the stated bounds on the average and `q-volume distortions.

Our embedding preserves well sets with typically large distances and can be viewed within the context
of coarse geometry where we desire a “high level” geometric representation of the space. This follows from
a special property formally stated in Lemma 5.

1.1 Related Work

Embeddings of metric spaces have been a central field of research in theoretical computer science in recent
years, due to the fact the metric spaces are important objects in representation of data. A fundamental
theorem of Bourgain [Bou85] states that every n point metric space (X, d) can be embedded in L2 with
distortion O(log n), where the distortion is defined as the worst-case multiplicative factor by which a pair of
distances change. Our work extends this result in two aspects: (1) bounding the distortion of sets of arbitrary
size, and (2) providing bounds for the `q-distortion for all q ≤ ∞.

Volume preserving embeddings. Feige [Fei00] introduced volume preserving embeddings while de-
veloping an approximation algorithm for the bandwidth problem. He showed that Bourgain’s embed-
ding provides an embedding into Euclidean space with (k − 1)-dimensional distortion of O(

√
log n ·√

log n+ k log k).
Following Feige’s work some special cases of volume preserving embeddings were studied, where the

metric space X is restricted to a certain class of metric spaces. Rao [Rao99] studies the case where X is
planar or is an excluded-minor metric showing constant (k − 1)-dimensional distortions. Gupta [Gup01]
showed an improved approximation of the bandwidth for trees and chordal graphs. As the Feige volume
does not coincide with the standard Euclidean volume, it is also interesting to study this special case when
the metric space is given in Euclidean space. This case was studied by Rao [Rao99], Dunagan and Vempala

2There are other notions of average distortion that may be of interest, in particular such notions which normalize with respect
to the maximum distortion have been considered. While these have advantages of their own, they take a very different geometric
perspective which puts emphasis on small distance scales (as opposed to the coarse geometric perspective in this paper) and the
worst case lower bounds hold for these notions. See [Rab03].
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[DV01] and by Lee [Lee06]. We note that our work provides the first average distortion and `q-distortion
analysis also in the context of this special case.

The first improvement on Feige’s volume distortion bounds comes from the work of Rao [Rao99]. As
observed by many researchers Rao’s embedding gives more general results depending on a certain de-
composability parameter of the space. This provides a bound on the (k − 1)-dimensional distortion of
O((log n)3/2) for all k ≤ n. This bound has been further improved to O(log n) in work of Krauthgamer et
al. [KLMN04]. Krauthgamer, Linial and Magen [KLM04] show a matching Ω(log n) lower bound on the
(k − 1)-dimensional distortion for all k < n1/3.

Average and `q Distortion. The notions of average distortion and `q-distortion is tightly related to the
notions of partial embeddings and scaling embedding3. A (1 − ε) partial embedding requires distortion at
most α for at least (1− ε) fraction of the pairs. In a scaling embedding we have a function α : (0, 1)→ R,
and it demands (1− ε) fraction of the pairs to have distortion at most α(ε), for all ε ∈ (0, 1) simultaneously.
These notions were introduced by Kleinberg, Slivkins and Wexler [KSW09], largely motivated by the study
of distances in computer networks.

In [ABC+05] partial embedding into Lp with tightO(log 1/ε) partial distortion were given. The embed-
ding method of [ABN11] provides a scaling embedding with O(log 1/ε) distortion for all values of ε > 0
simultaneously. As a consequence of having scaling embedding, they show that any metric space can be
embedded into Lp with constant average distortion, and more generally that the `q-distortion bounded by
O(q), while maintaining the best worse case distortion possible of O(log n), simultaneously.

Previous results on average distortion have applications for a variety of approximation problems, includ-
ing uncapacitated quadratic assignment [ABN11], and in addition have been used in solving graph theoretic
problems [ELR07]. Following [KSW09, ABC+05, ABN11] related notions have been studied in various
contexts [CDG06, KRXY07, ABN07, Din07].

2 Robustness of the Metric Volume

Proof of Theorem 2.
For a tree T on n vertices {v1, . . . , vn} let φ(T ) be the product of the edge lengths. Because of the

matroid exchange property, this product is minimized by an MST.4 Thus for any metric space on points
{v1, . . . , vn} and any spanning tree T , φF (v1, . . . , vn) ≤ φ(T )/(n− 1)!; the inequality is saturated by any
(and only a) minimum spanning tree.

Definition 1. A forced spanning tree (FST) for a finite metric space is a spanning tree whose vertices can
be ordered v1, . . . , vn so that for every i > 1, vi is connected to a vertex that is closest among v1, . . . , vi−1,
and to no other among these. (We call such an ordering admissible for the tree.)

An MST is an FST with the additional property that in an admissible ordering vi is a closest vertex to
v1, . . . , vi−1 among vi, . . . , vn.

Definition 2. For a tree T let ∆(T ) denote its diameter (the largest distance between any two points in the
tree). Let the diameter ∆(F ) of a forest F with components T1, T2, . . . , Tm be ∆(F ) = max1≤i≤m ∆(Ti).
For a metric space (X, d) let ∆k(X) = min{∆(F ) | F is a spanning forest of X with k connected components}.

3alternatively known as embeddings with slack and embeddings with gracefully degrading distortion.
4The exchange property guarantees that the greedy algorithm for a minimum weight maximal independent set in a weighted

matroid (with positive weights), gives a set whose (sorted) weight vector is smaller or equal in every coordinate than that of any
other maximal independent set. This implies that the product of weights is also minimized.
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Lemma 2. Let (X, d) be a metric space. Let k ≥ 1. An FST for X has at most k−1 edges of length greater
than ∆k(X).

