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Abstract. A central question in the geometry of finite metric spaces is how well
can an arbitrary metric space be “faithfully preserved” by a mapping into Eu-
clidean space. In this paper we present an algorithmic embedding which obtains
a new strong measure of faithful preservation: not only does it (approximately)
preserve distances between pairs of points, but also the volume of any set of k
points. Such embeddings are known as volume preserving embeddings. We pro-
vide the first volume preserving embedding that obtains constant average volume
distortion for sets of any fixed size. Moreover, our embedding provides constant
bounds on all bounded moments of the volume distortion while maintaining the
best possible worst-case volume distortion.
Feige, in his seminal work on volume preserving embeddings defined the volume
of a set S = {v1, . . . , vk} of points in a general metric space: the product of the
distances from vi to {v1, . . . , vi−1}, normalized by 1

(k−1)!
, where the ordering

of the points is that given by Prim’s minimum spanning tree algorithm. Feige also
related this notion to the maximal Euclidean volume that a Lipschitz embedding
of S into Euclidean space can achieve. Syntactically this definition is similar to
the computation of volume in Euclidean spaces, which however is invariant to
the order in which the points are taken. We show that a similar robustness prop-
erty holds for Feige’s definition: the use of any other order in the product affects
volume1/(k−1) by only a constant factor. Our robustness result is of independent
interest as it presents a new competitive analysis for the greedy algorithm on a
variant of the online Steiner tree problem where the cost of buying an edge is
logarithmic in its length. This robustness property allows us to obtain our results
on volume preserving embeddings.

1 Introduction

Recent years have seen a large outpouring of work in analysis, geometry and theoreti-
cal computer science on metric space embeddings guaranteed to introduce only small
distortion into the distances between pairs of points.
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Euclidean space is not only a metric space, it is also equipped with higher-dimensional
volumes. General metrics do not carry such structure. However, a general definition for
the volume of a set of points in an arbitrary metric was developed by Feige [10].

In this paper we extend the study of metric embeddings into Euclidean space by first,
showing a robustness property of the general volume definition. Using this robustness
property, together with existing metric embedding methods, to show an embedding that
guarantees small distortion not only on pairs, but also on the volumes of sets of points.
The robustness property (see Theorem 2) is that the minimization over permutations
in the volume definition affects it by only a constant. This result is of independent
interest as it provides a competitive analysis for the greedy algorithm on a variant of the
online Steiner tree problem where the cost of buying an edge is logarithmic in its length,
showing that the cost of greedy is within an additive term of the minimum spanning tree,
implying a constant competitive ratio. Our main result is an algorithmic embedding
(see Theorem 3) with constant average distortion for sets of any fixed size. In fact, our
bound on the average distortion scales logarithmically with the size of the set. Moreover
this bound holds even for higher moments of the distortion (the `q-distortion), while the
embedding still maintains the best possible worst case distortion bound, simultaneously.
Hence our embedding generalizes both [17] and [2] (see Related Work below).

Volume in general metric spaces.

Let dE denote Euclidean distance, and let affspan denote the affine span of a point
set. The (n − 1)-dimensional Euclidean volume of the convex hull of points X =
{v1, . . . , vn} ⊆ Rd is

volE(X) =
1

(n− 1)!

n∏
i=2

dE(vi, affspan(v1, . . . , vi−1)).

This definition is, of course, independent of the order of the points.

Feige’s notion of volume. Let (X, dX) be a finite metric space, X = {v1, . . . , vn}. Let
Sn be the symmetric group on n symbols, and let πP ∈ Sn be the order in which the
points of X may be adjoined to a minimum spanning tree by Prim’s algorithm. (Thus
vπP (1) is an arbitrary point, vπP (2) is the closest point to it, etc.) Feige’s notion of the
volume of X is (we have normalized by a factor of (n− 1)!):

volF (X) =
1

(n− 1)!

n∏
i=2

dX(vπP (i), {vπP (1), . . . , vπP (i−1)}). (1)

πP minimizes the above expression5.
It should be noted that even if X is a subset of Euclidean space, volE and volF do

not agree. (The latter can be arbitrarily larger than the former.) The actual relationship
that Feige found between these notions is nontrivial. Let L2(X) be the set of non-
expansive embeddings from X into Euclidean space. Feige proved the following:

Theorem 1 (Feige). For any n point metric space (X, d):

1 ≤

[
volF (X)

supf∈L2(X) volE(f(X))

]1/(n−1)

≤ 2.

