
SIAM J. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 44, No. 1, pp. 160–192

EMBEDDING METRICS INTO ULTRAMETRICS AND GRAPHS
INTO SPANNING TREES WITH CONSTANT AVERAGE

DISTORTION∗

ITTAI ABRAHAM†, YAIR BARTAL‡ , AND OFER NEIMAN§

Abstract. This paper addresses the basic question of how well a tree can approximate distances
of a metric space or a graph. Given a graph, the problem of constructing a spanning tree in a
graph which strongly preserves distances in the graph is a fundamental problem in network design.
We present scaling distortion embeddings where the distortion scales as a function of ε, with the
guarantee that for each ε simultaneously, the distortion of a fraction 1 − ε of all pairs is bounded
accordingly. Quantitatively, we prove that any finite metric space embeds into an ultrametric with
scaling distortion O(

√
1/ε). For the graph setting, we prove that any weighted graph contains a

spanning tree with scaling distortion O(
√

1/ε). These bounds are tight even for embedding into
arbitrary trees. These results imply that the average distortion of the embedding is constant and
that the �2 distortion is O(

√
logn). For probabilistic embedding into spanning trees we prove a

scaling distortion of Õ(log2(1/ε)), which implies constant �q-distortion for every fixed q < ∞.

Key words. embedding, constant average distortion, spanning tree

AMS subject classification. 30L05

DOI. 10.1137/120884390

1. Introduction. The problem of embedding general metric spaces into tree
metrics with small distortion has been central to the modern theory of finite metric
spaces. Such embeddings provide an efficient representation of the complex metric
structure by a very simple metric. Moreover, the special class of ultrametrics (rooted
trees with equal distances to the leaves) plays a special role in such embeddings [Bar96,
BLMN05]. Such an embedding provides an even more structured representation of
the space which has a hierarchical structure [Bar96]. Probabilistic embedding into
ultrametrics has led to algorithmic applications for a wide range of problems (see
[Ind01]).

An important problem in network design is to find a tree spanning the network,
represented by a graph, which provides good approximation of the metric defined
with the shortest path distances in the graph. Different notions have been suggested
to quantify how well distances are preserved, e.g., routing trees and communication
trees [WLB+98]. The papers [AKPW95, EEST05] study the problem of constructing
a spanning tree with low average stretch, i.e., low average distortion over the edges
of the tree. It is natural to define our measure of quality for the embedding to be
its average distortion over all pairs, or alternatively the more strict measure of its

∗Received by the editors July 12, 2012; accepted for publication (in revised form) November 20,
2014; published electronically February 18, 2015. A preliminary version of this paper appeared in
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.

http://www.siam.org/journals/sicomp/44-1/88439.html
†VMware Research Group, 3401 Hillview Avenue, Palo Alto, CA 94304 (ittaia@gmail.com,

iabraham@vmware.com). Part of this work was done while this author was at Microsoft Research
Silicon Valley.

‡Computer Science School, Hebrew University, Jerusalem, Israel (yair@cs.huji.ac.il). This author
was supported in part by a grant from the Israeli Science Foundation (1609/11).

§Department of Computer Science, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
(neimano@cs.bgu.ac.il). This author was supported in part by ISF grant 523/12 and by the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 303809.

160

http://www.siam.org/journals/sicomp/44-1/88439.html
mailto:ittaia@gmail.com
mailto:iabraham@vmware.com
mailto:yair@cs.huji.ac.il
mailto:neimano@cs.bgu.ac.il

EMBEDDING INTO TREES 161

�2-distortion. Such notions are very common in most practical studies of embed-
dings (see, for example, [HS00, HFC00, AS03, HBK+03, ST04, TC04]). We recall
the definitions from [ABN06]. Given two metric spaces (X, dX) and (Y, dY) an in-
jective mapping f : X → Y is called an embedding of X into Y . An embedding is
noncontractive if for any u �= v ∈ X : dY (f(u), f(v)) ≥ dX(u, v). For a noncontractive

embedding let the distortion of the pair u, v ∈ X be distf (u, v) =
dY (f(u),f(v))

dX(u,v) .

Definition 1.1 (�q-distortion). For 1 ≤ q ≤ ∞, define the �q-distortion of an
embedding f as

distq(f) = E[distf (u, v)
q]1/q,

where the expectation is taken according to the uniform distribution over
(
X
2

)
. The

classic notion of distortion is expressed by the �∞-distortion and the average distor-
tion is expressed by the �1-distortion.

Besides q = ∞ and q = 1, the case of q = 2 is a natural measure. It is related to
the notion of stress which is a standard measure in multidimensional scaling methods
[KW78, Kru64]. See [ABN06] for more information regarding the �q distortion.

Definition 1.2 (partial/scaling embedding). Given two metric spaces (X, dX)
and (Y, dY), a partial embedding is a pair (f, P), where f is a noncontractive embed-
ding of X into Y , and P ⊆

(
X
2

)
. The distortion of (f, P) is defined as dist(f, P) =

sup{u,v}∈P distf (u, v). For ε ∈ [0, 1), a (1 − ε)-partial embedding is a partial embed-

ding such that |P | ≥ (1− ε)
(
n
2

)
.1 Given two metric spaces (X, dX) and (Y, dY) and a

function α : [0, 1) → R+, we say that an embedding f : X → Y has scaling distortion
α if for any ε ∈ [0, 1), there is some set P (ε) such that (f, P (ε)) is a (1 − ε)-partial
embedding with distortion at most α(ε).

The notion of average distortion is tightly related to that of embedding with
scaling distortion [KSW04, ABC+05], as shown by the following lemma proved in
[ABN06].

Lemma 1.3. Given an n-point metric space (X, dX) and a metric space (Y, dY).
If there exists an embedding f : X → Y with scaling distortion α, then

distq(f) ≤
(
2

∫ 1

1
2 (

n
2)

−1
α(x)qdx

)1/q

.

We prove the following theorems.
Theorem 1.4. Any n-point metric space embeds into an ultrametric with scaling

distortion O(
√

1/ε). In particular, its �q-distortion is O(1) for any fixed 1 ≤ q < 2,
O(

√
logn) for q = 2, and O(n1−2/q) for any fixed 2 < q ≤ ∞.
Theorem 1.5. Any weighted graph of size n contains a spanning tree with scaling

distortion O(
√

1/ε). In particular, its �q-distortion is O(1) for any fixed 1 ≤ q < 2,
O(

√
logn) for q = 2, and O(n1−2/q) for any fixed 2 < q ≤ ∞.

The tightness of our results follows from a lower bound in [ABC+05]. We show
in section 5 that the bounds in Theorems 1.4 and 1.5 are tight for the n-cycle, even
for embeddings into arbitrary tree metrics.

A probabilistic embedding is a distribution F over noncontracting embeddings,

and the distortion of the pair {u, v} is distF(u, v) = Ef∈F [
dY (f(u),f(v))

dX(u,v)]. The notion

1Note that the embedding is strictly partial only if ε ≥ 1/
(n
2

)
.

162 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

of scaling distortion is extended to probabilistic embedding in the obvious way. We
obtain an equivalent result for probabilistic embedding into spanning trees.

Theorem 1.6. Any weighted graph of size n probabilistically embeds into a span-
ning tree with scaling distortion Õ(log2 1/ε). In particular, its �q-distortion is O(1)
for any fixed 1 ≤ q < ∞.2

1.1. Related work. Embedding metrics into trees and ultrametrics was intro-
duced in the context of probabilistic embedding in [Bar96]. Other related results
on embedding into ultrametrics include work on metric Ramsey theory [BLMN05],
multi-embeddings [BM03], and dimension reduction [BM02]. Embedding an arbitrary
metric into a tree metric requires Ω(n) distortion in the worst case even for the met-
ric of the n-cycle [RR98]. It is a simple fact [HPM06, BLMN05, Bar96] that any
n-point metric embeds in an ultrametric with distortion n− 1. However, the known
constructions are not scaling and have average distortion linear in n.

The probabilistic embedding theorem [FRT03, Bar04] (improving earlier results
of [Bar96, Bar98]) states that any n-point metric space probabilistically embeds into
an ultrametric with distortion O(log n). This result has been the basis for many
algorithmic applications (see [Ind01]). This theorem implies the existence of a sin-
gle ultrametric with average distortion O(log n) (a constructive version was given in
[Bar04]). This bound was later improved with the analysis of [ABC+05], as we discuss
below.

The study of partial embedding and embedding with scaling distortion was ini-
tiated by Kleinberg, Slivkins, and Wexler [KSW04] and later studied in [ABC+05,
ABN06]. Abraham et. al [ABC+05] prove that any finite metric space probabilisti-
cally embeds in an ultrametric with scaling distortion O(log(1/ε)) implying constant
average distortion. As mentioned above, since the distortion is bounded in expecta-
tion, this result implies the existence of a single ultrametric with constant average
distortion but does not bound the �2-distortion. In [ABN06] we have studied in depth
the notions of average distortion and �q-distortion and their relation to partial and
scaling embeddings. Our main focus was the study of optimal scaling embeddings
for embedding into Lp spaces. For embedding of metrics into ultrametrics, we men-

tioned that partial embeddings exist with distortion O(
√

1/ε) matching the lower
bound from [ABC+05]. Theorem 1.4 significantly strengthens this result by provid-
ing an embedding with scaling distortion. That is, the bound holds for all values of
0 < ε < 1 simultaneously and therefore the embedding has bounded �q-distortion as
given by Lemma 2.2.

It is a basic fact that the minimum spanning tree (MST) in an n-point weighted
graph preserves the (shortest paths) metric associated with the graph up to a factor
of n − 1 at most. This bound is tight for the n-cycle. Alas, in general the MST
does not have scaling distortion and may have linear average distortion.3 Alon et al.
[AKPW95] studied the problem of computing a spanning tree of a graph with small
average stretch (over the edges of the graph). This can also be viewed as the dual
of probabilistic embedding of the graph metric in spanning trees. Their work was
significantly improved by Elkin et al. [EEST05], who show that any weighted graph
contains a spanning tree with average stretch O(log2 n log log n). Further improve-
ments by [ABN08, AN12] gave a near optimal Õ(logn) bound. This result can also
be rephrased in terms of the average distortion (but not the �2-distortion) over all

2Note that probabilistic embedding bounds on the �q-distortion do not imply an embedding into
a single tree with the same bounds, with the exception of q = 1.

3For example, take the uniform metric and slightly perturb it, so that the MST is a path.

EMBEDDING INTO TREES 163

pairs. For spanning trees, this paper gives the first construction with constant average
distortion.

We remark that the result of Theorem 1.6 was obtained before the improve-
ments of [ABN08, AN12], and while it seems possible that it could be improved
to Õ(log(1/ε)) using the new ideas of these papers, there are some technical compli-
cations, and therefore we have decided not to pursue this direction here.

Following our work, [ELR07] showed that Theorem 1.5 resolves a conjecture of
[DPK82] from 1982 on cycle bases. The weight of a strictly fundamental cycle basis for
a spanning tree T of a graphG = (V,E) is essentially

∑
(u,v)∈E dT (u, v) (up to a factor

of 2), and Deo, Prabhu and Krishnamoorthy conjectured that for any unweighted
graph there exists a spanning tree for which this quantity is bounded by O(n2). Our

result gives a stronger bound, that
∑

(u,v)∈E dT (u, v) +
∑

(u,v)/∈E
dT (u,v)
d(u,v) ≤ O(n2).

1.2. Discussion of techniques. Theorem 1.4 uses partitioning techniques sim-
ilar to those used in the context of the metric Ramsey problem [BBM06, BLMN05].
However, in our case we need to provide an argument for the existence of a partition
which simultaneously satisfies multiple conditions, each for every possible value of ε.
Theorem 1.5 builds on the technique above together with the Elkin et al. [EEST05]
method to construct a spanning tree. A straightforward application of this approach
loses an extra O(log n) factor and hence does not give a scaling distortion depending
solely on ε. The loss in the Elkin et al. approach stems from the need to bound the
diameter in the recursive construction of the spanning tree. In each level of the
construction we may allow only a very small increase as these get multiplied in the
bound on the total blowup in the overall diameter. In their original work [EEST05]
the increase per level is Θ(1/ logn), which translates to a multiplicative factor in the
distortion. In our case we show that the increase can exponentially decrease along the
levels. This indeed guarantees a good blowup in the overall diameter but is awful in
terms of the distortion. We apply a new technique for bounding the diameter which
allows us to limit the number of levels involved. On the other hand, it is clear that for
every value of ε there is a limited number of levels for which the distortion require-
ment imposes new constraints. The proof then proceeds to carefully balance these
different arguments. Theorem 1.6 uses essentially the same ideas but in a probabilistic
embedding setting.

2. Preliminaries. Consider a finite metric space (X, d) and let n = |X |. For
any point x ∈ X and a subset S ⊆ X let d(x, S) = mins∈S d(x, s). If P = (S; S̄)
is a partition of X , then d(x, P) = max{d(x, S), d(x, S̄)}. The diameter of X is
denoted diam(X) = maxx,y∈X d(x, y). For a point x ∈ X and r ≥ 0, the ball at
radius r around x is defined as BX(x, r) = {z ∈ X |d(x, z) ≤ r}, and the open ball
is B◦

X(x, r) = {z ∈ X |d(x, z) < r}. Given x ∈ X let radx(X) = maxy∈X d(x, y).
Given an edge-weighted graph G = (X,E,w) with w : E → R+, let (X, dX) be the
metric space induced from the graph in the usual manner—vertices are associated
with points, and distances between points correspond to shortest-path distances in G.
If X is clear from the context we may omit the subscript.

An ultrametric (U, d) is a metric space satisfying a strong form of the triangle
inequality, that is, for all x, y, z ∈ U , d(x, z) ≤ max{d(x, y), d(y, z)}. The following
definition is known to be equivalent to the above definition (see [BLMN05]).