Proof. Let v1, . . . , vn be an admissible ordering of the vertices of the FST. Assign each edge to its higher-
indexed vertex. Since the ordering is admissible, this assignment is injective. The lemma is trivial for k = 1.
For k ≥ 2, coverX by the union of k trees each of diameter at most ∆k(X). Only the lowest-indexed vertex
in a tree can be assigned an edge longer than ∆k(X). (Note that v1 is assigned no edge, hence the bound of
k − 1.)

Corollary 3. For any n-point metric space (X, d) and any FST T ′ for X , φ(T ′) ≤
∏n−1
k=1 ∆k(X).

Proof. Order the edges from 1 to n− 1 by decreasing length. The k’th edge is no longer than ∆k(X).

Using Corollary 3, our proof of Theorem 2 reduces to showing that for any MST T ofX ,
∏n−1
k=1 ∆k(X) ≤

eO(n−1)φ(T ). Specifically we shall show that for any spanning tree T ,

n−1∏
k=1

∆k(X) ≤ 1

n2

(
4π2

3

)n−1
φ(T ).

(Observe incidentally that the FST created by the Gonzalez [Gon85] and Hochbaum-Shmoys [HS85] process
has φ at least 21−n

∏n−1
k=1 ∆k(X).)

The idea is to recursively decompose T by cutting an edge; letting the two remaining trees be T1 (with
some m edges) and T2 (with n− 2−m edges), we shall upper bound

∏n−1
1 ∆k(T ) in terms of

∏m
1 ∆k(T1)

and
∏n−2−m

1 ∆k(T2). More on this after we show how to pick an edge to cut. Recall:
∑

j≥1 1/j2 = π2/6.
Edge selection. Find a diametric path γ of T , i.e., a simple path whose length |γ| equals the diameter

∆(T ). For appropriate ` ≥ 2 let u1, . . . , u` be the weights of the edges of γ in the order they appear on the
path. Select the j’th edge on the path, for a 1 ≤ j ≤ ` for which uj/|γ| > 1/(2(π2/6) min{j, `+ 1− j}2).
Such an edge exists, as otherwise

∑`
1 uj ≤ (6/π2)|γ|

∑`
1 j
−2 < |γ|. Without loss of generality j ≤ `+1−j

(otherwise flip the indexing on γ), hence cutting uj contributes overhead |γ|/uj < 2(π2/6)j2 to the product∏n−1
1 ∆k, and yields subtrees T1 and T2 each containing at least j − 1 edges.

Think of this recursive process as successively breaking the spanning tree into a finer and finer forest.
Note that we haven’t yet specified which tree of the forest is cut, but we have specified which edge in that
tree is cut. The order in which trees are chosen to be cut is: Fk(T ) (which has k components) is defined
by (a) F1(T ) = T ; (b) For 1 < k < n, Fk(T ) is obtained from Fk−1(T ) by cutting an edge in the tree of
greatest diameter. Note that by definition ∆k(X) ≤ ∆(Fk(T )).

Induction. Now we show that

n−1∏
1

∆(Fk(T )) ≤ 1

n2

(
4π2

3

)n−1
φ(T ).

It will be convenient to do this by an induction showing that there are constants c1, c2 > 0 such that

n−1∏
1

∆(Fk(T )) ≤ ec1(n−1)−c2 lognφ(T ),

and finally justify the choices c1 = log(4π2/3) and c2 = 2. As to base-cases, n = 1 is trivial, and n = 2 is
assured for any c1 ≥ 0.
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For n > 2 let the children of T be T1 and T2, that is to say, F2(T ) = {T1, T2}. Let m and n− 2−m be
the numbers of edges in T1 and T2 respectively. Observe that with j as defined above, min{m,n−2−m} ≥
j − 1 ≥ 0.

Examine three sequences of forests: the T sequence, F1(T ), . . . , Fn−1(T ); the T1 sequence, F1(T1), . . . , Fm(T1);
the T2 sequence, F1(T2), . . . , Fn−2−m(T2).

As indicated earlier, in each forest f in the T sequence other than F1(T ), choose a component t of
greatest diameter, i.e., one for which ∆(t) = ∆(f). (In case of ties some consistent choice must be made
within the T, T1 and T2 sequences.)

If t lies within T1, assign f to the forest in the T1 sequence that agrees with f within T1. Similarly if t
lies within T2, assign f to the appropriate forest in the T2 sequence. Due to the process defining the forests
Fk(T ), this assignment is injective. Moreover, a forest in the T sequence, and the forest it is assigned to in
the T1 or T2 sequence, share a common diameter. Hence

n−1∏
2

∆(Fk(T )) = (
m∏
1

∆(Fk(T1)))(
n−2−m∏

1

∆(Fk(T2))).

Therefore:

n−1∏
1

∆(Fk(T )) = ∆(T ) ·
n−1∏
2

∆(Fk(T )) = ∆(T ) · (
m∏
1

∆(Fk(T1)))(
n−2−m∏

1

∆(Fk(T2))).

Now by induction:

n−1∏
1

∆(Fk(T )) ≤ ∆(T ) · ec1m−c2 log(m+1) · φ(T1) · ec1(n−2−m)−c2 log(n−1−m) · φ(T2).

As φ(T ) = uj · φ(T1)φ(T2) we get∏n−1
1 ∆(Fk(T ))

φ(T )
≤ (∆(T )/uj) · exp {c1(n− 2)− c2(log(m+ 1) + log(n− 1−m))}

≤ exp
{

log(2(π2/6)j2) + c1(n− 2)− c2(log(m+ 1) + log(n− 1−m))
}

≤ exp
{

log(π2j2/3) + c1(n− 2)− c2(log j + log(n/2))
}

≤ exp
{
c1(n− 1)− c2 log n− (c2 − 2) log j − (c1 − c2 log 2− log(π2/3))

}
Choose c2 ≥ 2 to take care of the third term in the exponent, and choose c1 ≥ log(π2/3) + c2 log 2

to take care of the fourth term in the exponent. (In the theorem statement, both of these choices have been
made with equality.) So

. . . ≤ exp {c1(n− 1)− c2 log n} .