5 This is because the (sorted) vector of edge lengths created by Prim’s algorithm is smaller or
equal in each coordinate than any sorted vector of a spanning tree’s edge lengths



Thus, remarkably, volF (X) is characterized to within a factor of 2 (after normaliz-
ing for dimension) by the Euclidean embeddings of X .

Our work, part I: Robustness of the metric volume. What we show first is that Feige’s
definition is insensitive to the minimization over permutations implicit in Equation (1),
and so also a generalized version of Theorem 1 can be obtained.

Theorem 2. There is a constant C such that for any n-point metric space (X, d), and
with πP defined as above, and for every π ∈ Sn:

1 ≤
( ∏n

i=2 dX(vπ(i), {vπ(1), . . . , vπ(i−1)})∏n
i=2 dX(vπP (i), {vπP (1), . . . , vπP (i−1)})

)1/(n−1)

≤ C.

An alternative interpretation of this result can be presented as the analysis of the
following online problem. Consider the following variant of the online Steiner tree
problem [14]. Given a weighted graph (V,E), at each time unit i, the adversary out-
puts a vertex vi ∈ V and an online algorithm can buy edges Ei ⊆ E. At each time
unit i, the edges bought E1, . . . , Ei must induce a connected graph among the current
set of vertices v1, . . . , vi. The competitive ratio of an online algorithm is the worst ratio
between the cost of the edges bought and the cost of the edges bought by the opti-
mal offline algorithm. This problem has been well-studied when the cost of buying an
edge is proportional to its length. Imase and Waxman prove that the greedy algorithm
is O(log n) competitive, and shown this bound is asymptotically tight . It is natural to
consider a variant where the cost of buying is a concave function of the edge length.
In this case a better result may be possible. In particular we analyze the case where
this cost function is logarithmic in edge length. Such a logarithmic cost function may
capture the economy-of-scale effects where buying multiplicatively longer edges costs
only additively more. Theorem 2 can be interpreted as a competitive analysis of the
greedy algorithm in this model, showing that the cost of the greedy algorithm is within
O(n) additive term of the minimum spanning tree, which implies an O(1) competitive
ratio for this problem.

Our work, part II: Volume Preserving Embeddings We use Theorem 2 and recent results
on metric embeddings [2] to show that their algorithm provides a non-contractive em-
bedding into Euclidean space that faithfully preserves volume in the following sense:
the embedding obtains simultaneously both O(log k) average volume distortion and
O(log n) worst case volume distortion for sets of size k.

Given an n point metric space (X, d) an injective mapping f : X → L2 is called an
embedding. An embedding is (k− 1)-dimensional non-contractive if for any S ∈

(
X
k

)
:

volE(f(S)) ≥ volF (S).
Let f be a (k − 1)-dimensional non-contractive embedding. For a set S ⊆

(
X
k

)
define the (k − 1)-dimensional distortion of S under f as:

distf (S) =
[
volE(f(S))

volF (S)

]1/(k−1)

.

For 2 ≤ k ≤ n define the (k − 1)-dimensional distortion of f as

dist(k−1)(f) = max
S∈(X

k)
distf (S)



More generally, for 2 ≤ k ≤ n and 1 ≤ q ≤ ∞, define the (k − 1)-dimensional
`q-distortion of f as:

dist(k−1)
q (f) = ES∼(X

k)[distf (S)q]1/q

where the expectation is taken according to the uniform distribution over
(
X
k

)
. Observe

that the notion of (k − 1)-dimensional distortion is expressed by dist(k−1)
∞ (f) and the

average (k − 1)-dimensional distortion is expressed by the dist(k−1)
1 (f)-distortion.

It is worth noting that Feige’s definition of volume is related to the maximum vol-
ume obtained by non-expansive embeddings, while the definition of average distortion
and `q-distortion are using non-contractive embeddings. We note that these definitions
are crucial in order to capture the coarse geometric notion described above and achieve
results that significantly beat the usual worst case lower bounds (which depend on the
size of the metric). It is clear that one can modify the definition to allow arbitrary em-
beddings (in particular non-contractive) by defining distortions normalized by taking
their ratio with respect to the largest contraction.6

Our main theorem on volume preserving embeddings is:

Theorem 3. For any metric space (X, d) on n points and any 2 ≤ k ≤ n, there exists
a map f : X → L2 such that for any 1 ≤ q ≤ ∞, dist(k−1)

q (f) ∈ O(min{dq/(k−1)e ·
log k, log n}). In particular, dist(k−1)

∞ (f) ∈ O(log n) and dist(k−1)
1 (f) ∈ O(log k).