Definition 2.1. An ultrametric U is a metric space (U, d) whose elements are
the leaves of a rooted labeled tree T . Each v ∈ T is associated a label Φ(v) ≥ 0 such
that if u ∈ T is a descendant of v, then Φ(u) ≤ Φ(v) and Φ(u) = 0 iff u ∈ U is a

164 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

leaf. The distance between leaves x, y ∈ U is defined as d(x, y) = Φ(lca(x, y)), where
lca(x, y) is the least common ancestor of x and y in T .

2.1. Scaling distortion and average distortion. We now prove that a bound
of O(

√
1/ε) on the scaling distortion will imply the �q-distortion bounds as stated in

the theorems.
Lemma 2.2. If an embedding of an n point metric space has scaling distortion

O(
√

1/ε), then it has �q-distortion:
• O(1) for any fixed q < 2.
• O(

√
logn) for q = 2.

• O(n1−2/q) for any fixed q > 2.
Proof. Note that for q = ∞, taking ε = 1/n2 suggests that all pairs have distortion

at most O(n).
By Lemma 1.3 with α(x) = x−1/2 it is enough to bound the integral

(
∫ 1

1/n2 x
−q/2dx)1/q . If q �= 2, then

(∫ 1

1/n2

x−q/2dx

)1/q

=

([
x1−q/2

1− q/2

]1
1/n2

)1/q

=

(
1− nq−2

1− q/2

)1/q

.

Now for q < 2 this is bounded by (1− q/2)−1/q which is O(1) for any fixed value
of q in this range.

For q > 2 the integral is (q/2− 1)−1/q(nq−2 − 1)1/q. As the term (q/2− 1)−1/q is
O(1) for any fixed value of q in this range the integral is bounded by O(n1−2/q).

Finally for q = 2 we have(∫ 1

1/n2

x−1dx

)1/2

=
(
[lnx]11/n2

)1/2
= (2 lnn)

1/2
.

3. Scaling embedding into an ultrametric. In this section we prove
Theorem 1.4. Let (X, d) be a metric space with n = |X | and Δ = diam(X). In
what follows we will always assume that ε ≥ 1/n2, because the distortion bound for
ε = 1/n2 holds for all pairs, and the scaling distortion function is monotone. The
ultrametric will be represented by a binary tree which is induced by a laminar hier-
archical partition of X ; each node u corresponds to a subset Xu ⊆ X such that if
v, w are the children of u in the ultrametric, then Xv ∩ Xw = ∅, Xv ∪ Xw = Xu.
Furthermore the root r has Xr = X and each leaf corresponds to a singleton.

The high level construction of T is as follows: find a partition P of X into X1

and X2 = X \ X1; the root of T will be labeled Δ, and its children will be the
trees T1, T2 formed recursively from the ultrametric trees of X1 and X2, respectively.
For any 0 < ε < 1 denote by Bε(X) the total number of pairs x, y ∈ X such that
dT (x, y) > (150/

√
ε)dX(x, y). Note that since the root is labeled by Δ it always holds

that dT (x, y) ≥ dX(x, y), so it remains to bound Bε(X) by ε
(|X|

2

)
. For a partition

P = (X1;X2) let B̂ε(P) = |{{x, y} | x ∈ X1 ∧ y ∈ X2 ∧ dX(x, y) < (
√
ε/150) ·Δ}|.

Lemma 3.1. For any metric space (X, d) there exists a nontrivial partition4

P = (X1;X2) of X such that for any ε ∈ (0, 1), B̂ε(P) ≤ ε|X1||X2|.

4A partition (X1;X2) is nontrivial if both X1,X2 �= ∅.

EMBEDDING INTO TREES 165

Using this lemma, the proof of the main theorem quickly follows.
Proof of Theorem 1.4. The proof is by induction on the size of X . The base case,

where |X | = 2, holds because the unique pair realizes the diameter, thus Bε(X) = 0.
Assume that for any metric space with m < n points, we can find an ultrametric
such that the number of pairs distorted by more than 150/

√
ε is bounded by ε

(
m
2

)
.

Now consider the metric space (X, d) with |X | = n. Let P be the partition (X1;X2)
guaranteed to exist by Lemma 3.1. By induction,

Bε(X) = B̂ε(P) +Bε(X1) +Bε(X2)

≤ ε

((
|X1|
2

)
+

(
|X2|
2

)
+ |X1| · |X2|

)

= ε

(
|X |
2

)
.

This bounds the scaling distortion by O(1/
√
ε) as required, and the consequences of

this bound on the �q-distortion are given in Lemma 2.2.

3.1. Proof of Lemma 3.1. First the partition algorithm is described, then the
proof of correctness is done separately for “small” and “large” values of ε in Claims
3.3 and 3.4, respectively.

Partition algorithm. Let u ∈ X be such that |B◦(u,Δ/2)| ≤ n/2; one can always
find such a point by considering a pair u, v ∈ X that realizes the diameter. Let ε̂ =
max{ε ∈ (0, 1) : |B(u,

√
εΔ/4)| ≥ εn} and ε̄ = 32ε̂; the maximum is indeed obtained

because the metric space is finite. Since a ball always contains at least one point we
have that ε̂ ≥ 1/n. For all ε ∈ (0, 1), we have that B(u,

√
εΔ/4) ⊆ B◦(u,Δ/2); by the

choice of u this ball contains at most n/2 points, thus ε̂ ≤ 1/2. Define the intervals
Ŝ = [

√
ε̂Δ/4,

√
ε̂Δ/2], S = [(14 +

1
25)

√
ε̂Δ, (12 −

1
25)

√
ε̂Δ], the length of S, s = 17

100

√
ε̂Δ,

and the shell Q = {w : d(u,w) ∈ Ŝ}. The partition P is defined by carefully choosing
a certain r ∈ S and letting X1 = B(u, r) and X2 = X \X1. The following property
will be useful,

Proposition 3.2. |B(u,
√
ε̂Δ/2)| ≤ 4ε̂n.

Proof. There are two cases. If ε̂ ≤ 1/4, then |B(u,
√
ε̂Δ/2)| = |B(u,

√
4ε̂Δ/4)| ≤

4ε̂n (otherwise it is a contradiction to the maximality of ε̂). In the other case ε̂ ∈
(1/4, 1), but now |B(u,

√
ε̂Δ/2)| ≤ |B◦(u,Δ/2)| ≤ n/2 ≤ 2ε̂n.

We will now show that a certain choice of r ∈ S will produce a partition that
satisfies the condition of Lemma 3.1 for all ε ∈ (0, ε̄]. For any r ∈ S and ε ≤ ε̄ let
Sr(ε) = (r−

√
εΔ/150, r+

√
εΔ/150), s(ε) =

√
εΔ/75, and let Qr(ε) = {w : d(u,w) ∈

Sr(ε)}. Notice that for any r ∈ S and any ε ≤ ε̄, Sr(ε) ⊆ Ŝ. Define that property
Ar(ε) holds if the shell Qr(ε) has sufficiently small cardinality, which will imply that
cutting at radius r is “good” for ε. Formally,

Ar(ε) holds iff |Qr(ε)| ≤
√
ε · ε̂/2 · n.(3.1)

Note that the triangle inequality suggests that only pairs {x, y} such that x, y ∈ Qr(ε)
may contribute to B̂ε(P). Indeed, assume that x ∈ X1, y ∈ X2 and withost loss of
generality (w.l.o.g.) y /∈ Qr(ε); then d(x, y) ≥ d(u, y) − d(x, u) ≥ r +

√
εΔ/150 −

r =
√
εΔ/150, so by definition {x, y} /∈ B̂ε(P). The other case when x /∈ Qr(ε) is

symmetric. Observe that r ≥
√
ε̂Δ/4, and thus by the definition of ε̂

|X1| ≥ |B(u,
√
ε̂Δ/4)| ≥ ε̂n.(3.2)

166 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

We also have that r <
√
ε̂Δ/2, so that |X1| ≤ |B(u,

√
ε̂Δ/2)| ≤ n/2 (by the choice of

u), so that

|X2| ≥ n/2.(3.3)

We conclude that if Ar(ε) holds, then by (3.1), (3.2), and (3.3),

B̂ε(P) ≤ |Qr(ε)|2 ≤ ε · ε̂n2/2 ≤ ε|X1|n/2 ≤ ε|X1||X2|,

that is, the condition of Lemma 3.1 is satisfied for ε. Hence for ε ∈ (0, ε̄] the following
is sufficient.

Claim 3.3. There exists some r ∈ S such that property Ar(ε) holds for all
ε ∈ (0, ε̄] simultaneously.

Proof. The proof is based on the following iterative process that greedily deletes
the “worst” interval in S. Initially, let I0 = S, and j = 1:

1. If for all r ∈ Ij−1 and for all ε ≤ ε̄ property Ar(ε) holds, then set t = j − 1,
stop the iterative process, and output It.

2. Let Sj = {Sr(ε) : r ∈ Ij−1, ε ≤ ε̄,¬Ar(ε)}. We greedily remove the interval
that has maximal ε. Formally, let rj , εj be parameters such that Srj (εj) ∈ Sj

and εj = max{ε : ∃Sr(ε) ∈ Sj}.
3. Set Ij = Ij−1 \ Srj (εj), set j = j + 1, and goto 1.

Note that this process can be computed in polynomial time, using a simple dis-
cretization of ε and r. For instance, as we would like to determine for a fixed ε if
there is an r such that |Qr(ε)| is too large, we need to scan all the intervals of length
sr(ε). But we claim that it suffices to scan those intervals that start or end at a
point, that is, at d(u,w) for some w ∈ Q (all the other intervals will not contain more
points). One can then do a simple binary search on the value of ε to find the largest
(we only need to consider polynomially many values, those values for which ε · ε̂n2/2
is an integer).

We now argue that It �= ∅ and hence an appropriate value r ∈ S can be found.
First we will show that any point a ∈ Ŝ can be covered by at most two intervals
Srj (εj), Sri(εi) for some 1 ≤ j < i ≤ t. This holds because once a is covered from the
left by Srj (εj) (that is, rj ≤ a), then this interval is removed in step 3. from Ij . By
maximality of εj, for any j < i ≤ t we have that s(εi) ≤ s(εj), so as ri ∈ Ij it must be
that the interval Sri(εi) covers a from the right (that is, ri ≥ a), and no other interval
will cover a in the remainder of the process.

Observe that Srj (εj) ⊆ Ŝ for any 0 ≤ j ≤ t. This suggests that any x ∈ Q
appears in at most two sets Qrj (εj), Qri(εi). From this and Proposition 3.2,

t∑
j=1

|Qrj (εj)| ≤ 2|Q| ≤ 8ε̂n.(3.4)

Recall that since Arj (εj) does not hold for any 1 ≤ j ≤ t, then

t∑
j=1

|Qrj(εj)| ≥
√
ε̂/2 · n

t∑
j=1

√
εj,(3.5)

and combining (3.4) and (3.5) yields

t∑
j=1

√
εj ≤ 12

√
ε̂.

EMBEDDING INTO TREES 167

Finally we can bound the total length of the “bad” intervals chosen by the process by
the definition of s(ε),

t∑
j=1

|Srj (εj)| =
t∑

j=1

s(εj) ≤
t∑

j=1

√
εjΔ/75 ≤ 12/75 ·

√
ε̂Δ = 16/100 ·

√
ε̂Δ.

Since |I0| = s = 17/100 ·
√
ε̂Δ it is impossible that the entire interval I0 was removed;

therefore It �= ∅, and actually any r ∈ It satisfies the condition of Claim 3.3.
Next we show that in fact any choice of r ∈ S will produce a partition that

satisfies Lemma 3.1 for all ε ∈ (ε̄, 1).
Claim 3.4. If ε ∈ (ε̄, 1), r ∈ S, and P = (B(u, r);X \ B(u, r)), then B̂ε(P) <

ε|X1||X2|.
Proof. Note that only pairs {x, y} such that x ∈ X1 and y ∈ B(u, r+

√
εΔ/16)∩X2

can be distorted by more than 16
√
1/ε and hence may be counted in B̂ε(P), so

|B̂ε(P)| < |X1| · |B(u, r +
√
εΔ/16)|.(3.6)

Since
√
ε̂ ≤

√
ε/2/4 and r <

√
ε̂Δ/2 ≤

√
ε/2Δ/8, then

|B(u, r +
√
εΔ/16)| ≤

∣∣∣∣B
(
u,
√
ε/2

(
1

8
+

1

8

)
Δ

)∣∣∣∣ = |B(u,
√
ε/2Δ/4)| < εn/2,(3.7)

where the last inequality used that ε/2 > ε̂ and the maximality of ε̂. Plugging (3.7)
into (3.6) and using (3.3) it follows that B̂ε(P) < ε|X1| · |X2|, as required.

4. Scaling embedding into a spanning tree. Here we extended the tech-
niques of the previous section, in conjunction with the constructions of [EEST05], to
achieve the following.

Theorem 1.5 (restated). Any weighted graph of size n contains a spanning tree
with scaling distortion O(

√
1/ε). In particular, its �q-distortion is O(1) for any fixed

1 ≤ q < 2, O(
√
logn) for q = 2, and O(n1−2/q) for any fixed 2 < q ≤ ∞.

Given a graph, the spanning tree is created by recursively partitioning the graph
using a hierarchical star-partition. The algorithm has three components, with the
following high level description:

1. A decomposition algorithm that creates a single cluster. The decomposition
algorithm is similar in spirit to the decomposition algorithm used in the previous
section for metric spaces. We will later explain the main differences.