2.1 Online Metric Steiner Tree

Here we prove Corollary 1. Recall that in the online metric Steiner Tree problem we are given a complete
weighted graph G = (V,E,w), with dG the shortest path metric on G with respect to the weights, and the
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cost of each edge is the logarithm of its weight (we shall assume all weights are at least 2, so the cost of
every edge is at least 1). Given a sequence v1, . . . , vn of vertices from V , we should output at every step
1 ≤ i ≤ n a subgraph Ci such that v1, . . . , vi are connected in Ci, and such that Ci−1 ⊆ Ci for all i. The
cost of the subgraph Ci is the summation over the costs of edges in Ci. The greedy algorithm does the
following: at every step i ≥ 2, add the edge {vi, vj} where vj ∈ {v1, . . . , vi−1} is the closest to vi among
the previous vertices.

First we lower bound the cost of the optimal (offline) algorithm. For each i, the contribution of connect-
ing vi to the minimum Steiner tree is at least 1

2dG(vi, V \ {vi}). Since the weights are at least 2, for any
path u1, . . . , uk of length ` we have that

k∑
j=2

log(dG(uj−1, uj)) ≥ log

 k∑
j=2

dG(uj−1, uj)

 ≥ log ` .

This implies that the cost of connecting each vi is at least log
(
1
2dG(vi, V \ {vi})

)
, and thus

cost(OPT ) ≥
n∑
i=2

log

(
1

2
dG(vi, V \ {vi})

)
= log

(
1

2n−1

n∏
i=2

dG(vi, V \ {vi})

)
.

Next we upper bound the cost of the greedy algorithm, which is

cost(ALG) ≤
n∑
i=2

log (dG(vi, {v1, . . . vi−1})) = log

(
n∏
i=2

dG(vi, {v1, . . . vi−1})

)
.

Using Theorem 2 we have that

cost(ALG) ≤ cost(OPT ) +O(n) ,

and as cost(OPT ) ≥ n− 1 we have that the greedy is also a O(1) multiplicative approximation algorithm.

3 Volume Preserving Embeddings

In this section we prove Theorem 3. The construction will be based on the embedding of [ABN11], who
gave a general framework for embedding metrics into normed spaces. It was shown in [ABN11] that for
every metric space (X, d) on n points there exists a distribution over maps f : X → R with the following
properties: Every map in the support has expansion O(log n), and for every pair of points x, y ∈ X , with
probability 1/2 the map f does not contract x, y. Moreover, it was shown that distortion is scaling: for
every 0 < ε < 1, at least 1− ε fraction of the pairs of X have expansion only O(log(1/ε)). Using this, one
can construct an embedding of X into RO(logn) by taking O(log n) independent copies of f , and applying
concentration bounds. Having such a scaling distortion implies O(1) average distortion and an O(q) bound
on the `q distortion.

Here we extend this framework for embedding that preserve the volume of subsets of X of cardinality
k. First we strengthen the analysis of the line embedding of [ABN11], so that the bound on the contraction
of the embedding holds for any x ∈ X and any affine combination of the images of points in a subset
S ⊂ X (with constant probability). We then define an appropriate analogue notion of scaling distortion for
sets of size k, and show that taking O(k log n) independent copies of the random line embedding yields an
embedding with the appropriate bounds on the worst case, average and in general the (k − 1)-dimensional
`q distortion.
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3.1 The Embedding

The following is a variation on a Lemma from [ABN11], where the bound on contraction is strengthen to
hold for subsets S = {s0, . . . , sk−1}, rather than just for pairs. More precisely, instead of simply lower
bounding the distance between two images of points in X , we will need to lower bound the distance of the
image of some point si from any affine combination of the images of s0, . . . si−1 (conditioned on the values
of these images). We can only prove this for some very specific ordering of the points in S, so from now on
we shall enforce an ordering on every subset S ⊆ X that complies with the requirements of the Lemma.

Lemma 4. There exists a universal constant Ĉ such that for every finite metric space (X, d) on n points,
there exists a distribution D over functions f : X → R such that the following holds.5

• For all u, v ∈ X and all f ∈ supp(D),

|f(u)− f(v)| ≤ Ĉ · log

(
n

|B(u, d(u, v))|

)
· d(u, v) .

• For every subset S ⊆ X of size k, there exists an ordering S = (s0, . . . sk−1), such that for any
1 ≤ i ≤ k − 1, values x0, . . . , xi−1 ∈ R and coefficients α0, . . . , αi−1 ∈ R with

∑i−1
j=0 αj = 1:

Pr
f∼D

∣∣∣f(si)−
i−1∑
j=0

αjxj

∣∣∣ ≥ d(si, {s0, . . . , si−1})/Ĉ | f(sj) = xj ∀ 0 ≤ j ≤ i− 1

 ≥ 1/2 .

Let D = c · k lnn where c is a constant to be determined later. Define the embedding g : X → RD by

g =
4Ĉ√
D

D⊕
t=1

ft ,

where each ft is sampled independently according to Lemma 4 .
Next, we generalize the notion of scaling distortion for subsets of size k. To this end, for each subset

S ∈
(
X
k

)
with its ordering S = (s0, . . . , sk−1) (the ordering enforced by Lemma 4), define a sequence

(ε1, . . . , εk−1) as follows. For each 1 ≤ i ≤ k − 1 let 0 ≤ j(i) < i be such that d(si, {s0, . . . , si−1}) =
d(si, sj(i)). Let εi be the value such that |B(sj(i), d(si, sj(i)))| = εin. In other words, si is the εin nearest
neighbor of the closest point to it in {s0, . . . , si−1}.

Lemma 5. For any embedding g in the support of the distribution and any S ∈
(
X
k

)
,

φE(g(S))

φF (S)
≤

k−1∏
i=1

O(log(1/εi)) .