On top of the robustness property of the general volume definition of Theorem 2 the
proof of Theorem 3 builds on the embedding techniques developed in [2] (in the con-
text of pairwise distortion) along with combinatorial arguments that enable the stated
bounds on the average and `q-volume distortions.

Our embedding preserves well sets with typically large distances and can be viewed
within the context of coarse geometry where we desire a “high level” geometric repre-
sentation of the space. This follows from a special property formally stated in Lemma 4.

1.1 Related Work

Embeddings of metric spaces have been a central field of research in theoretical com-
puter science in recent years, due to the fact the metric spaces are important objects
in representation of data. A fundamental theorem of Bourgain [5] states that every n
point metric space (X, d) can be embedded in L2 with distortion O(log n), where the
distortion is defined as the worst-case multiplicative factor by which a pair of distances
change. Our work extends this result in two aspects: (1) bounding the distortion of sets
of arbitrary size, and (2) providing bounds for the `q-distortion for all q ≤ ∞.

Volume preserving embeddings. Feige [10] introduced volume preserving embeddings.
He showed that Bourgain’s embedding provides an embedding into Euclidean space
with (k − 1)-dimensional distortion of O(

√
log n ·

√
log n + k log k).

6 There are other notions of average distortion that may be of interest, in particular such notions
which normalize with respect to the maximum distortion have been considered. While these
have advantages of their own, they take a very different geometric perspective which puts
emphasis on small distance scales (as opposed to the coarse geometric perspective in this
paper) and the worst case lower bounds hold for these notions.



Following Feige’s work some special cases of volume preserving embeddings were
studied, where the metric space X is restricted to a certain class of metric spaces. Rao
[20] studies the case where X is planar or is an excluded-minor metric showing constant
(k − 1)-dimensional distortions. Gupta [12] showed an improved approximation of the
bandwidth for trees and chordal graphs. As the Feige volume does not coincide with
the standard volume of Euclidean set it is also interesting to study this special case
when the metric space is given in Euclidean space. This case was studied by Rao [20],
Dunagan and Vempala [8] and by Lee [19]. We note that our work provides the first
average distortion and `q-distortion analysis also in the context of this special case.

The first improvement on Feige’s volume distortion bounds comes from the work
of Rao [20]. As observed by many researchers Rao’s embedding gives more general
results depending on a certain decomposability parameter of the space. This provides
a bound on the (k − 1)-dimensional distortion of O((log n)3/2) for all k ≤ n. This
bound has been further improved to O(log n) in work of Krauthgamer et al. [17].
Krauthgamer, Linial and Magen [18] show a matching Ω(log n) lower bound on the
(k − 1)-dimensional distortion for all k < n1/3.

In this paper we provide embedding with guarantees on the (k−1)-dimensional `q-
distortion for all q ≤ ∞ simultaneously. As a special case, our bounds imply the best
possible worst case (k − 1)-dimensional distortion of O(log n) (matching the result of
[17]).

Average and `q Distortion. The notions of average distortion and `q-distortion is tightly
related to the notions of partial embeddings and scaling embedding7, which demand
strong guarantees for a (1 − ε) fraction of the pairwise distances. These notions were
introduced by Kleinberg, Slivkins and Wexler [15], largely motivated by the study of
distances in computer networks.

In [1] partial embedding into Lp with tight O(log 1/ε) partial distortion were given.
The embedding method of [2] provides a scaling embedding with O(log 1/ε) distortion
for all values of ε > 0 simultaneously. As a consequence of having scaling embedding,
they show that any metric space can be embedded into Lp with constant average distor-
tion, and more generally that the `q-distortion bounded by O(q), while maintaining the
best worse case distortion possible of O(log n), simultaneously.

Previous results on average distortion have applications for a variety of approxima-
tion problems, including uncapacitated quadratic assignment [2], and in addition have
been used in solving graph theoretic problems [9]. Following [15,1,2] related notions
have been studied in various contexts [6,16,3,7].