2. A star-partition algorithm. This algorithm partitions a graph X into a central
ball X0 with center x0 and a set of cones X1, . . . , Xm and also outputs a set of edges
of the graph {y1, x1}, . . . , {ym, xm} that connect each cone-set Xi to the central ball
X0 by the edge {xi, yi}, where xi ∈ Xi and yi ∈ X0. The central ball is created
by invoking the decomposition algorithm with a center x0 to obtain a cluster whose
radius is in the range [(1/2)radx0(X), (5/8)radx0(X)]. Each cone-set Xi is created
by invoking the decomposition algorithm on a certain “cone-metric” to be defined in
what follows. Informally, a ball in the cone-metric around xi with radius r is the set
of all points x such that d(x0, xi) + d(xi, x) − d(x0, x) ≤ r. Hence each cone Xi is
a ball whose center is xi in some appropriately defined cone-metric. The radius of
each ball in the cone-metric is chosen to be ≈ τkradx0(X), where τ < 1 is some fixed
constant and k is the depth of the recursion since the last reset cluster. Unfortunately,
at some stage the radius may be too small for the decompose algorithm to preform
well enough. In such cases we must reset the parameters that govern the radius of

168 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

the cones. (In the next item, we will define more accurately how the recursion is
performed and when this parameter of a cluster may be reset.) The main property
of this star decomposition is that for any point x ∈ Xi, the distance to the center x0

does not increase by more than r. In the paper [EEST05] the radius r was chosen
to be ≈ radx0(X)/ logn, thus the total radius increase over the O(log n) levels of
recursion was O(1). We cannot allow the cone radius to depend on n, because this
translates to a loss in the distortion, so we use a different method to guarantee O(1)
radius increase.

3. Recursive application of the star-partition. As mentioned in the previous item,
the radius of the balls in the cone-metric are exponentially decreasing. However, at
certain stages in the recursion, the cone radius becomes too small and the parameters
governing the cone radius must be reset. Clusters in which the parameters need to be
restarted are called reset clusters. The two parameters that are associated with a reset
cluster X are n = |X | and Λ = rad(X). Specifically, a cluster is called a reset cluster
if its size relative to the size of the last reset cluster is larger than some constant
times its radius relative to radius of the last reset cluster. In that case n and Λ are
updated to the values of the current cluster. This implies that reset clusters have small
diameter, hence their total contribution to the increase of radius is small. Moreover,
resetting the parameters allows the decompose algorithm to continue to produce the
clusters with the necessary properties to obtain the desired scaling distortion. Using
resets, the algorithm can continue recursively in this fashion until the spanning tree
is formed.

Decompose algorithm. The decompose algorithm receives as input several pa-
rameters. First it obtains a pseudometric space (W,ρ) and point u (for the central
ball this is just the shortest-paths metric, while for cones, this pseudometric is the
so-called cone-metric which will be formally defined in what follows). The goal of the
decompose algorithm is to partition W into a cluster which is a ball Z = B(W,ρ)(u, r)
and Z̄ = W \ Z.

Informally, this partition P = (Z; Z̄) is carefully chosen to maintain the scaling
property: for every ε, the number of pairs whose distortion is too large is “small
enough” (an ε-fraction of the separated pairs). Let Λ̂ be a parameter corresponding
to the radius of the cluster over which the star-partition is performed. Pairs that are
separated “close” to the partition may risk the possibility of being at distance Θ(Λ̂)
in the constructed spanning tree. One of the technical difficulties in the graph setting
is that unlike the metric case, a pair {u, v} can suffer distortion by a partition that
does not separate u from v: it suffices that the partition cuts the shortest path from
u to v. For certain values of ε, we denote by B̂ε(P) the number of pairs that may
be distorted by at least Ω(

√
1/ε) if the distance between them will grow to Λ̂. Using

a decomposition which iteratively deletes bad intervals, similar in spirit to the one
used in Lemma 3.1, we expect the number of “bad” pairs for a specific value of ε to
be at most ε-fraction of the total possible number of separated pairs. However, if
we insist that this property holds true for all ε we cannot maintain a small enough
bound on the maximum value for the radius r. Roughly speaking, r must have a
possible range of size ≈

√
εΛ̂ in order to succeed for ε. Since the size of this range

determines the amount of increase in the radius of the cluster, we would like to be
able to bound it. Therefore, we keep another parameter, denoted εlim = εlim(W) (we
will often omit W when it is clear from context; also note that this parameter may
be larger than 1). That is, the partition P will be good only for those values of ε
satisfying ε ≤ εlim. This bound on the range of ε values actually allows us to give a

EMBEDDING INTO TREES 169

stronger bound than in Lemma 3.1 on the number of “bad” pairs, which improves by
a factor of the additional new parameter β.

The radius r of the ball is controlled by the radius of the cluster Λ̂ and by two
new parameters θ and α ≈ √

εlim. The guarantee is that r ∈ [θΛ̂, (θ + α)Λ̂]. For the
central ball of the star-partition θ is fixed to 1/2 and for the star’s cones θ is fixed to
0. Indeed, as indicated above, the value of εlim determines the increase in the radius
of the cluster by setting the value for α, which gives enough range in the choice of
radius to succeed for all ε ≤ εlim.

Note that there are two conflicting constraints here. On the one hand we want
εlim to be large so that the partition of the current level will be successful for many
values of ε. On the other hand we need that the total radius increase over all levels
will be bounded, so this level must “pay its toll” and allow only a small increase
in the radius, which immediately translate to an upper bound on εlim. As it turns
out, setting εlim = |W |/(n · β) will satisfy both requirements simultaneously. It will
decrease in a geometric manner as long as there is no reset, which is very useful for
the bound on the total radius increase. On the other hand it is still large enough for
controlling the number of distorted pairs, because for ε > εlim, the total number of
pairs in W , which is ≈ |W |2, is a small enough fraction of n2, so we might as well
consider them all as distorted.

Let us explain now how the decompose algorithm will be used within our overall
scheme. A useful property is that the radius of the clusters in the hierarchical star
decomposition decreases geometrically. The parameter β is chosen to be polynomial
in the ratio between the current radius to that of the last reset cluster, so it is bounded
by μk, where μ < 1 is some fixed constant and k is the depth of the recursion from
the last reset cluster. There will be three types of ways to count distorted pairs.
Our decompose algorithm generates a parameter ε̄ for each cluster it cuts, which
distinguishes small and large values of ε, similarly to the distinction in the proof of
Lemma 3.1.

1. For each ε < ε̄ the notation B̂ε(P) for a partition P = (Z; Ẑ) will stand
for the number of pairs that may be distorted by invoking the partition
P . Informally it consists of all the pairs {u, v} such that both u, v are of
distance less than ≈ √

εΛ̂ from the cut (in the metric (W,ρ)). The prop-
erty obtained by the decompose algorithm is that B̂ε(P) is at most O(ε|Z| ·
(n− |Z|) · β).

2. For ε̄ ≤ ε ≤ εlim and a partition P = (Z; Ẑ), we use a different counting
argument. The proof for the metric case does not suffice for the “large” values
of ε in the spanning tree case, because in the latter case there are potentially
many more pairs that are in danger of being distorted (those whose shortest
path is cut by the partition). This is why we require a different argument for
this range of the parameter ε: If a point u is close enough (≈ √

εΛ̂) to the
cut, we simply throw away all pairs {u, v} where v is ≈

√
εΛ̂ close to u (in the

induced metric on the cluster, not the cone-metric). These are all the pairs
that can be distorted by more than O(1/

√
ε). Our decompose scheme will

guarantee that there are only ≈ εn such points for any u ∈ W . Furthermore,
it will be shown that this throwing is done only once throughout the whole
recursion for a point u ∈ V (G) and a fixed ε > 0. Let B̄ε(G) (defined just
below), denote all the pairs counted in this way.

3. For ε that is larger than εlim, we show that the number of points in the
current cluster is less than an ε fraction of the number of points in the last

170 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

reset cluster; hence we can discard all the pairs in such clusters and the total
number of all such discarded pairs is small.

We now turn to the formal description of the algorithm and its analysis. Assume
a cluster X is partitioned to X0, X1, . . . , Xm by invoking the decompose algorithm
that generates partitions P0, . . . , Pm−1, where Pi = (Xi, Yi) and Yi = X \ ∪0≤j≤iXj .
Then define recursively

Bε(X) =

m−1∑
j=0

B̂ε(Pi) +

m∑
j=0

Bε(Xi)(4.1)

(where B̂ε(Pi) is defined in Lemma 4.1). The base case is when |X | = 1, or when

ε > εlim in such a case Bε(X) =
(|X|

2

)
. Note that the definition of Bε(X) may ignore

the pairs in B̄ε(G) =
∑

x∈V (G) B̄ε(x) (where B̄ε(x) is defined in Lemma 4.1). Indeed
those pairs will be accounted for separately.

We will make use of the following predefined constants: c = e + 1, c′ = 2e + 1,
ĉ = 44, and C = 8

√
c · ĉ. Finally, the distortion is given by 600C · c′. The exact

properties of the decomposition algorithm are captured by the following lemma.
Lemma 4.1. Given a (pseudo) metric space (W,ρ), a graph metric dW on W ,

a point u ∈ W , and parameters n ≥ |W |, Λ̂ > 0, 0 < β < 1/ĉ, and θ ∈ {0, 1/2},
there exists an algorithm decompose((W,ρ), u, Λ̂, θ, n, εlim, β), where εlim ≥ |W |

β·n , that

computes a partition P = (Z; Z̄) of W such that Z = B(W,ρ)(u, r) and r/Λ̂ ∈ [θ, θ+α],
where α =

√
εlim/C. It also returns a parameter ε̄ > 0. Let Sε(P) = B(W,ρ)(u, r +√

ε·Λ̂
150C) \ B(W,ρ)(u, r −

√
ε·Λ̂

150C) and for ε ≤ ε̄ let B̂ε(P) = |Sε(P)|2 (for ε > ε̄ we set

B̂ε(P) = 0). The partition has the property that for any ε ∈ (0, ε̄],

B̂ε(P) ≤ ε|Z| · (n− |Z|) · β.

For any ε ∈ [ε̄, εlim] and for any x ∈ Sε(P) for which B̄ε(x) is not yet defined,

B̄ε(x) :=

∣∣∣∣∣B(W,dW)

(
x,

√
ε · Λ̂

150C

)∣∣∣∣∣ ≤ εn/8.(4.2)

We defer the proof of this technical lemma to the end of the section.

Star-partition algorithm. Consider a cluster X with center x0 and param-
eters n,Λ. Recall that parameters n,Λ are the number of points and the radius
(respectively) of the last reset cluster. A star-partition partitions X into a cen-
tral ball X0, and cone-sets X1, . . . , Xm and edges {y1, x1}, . . . , {ym, xm}, and the
value m is determined by the star-partition algorithm when no more cones are re-
quired. Each cone-set Xi is connected to X0 by the edge {yi, xi}, yi ∈ X0, xi ∈ Xi.
Denote by P0 = (X0;X \ X0) the partition creating the central ball X0 and by
{Pi}mi=1 the partitions creating the cones, where Pi = (Xi;X \ (∪0≤j≤iXj)). In or-
der to create the cone-set Xi use the decompose algorithm on the cone-metric �x0

xi

defined below. We refer the reader to [EEST05, ABN08] for the intuition behind this
definition.

Definition 4.2 (cone-metric). Given a graph G = (X,E) with shortest path
metric d, a set Y ⊂ X, x ∈ X, y ∈ Y define the cone-metric �xy : Y 2 → R+ as
�xy(u, v) = |(d(x, u)− dY (y, u))− (d(x, v)− dY (y, v))|, where dY is the metric induced
by shortest paths in the subgraph (Y,E[Y]).

EMBEDDING INTO TREES 171

T = hierarchical-star-partition(X, x, n,Λ):
1. If |X | = 1 set T = X and stop.
2. (X0, . . . , Xm, {y1, x1}, . . . , {ym, xm}) = star-partition(X, x, n,Λ);
3. For each i ∈ [0, 1, . . . ,m]:

(a) If |Xi|
n < c

radxi
(Xi)

Λ then Ti = hierarchical-star-partition

(Xi, xi, n,Λ);
(b) Otherwise, set Xi to be a reset cluster, and

Ti = hierarchical-star-partition(Xi, xi, |Xi|, radxi(Xi));
4. Let T be the tree formed by connecting T0 with Ti using edge {yi, xi} for

each i ∈ [1, . . . ,m];

Fig. 1. Hierarchical star-partition algorithm.

(X0, . . . , Xm, {y1, x1}, . . . , {ym, xm}) = star-partition(X, x0, n,Λ):

1. Set i = 0 ; β = 1
ĉ (

radx0 (X)

Λ)1/4; εlim = |X |/(βn); Λ̂ = radx0(X);

2. (X0, Y0) = decompose((X, d), x0, Λ̂, 1/2, n, εlim, β); (decompose is given by
Lemma 4.1);

3. If Yi = ∅ set m = i and stop; Otherwise, set i = i+ 1;
4. Let {xi, yi} be an edge in E such that yi ∈ X0, xi ∈ Yi−1, with yi on the

shortest path from xi to x0;
5. Let � = �x0

xi
be cone-metric on the graph induced by X0∪Yi−1, the set Yi−1

and the points x0, xi;
6. (Xi, Yi) = decompose((Yi−1, �), xi, Λ̂, 0, n, εlim, β);
7. goto 3;

Fig. 2. Star-partition algorithm.

Note that the cone-metric � is in fact a pseudometric (it could be that �xy(u, v) = 0
for u �= v). Also note that

B(Y,�xy)
(y, r) = {v ∈ Y |d(x, y) + dY (y, v)− d(x, v) ≤ r}.(4.3)

The following fact will be useful. For all u, v ∈ Y , since d(u, v) ≤ dY (u, v) and by the
triangle inequality,

�xy(u, v) ≤ |d(x, u)− d(x, v)| + |dY (y, u)− dY (y, v)| ≤ 2dY (u, v).(4.4)

Hierarchical star-partition algorithm. Given a graph G = (V,E,w), the
metric d induced by the graph is the shortest path metric. The construction of the
spanning tree for G is done by choosing some x ∈ V , setting V as a reset cluster and
calling hierarchical-star-partition(V, x, |V |, radx(V)); see Figures 1 and 2.