Proof. Fix any 1 ≤ i ≤ k − 1, and let 0 ≤ j(i) ≤ i − 1 be such that d(si, sj(i)) = d(si, {s0, . . . , si−1}).
By the definition of εi, |B(sj(i), d(si, sj(i)))| = εin. Using the first property of Lemma 4 we have for any
t ∈ [D],

|ft(si)− ft(sj(i))| ≤ Ĉ · log

(
n

|B(sj(i), d(si, sj(i)))|

)
· d(si, sj(i))

= Ĉ · log(1/εi) · d(si, sj(i)) ,

5Moreover, there is an efficient algorithm to sample from D.
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thus also

dE(g(si), g(sj(i))) ≤

(
(4Ĉ)2

D

D∑
t=1

(Ĉ · log(1/εi) · d(si, sj(i)))
2

)1/2

≤ 4Ĉ2 log(1/εi) · d(si, sj(i)) . (2)

Now Theorem 2 suggests that

k−1∏
i=1

d(si, sj(i)) ≤ Ck
k−1∏
i=1

d(si, S \ {si}) = Ck(k − 1)! · φF (S),

and we conclude the proof by

φE(g(S)) =
1

(k − 1)!

k−1∏
i=1

dE(g(si), affspan(g(s0), . . . , g(si−1)))

≤ 1

(k − 1)!

k−1∏
i=1

dE(g(si), g(sj(i)))

≤ 1

(k − 1)!

k−1∏
i=1

4Ĉ2 log(1/εi) · d(si, sj(i))

≤
k−1∏
i=1

O (log(1/εi)) · φF (S) .

Lemma 6. With probability at least 1− 1/nk, the embedding g is (k − 1)-dimensional non-contractive.

Proof. Fix some S = (s0, . . . , sk−1) and 1 ≤ i ≤ k − 1. Let δi = d(si, {s0, . . . , si−1}) and Ai =
affspan(g(s0), . . . , g(si−1)). We would like to give a lower bound on the distance from g(si) to Ai in terms
of δi. The main difficulty is that the nearest point to g(si) in Ai naturally depends on the value of g(si),
thus we cannot use the second property of Lemma 4 directly on the nearest point (we may condition only on
g(sj) for j < i). The solution is as follows: rather than showing a lower bound on the distance from g(si) to
the closest point in Ai, we will show a lower bound on the distance from g(si) to all the points in a suitable
net of Ai.

To this end, let 0 ≤ j ≤ i−1 be such that δi = d(si, sj), and letNi be a δi-net ofB(g(sj), 8Ĉ
2δi log n)∩

Ai. AsAi is an i−1 dimensional space, and in such low dimensional space a ball of radius 2r can be covered
by 2O(i) balls of radius r. Applying this covering repeatedly we conclude that B(g(sj), 8Ĉ

2δi log n) ∩ Ai
can be covered by 2O(i log logn) balls of radius δi/2, and as each net point is contained in at most one of these
balls, it follows that |Ni| = 2O(i log logn) < nk (for sufficiently large n).

Now, if bi ∈ Ai is the closest point to g(si), then by using (2) and the fact that εi ≥ 1/n.

dE(g(sj), bi) ≤ dE(g(si), g(sj)) + dE(g(si), bi)

≤ 2dE(g(si), g(sj))

≤ 2(4Ĉ2) log n · d(si, sj)

= 8Ĉ2 log n · δi .
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This suggests that indeed bi ∈ B(g(sj), 8Ĉ
2δi log n), so that there exists a′i ∈ Ni with

dE(a′i, bi) ≤ δi . (3)

Next we prove that there is a high probability that g(si) is sufficiently far from all net points. Let ai ∈ Ni

be an arbitrary point of the net, and let α0, . . . , αi−1 be such that
∑i−1

j=0 αj = 1 and ai =
∑i−1

j=0 αjg(sj).
Observe that

dE(g(si), ai)
2 =

(4Ĉ)2

D

D∑
t=1

ft(si)− i−1∑
j=0

αjft(sj)

2

For each t ∈ [D] let Zt be an indicator random variable for the event |ft(si)−
∑i−1

j=0 αjft(sj)| ≥ δi/Ĉ, and
let Z = Z(S, i, ai) =

∑D
t=1 Zt. Observe that if it is the case that Z ≥ D/4, then

dE(g(si), ai) ≥

(4Ĉ)2

D

∑
t : Zt=1

ft(si)− i−1∑
j=0

αjft(sj)

21/2

(4)

≥

(
(4Ĉ)2

D
· D

4
(δi/Ĉ)2

)1/2

= 2δi .

By the triangle inequality, (3) and (4) used on a′i,

dE(g(si), bi) ≥ dE(g(si), ai)− dE(a′i, bi) ≥ 2δi − δi = δi .

We conclude that

φE(g(S)) =
1

(k − 1)!

k−1∏
i=1

dE(g(si), bi)

≥ 1

(k − 1)!

k−1∏
i=1

δi

≥ φF (S) .

It remains to show that with probability at least 1 − 1/nk, all of the bad events {Z(S, i, ai) < D/4}S,i,ai
do not happen. For a given Z, by Lemma 4 Pr[Zt | g(s0), . . . , g(si−1)] ≥ 1/2 (because the different
coordinates are independently chosen, so for each Zt, conditioning on g is the same as conditioning just on
ft), so that E[Z] ≥ D/2. The crucial observation is that in the definition of the bad events we fixed only
g(s0), . . . g(si−1) (to determine Ai and the net), but not g(si). Using a standard Chernoff bound

Pr[Z < D/4] ≤ Pr[Z < E[Z]/2] ≤ e−E[Z]/8 ≤ e−D/(16) ≤ n−3k ,

where the last inequality holds when c = 48, say. By applying the union bound on all possible
(
n
k

)
sets S, all

k possible indices i, and all the different points ai ∈ Ni (recall that |Ni| < nk) we have that with probability
at most k · nk ·

(
n
k

)
/n3k ≤ 1/nk, some bad event happened.
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By Lemma 5 and Lemma 6 we have that there is high probability to obtain an embedding g : X → RD,
such that for every subset S ∈

(
X
k

)
with its sequence (ε1, . . . , εk−1),

distg(S) ≤ O

(k−1∏
i=1

log(1/εi)

)1/(k−1) . (5)

In the following sections we analyze the `q volume distortion of such an embedding. For the sake of
simplicity we start by the `∞ and then the `1 volume distortions before handling the general (k − 1)-
dimensional `q-distortion.