2 Robustness of the Metric Volume

Proof of Theorem 2.
For a tree T on n vertices {v1, . . . , vn} let vol(T ) be the product of the edge

lengths. Because of the matroid exchange property, this product is minimized by an
MST. Thus for any metric space on points {v1, . . . , vn} and any spanning tree T ,
volF (v1, . . . , vn) ≤ vol(T )/(n − 1)!; the inequality is saturated by any (and only a)
minimum spanning tree.

7 alternatively known as embeddings with slack and embeddings with gracefully degrading dis-
tortion.



Definition 1. A forced spanning tree (FST) for a finite metric space is a spanning tree
whose vertices can be ordered v1, . . . , vn so that for every i > 1, vi is connected to a
vertex that is closest among v1, . . . , vi−1, and to no other among these. (We call such
an ordering admissible for the tree.)

An MST is an FST with the additional property that in an admissible ordering vi is a
closest vertex to v1, . . . , vi−1 among vi, . . . , vn.

Definition 2. For a tree T let ∆(T ) denote its diameter (the largest distance between
any two points in the tree). Let the diameter ∆(F ) of a forest F with components
T1, T2, . . . , Tm be ∆(F ) = max1≤i≤m ∆(Ti). For a metric space (X, d) let ∆k(X) =
min{∆(F ) | F is a spanning forest of X with k connected components}.

Lemma 1. Let (X, d) be a metric space. Let k ≥ 1. An FST for X has at most k − 1
edges of length greater than ∆k(X).

Proof. Let v1, . . . , vn be an admissible ordering of the vertices of the FST. Assign each
edge to its higher-indexed vertex. Since the ordering is admissible, this assignment is
injective. The lemma is trivial for k = 1. For k ≥ 2, cover X by the union of k
trees each of diameter at most ∆k(X). Only the lowest-indexed vertex in a tree can
be assigned an edge longer than ∆k(X). (Note that v1 is assigned no edge, hence the
bound of k − 1.)

Corollary 1. For any n-point metric space (X, d) and any FST T ′ for X , vol(T ′) ≤∏n−1
k=1 ∆k(X).

Proof. Order the edges from 1 to n−1 by decreasing length. The k’th edge is no longer
than ∆k(X).

Using Corollary 1, our proof of Theorem 2 reduces to showing that for any MST T
of X ,

∏n−1
k=1 ∆k(X) ≤ eO(n−1)vol(T ). Specifically we shall show that for any span-

ning tree T ,
n−1∏
k=1

∆k(X) ≤ 1
n2

(
4π2

3

)n−1

vol(T ).

(Observe incidentally that the FST created by the Gonzalez [11] and Hochbaum-Shmoys [13]
process has vol at least 21−n

∏n−1
k=1 ∆k(X).)

The idea is to recursively decompose T by cutting an edge; letting the two remaining
trees be T1 (with some m edges) and T2 (with n− 2−m edges), we shall upper bound∏n−1

1 ∆k(T ) in terms of
∏m

1 ∆k(T1) and
∏n−2−m

1 ∆k(T2). More on this after we
show how to pick an edge to cut. Recall:

∑
j≥1 1/j2 = π2/6.

Edge selection. Find a diametric path γ of T , i.e., a simple path whose length |γ|
equals the diameter ∆(T ). For appropriate ` ≥ 2 let u1, . . . , u` be the weights of the
edges of γ in the order they appear on the path. Select the j’th edge on the path, for
a 1 ≤ j ≤ ` for which uj/|γ| > 1/(2(π2/6) min{j, ` + 1 − j}2). Such an edge
exists, as otherwise

∑`
1 uj ≤ (6/π2)|γ|

∑`
1 j−2 < |γ|. Without loss of generality

j ≤ ` + 1− j (otherwise flip the indexing on γ), hence cutting uj contributes overhead
|γ|/uj < 2(π2/6)j2 to the product

∏n−1
1 ∆k, and yields subtrees T1 and T2 each

containing at least j − 1 edges.
Think of this recursive process as successively breaking the spanning tree into a

finer and finer forest. Note that we haven’t yet specified which tree of the forest is cut,



but we have specified which edge in that tree is cut. The order in which trees are chosen
to be cut is: Fk(T ) (which has k components) is defined by (a) F1(T ) = T ; (b) For
1 < k < n, Fk(T ) is obtained from Fk−1(T ) by cutting an edge in the tree of greatest
diameter. Note that by definition ∆k(X) ≤ ∆(Fk(T )).

Induction. Now we show that
n−1∏

1

∆(Fk(T )) ≤ 1
n2

(
4π2

3

)n−1

vol(T ).