4.1. Algorithm analysis. The hierarchical star-partition of G = (X,E,w) nat-
urally induces a laminar family F ⊆ 2X . Let G be the rooted construction tree whose
nodes are sets in F , and F ∈ F is a parent of F ′ ∈ F if F ′ is a cluster formed by the
partition of F . The root of G corresponds to X and the leaves to the singletons. Note
that every leaf is a reset cluster (because its radius is 0). Observe that the spanning
tree T obtained by our hierarchical star decomposition has the property that every
F ∈ F corresponds to a connected subtree T [F] of T . Let R ⊆ F be the set of all
reset clusters. For each F ∈ F , let GF be the subtree of the construction tree G rooted

172 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

at F that contains all the nodes X whose path to F (excluding F and X) contains
no node in R. In other words, GF is the tree rooted at F whose leaves are reset
clusters, such that all inner nodes (except maybe for F itself) are not reset clusters.
For F ∈ F let R(F) ⊆ R be the set of leaves of GF . For Y ∈ R and F ∈ GY denote
by LY (F) = L(F) = dG(F, Y) the distance in the construction tree from F to Y ; this
is the number of recursion levels since the last reset occurred, and naturally L(Y) = 0
for all reset clusters (we shall omit the subscript when Y is clear from context).

In what follows the parameter α for each cluster is defined as in Lemma 4.1,

in particular, for a cluster X , α(X) = 1
C ·
√

ĉ·|X|
n · (Λ

rad(X))
1/8, where n and Λ are

the parameters of the last reset cluster. Also we use the following convention in our
notation: whenever X is a cluster in G with center point x0 with respect to which the
star-partition of X has been constructed, we define rad(X) = radx0(X).

Steiner points. For the sake of analysis, we will imagine that whenever the star-
partition algorithm on (X, x0) adds an edge {yi, xi} between X0 and Xi, we also add
an imaginary Steiner point y′i on the edge {yi, xi} such that dX(x0, y

′
i) = rad(X0). The

reason is that the analysis of the total radius increase is simplified if we can provide
a bound on the radius increase of a single iteration of the star-partition algorithm of
the form

rad(X0) + dX(y′i, xi) + rad(Xi) ≤ rad(X) · (1 + α),(4.5)

rather than the bound of dX(x0, xi) + rad(Xi) ≤ rad(X) · (1 + α) that was shown in
[EEST05]. To this end, adding this y′i at a distance of rad(X0) from x0 will enable us
to claim that dX(x0, xi) = dX(x0, y

′
i)+dX(y′i, xi) = rad(X0)+dX(y′i, xi), which yields

(4.5). Note that these Steiner points will in fact be leaves in the graph induced on X0,
and since the hierarchical star-partition algorithm maintains connectivity, the edge
{yi, y′i} will be in the final tree T . Thus we may remove from T all the Steiner points
that we added, without changing any distance. We stress that the Steiner points will
play no role whatsoever in the decomposition algorithm nor in the decision for setting
a cluster as a reset cluster. That is, whenever computing the cardinality of a set of
vertices, we do not count the Steiner points.

We start our analysis by showing the following claim (recall that for Y ⊆ X , dY
is the shortest path metric induced on the subgraph Y).

Claim 4.3. For any cluster X, x0 ∈ X, j > 0 let Yj−1 ⊆ X be the unassigned
points of X after creating j clusters X0, . . . , Xj−1 using the star-partition algorithm;
then for any z ∈ Yj−1 all the shortest paths from z to x0 are fully contained in
Yj−1 ∪X0, in particular

dYj−1∪X0(x0, z) = dX(x0, z).

Proof. Let Λ̂ = radx0(X). Let Px0,z be a shortest path from x0 to z in X , and
seeking contradiction assume that Px0,z � Yj−1∪X0. Let 1 ≤ i ≤ j−1 be the minimal
such that there exists u ∈ Px0,z and u ∈ Xi. Recall that xi is the center of the cone

Xi, and let ri ∈ [0, αΛ̂] be the radius chosen in Lemma 4.1 when creating Xi. Since
u ∈ Xi = B(X0∪Yi−1,�

x0
xi

)(xi, ri), by (4.3) it must be that in the metric d′ = dX0∪Yi−1

d′(x0, xi) + dYi−1(xi, u) ≤ d′(x0, u) + ri.(4.6)

Since u lies on a shortest path from z to x0, the minimality of i suggests that this
shortest path is fully contained in Yi−1 ∪X0, thus

d′(x0, z) = d′(x0, u) + d′(u, z).(4.7)

EMBEDDING INTO TREES 173

Also note that the shortest path from u to z cannot intersect X0, because if a ∈
Pu,z∩X0, then by (4.7), d′(x0, z) ≤ d′(x0, a)+d′(a, z) < d′(x0, u)+d′(u, z) = d′(x0, z),
which is a contradiction. Thus we obtain that

dYi−1(u, z) = d′(u, z).(4.8)

Finally, combining (4.7), (4.6), and (4.8) we conclude that

d′(x0, z) + ri = d′(u, z) + d′(x0, u) + ri ≥ dYi−1(u, z) + dYi−1(u, xi) + d′(xi, x0)

≥ dYi−1(z, xi) + d′(xi, x0);

hence z should in fact be in Xi, contradiction.
Next we bound the radius increase due to a single iteration of the star-partition

algorithm.
Claim 4.4. For any cluster X that is partitioned by the star-partition algorithm

to X0, X1, . . . , Xm and any 1 ≤ i ≤ m,

rad(X0) + dX(y′i, xi) + rad(Xi) ≤ (1 + α)rad(X).

Proof. Fix some integer i ≥ 1 and consider z ∈ Xi such that rad(Xi) =
dXi(xi, z) = dYi−1(xi, z), where the last equality holds since z ∈ Xi. It must be
that all the points in Yi−1 that are closer than z to xi (in the cone-metric), in par-
ticular those on the shortest paths (in Yi−1) from xi to z, are also contained in
Xi. By Claim 4.3 we know that dX(x0, z) = dX0∪Yi−1(x0, z). By the algorithm in
Lemma 4.1, the radius of the cone Xi is selected from the interval [0, α · rad(X)],
so that z ∈ B(X0∪Yi−1,�

x0
xi

)(xi, α · rad(X)). By (4.3) this means that in the metric

d′ = dX0∪Yi−1

d′(x0, xi) + dYi−1(xi, z) ≤ d′(x0, z) + α · rad(X).(4.9)

Since y′i is on the shortest path from x0 to xi, and at distance rad(X0) from x0, we
get by Claim 4.3 that

rad(X0) + dX(y′i, xi) = dX(x0, y
′
i) + dX(y′i, xi) = dX(x0, xi) = d′(x0, xi).(4.10)

Finally, combining (4.9) and (4.10) it follows that

rad(X0) + dX(y′i, xi) + rad(Xi) = d′(x0, xi) + dYi−1(xi, z)

≤ d′(x0, z) + α · rad(X)

= dX(x0, z) + α · rad(X)

≤ (1 + α) · rad(X).

Corollary 4.5. For any cluster X that is partitioned by the algorithm to
X0, X1, . . . , Xm and any 0 ≤ i ≤ m,

rad(Xi) ≤ (1/2 + α)rad(X).

Proof. This is immediate for i = 0 since θ = 1/2 and the radius of the cluster X0

is in the interval [θ · rad(X), (θ+ α) · rad(X)] by the definition in Lemma 4.1. For all
1 ≤ i ≤ m, since rad(X0) ≥ rad(X)/2 we get using Claim 4.4 that

rad(Xi) ≤ (1 + α)rad(X)− rad(X0) ≤ (1/2 + α)rad(X).

174 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

The parameter α is the bound on the radius increase created by the star partition.
We would like to show that as long as there is no reset, this parameter decreases
exponentially fast.

Claim 4.6. Fix some Y ∈ R. Let X ∈ GY \ R(Y) with LY (X) = t. Then the
following hold:

• rad(X) ≤ (58)
trad(Y).

• α = α(X) ≤ 1
8 (

7
8)

t.
Proof. The first statement is proved by induction on t = LY (X). The base case

for t = 0 implies X = Y , so it is trivial. Assume it holds for t− 1, and to prove the
inductive step, it is sufficient to show that when X is partitioned to X0, X1, . . . , Xm,
for all i ∈ {0, 1, . . . ,m}, rad(Xi) ≤ 5

8 rad(X). By Corollary 4.5 we need to show that

α ≤ 1/8. Since C = 8
√
c · ĉ, then

α =
√
εlim/C =

1

8

√
|X |
c|Y |

(
rad(Y)

rad(X)

)1/4

≤ 1

8

√(
rad(X)

rad(Y)

)3/4

≤ 1

8
,(4.11)

where the inequality holds since X is not a reset cluster.
In order to prove the second property, we can use the first property and obtain

α ≤ 1

8

(
rad(X)

rad(Y)

)3/8

≤ 1

8

(
5

8

)3t/8

≤ 1

8

(
7

8

)t

.

We now show that given such a bound on α, which decreases exponentially with
the number of levels from the last reset cluster, the spanning tree of each cluster
increases its diameter by at most a constant factor. The main issue is that when there
is a reset, the parameter α is “reset” to a constant, and so the total radius increase
could potentially be very large. The key property which enables us to overcome this
problem is that reset clusters have small radius. In particular, we will argue that for
any cluster X ∈ G, the sum of all the radii of reset clusters in R(X) is a constant
factor smaller than rad(X).

We actually prove a more general statement, that the radius of the tree is bounded
as long as the α parameters are a converging sequence, as this will be used later in
the probabilistic embedding setting as well.

Lemma 4.7. If there exists h : N → R+ with
∑

t≥0 h(t) ≤ 1, such that the
hierarchical partition satisfies for all X ∈ F , α = α(X) ≤ h(L(X)), then for any
F ∈ F , rad(T [F]) ≤ c′ · rad(F).

Proof. We first prove by induction on the construction tree G that for everyX ∈ G
with t = L(X) (recall that this is the number of levels from the nearest ancestor reset
cluster in the construction tree and is 0 for reset clusters),

rad(T [X]) ≤ rad(X) ·
∏
j≥t

(1 + h(j)) +
∑

R∈R(X)

rad(T [R]).(4.12)

The base case is when X is a leaf of G; then the claim trivially holds as rad(T [X]) =
0. Otherwise, we partition X into X0, . . . , Xm and assume by induction that the
hypothesis is true for the children of X in G. Let i ∈ [m] be such that dX(y′i, xi) +
rad(T [Xi]) is maximal; then we claim that

rad(T [X]) ≤ rad(T [X0]) + dX(y′i, xi) + rad(T [Xi]).(4.13)

To see this, assume z ∈ X is the point such that dT (x0, z) = rad(T [X]); then if
z ∈ Xj for some j ≥ 1 we get that dT (x0, z) = dT (x0, y

′
j) + dT (y

′
j , xj) + dT (xj , z) ≤

EMBEDDING INTO TREES 175

rad(T [X0])+dX(y′j , xj)+rad(T [Xj]) ≤ rad(T [X0])+dX(y′i, xi)+rad(T [Xi]) (the case
z ∈ X0 is trivial).

There are four cases to consider, whether X0 and Xi are reset clusters or not.
Consider first the case that both are not reset clusters. For q ∈ {0, i}, L(Xq) is equal
to t+ 1, and so by the induction hypothesis,

rad(T [Xq]) ≤ rad(Xq) ·
∏

j≥t+1

(1 + h(j)) +
∑

R∈R(Xq)

rad(T [R]).(4.14)

Observe that if R ∈ R(Xq), then since Xq is not a reset cluster, R ∈ R(X) as well.
Also, clearly R(X0), R(Xi) are disjoint. Now, by Claim 4.4 we get that

rad(X0) + dX(y′i, xi) + rad(Xi) ≤ rad(X)(1 + α) ≤ rad(X)(1 + h(t)),(4.15)

which yields

rad(T [X])
(4.13)

≤ rad(T [X0]) + dX(y′
i, xi) + rad(T [Xi])

(4.14)

≤ (rad(X0) + dX(y′
i, xi) + rad(Xi))

∏

j≥t+1

(1 + h(j)) +
∑

R∈R(X0)∪R(Xi)

rad(T [R])

(4.15)

≤ rad(X)(1 + h(t)) ·
∏

j≥t+1

(1 + h(j)) +
∑

R∈R(X)

rad(T [R])

= rad(X) ·
∏

j≥t

(1 + h(j)) +
∑

R∈R(X)

rad(T [R]).

If Xi is a reset cluster and X0 is not, then since Xi ∈ R(X) \ R(X0), a similar
calculation gives that

rad(T [X]) ≤ (rad(X0) + dX(y′i, xi))
∏

j≥t+1

(1 + h(j))+
∑

R∈R(X0)

(rad(T [R]))+rad(T [Xi])

≤ rad(X) ·
∏
j≥t

(1 + h(j)) +
∑

R∈R(X)

rad(T [R]).

The other cases, when Xi is a reset cluster and X0 is not, and when both are reset
clusters, are similar. This completes the proof of (4.12). Now we continue to prove the
lemma. First, we prove by induction on the construction tree G that the lemma holds
for the set of reset clusters. In fact we show a stronger bound, which is necessary in
order to obtain the bound for nonreset clusters. Recall that c = e+1 and c′ = 2e+1.
We show that for every reset cluster Y ∈ R we have

rad(T [Y]) ≤ c · rad(Y).(4.16)

176 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

Assume the induction hypothesis is true for all descendants of Y in R. In particular,
for all R ∈ R(Y), rad(T [R]) ≤ c · rad(R). Recall that R becomes a reset cluster since

rad(R) ≤ rad(Y)
c·|Y | |R|, and using that {R : R ∈ R(Y)} are pairwise disjoint,5

∑
R∈R(Y)

rad(R) ≤ rad(Y)

c|Y |
∑

R∈R(Y)

|R| ≤ rad(Y)

c
.(4.17)

It follows that

rad(T [Y])
(4.12)

≤ rad(Y) ·
∏
j≥0

(1 + h(j)) +
∑

R∈R(Y)

rad(T [R])

(4.17)∧(4.16)

≤ rad(Y) · e
∑

j≥0 h(j) + c · rad(Y)/c

≤ (e+ 1)rad(Y) = c · rad(Y).

