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Abstract

An embedding of one metric space (X, d) into another (Y, ρ) is an injective map
f : X → Y . The central genre of problems in the area of metric embedding is finding
such maps in which the distances between points do not change “too much”.

Metric Embedding plays an important role in a vast range of application areas such
as computer vision, computational biology, machine learning, networking, statistics, and
mathematical psychology, to name a few. The mathematical theory of metric embedding
is well studied in both pure and applied analysis and has more recently been a source of
interest for computer scientists as well. Most of this work is focused on the development
of bi-Lipschitz mappings between metric spaces. In this work we present new concepts
in metric embeddings as well as new embedding methods for metric spaces. We focus
on finite metric spaces, however some of the concepts and methods may be applicable in
other settings as well.

One of the main cornerstones in finite metric embedding theory is a celebrated theorem
of Bourgain which states that every finite metric space on n points embeds in Euclidean
space with O(log n) distortion. Bourgain’s result is best possible when considering the
worst case distortion over all pairs of points in the metric space. Yet, it is natural to
ask: can an embedding do much better in terms of the average distortion? Indeed, in
most practical applications of metric embedding the main criteria for the quality of an
embedding is its average distortion over all pairs.

In this work we provide an embedding with constant average distortion for arbitrary
metric spaces, while maintaining the same worst case bound provided by Bourgain’s
theorem. In fact, our embedding possesses a much stronger property. We define the
`q-distortion of a uniformly distributed pair of points. Our embedding achieves the best
possible `q-distortion for all 1 ≤ q ≤ ∞ simultaneously.

The results are based on novel embedding methods which do well in another aspect:
the dimension of the host space into which we embed (usually Lp spaces). The dimension
of an embedding is of very high importance in particular in applications and much effort
has been invested in analyzing it. Our embedding methods yield a tight O(log n) dimen-
sion. In fact, they shed new light on another fundamental question in metric embedding,
which is: whether the metric dimension of a metric space is related to its intrinsic dimen-
sion ? I.e., whether the dimension in which it can be embedded in some real normed space
is related to the intrinsic dimension, which is captured by the inherent geometry of the
metric space, measured by its doubling dimension. The existence of such an embedding,
where the distortion depends only on the intrinsic dimension as well, was conjectured
by Assouad and was later posed as an open problem by others. Our embeddings give
the first positive result of this type showing that every finite metric space attains a low
distortion (and constant average distortion) embedding in Euclidean space of dimension
proportional to its doubling dimension.

We also consider the basic problem of how well a tree can approximate the distances
induced by a graph, of particular interest is the case where the tree is a spanning tree
of the graph. Unfortunately, such approximation can suffer linear distortion in the worst
case, even for very simple graphs. We show an embedding of any metric into a tree metric



(in fact an ultrametric), and embed any weighted graph into a spanning tree both with
constant average distortion.
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Chapter 1

Introduction

The theory of embeddings of finite metric spaces has attracted much attention in recent
decades by several communities: mathematicians, researchers in theoretical Computer
Science as well as researchers in the networking community and other applied fields of
Computer Science.

The main objective of the field is to find embeddings of metric spaces into other more
simple and structured spaces that have low distortion. Given two metric spaces (X, dX)
and (Y, dY ) an injective mapping f : X → Y is called an embedding of X into Y . An
embedding is non-contractive if for every u 6= v ∈ X: dY (f(u), f(v)) ≥ dX(u, v). The
distortion of a non-contractive embedding f is: dist(f) = supu 6=v∈X distf (u, v), where

distf (u, v) = dY (f(u),f(v))
dX(u,v)

. Equivalently, the distortion of a non-contracting embedding is
the infimum over values α such that f is α-Lipschitz.

We say that X embeds in Y with distortion α if there exists an embedding of X into
Y with distortion α.

In Computer Science, embeddings of finite metric spaces have played an important
role, in recent years, in the development of algorithms. More general practical use of
embeddings can be found in a vast range of application areas including computer vi-
sion, computational biology, machine learning, networking, statistics, and mathematical
psychology to name a few.

From a mathematical perspective embeddings of finite metric spaces into normed
spaces are considered natural non-linear analogues to the local theory of Banach spaces,
which deals with finite dimensional Banach spaces and convex bodies. The most classic
fundamental question is that of embedding metric spaces into Hilbert Space.

Major effort has been put into investigating embeddings into Lp normed spaces (see
the surveys [Lin02, Ind01, IM04] and the book [Mat02] for an exposition of many of the
known results). The main cornerstone of the field has been the following theorem by
Bourgain [Bou85]:

Theorem 1 (Bourgain). For every n-point metric space there exists an embedding into
Euclidean space with distortion O(log n).

This theorem has been the basis on which the theory of embedding into finite metric
spaces has been built. In [LLR95] it is shown that Bourgain’s embedding provides an
embedding into Lp, for any 1 ≤ p ≤ ∞ with distortion O(log n) and the dimension
of the Lp space may be at most O(log2 n). In this work we extend this result in two
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ways: we present an embedding with average distortion O(1) and dimension O(log n),
while maintaining O(log n) distortion. The same embedding also obtains the optimal `q-
distortion, the notions of average and lq-distortion are defined in the sequel. Our result on
the average distortion and `q-distortion can also be extended to infinite compact metric
spaces.