It will be convenient to do this by an induction showing that there are constants c1, c2 >
0 such that

n−1∏
1

∆(Fk(T )) ≤ ec1(n−1)−c2 log nvol(T ),

and finally justify the choices c1 = log(4π2/3) and c2 = 2. As to base-cases, n = 1 is
trivial, and n = 2 is assured for any c1 ≥ 0.

For n > 2 let the children of T be T1 and T2, that is to say, F2(T ) = {T1, T2}. Let
m and n− 2−m be the numbers of edges in T1 and T2 respectively. Observe that with
j as defined above, min{m,n− 2−m} ≥ j − 1 ≥ 0.

Examine three sequences of forests: the T sequence, F1(T ), . . . , Fn−1(T ); the T1

sequence, F1(T1), . . . , Fm(T1); the T2 sequence, F1(T2), . . . , Fn−2−m(T2).
As indicated earlier, in each forest f in the T sequence other than F1(T ), choose

a component t of greatest diameter, i.e., one for which ∆(t) = ∆(f). (In case of ties
some consistent choice must be made within the T, T1 and T2 sequences.)

If t lies within T1, assign f to the forest in the T1 sequence that agrees with f within
T1. Similarly if t lies within T2, assign f to the appropriate forest in the T2 sequence.
Due to the process defining the forests Fk(T ), this assignment is injective. Moreover, a
forest in the T sequence, and the forest it is assigned to in the T1 or T2 sequence, share
a common diameter. Hence

n−1∏
2

∆(Fk(T )) = (
m∏
1

∆(Fk(T1)))(
n−2−m∏

1

∆(Fk(T2))).

Therefore:
n−1∏

1

∆(Fk(T )) = ∆(T ) ·
n−1∏

2

∆(Fk(T )) = ∆(T ) · (
m∏
1

∆(Fk(T1)))(
n−2−m∏

1

∆(Fk(T2))).

Now by induction:
n−1∏

1

∆(Fk(T )) ≤ ∆(T ) · ec1m−c2 log(m+1) · vol(T1) · ec1(n−2−m)−c2 log(n−1−m) · vol(T2).

As vol(T ) = uj · vol(T1)vol(T2) we get

n−1∏
1

∆(Fk(T )) ≤ (∆(T )/uj) · exp {c1(n− 2)− c2(log(m + 1) + log(n− 1−m))} vol(T )

≤ exp
{
log(2(π2/6)j2) + c1(n− 2)− c2(log(m + 1) + log(n− 1−m))

}
vol(T )

≤ exp
{
log(π2j2/3) + c1(n− 2)− c2(log j + log(n/2))

}
vol(T )

≤ exp
{
c1(n− 1)− c2 log n− (c2 − 2) log j − (c1 − c2 log 2− log(π2/3))

}
vol(T )



Choose c2 ≥ 2 to take care of the third term in the exponent, and choose c1 ≥
log(π2/3) + c2 log 2 to take care of the fourth term in the exponent. (In the theorem
statement, both of these choices have been made with equality.) So

. . . ≤ exp {c1(n− 1)− c2 log n} vol(T ).

ut

3 Volume Preserving Embeddings

In this section we prove Theorem 3. In [2] a general framework for embedding metrics
into normed spaces was introduced. In particular we define an embedding f̂ : X → L2

in O(log n) dimensions and show that the (pairwise) distortion is O(log n) and the
`q-distortion is O(q). Here, we extend this work to apply to sets of points of higher
cardinality. We use the same map of [2] while taking more dimensions: O(k log n), so
the map has the stronger property of being volume preserving. In Section 3.2 to Sec-
tion 3.4 we give Lemma 2 which states a property of this embedding which allows us
to prove the (k − 1)-dimensional distortion bounds of the embedding, followed by the
analysis of these bounds for the worst (`∞-distortion) case and average (`1-distortion)
case (the general `q-distortion case is deferred to the full version). The content of Sec-
tion 3.2 to Section 3.4 does not require knowledge of the definition of the embedding
beyond its properties given in Lemma 2. However the proof of this lemma is based on
the definition of the embedding given in Section 3.1 and its proof is deferred to the full
version.