Finally, we show the lemma holds for all the other clusters. Let F ∈ F \ R and
Y ∈ R such that F ∈ GY . Let t = L(F). Note that

∑
R∈R(F) |R| ≤ |F |. Since F /∈ R

we have rad(Y)
c|Y | ≤ rad(F)

|F | and it follows that

∑
R∈R(F)

rad(R) ≤ rad(Y)

c|Y |
∑

R∈R(F)

|R| ≤ rad(Y)

c|Y | · |F | ≤ rad(F).(4.18)

Finally,

rad(T [F])
(4.12)

≤ rad(F) ·
∏
j≥t

(1 + h(j)) +
∑

R∈R(F)

rad(T [R])

(4.16)

≤ e · rad(F) + c
∑

R∈R(F)

rad(R)

(4.18)

≤ e · rad(F) + c · rad(F)

= c′ · rad(F),

proving the lemma.
We now proceed to bound for every ε the number of pairs with distortion Ω(

√
1/ε),

thus proving the scaling distortion of our constructed spanning tree. We begin with
some definitions that will be crucial in the analysis.

Definition 4.8. For each ε ∈ (0, 1) and Y ∈ R let K(Y, ε) = {F ∈ GY \
R(Y) : |F | < ε/ĉ · |Y |}. In other words, a cluster is in K(Y, ε) if it contains less
than ε/ĉ fraction of the points of Y . The following proposition will be useful.

Proposition 4.9. Fix a cluster F with reset ancestor Y . Then for any ε >
εlim(F), F ∈ K(Y, ε).

Proof. This is immediate from the definition of εlim, ε > εlim = |F |
β·|Y | ≥

ĉ·|F |
|Y | .

Informally, when counting the badly distorted pairs for a given ε, whenever we
reach a cluster in K(Y, ε) we count all its pairs as bad. For Y ∈ R let GY,ε be the
subtree rooted at Y that contains all the nodes X whose path (in the construction

5Recall that the new Steiner nodes do not contribute to the cardinality of a set.

EMBEDDING INTO TREES 177

tree G) to Y (excluding Y and X) contains no node in R ∪ K(Y, ε). In other words,
GY,ε is the tree rooted at Y whose leaves are reset clusters and clusters in K(Y, ε),
such that all inner nodes (except for the root Y) are not reset clusters nor in K(Y, ε).
Observe that GY,ε is a subtree of GY .

Recall the definition of Bε(X) in (4.1), where the term B̂ε(Pi) is defined as in
Lemma 4.1, and it is the square of the number of points which are “close” to the
partition in the cone distance. In the following lemma we bound Bε(Y) for every
reset cluster Y for any value of ε. Note that Bε(Y) does not count all the distorted
pairs, as there are some pairs which are distorted for values of ε ∈ [ε̄, εlim], and those
will be accounted for by B̄ε(Y), which is bounded in Observation 4.11.

Lemma 4.10. For any Y ∈ R, ε ∈ (0, 1) we have that Bε(Y) ≤ ε|Y |2/4.
Proof. As mentioned above, we will argue that for any reset cluster Y , the number

of pairs of points that are both contained in a cluster K for K ∈ K(Y, ε) is sufficiently
small so that we can ignore them all. The pairs that are contained in a reset cluster
R for R ∈ R(Y) will be handled recursively. We need to handle pairs that may be
distorted by some partition before reaching the leaves of GY . To this end, we define
for a cluster X ∈ GY

EY (X) = (X × Y) \

⎛
⎝ ⋃

R∈R(Y)∩GX

(R ×R)

⎞
⎠ ;(4.19)

these are all the pairs, whose first point is inX , that were separated by the hierarchical
star-partition algorithm before reaching the leaves of GX . Note that each pair in
X ×X is counted twice. We prove by induction on the construction tree GY,ε that if
t = LY (X),

Bε(X) ≤ ε/ĉ · |EY (X)|
∑
j≥t

(9/10)j +
∑

R∈R(Y)∩GX

Bε(R) +
∑

K∈K(Y,ε)∩GX

Bε(K).(4.20)

The base of the induction, where X is a leaf in GY,ε, is trivially true, because in
the base case either X ∈ K(Y, ε) or X ∈ R(Y), and then as X ∈ GX we have that
Bε(X) appears on the right-hand side of (4.20).

For the inductive step, assume that (4.20) holds for all the children X0, . . . , Xm

of X . Let P = {Pi}m−1
i=0 be the set of partitions that created these clusters, that is,

Pi = (Xi;Yi), where Yi = X \(∪0≤j≤iXj). Note that the value of εlim = εlim(X) is the
same for all the partitions Pi; however, the value of ε̄ = ε̄(i) returned by the decompose
algorithm can be different for values of 0 ≤ i ≤ m− 1. Since X /∈ K(Y, ε) ∪R(Y), by
Definition 4.8 we have that ε ≤ ĉ · |X |/|Y | ≤ 1/β · |X |/|Y | = εlim. Hence we can apply

Lemma 4.1 to deduce a bound on B̂ε(Pi). By Claim 4.6 we have β = 1
ĉ (

rad(X)
rad(Y))

1/4 ≤
1
ĉ (

5
8)

t/4. From Lemma 4.1, and using that B̂ε(Pi) = 0 for partitions Pi in which
ε ≥ ε̄(i), we obtain for every 0 ≤ i ≤ m− 1 that

B̂ε(Pi) ≤ ε · |Xi| · |Y \Xi| · (5/8)t/4/ĉ.

Observe that each pair in Xi×(Y \Xi) cannot appear in R×R for any R ∈ R(Y)∩GX

because this pair is separated. Also, summing over all 0 ≤ i ≤ m− 1 we count every
pair of X × Y at most once, so that

m−1∑
i=0

B̂ε(Pi) ≤ ε/ĉ · (5/8)t/4
m−1∑
i=0

|Xi| · |Y \Xi| ≤ ε/ĉ · (9/10)t|EY (X)|.(4.21)

178 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

Since X /∈ K(Y, ε)∪R(Y) we have that each R ∈ R(Y)∩GX (resp., K ∈ K(Y, ε)∩
GX) appears in exactly one of R(Y) ∩ GXi (resp., K(Y, ε) ∩ GXi) for some 0 ≤ i ≤ m
(in other words, for each leaf of GY,ε in the subtree rooted at X , there is exactly one
Xi such that the leaf belongs to the subtree rooted at Xi). This implies the following:

m∑
i=0

|EY (Xi)| = |EY (X)|,(4.22)

m∑
i=0

⎛
⎝ ∑

R∈R(Y)∩GXi

Bε(R)

⎞
⎠ =

∑
R∈R(Y)∩GX

Bε(R),

m∑
i=0

⎛
⎝ ∑

K∈K(Y,ε)∩GXi

Bε(K)

⎞
⎠ =

∑
K∈K(Y,ε)∩GX

Bε(K).

The number of levels in the construction tree from each Xi to Y is t+ 1, and so

Bε(X)
(4.1)
=

m−1∑
i=0

B̂ε(Pi) +

m∑
i=0

Bε(Xi)

(4.20)

≤
m−1∑
i=0

B̂ε(Pi) +

m∑
i=0

⎛
⎝ε/ĉ · |EY (Xi)|

∑
j≥t+1

(9/10)j

+
∑

R∈R(Y)∩GXi

Bε(R) +
∑

K∈K(Y,ε)∩GXi

Bε(K)

⎞
⎠

(4.22)∧(4.21)

≤ ε/ĉ · (9/10)t|EY (X)|+ ε/ĉ · |EY (X)|
∑

j≥t+1

(9/10)j

+
∑

R∈R(Y)∩GX

Bε(R) +
∑

K∈K(Y,ε)∩GX

Bε(K)

= ε/ĉ · |EY (X)|
∑
j≥t

(9/10)j +
∑

R∈R(Y)∩GX

Bε(R) +
∑

K∈K(Y,ε)∩GX

Bε(K),

which proves the inductive claim.
We now prove the assertion of the lemma by induction on the construction tree

G. The base case for leaves of G is trivial, as they are of size 1 and contain no pairs.
Let Y ∈ R. By the induction hypothesis, for every R ∈ R(Y),

Bε(R) ≤ ε|R|2/4.(4.23)

Observe that if K ∈ K(Y, ε), then we treat all pairs in K as distorted, and using
Definition 4.8

Bε(K) ≤ |K|2 ≤ 1

ĉ
· ε|Y | · |K|.(4.24)

Since the clusters in R(Y) ∪K(Y, ε) are pairwise disjoint,∑
R∈R(Y)

|R|+
∑

K∈K(Y,ε)

|K| ≤ |Y |.(4.25)

EMBEDDING INTO TREES 179

Recall that ĉ = 44 and
∑

j≥0(9/10)
j = 10. Finally,

Bε(Y)
(4.20)

≤ ε/ĉ · |EY (Y)|
∑
j≥0

(9/10)j +
∑

R∈R(Y)

Bε(R) +
∑

K∈K(Y,ε)

Bε(K)

(4.23)∧(4.24)

≤ 10ε/44 · |EY (Y)|+ ε/4 ·
∑

R∈R(Y)

|R|2 + ε · |Y |/44 ·
∑

K∈K(Y,ε)

|K|

=

⎡
⎣10ε/44 · |EY (Y)|+ 10ε/44

∑
R∈R(Y)

|R|2
⎤
⎦

+

⎡
⎣ε/44 · ∑

R∈R(Y)

|R|2 + ε · |Y |/44 ·
∑

K∈K(Y,ε)

|K|

⎤
⎦

(4.19)

≤ 10ε/44 · |Y |2 + ε · |Y |/44 ·

⎛
⎝ ∑

R∈R(Y)

|R|+
∑

K∈K(Y,ε)

|K|

⎞
⎠

(4.25)

≤ 10ε/44 · |Y |2 + ε/44 · |Y |2

= ε/4 · |Y |2.

Observation 4.12. For every ε ∈ (0, 1], B̄ε(G) ≤ εn2/8.

Proof. Recall the definition of B̄ε(G) in (4.2). By Lemma 4.1, for all x ∈ V (G),
B̄ε(x) ≤ εn/8, and thus

B̄ε(G) =
∑

x∈V (G)

B̄ε(x) ≤ εn2/8.

Proof of Theorem 1.5. First we show that the total number of pairs whose
distortion is too large is at most ε

(
n
2

)
for any value of ε ∈ (0, 1]. Indeed, ap-

plying Lemma 4.10 on the original graph G suggests that Bε(G) ≤ εn2/4, and by
Observation 4.11, B̄ε(G) ≤ εn2/8.

For the distortion analysis, we have to be extremely careful: it could be that some
x, y ∈ X are not separated in the star-partition of X . However, in the cluster Xi that
contains them, the induced distance is increased—this can happen if the shortest path
between x, y in X is not fully contained in Xi. For this reason, we will argue that
even if the shortest path between a pair is cut (that is, not fully contained in a single
cluster), then either this pair is accounted for in Bε(G) or B̄ε(G) or the following
holds: Even if x, y will be in the maximal possible distance in the final tree, their
distortion will be small enough.

Fix any ε ∈ (0, 1) and some pair x, y ∈ V (G). Let x = v1, . . . , vt = y be a shortest
path in G between x and y. Let X be a cluster for which this path is cut for the first
time, that is, v1, . . . , vt ∈ X , and when X is partitioned to X0, . . . , Xm, then there is
some 0 ≤ i ≤ m such that 0 < |Xi ∩ {v1, . . . , vt}| < t. We take the minimal such i,
which means that v1, . . . , vt ∈ Yi−1. Let Λ̂ = rad(X). In order to create the cluster
Xi, the decompose algorithm is called on Yi−1 with the cone metric ρ = �x0

xi
(where

the cone metric is with respect to the graph induced by X0 ∪ Yi−1 and the set Yi−1)
and creates a partition P = (Xi;Yi) where Xi = B(Yi−1,ρ)(xi, r) for some radius r.
W.l.o.g. assume that 1 ≤ j < t is such that vj ∈ Xi, vj+1 /∈ Xi (the other possibility

180 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

that vj /∈ Xi and vj+1 ∈ Xi is symmetric). If it is the case that ε > εlim = εlim(X),

then by definition Bε(X) =
(|X|

2

)
, and the pair {x, y} is accounted for there. So from

now on we assume that ε ≤ εlim.

If it is the case that dG(x, y) <
√
εΛ̂/(300C), then we will show that both x, y ∈

Sε(P). To see this, consider first the case where x ∈ Xi, then using (4.4), ρ(x, vj+1) ≤
2dYi−1(x, vj+1) = 2dG(x, vj+1) ≤ 2dG(x, y) <

√
εΛ̂/(150C), and since ρ(xi, vj+1) > r,

by the triangle inequality ρ(xi, x) ≥ ρ(xi, vj+1) − ρ(x, vj+1) > r −
√
εΛ̂/(150C) so

we get that x ∈ Sε(P). The other case is when x /∈ Xi, then similarly ρ(x, vj) ≤
2dG(x, vj) ≤ 2dG(x, y) <

√
εΛ̂/(150C), and as ρ(xi, vj) ≤ r we obtain that ρ(xi, x) ≤

ρ(xi, vj) + ρ(vj , x) < r +
√
εΛ̂/(150C) so again x ∈ Sε(P). The argument for y

is analogous. Finally, we consider two cases. If ε ≤ ε̄ (where ε̄ is the parameter
returned by decompose when creating the partition P), then as B̂ε(P) = |Sε(P)|2,
the pair x, y is accounted for in B̂ε(P). The other case is that ε̄ < ε ≤ εlim, then
since dYi−1(x, y) <

√
εΛ̂/(300C) we have that y ∈ BYi−1(x,

√
εΛ̂/(150C)). Note that

if B̄ε(X) is defined in the current partition P , then y contributes to B̄ε(x) (in the
sense that it appears in the appropriate ball in the definition of B̄ε(x)), while if it
has been defined in the previous iteration, while partitioning some cluster Y which is
an ancestor of X , we claim that y already contributed to B̄ε(x). To see this, observe
that B̄ε(x) depends only on ε, X and on Λ̂, and by Corollary 4.5, the radius of Y is
larger than Λ̂. Since we are using the induced metric on X , the ball in Y as defined
for B̄ε(x) will surely contain y as well.