3.1.1 Bounding the (k − 1)-dimensional distortion

Lemma 7. The (worst case) (k − 1)-dimensional distortion of g is O(log n) i.e. dist
(k−1)
∞ (g) = O(log n).

Proof. For any set S ∈
(
X
k

)
and i ∈ [k − 1], εi ≥ 1/n. So by (5)

distg(S) ≤ O

(k−1∏
i=1

log(1/εi)

)1/(k−1) ≤ O(log n) .

3.1.2 Bounding the average (k − 1)-dimensional distortion

Lemma 8. The average (k − 1)-dimensional distortion of g is O(log k) i.e. dist
(k−1)
1 (g) = O(log k).

Proof. For every set S ∈
(
X
k

)
let m = m(S) = mini{εin}. By (5) there is a universal constant C ′ such that

the average distortion over all possible S ∈
(
X
k

)
can be bounded as follows.

dist
(k−1)
1 (g)

C ′
≤ ES∈(Xk )

(k−1∏
i=1

log(1/εi)

)1/(k−1)
≤ E

(k−1∏
i=1

log(n/m)

)1/(k−1)
= E [log(n/m)]

In what follows we attempt to bound E [log(n/m)]. First we show that for every i and every t ∈ [n],
we have that Pr[εi = t/n] ≤ 2k/n (recall that g is fixed, and the probability is over a uniform choice of a
subset S). This is because conditioning on any s0, . . . , si−1, for every 0 ≤ j ≤ i − 1 the probability that
si is the t-th nearest neighbor of sj is at most 1/(n − i), and by the union bound, the probability that there
exists such a j is at most i/(n − i) ≤ k/(n − k) ≤ 2k/n (assuming k < n/2, as otherwise the lemma is
trivial). It follows by the union bound that for all t ∈ [n],

Pr[m = t] ≤
k−1∑
i=1

Pr[εi = t/n] ≤ 2k2/n .
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Let h = d n
k2
e, so that Pr[m = t] ≤ 2/h. Now,

E [log(n/m)] ≤
h∑
t=1

Pr[m = t] · log(n/t) + Pr[m > h] · log(n/h)

≤ 2

h

(
h log n−

h∑
t=1

log t

)
+ log(k2) + 2

Note that
∑h

t=1 log t = log(h!) ≥ h log(h/e), hence

E [log(n/m)] ≤ 2(log n− log(n/(ek2)) + 2 log k + 2 = O(log k).

3.1.3 Bounding the (k − 1)-dimensional `q-distortion

Here we generalize the bounds on the worst-case and average (k−1)-dimensional distortion, to the `q norm
of the (k − 1)-dimensional distortion for arbitrary 1 ≤ q ≤ ∞, and thus prove Theorem 3. Taking higher
norms of the distortion suggests that we have to be more careful in estimating the probability of a sequence
(ε1, . . . , εk−1) for a random set S (unlike the q = 1 case, where we could use only the minimal εi).

Lemma 9. For any 1 ≤ q ≤ ∞, dist
(k−1)
q (f̂) = O(dq/(k − 1)e · log k).

Proof. For ` ∈ {0, 1, . . . , k− 1}, let S(`) ⊆
(
X
k

)
contain all the sets S that have exactly ` values of εi which

are bigger than 1/k6. In what follows we attempt to bound |S(`)|. There are at most
(
k−1
`

)
≤ 2k possibilities

to choose the ` locations in the sequence (ε1, . . . , εk−1) that will have values larger than 1/k6. Assume that
these locations are fixed to be the first ` elements of the sequence, by sorting the sequence. How many sets
correspond to such sequences? There are at most

(
n
`+1

)
possibilities to choose s0 and the other ` points

which induce the first ` values ε1, . . . , ε`. As for the other values, observe that for i > ` we have εi < 1/k6,
which suggests that si is one of the εin nearest neighbor of at least one of the other k − 1 points, and thus
there are at most k · εin choices for si. Let K` = {6 log k, 6 log k+ 1, . . . , log n}k−`−1, for ease of notation
assume K` is indexed by integers ` < i < k (that is, for x ∈ K` denote by x`+1 the first element of x, and
by xk−1 the last one), and fix some x ∈ K`. Denote by S(`)x the collection of sets in S(`) satisfying that
2−xi < εi ≤ 2−xi+1 for all ` < i < k. Then

|S(`)x | ≤
(

n

`+ 1

)
· 2k ·

k−1∏
i=`+1

k · n/2xi . (6)

Let C ′ be the constant in Lemma 5, and let m = dq/(k − 1)e. First we use (5) and the monotonicity of
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the normalized `p norm to argue that

dist
(k−1)
q (g)

C ′
≤ ES∈(Xk )

(k−1∏
i=1

log(1/εi)

)q/(k−1)1/q

≤ ES∈(Xk )

[(
k−1∏
i=1

log(1/εi)

)m] 1
m(k−1)

=

(n
k

)−1 k−1∑
`=0

∑
S∈S(`)

(
k−1∏
i=1

log(1/εi)

)m 1
m(k−1)