3.1 The Embedding

The embedding of [2] is partition-based [4,20]. It is constructed by concatenating O(k log n)
random maps X → R where each such map is formed by summing terms over all
scales, where each scale is a an embedding created using an approach similar to [20],
using the uniform probabilistic partition techniques of [2]. See the full version for the
required definitions and notations for uniform probabilistic partitions and their proper-
ties. In a nut-shell, a partition of X is a pair-wise disjoint collection of clusters covering
X . In a ∆ bounded partition the diameter of every cluster is at most ∆, and the (η, δ)-
padding property of a distribution over ∆-bounded partitions is that for all x ∈ X ,
Pr[B(x, η∆) ⊆ P (x)] ≥ δ (where P (x) denotes the cluster containing x).

Let D = c · k log n, ∆0 = diam(X), I = [dlog4(∆0)e], where c is a constant
to be determined later. For all j ∈ I , ∆j = ∆0/4j . Fix some h ∈ [D]. For all j ∈
I create a ∆j-bounded (ηj , 1/2)-padded probabilistic partition P

(h)
j sampled from a

certain distribution P̂j over a set of partitions Pj (for details see [2]). This distribution
P̂j is accompanied by a collection of uniform functions8 {ξP : X → {0, 1} | P ∈ Pj}
and {ηP : X → (0, 1] | P ∈ Pj}. Roughly speaking, ηP (x) is the inverse logarithm of
the local growth rate of the space in the cluster containing x, and ξP (x) is an indicator
for sufficient local growth rate. Define for x ∈ X , 0 < j ∈ I , φ

(h)
j : X → R+, by

φ
(h)
j (x) = ξ

P
(h)
j

(x)/η
P

(h)
j

(x) .

8 A function f is uniform with respect to a partition P if for any x, y ∈ X , P (x) = P (y)
implies that f(x) = f(y).



Let {σ(h)
j (A)|A ∈ Pj , 0 < j ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random

variables. Define the embedding f : X → LD
2 by defining for all h ∈ [D] a function

f (h) : X → R+ and let f = D−1/2
⊕

h∈D f (h). For all j ∈ I define f
(h)
j : X → R+

and let f (h) =
∑

j>0 f
(h)
j . For x ∈ X define

f
(h)
j (x) = σ

(h)
j (P (h)

j (x)) ·min{φ(h)
j (x) · d(x,X \ P

(h)
j (x)),∆j} ,

Finally we let f̂ = C · f be scaled version of f , where C > 1 is a universal constant.

3.2 Analyzing the (k − 1)-dimensional distortion

In what follows we give the necessary definitions and state the main technical lemma
(Lemma 2) that summarizes the distortion properties of the embedding needed to prove
Theorem 3. We start with some definitions.

Definition 3. For a point x ∈ X and radius r ≥ 0 let B(x, r) = {y ∈ X|d(x, y) ≤ r}.
For x ∈ X , and ε > 0 let rε(x) be the minimal radius r such that |B(x, r)| ≥ εn.

In [2] it was shown that 1 ≤ ‖f̂(x)−f̂(y)‖2
d(x,y) ≤ O(log(1/ε)), for any 0 < ε < 1/2

such that min{rε/2(x), rε/2(y)} < d(x, y) . In this section we generalize the analysis
to sets of size k: First we define the ε values for a set, then in Lemma 2 we show an
analogue for pair distortion on some pairs in the set (even a stronger bound is given,
with respect to the affine span), then we show in Lemma 4 that the volume distortion
of a set S is bounded and finally conclude the appropriate bounds on the various `q

distortions.
For any sequence S = (s0, s1, . . . sk−1), define a sequence ε(S) = (ε(S)

1 , . . . , ε
(S)
k−1)

as follows. For any i ∈ {1, . . . , k−1} let t(i) ∈ {0, . . . , i−1} be the index of the point
satisfying d(si, {s0, . . . , si−1}) = d(si, st(i)), then ε

(S)
i = 2−j where j is the mini-

mal integer such that min
{

r
ε
(S)
i /2

(si), rε
(S)
i /2

(st(i))
}

< d(si, st(i)). In other words, if

ε
(S)
i = 2−j then either the radius of B1 or the radius of B2 is smaller than d(si, st(i))

where B1 is the ball around si that contains n2−(j+1) points and B2 is the ball around
st(i) that contains n2−(j+1) points.