We now argue that if dG(x, y) ≥
√
εΛ̂/(300C) the distortion will be sufficiently

small. This will follow once we establish that dT (x, y) ≤ 2c′Λ̂, in which case the
distortion will be at most 600c′C/

√
ε = O(1/

√
ε). To prove this, we use Lemma 4.7

with the parameter h(t) = 1
8 · (78)t. This choice satisfies the conditions of the lemma

since
∑

t≥0 h(t) = 1, and using the second property of Claim 4.6 we have that indeed
α(X) ≤ h(L(X)). By the assertion of Lemma 4.7 we obtain dT (x, y) ≤ 2rad(T [X]) ≤
2c′Λ̂. Applying Lemma 2.2 yields the promised bounds on the �q distortion.

Finally, we complete the proof of Lemma 4.1 stating the properties of our generic
decompose algorithm.

Proof of Lemma 4.2. In what follows, unless stated explicitly, all the balls are
with respect to the metric (W,ρ) (which may be a cone pseudometric). The proof is
very similar to the proof of the ultrametric case, but there are two main differences.
The first is that we need to satisfy the property of the lemma only for ε ≤ εlim, so we
can use the fact that |W | ≤ εlim ·β ·n to obtain an improved bound on the number of
(possibly) distorted pairs. The second difference is that we cannot choose the center
point u; it is given as input. Recall that in the ultrametric case we chose a specific
u so that |B◦(u,Δ/2)| ≤ n/2 (in a cone metric, even a ball of radius 0 may contain
an arbitrary number of points!); therefore we need to consider two cases. The first is
that a ball of certain radius (analogous to the ball of half the radius in the ultrametric
case) contains less than n/2 points, and we choose the radius in a similar manner to
Claim 3.3, so that |Z| ≤ n/2. In the second case, the roles of Z and Z̄ = W \ Z
switch, and we choose the radius to be at least that certain radius, so that |Z̄| ≤ n/2.

Note that the parameters ε̄, ε̂ defined below are not necessarily smaller than 1.
Recall that α =

√
εlim/C and β ≤ 1/ĉ = 1/44.

Case 1. |B(u, (θ+α/2)Λ̂)| ≤ n/2. In this case let ε̂ = max{ε ∈ (0, εlim] : |B(u, (θ+√
ε

4C)Λ̂)| ≥ ε · β · n} (recall that such ε̂ exists, because when ε = 1/(βn) the condi-

tion is satisfied). Let Ŝ = [(θ +
√
ε̂

4C)Λ̂, (θ +
√
ε̂

2C)Λ̂), and S = [(θ +
√
ε̂

C (14 + 1
25))Λ̂,

EMBEDDING INTO TREES 181

(θ +
√
ε̂

C (12 − 1
25))Λ̂]. As in the previous section, we will choose r ∈ S and define the

partition by Z = B(u, r). Observe that

ε̂ · β · n ≤ |Z| ≤ n/2.(4.26)

Case 2. |B(u, (θ + α/2)Λ̂)| > n/2. In this case let ε̂ = max{ε ∈ (0, εlim] : |W \
B(u, (θ + α −

√
ε

4C)Λ̂)| ≥ ε · β · n}. Let Ŝ = [(θ + α −
√
ε̂

2C)Λ̂, (θ + α −
√
ε̂

4C)Λ̂], and

S = [(θ+α−
√
ε̂

C (12 − 1
25))Λ̂, (θ+α−

√
ε̂

C (14 + 1
25))Λ̂].

Note that choosing r ∈ S and Z = B(u, r) guarantees that

ε̂ · β · n ≤ |Z̄| ≤ n/2.(4.27)

We show that one can choose r ∈ S and define the partition P = (Z; Z̄) by
Z = B(u, r) such that the property of the lemma holds with ε̄ = 32ε̂. The algorithm
will return ε̄. First we show the property for ε ∈ [ε̄, εlim] for any r ∈ S and either of
the two cases. Let x ∈ Sε(P) (as defined in the lemma).

Case 1. Note that since ρ(u, x) ≤ r +
√
εΛ̂

150C we have that B(x, 2
√
εΛ̂

150C) ⊆ B(u, r +

3
√
εΛ̂

150C) ⊆ B(u, (θ +
√
ε

4C)Λ̂), and we used that r < (θ +
√
ε̂

2C)Λ̂ ≤ (θ +

√
ε/32

2C)Λ̂. By the
maximality of ε̂ and since ε > ε̂ we have that∣∣∣∣∣B

(
x,

2
√
εΛ̂

150C

)∣∣∣∣∣ ≤
∣∣∣∣B
(
u,

(
θ +

√
ε

4C

)
Λ̂

)∣∣∣∣ ≤ ε · β · n < εn/8.(4.28)

Case 2. This case is similar to the previous case. This time using that ρ(u, x) ≥
r−

√
εΛ̂

150C , we have that B(x, 2
√
εΛ̂

150C) ⊆ W \B◦(u, ρ(u, x)− 2
√
εΛ̂

150C) ⊆ W \B◦(u, r− 3
√
εΛ̂

150C) ⊆
W \B(u, (θ+α−

√
ε

4C)Λ̂), where the last inequality is using that r > (θ+α−
√
ε̂

2C)Λ̂ ≥

(θ + α−
√

ε/32

2C)Λ̂. By the maximality of ε̂ and since ε > ε̂ it follows that∣∣∣∣∣B
(
x,

2
√
εΛ̂

150C

)∣∣∣∣∣ ≤
∣∣∣∣W \B

(
u,

(
θ + α−

√
ε

4C

)
Λ̂

)∣∣∣∣ ≤ ε · β · n < εn/8.(4.29)

Using (4.4) with (4.28) (or (4.29), depending on which case), we conclude that

B̄ε(x) =

∣∣∣∣∣B(W,dW)

(
x,

√
εΛ̂

150C

)∣∣∣∣∣ ≤
∣∣∣∣∣B
(
x,

2
√
εΛ̂

150C

)∣∣∣∣∣ ≤ εn/8.

We next show that a certain choice of r ∈ S will produce a partition that satisfies
the property of the lemma for all ε ∈ (0, ε̄]. The proof is very similar to that of
Claim 3.3: we first bound the total number of points whose distance to u lies in
S and then iteratively delete any “bad” interval in S, those that contain too many
points. Then we argue that we must have run out of points before all of S could be
removed. This suggests that any radius in the remaining interval will be good for all
ε in the appropriate range. The proof here is slightly more involved, only because we
have some extra parameters such as εrmlim and β that control the size of W , and we
have two cases to consider, but the essential idea is the same.

For any r ∈ S and ε ≤ ε̄ let Sr(ε) = [r −
√
εΛ̂/(150C)), r +

√
εΛ̂/(150C))],

s(ε) =
√
εΛ̂/(75C), and let Qr(ε) = {w ∈ W : ρ(u,w) ∈ Sr(ε)}. Note that the

length of the interval S is given by s = 17/(100C)
√
ε̂Λ̂ and that for any r ∈ S

182 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

and any ε ≤ ε̄, Sr(ε) ⊆ Ŝ. We say that properly Ar(ε) holds if cutting at radius r
is “good” for ε; formally: Ar(ε) iff |Qr(ε)| ≤

√
ε · ε̂/2 · n · β. As before we define

Q = {w ∈ W : ρ(u,w) ∈ Ŝ}.
Proposition 4.12. |Q| ≤ 4ε̂ · β · n.
Proof. In Case 1, we have thatQ ⊆ B(u, (θ+

√
ε̂/(2C))Λ̂). We distinguish between

two cases. If ε̂ ≤ εlim/4, then |B(u, (θ+
√
4ε̂/(4C))Λ̂)| ≤ 4ε̂ · β · n (by the maximality

of ε̂). Otherwise, ε̂ > εlim/4. In this case, by the restriction on εlim imposed in the
lemma, |Q| ≤ |W | ≤ εlim · β · n ≤ 4ε̂ · β · n.

In Case 2, Q ⊆ W \B(u, (θ+α−
√
ε̂/(2C))Λ̂). We distinguish between two cases.

If ε̂ ≤ εlim/4, then |W \B(u, (θ+α−
√
4ε̂/(4C))Λ̂)| ≤ 4ε̂ · β · n (by the maximality of

ε̂). Otherwise, ε̂ > εlim/4, and again |Q| ≤ |W | ≤ 4ε̂ · β · n.
Claim 4.13. There exists some r ∈ S such that properly Ar(ε) holds for all

ε ∈ (0, ε̄].
Proof. The proof is very similar to the proof of Claim 3.3. We perform a process

that deletes the “worst” interval from S. Initially, let I0 = S, and j = 1.
1. If for all r ∈ Ij−1 and for all ε ∈ (0, ε̄] property Ar(ε) holds, then set t = j−1,

stop the iterative process, and output It.
2. Let Sj = {Sr(ε) : r ∈ Ij−1, ε ≤ 32ε̂,¬Ar(ε)}. We greedily remove the

interval that has maximal ε. Formally, let rj , εj be parameters such that
Srj (εj) ∈ Sj and εj = max{ε : ∃Sr(ε) ∈ Sj}.

3. Set Ij = Ij−1 \ Srj (εj), set j = j + 1, and goto 1.

We now argue that It �= ∅. First observe that
∑t

j=1 |Qrj (εj)| ≤ 2|Q| ≤ 8ε̂ · β · n.
Recall that since Arj (εj) does not hold, then for any 1 ≤ j ≤ t : |Qrj(εj)| >

√
εj · ε̂/2·

β · n, which implies that
∑t

j=1
√
εj < 12

√
ε̂. Now we can bound the total length of

the removed intervals,

t∑
j=1

s(εj) ≤
t∑

j=1

√
εjΔ/(75C) ≤ 12/(75C) ·

√
ε̂Δ = 16/(100C) ·

√
ε̂Δ.

Since s = 17/(100C) ·
√
ε̂Δ, then indeed It �= ∅, so any r ∈ It satisfies the condition

of the claim.
Claim 4.13 shows that for any ε ∈ (0, ε̄] we have

B̂ε(P) ≤ ε · ε̂/2 · (n · β)2 ≤ ε · β · |Z| · (n− |Z|);

the last inequality holds using (4.26) in Case 1, which also implies that n/2 ≤ n −
|Z|. In Case 2 we are using (4.27), which yields n/2 ≤ |Z| (and also that |Z̄| ≤
n− |Z|).

5. Lower bound. In this section we show that our upper bounds on scaling
distortion are tight even for the n-cycle.

Lemma 5.1. For any ε ∈ (1/n2, 1), any (1 − ε)-partial embedding of the n-cycle
into a tree requires distortion at least Ω(1/

√
ε).

Proof. Fix some ε ∈ (1/n2, 1), and let v1, . . . , vn be the (ordered) vertices of
the n-cycle (X, d). The proof idea is to show that for any choice of P ⊆

(
X
2

)
with

|P | ≥ (1 − ε)
(
n
2

)
, we can find k ≈ 1/

√
ε points on the cycle u1, . . . , uk such that the

metric induced on {u1, . . . , uk} is almost a cycle metric, and all the pairs {ui, uj} are
in P . Applying the known lower bound of Ω(k) for embedding a k-cycle into any tree
[RR98] will finish the proof.

EMBEDDING INTO TREES 183

Let k = 1/(4
√
ε) and m = n/k.6 Divide the vertices of the cycle into k consecutive

parts Ū1, . . . , Ūk, that is, for any 1 ≤ i ≤ k let Ūi = {v(i−1)m+1, . . . , vim}. Let

Ui ⊆ Ūi be the central m/2 points of Ūi. Given any P ⊆
(
X
2

)
, it is sufficient to

find ui ∈ Ui for each 1 ≤ i ≤ k such that for any 1 ≤ i < j ≤ k, {ui, uj} ∈ P
(because d(ui, uj) ≈ m · min{j − i, i + k − j} up to a factor of 4). We will choose
these representatives ui iteratively. At each step there will be a forbidden set of
points Bi ⊆ Ui. Let N(u) denote the set of points v such that {u, v} /∈ P , and let
deg(u) = |N(u)|. We start with i = 1:

1. Let Bi = Ui ∩ (
⋃i−1

j=1 N(uj)).
2. Choose ui ∈ Ui \Bi with the minimum degree.
3. If i < k let i = i+ 1 and go to 1.

Now we show that for any i, |Bi| ≤ m/4, which will conclude the proof. Fix 1 ≤ i ≤ k,
and assume inductively for all 1 ≤ j < i that |Bj | ≤ m/4 (observe that B1 = ∅). It is
sufficient to show that

∑i−1
j=1 deg(uj) ≤ m/4, and in order to do so, consider the total

number of pairs outside P , which must be at most εn2/2. The minimality of deg(uj)
and the fact that |Uj \ Bj | ≥ m/4 indicate that there are at least m/4 points in Uj

of degree at least deg(uj). Summing over all 1 ≤ j < i, noticing that each pair may

be counted twice, gives a total number of m/8
∑i−1

j=1 deg(uj) pairs outside P . Using

that εn2/2 = m2/32 we get that

i−1∑
j=1

deg(uj) ≤ 8/m · εn2/2 = m/4.

6. Probabilistic scaling embedding into spanning trees. In this section
we prove Theorem 1.6. The proof of this theorem is based on a somewhat sim-
pler variation of the decomposition algorithm from the previous section. In fact,
the hierarchical star-partition algorithm remains practically the same, with modified
submethod probabilistic star-partition given in Figure 3, instead of star-partition.
Note that this method does not require n, the size of last reset cluster, as a
parameter.

Let f : [1,∞) → [1,∞) be a monotone nondecreasing function satisfying f(i) ≥ i
and

∞∑
i=1

1

f(i)
≤ 1/2.(6.1)

For example, if we define log(0) n = n, and for any i > 0 define recursively log(i) n =
max{log(log(i−1) n), 1}, then we can take for any constants θ > 0, t ∈ N the function

f(x) = ĉ
∏t−1

j=0 log
(j)(x) · (log(t)(x))1+θ , for sufficiently large constant ĉ > 0, and it

will satisfy the conditions.