≤

(n
k

)−1 k−1∑
`=0

∑
x∈K`

∑
S∈S(`)x

(
(6 log k)`

k−1∏
i=`+1

log(1/εi)

)m 1
m(k−1)

≤

(n
k

)−1 k−1∑
`=0

(6 log k)`m
∑
x∈K`

∑
S∈S(`)x

(
k−1∏
i=`+1

xi

)m 1
m(k−1)

(6)
≤

(n
k

)−1 k−1∑
`=0

(6 log k)`m
∑
x∈K`

(
n

`+ 1

)
· 2k ·

k−1∏
i=`+1

k · n/2xi
k−1∏
i=`+1

xmi

 1
m(k−1)

=

(n
k

)−1
· 2k

k−1∑
`=0

(
n

`+ 1

)
(6 log k)`m · (kn)k−`−1

∑
x∈K`

k−1∏
i=`+1

xmi /2
xi

 1
m(k−1)

. (7)

Next, we focus on the expression
∑

x∈K`

∏k−1
i=`+1 x

m
i /2

xi . Recall that K` is a k − ` − 1 tuple of elements
in {6 log k, . . . , log n}, so that each xi ≥ 6 log k, and we may bound 1/2xi ≤ 1/23 log k · 1/2xi/2 =
1/k3 · 1/2xi/2. Now, rather than a summation of products, we will take a product of summations. That is,
we write

∑
x∈K`

k−1∏
i=`+1

xmi /2
xi ≤ 1

k3

∑
x∈K`

k−1∏
i=`+1

xmi /2
xi/2

=

k−1∏
i=`+1

 logn∑
z=6 log k

zm/2z/2

 ,

=

 logn∑
z=6 log k

zm/2z/2

k−`−1

(8)

where the first equation holds because for any choice of a vector x ∈ K` with its corresponding product, we
can associate a unique sequence of k− `− 1 choices of numbers z. Next we bound the summation, with the
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variable change y = z − 6 log k,

logn∑
z=6 log k

zm/2z/2 ≤
∞∑

z=6 log k

zm/2z/2

=
∞∑
y=0

(y + 6 log k)m/2(y+6 log k)/2

≤ 1

k3

∞∑
y=0

(2ym + 2(6 log k)m)/2y/2

≤ 8(6 log k)m

k3
+

2

k3

∞∑
y=0

ym/2y/2 ,

where the last inequality is using that
∑

y≥0 2−y/2 ≤ 4. We replace the sum by an integral and calculate

∞∑
y=0

ym/2y/2 ≤
√

2

∫ ∞
0

ym/2y/2dy ≤ (16m)m ,

which yields the following bound on (8) logn∑
z=6 log k

zm/2z/2

k−`−1

≤
(

8(6 log k)m

k3
+

4(16m)m

k3

)k−`−1
(9)

Plugging (9) into (7) we get that

dist
(k−1)
q (g)

C ′

≤

[(
n

k

)−1
2k

k−1∑
`=0

(
n

`+ 1

)
(6 log k)`m · (kn)k−`−1

(
8(6 log k)m

k3
+

4(16m)m

k3

)k−`−1] 1
m(k−1)

≤

[(
n

k

)−1
2k

k−1∑
`=0

(
n

`+ 1

)
(n/k2)k−`−1

(
(100 log k)m(k−1) · (100m)m(k−1)

)] 1
m(k−1)

≤
[
k · 2k

(
(100 log k)m(k−1) · (100m)m(k−1)

)] 1
m(k−1)

,

where the last inequality is using that (for k ≥ 2 and) for every 0 ≤ ` ≤ k − 1,
(
n
`+1

)
(n/k2)k−`−1 ≤

(
n
k

)
.

Note that the above expression is at most O(m log k) = O(dq/(k − 1)e · log k) as required.
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A Proof of Lemma 4

In this section we prove the properties of the line embedding. We begin by several definitions. As usual
(X, d) is a metric space on n points.

Definition 3. The local growth rate of x ∈ X at radius r > 0 for given scales γ1, γ2 > 0 is defined as

ρ(x, r, γ1, γ2) = |B(x, rγ1)|/|B(x, rγ2)|.

Given a subset Z ⊆ X , the minimum local growth rate of Z at radius r > 0 and scales γ1, γ2 > 0 is defined
as ρ(Z, r, γ1, γ2) = minx∈Z ρ(x, r, γ1, γ2). The minimum local growth rate of x ∈ X at radius r > 0 and
scales γ1, γ2 > 0 is defined as ρ̄(x, r, γ1, γ2) = ρ(B(x, r), r, γ1, γ2).

The following simple claim was shown in [ABN11]

Claim 10. Let x, y ∈ X , let γ1, γ2 > 0 and let r be such that 2(1 + γ2)r < d(x, y) ≤ (γ1 − γ2 − 2)r, then

max{ρ̄(x, r, γ1, γ2), ρ̄(y, r, γ1, γ2)} ≥ 2.

Definition 4 (Partition). A partitionP ofX is a collection of pairwise disjoint setsA(P ) = {A1, A2, . . . , At}
for some integer t, such that X = ∪jAj . The sets Aj are called clusters. For x ∈ X denote by P (x) the
cluster containing x. Given ∆ > 0, a partition is ∆-bounded if for all j ∈ [t], diam(Aj) ≤ ∆. For Z ⊆ X
we denote by P [Z] the restriction of P to points in Z.

Definition 5 (Probabilistic Partition). A probabilistic partition P̂ of a metric space (X, d) is a distribution
over a set P of partitions of X . Given ∆ > 0, P̂ is ∆-bounded if each P ∈ P is ∆-bounded. Let
supp(P̂) ⊆ P be the set of partitions with non-zero probability under P̂ .

Definition 6 (Uniform Function). Given a partition P of a metric space (X, d), a function f defined on X
is called uniform with respect to P if for any x, y ∈ X such that P (x) = P (y) we have f(x) = f(y).