Lemma 2. Let (X, d) be an n point metric space, 2 ≤ k ≤ n, and let f̂ : X → L2

be the embedding defined in Section 3.1. Then with high probability, for any S ∈
(
X
k

)
there exists an ordering S = (s0, s1, . . . sk−1) such that for all 1 ≤ i < k:

1 ≤ dE(f̂(si), affspan(f̂(s0), . . . , f̂(si−1)))
d(si, {s0, . . . , si−1})

≤ O(log(1/ε
(S)
i )),

where dE denotes the Euclidean distance.

We defer the proof of Lemma 2 to the full version. In what follows we show that
this lemma implies the desired distortion bounds for the embedding.

From now on fix some 2 ≤ k ≤ n. We first make use of Theorem 2 to bound the
(k − 1)-dimensional distortion of each set S ∈

(
X
k

)
as a function of ε(S) implied by

Lemma 2. We start by showing that the embedding is (volume) non-contractive.

Lemma 3. The embedding f̂ is (volume) non-contractive.



Proof. Fix some S = (s0, . . . , sk−1). Let qi = dE(f̂(si), affspan(f̂(s0), . . . , f̂(si−1)).

By definition, volE(f̂(S)) =
Qk−1

i=1 qi

(k−1)! . By the lower bound part of Lemma 2:

volF (S) ≤ 1
(k − 1)!

k−1∏
i=1

d(si, {s0, . . . , si−1}) ≤
∏k−1

i=1 qi

(k − 1)!
= volE(f̂(S))

Lemma 4. For any S ∈
(
X
k

)
:

distf̂ (S) ≤ O

(k−1∏
i=1

log(1/ε
(S)
i )

)1/(k−1)
 .

Proof. Let S = (s0, . . . , sk−1) be the sequence determined by Lemma 2. By definition,

volE(f̂(S)) =
Qk−1

i=1 qi

(k−1)! , where qi = dE(f̂(si), affspan(f̂(s0), . . . , f̂(si−1)). By the
upper bound part of Lemma 2:

volE(f̂(S)) =
∏k−1

i=1 qi

(k − 1)!
≤ 1

(k − 1)!

k−1∏
i=1

(
c1 log(1/ε

(S)
i ) · d(si, {s0, . . . , si−1})

)
,

where c1 is an appropriate constant. Now Theorem 2 guarantees that:

1
(k − 1)!

k−1∏
i=1

d(si, {s0, . . . , si−1}) ≤ ck−1
2 · volF (S),

for an appropriate constant c2, implying that:

volE(f̂(S)) ≤ (c1c2)k−1 · volF (S)
k−1∏
i=1

log(1/ε
(S)
i ).

3.3 Analyzing the worst case (`∞) volume distortion

Lemma 5. The (k − 1)-dimensional distortion of f̂ is O(log n) i.e. dist(k−1)
∞ (f̂) =

O(log n).

Proof. For any set S ∈
(
X
k

)
and i ∈ [k], ε

(S)
i ≥ 1/n. So

distf̂ (S) ≤ O

(k−1∏
i=1

log(1/ε
(S)
i )

)1/(k−1)
 ≤ O(log n).

3.4 Analyzing the average (`1) volume distortion

Lemma 6. The average (k−1)-dimensional distortion of f̂ is O(log k) i.e. dist(k−1)
1 (f̂) =

O(log k).

Proof. Define for every S ∈
(
X
k

)
, and for any si ∈ S, ε̂

(S)
i as a power of 1/2 and the

maximal such that d(si, S \{si}) > r
ε̂
(S)
i /2

(si). By definition r
ε̂
(S)
i /2

(si) ≤ r
ε
(S)
i /2

(si)



and hence, ε̂
(S)
i ≤ ε

(S)
i . Let C be an appropriate constant. The average (k − 1)-

dimensional distortion can be bounded as follows

dist(k−1)
1 (f̂)
C

≤ ES∈(X
k)

(k−1∏
i=1

log(1/ε
(S)
i )

)1/(k−1)


≤ E

(k−1∏
i=1

log(1/ε̂
(S)
i )

)1/(k−1)


≤ E

[
1

k − 1

k−1∑
i=1

log(1/ε̂
(S)
i )

]

=
1

k − 1

k−1∑
i=1

E
[
log(1/ε̂

(S)
i )

]

using the arithmetic-geometric mean inequality and the linearity of expectation.
For every set S ∈

(
X
k

)
let m = m(S) be the maximal integer such that for all

i ∈ {0, 1, . . . , k − 1}, B(si, rm/n(si)) ∩ S = {si}. That is, for every point s ∈ S

the first m − 1 nearest neighbors (in X) of s, are not in S. Since ε̂
(S)
i ≥ m/(2n)

then E
[
log(1/ε̂

(S)
i )