6.1. Algorithm analysis. Let Ĥ be the distribution on laminar families in-
duced by the algorithm above. Let H = supp(Ĥ). We begin with a bound on the
radius of any tree that can be created by the randomized algorithm. In what follows
we fix a certain family F ∈ H with a corresponding construction tree G and use the
definitions of the first paragraph in section 4.1. We say that a node X ∈ F is in level
i of G if the distance in the construction tree from X to the root is i. We have the
following claims analogous to Claim 4.6.

6Assume w.l.o.g. that k is an integer and m is an even integer.

184 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

(X0, . . . , Xt, (y1, x1), . . . , (yt, xt)) = probabilistic-star-partition(X, x0,Λ):
1. Set k = 0 ; Λ̂ = radx0(X); α = 1

16f(log(2Λ/Λ̂))
;

2. Choose uniformly at random β ∈ [1/2, 5/8].
3. X0 = B(x0, βΛ̂); Y0 = X \X0;
4. If Yk = ∅ set t = k and stop; Otherwise, set k = k + 1;

5. Let vk ∈ Yk−1 be the point minimizing χ̂k = |X|
|BYk−1

(x,αΛ̂/2)| over all x ∈
Yk−1; Set χk = max{4, χ̂k};

6. Choose rk ∈ [αΛ̂/2, αΛ̂] according to the following random process:
• Divide the interval [αΛ̂/2, αΛ̂] into N = �2 logχk� equal length inter-
vals J1, . . . , JN ; Let h = 1;

• LOOP: Toss a fair coin; If it turns out head and h < N then let
h = h+ 1 and goto LOOP;

• Choose rk uniformly at random from the interval Jh.
7. Let {xk, yk} be the edge in E which lies on a shortest path from vk to x0

such that yk ∈ X0, xk ∈ Yk−1
a;

8. Let � = �x0
xk

be the cone-metric with respect to x0 and xk on the subspace
Yk−1;
Xk = B(Yk−1,�)(xk, rk); Yk = Yk−1 \Xk.

9. goto 4;

aBy Claim 4.3, if zk ∈ Yk−1 all the points on any shortest path from vi to x0 are either in X0

or in Yk−1

Fig. 3. Probabilistic star-partition algorithm.

Claim 6.1. Fix some Y ∈ R. Let X ∈ GY \ R(Y) with LY (X) = k, and let
Z ∈ GX with LY (Z) = k + l. Then

• rad(Z) ≤ (58)
lrad(X),

• α = α(X) ≤ 1
16f(1+k/2) .

Proof. The proof of the first property is essentially identical to the proof of the
first property of Claim 4.6. We prove by induction on l that the base case l = 0 holds
as then Z = X . Assume for l− 1 and for l that using Corollary 4.5 it suffices to show
that α ≤ 1/8. This indeed holds because Λ ≥ Λ̂ and f(i) ≥ i.

In order to prove the second property we use the first property and obtain

α =
1

16f(log(2rad(Y)/rad(X)))
≤ 1

16f(1 + k log
(
8
5

)
)
≤ 1

16f(1 + k/2)
.

Observe that the function h : N → R+ defined by h(i) = 1
8f(1+i/2) satisfies both

conditions of Lemma 4.7, that is, for any X ∈ F ,

•
∑

i≥0 h(i) =
∑

i≥0
1

8f(1+i/2) ≤
1
4

∑
i≥1

1
f(i) ≤ 1 and

• α(X) ≤ h(L(X)).

We conclude that for any X ∈ F ,

rad[T (X)] ≤ c′ · rad(X).(6.2)

Having established a bound on the radius increase of any tree in the support of
the distribution, we continue to bound the expected distortion of (1 − ε) fraction of

EMBEDDING INTO TREES 185

the pairs for all 0 < ε ≤ 1 simultaneously. Recall that G = (V,E) is the original graph
we work with. Unless stated explicitly otherwise, all distances are with respect to the
shortest path metric on G. Let Λ = rad(G). For any ε > 0 and x ∈ X define rε(x)
as the minimal radius r for which |B(x, r)| ≥ εn. Fix some ε > 0, and let P (ε) =
{{x, y} : d(x, y) ≥ max{rε/2(x), rε/2(y)}}; as stated in Definition 1.2, these are the
pairs for which we want to bound the expected distortion. Observe that for any point
x there are at most εn/2 other points y for which d(x, y) < rε/2(x) (and that the εn/2

closest distances are counted twice), so that P (ε) ≥
(
n
2

)
− (εn2/2− εn/2) = (1− ε)

(
n
2

)
.

Throughout the analysis, a pair {x, y} ∈ P (ε) is fixed, and let B = B(x, d(x, y)). By
definition of P (ε) we have that |B| ≥ εn/2. For i ∈ N and X ⊆ V , let SX,i = SX,i(B)
be the event that X is in level i (i.e., a node of depth i in the construction tree) with
B ⊆ X .

As before, a cluster X is partitioned into the central ballX0 and conesX1, . . . Xm,
where m is a random variable depending on X and the random partitioning of X .
For an integer j, let Ej(X, i) be the event that SX,i holds, B ∩Xj /∈ {∅, B} and for all
k < j, B ∩Xk = ∅. In other words, this is the first time in the hierarchical partition
that the ball B is cut. Let E(X, i) be the event that ∃ 0 ≤ j < m such that Ej(X, i).

Remark. The ball B(x, d(x, y)) is taken according to the metric induced by G.
Since we required that B ⊆ X , the distance between x, y remains the same in the
subgraph induced on X as it was in G.

Fix some cluster X with B ⊆ X . For a subset Y ⊆ X and integer j ≥ 0
let RY,j = RY,j(X, i) be the event that SX,i holds, and in the star-partition of the
subgraph X , it happens that Y = Yj−1 and B ⊆ Y . Let CY,j = CY,j(X, i) be the
event that RY,j(X, i) holds and in addition B ∩ Xj �= ∅. In other words, this is the
first time that the ball B is either cut or fully contained in a cluster when performing
the partitioning of X . Note that there are always unique Y and j such that this event
holds. Let T be the support of the distribution over spanning trees induced by the
algorithm. Note that the events E(X, i) are disjoint for different X or i and that they
form a partition of the (implicit) probability space (because the ball B has |B| ≥ 2,
so it must be cut for the first time exactly once), so we can write

E[dT (x, y)] =
∑
T∈T

Pr[T] · dT (x, y)(6.3)

=
∑
T∈T

∑
i∈N

∑
X⊆V

Pr[E(X, i)] · Pr[T | E(X, i)] · dT (x, y)

=
∑
i∈N

∑
X⊆V

Pr[E(X, i)]
∑
T∈T

Pr[T | E(X, i)] · dT (x, y)

≤ 2c′
∑
i∈N

∑
X⊆V

Pr[E(X, i)] · rad(X)
∑
T∈T

Pr[T | E(X, i)]

= 2c′
∑
i∈N

∑
X⊆V

Pr[E(X, i)] · rad(X).(6.4)

The inequality holds since conditioning on E(X, i) suggests that B ⊆ X , which means
that both x, y ∈ X so that dT (x, y) = dT [X](x, y) ≤ 2rad(T [X]), and by (6.2) it
follows that rad(T [X]) ≤ c′rad(X). The main technical lemma is the following.

Lemma 6.2. There exists a universal constant C′ such that for any cluster X
and integer i,

186 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

Pr[E(X, i)] · rad(X)≤ C′ · f(log(2/ε))d(x, y)

×
∑
Y⊆X

∑
j≥0

Pr[CY,j(X, i)] log

(
|X |

|BY (x, α · rad(X)/2)|

)
,(6.5)

where α = α(X) is defined as in the algorithm.
Before proving this lemma, let us show how it implies Theorem 1.6.
Proof of Theorem 1.6. Let k = �log8/5(128f(log(2c/ε)))�. We will divide the

summation in the last line of (6.3) into k summations, that is, for � ∈ {0, 1, . . . , k−1}
the �th sum will be over indices i ∈ I�, where I� = {i : i = � (mod k)}. Fix such an
�, and we will prove by (reverse) induction on t ∈ I� that

(6.6)∑
i∈I�, i≥t

∑
X

Pr[E(X, i)]rad(X) ≤ 2C′ · f(log(2/ε))d(x, y)
∑
X

Pr[SX,t] log

(
|X |
εn/2

)
.

The base case will be when t = log8/5 Λ. The first property of Claim 6.1 suggests
that all the clusters in level t are singletons, so none of them can contain B, and thus
Pr[E(X, t)] = 0 for all X . Assume (6.6) holds for t+k, and we prove for t. In the sum-
mation, we will distinguish between clusters X with rad(X) < 2d(x, y)/α and the oth-
ers. For the former clusters, it holds that

∑
X : rad(X)<2d(x,y)/αPr[E(X, t)]rad(X) ≤

2d(x, y)/α, and for the latter we shall use Lemma 6.2. Using the induction hypothesis,∑
i∈I�, i≥t

∑
X

Pr[E(X, i)]rad(X)

=
∑
X

Pr[E(X, t)]rad(X) +
∑

i∈I�, i≥t+k

∑
Z

Pr[E(Z, i)]rad(Z)

(6.6)

≤
∑

X : rad(X)≥2d(x,y)/α

Pr[E(X, t)]rad(X) +
∑

X : rad(X)<2d(x,y)/α

Pr[E(X, t)]rad(X)

+ 2C′ · f(log(2/ε))d(x, y)
∑
Z

Pr[SZ,t+k] log

(
|Z|
εn/2

)
(6.5)

≤
∑

X : rad(X)≥2d(x,y)/α

C′ · f(log(2/ε))d(x, y)

×
∑
Y⊆X

∑
j≥0

Pr[CY,j(X, t)] log

(
|X |

|BY (x, α · rad(X)/2)|

)
+ 2d(x, y)/α

+2C′ · f(log(2/ε))d(x, y)
∑
Z

Pr[SZ,t+k] log

(
|Z|
εn/2

)

= C′ · f(log(2/ε))d(x, y)

·

⎛
⎝ ∑

X : rad(X)≥2d(x,y)/α

∑
Y ⊆X

∑
j≥0

Pr[CY,j(X, t)] log

(
|X |

|BY (x, α · rad(X)/2)|

)

+
∑
Z

Pr[SZ,t+k] log

(
|Z|
εn/2

))

+2d(x, y)/α+ C′ · f(log(2/ε))d(x, y)
∑
Z

Pr[SZ,t+k] log

(
|Z|
εn/2

)
.

EMBEDDING INTO TREES 187

Thus, to prove the induction hypothesis it remains to show that

2/α ≤ C′ · f(log(2/ε))d(x, y)(6.7)

and that

∑
X:rad(X)≥2d(x,y)/α

∑
Y⊆X

∑
j≥0

Pr[CY,j(X, t)] log

(
|X |

|BY (x, α · rad(X)/2)|

)
(6.8)

+
∑
Z

Pr[SZ,t+k] log

(
|Z|
εn/2

)
≤
∑
X

Pr[SX,t] log

(
|X |
εn/2

)
.

Observe that any cluster Z in level t+ k for which SZ,t+k holds has an ancestor
X at level t and a Y ⊆ X and integer j ≥ 0 such that CY,j(X, t) holds. The ancestor
profile of Z, a(Z) = (X,Y, j), is so if the cluster Z at level t + k has such ancestors
at level t. We will break the summation over all Z according to the ancestor profile.
Observe that Pr[CY,j(X, t)] ≥

∑
Z:a(Z)=(X,Y,j) Pr[SZ,t+k], because the events SZ,t+k

are disjoint for different Z (the ball B must be contained in Z), and in fact the
inequality is strict if the ball B can be cut in one of the levels t, t + 1, . . . , t+ k − 1.
Let q = q(X,Y, j) =

∑
Z:a(Z)=(X,Y,j) Pr[SZ,t+k]. The reason for choosing k levels

between X and Z is that using Claim 6.1, we have that

rad(Z) ≤ (5/8)krad(X) = rad(X)/(128f(log(2c/ε))).(6.9)

Now α = 1
16f(log(2rad(F)/rad(X))) , where F is the last reset cluster before X . By

definition of reset cluster, rad(F)/rad(X) ≤ cn/|X |, and since εn/2 ≤ |B| ≤ |X | we
have that rad(F)/rad(X) ≤ 2c/ε. This suggests that

α ≥ 1

32f(log(4c/ε))
,

which proves (6.7) for C′ large enough. We also have that if Z ⊆ Y and SZ,t+k holds,
then x ∈ Z and thus using (6.9),

Z = BZ(x, 2rad(Z)) ⊆ BY (x, α · rad(X)/2).

We conclude that

∑
Z

Pr[SZ,t+k] log

(
|Z|
εn/2

)
=
∑
X,Y,j

∑
Z:a(Z)=(X,Y,j)

Pr[SZ,t+k] log

(
|Z|
εn/2

)

≤
∑
X,Y,j

∑
Z:a(Z)=(X,Y,j)

Pr[SZ,t+k] log

(
|BY (x, α · rad(X)/2)|

εn/2

)

=
∑
X,Y,j

q(X,Y, j) · log
(
|BY (x, α · rad(X)/2)|

εn/2

)
.