Let P̂ be a probabilistic partition. A collection of functions defined on X , f = {fP |P ∈ P} is uniform
with respect to P if for every P ∈ P , fP is uniform with respect to P .
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Definition 7 (Uniformly Padded Local PP). Given ∆ > 0 and 0 < δ ≤ 1, let P̂ be a ∆-bounded proba-
bilistic partition of (X, d). Given collection of functions η = {ηP : X → [0, 1]|P ∈ P}, we say that P̂ is
(η, δ)-locally padded if the event B(x, ηP (x)∆) ⊆ P (x) occurs with probability at least δ regardless of the
structure of the partition outside B(x, 2∆). Formally, for all x ∈ X , for all A ⊆ X \ B(x, 2∆) and all
partitions P ′ of A,

Pr[B(x, ηP (x)∆) ⊆ P (x) | P [A] = P ′] ≥ δ

Let 0 < δ̂ ≤ 1. We say that P̂ is strong (η, δ̂)-locally padded if for any δ̂ ≤ δ ≤ 1, P̂ is (η · ln(1/δ), δ)-
padded.

We say that P̂ is (η, δ)-uniformly locally padded if η is uniform with respect to P .

The following Lemma was shown in [ABN11]

Lemma 11. Let (Z, d) be a finite metric space. Let 0 < ∆ ≤ diam(Z). Let δ̂ ∈ (0, 1/2], γ1 ≥ 2,
γ2 ≤ 1/16. There exists a ∆-bounded probabilistic partition P̂ of (Z, d) and a collection of uniform
functions {ξP : Z → {0, 1} | P ∈ P} and {ηP : Z → (0, 1] | P ∈ P} such that the probabilistic partition
P̂ is a strong (η, δ̂)-uniformly locally padded probabilistic partition; and the following conditions hold for
any P ∈ supp(P̂) and any x ∈ Z:

• If ξP (x) = 1 then: 2−6/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−6/ ln(1/δ̂).

• If ξP (x) = 0 then: ηP (x) = 2−6/ ln(1/δ̂) and ρ̄(x, 2∆, γ1, γ2) < 1/δ̂.

In what follows we prove Lemma 4. Let ∆0 = diam(X). For l ∈ N let ∆l = (1/8)l∆0 and let Pl be
a ∆l-bounded partition. For all l ∈ N let σl : X → [0, 1], ξl : X → {0, 1}, ηl : X → R+ be uniform
functions with respect to Pl, the functions ηl and ξl will be randomly generated by the probabilistic partition.
For every scale l ∈ N define ϕl : X → R+ as

ϕl(x) = min

{
ξl(x)

ηl(x)
d (x,X \ Pl(x)) ,∆l/4

}
, (10)

and for l ∈ N define ψl : X → R+ as

ψl(x) = σl(x) · ϕl(x).

Finally let f : X → R+ be defined as f =
∑

l∈N ψl. Note that f is well defined because f(x) =∑
l∈N ψl(x) ≤

∑
l∈N ∆l, and this is a geometric progression.

The distribution D on embeddings f is obtained by choosing each Pl from the distribution P̂l as in
Lemma 11 with parameters Z = X , ∆ = ∆l, δ̂ = 1/2, γ1 = 32 and γ2 = 1/16. For each l ∈ N set
ξl = ξPl

and ηl = ηPl
as defined in the lemma, and let σl be a uniform function with respect to Pl defined by

letting {σl(A)|A ∈ Pl, l ∈ N} be i.i.d random variables chosen uniformly in the interval [0, 1], and setting
σl(x) = σl(Pl(x)). We begin by proving the first property of Lemma 4.

Lemma 12. For all u, v ∈ X , f ∈ supp(D),

|f(u)− f(v)| ≤ Ĉ
⌈

log

(
n

|B(u, d(u, v))|

)⌉
d(u, v).

where Ĉ is a universal constant.
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Proof. Fix some u, v ∈ X and f ∈ supp(D). Hence {Pl}l∈N, {σl}l∈N are fixed. Let h ∈ N be the
maximum index such that ∆h ≥ 2d(u, v), if no such h exists then let h = 0. We bound |f(u) − f(v)| by
separating the sum into two parts 0 ≤ l < h, and l ≥ h:

|f(u)− f(v)| ≤
∑

0≤l<h
|ψl(u)− ψl(v)|+

∑
l≥h
|ψl(u)|+

∑
l≥h
|ψl(v)|. (11)

We begin by bounding the first summation. Note that for any set U ⊆ X and numbers a, r ≥ 0, by the
triangle inequality

min{a · d(u, U), r} −min{a · d(v, U), r} ≤ a · d(u, v) . (12)

We will show that this implies the following

ψl(u)− ψl(v) ≤ ξl(u)

ηl(u)
d(u, v) . (13)

To see (13), we use the fact that σl, ξl, ηl are uniform functions. If it is the case that Pl(u) = Pl(v) then by
(12) and as σl(u) = σl(v) ≤ 1 we have that ψl(u) − ψl(v) ≤ ξl(u)

ηl(u)
d(u, v). Otherwise, if Pl(u) 6= Pl(v),

then d(u,X \ Pl(u)) ≤ d(u, v) and hence ψl(u) − ψl(v) ≤ ψl(u) ≤ ξl(u)
ηl(u)

d(u, v). By symmetry we have
that

|ψl(u)− ψl(v)| ≤ ξl(u)

ηl(u)
d(u, v) +

ξl(v)

ηl(v)
d(u, v) . (14)

For any x ∈ X , ∑
0≤l<h

ξl(x)

ηl(x)
=

∑
0≤l<h:ξl(x)=1

ηl(x)−1 (15)

≤
∑

0≤l<h:ξl(x)=1

26 ln ρ(x, 2∆l, γ1, γ2)

≤ 26
∑

0≤l<h
ln

(
|B(x, 2γ1∆l)|
|B(x, 2γ2∆l)|

)

≤ 26 · 3 ln

(
|X|

|B(x,∆h−1/8)|

)
≤ 29 ln

(
|X|

|B(x,∆h)|

)
.