]
≤ E [log(n/m)] + 1, for all S ∈

(
X
k

)
and i ∈ {0, 1, . . . , k − 1}

(note that here the range for i includes the first index 0). We now proceed to bound
E [log(n/m)]. Let A(s, t) be the event that the t-th nearest neighbor of a point s ∈ S
is also in S (using a consistent lexicographic order on the points so that the t-th nearest
neighbor is unique). The probability that A(s, t) occurs is exactly (k−1)/(n−1), since
given that s ∈ S there are k− 1 additional points to choose for S uniformly at random.
Hence by union bound

Pr[m(S) = t] ≤ Pr[
⋃
s∈S

A(s, t)] ≤
∑
s∈S

Pr[A(s, t)] ≤ k(k − 1)
n− 1

.

Let h = d n
k2 e, it follows that Pr[m(S) = t] ≤ 2/h. Hence,

ES [log(n/m(S))] ≤
h∑

t=1

Pr[m(S) = t] · log(n/t) + Pr[m(S) > h] log(n/h)

≤ 2
h

(
h log n−

h∑
t=1

log t

)
+ log(k2)

Note that
∑h

t=1 log t = log(h!) ≥ h log(h/e), hence

E [log(n/m)] ≤ (log n− log(n/(ek2)) + 2 log k = O(log k).

References

1. I. Abraham, Y. Bartal, T-H. H. Chan, K. Dhamdhere Dhamdhere, A. Gupta, J. KLeinberg,
O. Neiman, and A. Slivkins. Metric embeddings with relaxed guarantees. In FOCS ’05:
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,
pages 83–100, Washington, DC, USA, 2005. IEEE Computer Society.



2. I. Abraham, Y. Bartal, and O. Neiman. Advances in metric embedding theory. In STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
271–286, New York, NY, USA, 2006. ACM Press.

3. I. Abraham, Y. Bartal, and O. Neiman. Embedding metrics into ultrametrics and graphs into
spanning trees with constant average distortion. In SODA ’07 Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms, 2007.

4. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pages
184–193. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.

5. J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math.,
52(1-2):46–52, 1985.

6. T.-H. H. Chan, M. Dinitz, and A. Gupta. Spanners with slack. In ESA’06: Proceedings of
the 14th conference on Annual European Symposium, pages 196–207, London, UK, 2006.
Springer-Verlag.

7. M. Dinitz. Compact routing with slack. In PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, pages 81–88, New York,
NY, USA, 2007. ACM.

8. J. Dunagan and S. Vempala. On Euclidean embeddings and bandwidth minimization. Lecture
Notes in Computer Science, 2129, 2001.

9. Michael Elkin, Christian Liebchen, and Romeo Rizzi. New length bounds for cycle bases.
Information Processesing Letters, 104(5):186–193, 2007.

10. U. Feige. Approximating the bandwidth via volume respecting embeddings. J. Comput.
System Sci., 60(3):510–539, 2000. 30th Annual ACM Symposium on Theory of Computing
(Dallas, TX, 1998).

11. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

12. A. Gupta. Improved bandwidth approximation for trees and chordal graphs. J. Algorithms,
40(1):91–36, 2001.

13. D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10:180–184, 1985.

14. Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete
Math., 4(3):369–384, 1991.

15. J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and embedding using small sets of
beacons. In J. ACM, volume 56, pages 1–37, New York, NY, USA, 2009. ACM.

16. G. Konjevod, A. W. Richa, D. Xia, and H. Yu. Compact routing with slack in low dou-
bling dimension. In PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing, pages 71–80, New York, NY, USA, 2007. ACM.

17. R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding
method for finite metrics. In 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 434–443. IEEE, October 2004.

18. R. Krauthgamer, N. Linial, and A. Magen. Metric embeddings–beyond one-dimensional
distortion. Discrete Comput. Geom., 31(3):339–356, 2004.

19. J. R. Lee. Volume distortion for subsets of euclidean spaces. In SCG ’06: Proceedings of the
twenty-second annual symposium on Computational geometry, pages 207–216, New York,
NY, USA, 2006. ACM.

20. S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean met-
rics. In Proceedings of the Fifteenth Annual Symposium on Computational Geometry, pages
300–306, New York, 1999. ACM.


	Volume in General Metric Spaces