Plugging this into (6.8) and noting that since rad(X) ≥ 2d(x, y)/α and B ⊆ Y we
have that |BY (x, α · rad(X)/2)| ≥ |B| ≥ εn/2. Now,

188 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

∑
X:rad(X)≥2d(x,y)/α

∑
Y⊆X

∑
j≥0

Pr[CY,j(X, t)] log

(|X|
|BY (x, α · rad(X)/2)|

)

+
∑
Z

Pr[SZ,t+k] log

(|Z|
εn/2

)

≤
∑

X:rad(X)≥2d(x,y)/α

∑
Y,j

(
Pr[CY,j(X, t)]− q(X,Y, j)

) · log(|X|
εn/2

)

+
∑
X,Y,j

q(X,Y, j) ·
(
log

(|X|
|BY (x,α · rad(X)/2)|

)
+ log

(|BY (x,α · rad(X)/2)|
εn/2

))

=
∑
X,Y,j

Pr[CY,j(X, t)] · log
(|X|
εn/2

)

=
∑
X

Pr[SX,t] · log
(|X|
εn/2

)∑
Y,j

Pr[CY,j(X, t) | SX,t]

=
∑
X

Pr[SX,t] · log
(|X|
εn/2

)
,

where in the last equality we used that events CY,j(X, t) are disjoint, and fixing X
at level t their sum is 1 (the ball B must be cut or contained for some Y and j).
This concludes the proof of (6.6), and we can finally show a bound on the expected
distortion,

E[dT (x, y)]
(6.3)

≤ 2c′
∑
i∈N

∑
X

Pr[E(X, i)] · rad(X)

= 2c′
k−1∑
�=0

∑
i∈I�

∑
X

Pr[E(X, i)] · rad(X)

(6.6)

≤ 4c′C′ · f(log(2/ε))d(x, y)
k−1∑
�=0

∑
X

Pr[SX,�] log

(
|X |
εn/2

)

≤ 4c′C′ · f(log(2/ε))d(x, y) log(2/ε)
k−1∑
�=0

∑
X

Pr[SX,�].

Since SX,� are disjoint events when � is fixed, their sum over all X can be at most 1,
so we conclude that

E[dT (x, y)] = O(f(log(2/ε)) · log(2/ε) · k · d(x, y)) = Õ(log2(2/ε) · d(x, y)).

It remains to prove Lemma 6.2. Fix some cluster X with radius Λ̂ and integer i
such that SX,i holds. We partition X into X0, X1, . . . , Xm. Divide the event E(X, i)
into three events:

• The first is the event that B is cut by the first cluster (the central ball X0).
This event is denoted by B.

• The second is the event L, that there exists j > 0 and Y ⊆ X such that RY,j

holds, B∩Xj /∈ {∅, B}, and rj ∈ JN . In other words, it is the event that B is
indeed cut in level i, by a cone whose radius is chosen from the last interval
(see line 6 in Figure 3).

EMBEDDING INTO TREES 189

• The third event M is the completion of the first two events, that there exists
j > 0 and Y ⊆ X such that RY,j holds, B ∩ Xj /∈ {∅, B}, and rj /∈ JN . In
other words, it is the event that B is cut in level i, by a cone whose radius is
not chosen from the last interval.

Claim 6.3. Pr[B] ≤ O(d(x, y)/Λ̂).
Proof. The radius of the central ball is chosen uniformly at random from an

interval of length Λ̂/8. Let a, b ∈ B be the closest and farthest points from x0; then
by the triangle inequality dX(x0, b)−dX(x0, a) ≤ dX(a, b) ≤ 2d(x, y). The probability
that βΛ̂ falls in an interval of length 2d(x, y) is at most 16d(x, y)/Λ̂.

Claim 6.4. Pr[L] ≤ O(d(x, y)/(αΛ̂)).
Proof. Fix some j > 0, and consider the interval JN as defined in the algo-

rithm. It has length αΛ̂/(2N), so conditioning on the event that the radius is chosen
from the last interval JN , the probability that the ball B is cut, is bounded by
2d(x, y)/(αΛ̂/(2N)) = 4N · d(x, y)/(αΛ̂). The probability that the last interval is
chosen is the probability that N = �2 logχj(Y)� random fair coins came up heads,
which is at most 1/χj(Y)2, where χj = χj(Y) is as defined in line 5 of Figure 3, and
Y = Yj−1. Now, using that χj(Y) ≥ 4, we can write N ≤ 3 logχj(Y), so that

Pr[L] =
∑
Y ⊆X

∑
j>0

Pr[RY,j(X, i) ∧ rj ∈ JN ∧B ∩Xj /∈ {∅, B}]

=
∑
Y ⊆X

∑
j>0

Pr[RY,j] · Pr[rj ∈ JN | RY,j] · Pr[B ∩Xj /∈ {∅, B} | RY,j ∧ rj ∈ JN]

≤
∑
Y ⊆X

∑
j>0

Pr[RY,j]
1

χj(Y)2
· 12 logχj(Y) · d(x, y)

αΛ̂

≤ 12d(x, y)

αΛ̂

∑
Y⊆X

∑
j>0

Pr[RY,j]
1

χj(Y)
.

It remains to show that
∑

Y

∑
j>0 Pr[RY,j]

1
χj(Y) ≤ 1. For each possible m ∈ N

and a partition of X to X0, X1, . . . , Xm, we can write its probability in terms of the
RY,j in the following manner. For every m > 0 and a sequence X0, X1, . . . , Xm, let
Pr[X0, X1, . . . , Xm] be the probability that this is the partition of X (conditioning on

the cluster X). Recall that χj(Y) ≥ χ̂j(Y) = |X|
|BYj−1

(vj ,αΛ̂/2)| (see the definition in

Figure 1), and as rj ≥ αΛ̂/2 we have that BYj−1 (vj , αΛ̂/2) ⊆ Xj for any choice of rj .
This implies that

χj(Y) ≥ |X |
|Xj |

.(6.10)

Next, note that the probability of a certain event Y = Yj−1 is equal to the sum of
probabilities of sequences X0, . . . , Xm, over all sequences for which Y = (Xj ∪ · · · ∪
Xm), which means that∑

Y

∑
j>0

Pr[RY,j]
1

χj(Y)
≤
∑
Y

∑
j>0

Pr[Y = Yj−1]
1

χj(Y)

=
∑
Y

∑
j>0

∑
m≥j

∑
(X0,...,Xm) : Y=(Xj∪···∪Xm)

Pr[X0, . . . , Xm]
1

χj(Y)

(6.10)
≤

∑
Y

∑
j>0

∑
m≥j

∑
(X0,...,Xm) : Y=(Xj∪···∪Xm)

Pr[X0, . . . , Xm]
|Xj |
|X| .(6.11)

190 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

Observe that any sequence X0, . . . , Xm appears exactly m times in the summa-
tions, since for every j = 1, . . . ,m there is a unique choice of Y such that Y =
(Xj ∪ · · · ∪Xm). We conclude that (6.11) is equal to

∑
j>0

∑
m≥j

∑
(X0,...,Xm)

Pr[X0, . . . , Xm]
|Xj |
|X |

=
∑
m>0

∑
(X0,...,Xm)

Pr[X0, . . . , Xm]

m∑
j=1

|Xj|
|X |

≤
∑
m>0

∑
(X0,...,Xm)

Pr[X0, . . . , Xm]

= 1.

The inequality is using that the {Xj} are pairwise disjoint, and the last equality is
that the events of obtaining each sequence X0, . . . , Xm are disjoint.

Claim 6.5. Pr[M]≤O(d(x, y)/(αΛ̂))
∑

Y⊆X

∑
j≥0 Pr[CY,j(X, i)] log(|X|

|BY (x,αΛ̂/2)|).

Proof. Naturally Pr[rj /∈ JN] ≤ 1, even conditioned on anything. Fix some
Y and j with B ⊆ Yj−1 = Y such that B ∩ Xj �= ∅ (that is, event CY,j holds);
then we argue that the probability that Xj ∩ B �= B (that is, the ball B is cut by

the next cluster) is bounded by
16 logχj(Y)·d(x,y)

αΛ̂
. Indeed, if the radius rj is chosen

from the interval Jh (whose length is αΛ̂/(2N)), as B is a ball of radius d(x, y),
the probability that a uniform choice of rj in this interval will cut B is at most

2d(x, y)/|Jh| ≤ 16 logχj(Y)·d(x,y)
αΛ̂

.

Pr[M] ≤
∑
Y⊆X

∑
j>0

Pr[RY,j(X, i) ∧B ∩Xj /∈ {∅, B}]

=
∑
Y⊆X

∑
j>0

Pr[RY,j ∧B ∩Xj �= ∅] · Pr[B ∩Xj �= B | RY,j ∧B ∩Xj �= ∅]

=
∑
Y⊆X

∑
j>0

Pr[CY,j] · Pr[B ∩Xj �= B | CY,j]

≤
∑
Y⊆X

∑
j>0

Pr[CY,j] ·
16 logχj(Y) · d(x, y)

αΛ̂
.

The proof is complete recalling that vj was the point minimizing χj(Y), thus χj(Y) =
|X|

|BY (vj ,αΛ̂/2)| ≤
|X|

|BY (x,αΛ̂/2)| .

Proof of Lemma 6.2. The proof is done simply by noting that event E(X, i) is
equal to the union of events B, L, and M and applying Claims 6.3, 6.4, and 6.5.

REFERENCES

[ABC+05] I. Abraham, Y. Bartal, H. T.-H. Chan, K. Dhamdhere, A. Gupta, J. M. Klein-

berg, O Neiman, and A Slivkins, Metric embeddings WITH relaxed guarantees,
in Proceedings of FOCS, IEEE Computer Society, 2005, pp. 83–100.

[ABN06] I. Abraham, Y. Bartal, and O. Neiman, Advances in metric embedding theory, in
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM
Press, New York, 2006, pp. 271–286.

[ABN07] I. Abraham, Y. Bartal, and O. Neiman, Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion, in Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 502–511.

EMBEDDING INTO TREES 191

[ABN08] I. Abraham, Y. Bartal, and O. Neiman, Nearly tight low stretch spanning trees, in
Proceedings of the 49th Annual IEEE Symposium on the Foundations of Computer
Science, 2008, pp. 781–790.

[AKPW95] N. Alon, R. M. Karp, D Peleg, and D West, A graph-theoretic game and its
application to the k-server problem, SIAM J. Comput., 24 (1995), pp. 78–100.

[AN12] I. Abraham and O. Neiman, Using petal-decompositions to build a low stretch span-
ning tree, in Proceedings of the 44th Symposium on Theory of Computing, ACM,
New York, 2012, pp. 395–406.

[AS03] V. Athitsos and S. Sclaroff, Database indexing methods for 3d hand pose estima-
tion, in Proceedings of the Gesture Workshop, 2003, pp. 288–299.

[Bar96] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic appli-
cations, in Proceedings of the 37th Annual Symposium on the Foundations of
Computer Science, Burlington, VT, 1996, pp. 184–193.

[Bar98] Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proceedings of the
30th Annual ACM Symposium on Theory of Computing, 1998, pp. 183–193.

[Bar04] Y. Bartal, Graph decomposition lemmas and their role in metric embedding methods,
in 12th Annual European Symposium on Algorithms, 2004, pp. 89–97.

[BBM06] Y. Bartal, B. Bollobás, and M. Mendel, Ramsey-type theorems for metric spaces
with applications to online problems, J. Comput. System Sci., 72 (2006), pp. 890–
921.

[BLMN05] Y. Bartal, N. Linial, M. Mendel, and A. Naor, On metric ramsey-type phenomena,
Ann. of Math, 162 (2005), pp. 643–709.

[BM02] Y. Bartal and Mendel, On Low Dimensional Lipschitz Embeddings of Ultrametrics,
manuscript, 2002.

[BM03] Y. Bartal and M. Mendel, Multi-embedding and path approximation of metric
spaces, in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2003, pp. 424–433.

[DPK82] N. Deo, G. Prabhu, and M. S. Krishnamoorthy, Algorithms for generating funda-
mental cycles in a graph, ACM Trans. Math. Software, 8 (1982), pp. 26–42.

[EEST05] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, Lower-stretch spanning trees,
in Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
2005, pp. 494–503.

[ELR07] M. Elkin, C. Liebchen, and R. Rizzi, New length bounds for cycle bases, Inform.
Process. Lett., 104 (2007), pp. 186–193.

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbi-
trary metrics by tree metrics, in Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, 2003, pp. 448–455.

[HBK+03] E. Halperin, J. Buhler, R. M. Karp, R. Krauthgamer, and B. Westover, De-
tecting protein sequence conservation via metric embeddings, Bioinformatics, 19
(2003), pp. 122–129.

[HFC00] G. Hristescu and M. Farach-Colton, COFE: A scalable method for feature extrac-
tion from complex objects, in Proceedings of DaWaK, 2000, pp. 358–371.

[HPM06] S. Har-Peled and M. Mendel, Fast construction of nets in low-dimensional metrics
and their applications, SIAM J. Comput, 35 (2006), pp. 1148–1184.

[HS00] G. Hjaltason and H. Samet, Contractive Embedding Methods for Similarity Search-
ing in Metric Spaces, University of Maryland, College Park, 2000.

[Ind01] P. Indyk, Algorithmic applications of low-distortion geometric embeddings, in Pro-
ceedings of the 42nd Annual Symposium on Foundations of Computer Science,
2001, pp. 10–33.

[Kru64] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis, Psychometrika, 29 (1964), pp. 1–27.

[KSW04] J. M. Kleinberg, A. Slivkins, and T. Wexler, Triangulation and embedding using
small sets of beacons, in Proceedings of FOCS, 2004, pp. 444–453.

[KW78] J. B. Kruskal and M. Wish, Multidimensional Scaling, SAGE Publications, Thou-
sand Oaks, CA, 1978.

[RR98] Y. Rabinovich and R. Raz, Lower bounds on the distortion of embedding finite metric
spaces in graphs, Discrete Comput. Geom., 19 (1998), pp. 79–94.

[ST04] Y. Shavitt and T. Tankel, Big-bang simulation for embedding network distances in
euclidean space, IEEE/ACM Trans. Networking, 12 (2004), pp. 993–1006.

192 ITTAI ABRAHAM, YAIR BARTAL, AND OFER NEIMAN

[TC04] L. Tang and M. Crovella, Geometric exploration of the landmark selection problem,
in Proceedings of PAM, 2004, pp. 63–72.

[WLB+98] B. Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C. Y. Tang, A poly-
nomial time approximation scheme for minimum routing cost spanning trees, in
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
1998, pp. 21–32.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