The first inequality follows from the first property of Lemma 11, and the third inequality holds as 2γ1∆l =
82∆l = 2 · 83γ2∆l = 2γ2∆l−3, this suggests that the sum is telescopic and is bounded accordingly. And
now, noticing that |ψl(u)| ≤ ∆l/4 for all l ∈ N,

|f(u)− f(v)| ≤
∑

0≤l<h
|ψl(u)− ψl(v)|+

∑
l≥h
|ψl(u)|+

∑
l≥h
|ψl(v)|

(14)
≤

∑
0≤l<h

(
ξl(u)

ηl(u)
+
ξl(v)

ηl(v)

)
d(u, v) +

∑
l≥h

∆l/2

(15)
≤ 29

(
ln

(
|X|

|B(u,∆h)|

)
+ ln

(
|X|

|B(v,∆h)|

))
d(u, v) + ∆h

≤ Ĉ

⌈
ln

(
|X|

|B(u, d(u, v))|

)⌉
d(u, v) ,
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where Ĉ > 210 is a constant. The last inequality uses the fact that B(u, d(u, v)) ⊆ B(u,∆h) ∩ B(v,∆h)
and that the maximality of h suggests that ∆h ≤ 16d(u, v).

We now proceed to prove the second property of Lemma 4. Let us first introduce the desired ordering
of a set S ⊆ X .

Claim 13. For any S ∈
(
X
k

)
there exists an ordering (s0, s1, . . . , sk−1) of the elements of S that satisfy

the following property: For all i ∈ {0, . . . , k − 1}, if h ∈ N is the unique integer such that 6∆h ≤
d(si, {s0, . . . , si−1}) < 6∆h−1, then

ρ̄(si, 2∆h, γ1, γ2) ≥ 2 .

Proof. Let (s0, s1, . . . , sk−1) be an ordering according to the following iterative process. Start withW = S,
i = k − 1.

1. Let {u, v} = mins,t∈W {d(s, t)}. Let h be the unique integer such that 6∆h ≤ d(u, v) < 6∆h−1.

2. By Claim 10 with parameters r = 2∆h, γ1 = 32 and γ2 = 1/16 (as defined above), at least one of
u, v, w.l.o.g u, has ρ̄(u, 2∆h, γ1, γ2) ≥ 2. Then set si = u and W = W \ {u}.

3. If i > 1, set i = i− 1 and goto 1. Otherwise (when i = 1) set s0 to be the last element of W .

The claim follows by the very definition of the process.

We will also use the following simple claim.

Claim 14. Let A ∈ R+ and let α be random variable uniformly distributed in [0, 1]. Then for any C ∈ R
and γ > 0:

Pr[|C +Aα| < γ ·A] < 2γ .

Lemma 15. For every subset S ⊆ X of size k, there exists an ordering S = (s0, . . . sk−1), such that for
any 1 ≤ i ≤ k − 1, values x0, . . . , xi−1 ∈ R and coefficients α0, . . . , αi−1 ∈ R with

∑i−1
j=0 αj = 1:

Pr
f∼D

∣∣∣f(si)−
i−1∑
j=0

αjxj

∣∣∣ ≥ d(si, {s0, . . . , si−1})/Ĉ | ∀ 0 ≤ j ≤ i− 1 , f(sj) = xj

 ≥ 1/2 .

Proof. Fix S ⊆ X of size |S| = k and let (s0, . . . , sk−1) be the ordering induced by Claim 13. Fix some
1 ≤ i ≤ k − 1, values x0, . . . , xi−1 ∈ R and coefficients α0, . . . , αi−1 ∈ R with

∑i−1
j=0 αj = 1 as in

the statement of the Lemma. Let h ∈ N be such that 6∆h ≤ d(si, {s0, . . . , si−1}) < 6∆h−1. Note that
the different scales l ∈ N are sampled independently, and that for the scale h, by Lemma 11 even when
conditioning on the values f(sj) for 0 ≤ j ≤ i− 1, there is probability δ = e−1/4 > 3/4 that the following
event holds

Esi−pad = {B(si, ηh(u) ·∆h/4) ⊆ Ph(si)} .

Also note that by Claim 13 we have ρ̄(si, 2∆h, γ1, γ2) ≥ 2 and also 1/δ̂ = 2, thus the properties of
Lemma 11 imply that it must be that ξh(si) = 1. Given that event Esi−pad holds, we obtain

ϕh(si) = min

{
d(si, X \ Ph(si))

ηh(si)
,∆h/4

}
≥ ∆h/4. (16)
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Next consider the value a =
∑i−1

j=0 αjxj , and condition on the event that for all 0 ≤ j ≤ i− 1, f(sj) =
xj . Let C = f(si) − a − ψh(si), A = ϕh(si) and α = σh(si), and observe that |f(si) − a| = |C + αA|.
By Claim 14 with γ = 1/8 it follows that

Pr
α

[|C + αA| < A/8] ≤ 1/4 . (17)

Since the partition Ph is ∆h bounded and d(sj , si) > ∆h for all 0 ≤ j ≤ i− 1, we have that Ph(sj) 6=
Ph(si). This suggests that α = σh(si) is indeed chosen independently of the f(sj). Since both (16) and
(17) each holds with probability at least 3/4, there is probability at least 1/2 that both of them hold (again,
even when conditioning on the f(sj)), in which case

|f(si)− a| ≥ A/8 ≥ ∆h/32 = d(si, {s0, . . . , si−1})/Ĉ ,

for sufficiently large constant Ĉ.
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