In addition, we study the best possible dimension in which a metric space can be
embedded into normed space. The intrinsic dimension of a metric space, which may
be defined as its doubling dimension, is the best possible dimension one can hope for
(embedding into less dimensions may incurs arbitrarily high distortion). Assouad [Ass83]
showed that for a metric space (X, d) a ”snowflake” version of the metric, (X, dγ) for any
0 < γ < 1 can be embedded into Euclidean space with constant distortion and dimension,
where the constant depend only on the doubling dimension of the metric and on γ. He
conjectured that the same holds for (X, d), i.e. the case γ = 1, but this was disproved
by Semmes [Sem96]. A natural variation on Assouad’s conjecture, now that we know a
constant distortion is impossible, is whether a constant dimension can be obtained with
low distortion. We show an embedding of any metric space into Lp with low distortion,
and the dimension is of the same order of the doubling dimension. We also extend this
embedding to obtain constant average distortion as well as low dimension.

Embedding finite metric spaces into tree metrics has been a successful and fertile line
of research [AKPW95, Bar96, Bar98, CCGG98, FRT03, EEST05]. These embeddings
provide very simple structure, that can be exploited to provide efficient approximation
algorithms to a wide range of problems, see [Ind01]. Previous work focused on probabilis-
tic embedding into trees, and graphs into spanning trees of the graph. The main results
are

• An embedding with O(log n) expected distortion into dominating ultrametrics (spe-
cial type of tree defined in the sequel), which can also be stated as an embedding
into a single dominating tree with O(log n) average distortion.

• An Embedding of a graph into a distribution of spanning trees of the graph with
O(log2 n log log n) distortion.

We study the special cases of embedding a metric into a single ultrametric, and of em-
bedding a graph into a spanning tree of the graph. Even though in the worst case
the embedding must incur linear distortion, we show that the average distortion can
still be bounded by a universal constant, and give a good bound on the `2-distortion
as well. In an additional result not included in this thesis (see [ABN08b]) we improve
the result for spanning trees to the nearly optimal Õ(log n), where Õ(N) is defined as
Õ(N) = O(N) · logO(1)N

Another line of work which is not included in this thesis (see [ABN07b, ABN09]) is
local embeddings, in which better distortion bounds are obtained for pairs that are nearby
neighbors, while preserving the best possible worst case distortion bound.
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1.1 On the Average Distortion of Metric Embed-

dings

The O(log n) distortion guarantied by Bourgain’s theorem is existentially tight. A nearly
matching bound was already shown in Bourgain’s paper and later Linial, London and Ra-
binovich [LLR95] proved that embedding the metrics of constant-degree expander graphs
into Euclidean space requires Ω(log n) distortion.

Yet, this lower bound on the distortion is a worst case bound, i.e., it means that there
exists a pair of points whose distortion is large. However, the average case is often more
significant in terms of evaluating the quality of the embedding. Formally, the average
distortion of an embedding f is defined as: avgdist(f) = 1

(n
2)

∑
u 6=v∈X distf (u, v).

Indeed, in most real-world applications of metric embeddings average distortion and
similar notions are used for evaluating the embedding’s performance in practice, for ex-
ample see [HS03, HFC00, AS03, HBK+03, ST04, TC04]. Moreover, in some cases it is
desired that the average distortion would be small and the worst case distortion would
still be reasonably bounded as well. While these papers provide some indication that
such embeddings are possible in practice, to the best of my knowledge the classic theory
of metric embedding did not address this natural question. In particular, applying Bour-
gain’s embedding to the metric of a constant-degree expander graph results in Ω(log n)
distortion for a constant fraction of the pairs1.

In this thesis we prove the following theorem which provides a qualitative strength-
ening of Bourgain’s theorem:

Theorem 2 (Average Distortion). For every n-point metric space there exists an em-
bedding into O(log n) dimensional Euclidean space with distortion O(log n) and average
distortion O(1).

In fact our results are even stronger. For 1 ≤ q ≤ ∞, define the `q-distortion of an
embedding f as:

`q-dist(f) = E[distf (u, v)
q]1/q,

where the expectation is taken according to the uniform distribution U over
(

X
2

)
. This

can be thought of as taking the q-norm of the distortion function. The classic notion of
distortion is expressed by the `∞-distortion and the average distortion is expressed by
the `1-distortion. Theorem 2 follows from the following:

Theorem 3 (`q-Distortion). For every n-point metric space (X, d) there exists an em-
bedding f of X into O(log n) dimensional Euclidean space such that for any 1 ≤ q ≤ ∞,
`q-dist(f) = O(min{q, log n}).

It is worth noting that requiring the embedding to be non-contractive is essential, see
Section 1.7 for discussion on the average distortion of Lipschitz maps.

A variant of average distortion that is natural is what we call distortion of average:

distavg(f) =
P

u 6=v∈X dY (f(u),f(v))P
u 6=v∈X d(u,v)

, which can be naturally extended to its `q-normed version

termed distortion of `q-norm. Theorems 2 and 3 extend to these notions as well.

1Similar statements hold for the more recent metric embeddings of [Rao99, KLMN04] as well.
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Besides q = ∞ and q = 1, the case of q = 2 provides a particularly natural measure. It
is closely related to the notion of stress which is a standard measure in multidimensional
scaling methods, invented by Kruskal [Kru64] and later studied in many models and vari-
ants. Multidimensional scaling methods (see [KW78, HS03]) are based on embedding of
a metric representing the relations between entities into low dimensional space to allow
feature extraction and are often used for indexing, clustering, nearest neighbor search-
ing and visualization in many application areas including psychology and computational
biology [HFC00].

These results are proved in Chapter 4, in particular Theorem 18 combined with
Lemma 2.1 proves the above mentioned theorems.

1.2 Low-Dimension Embeddings

Our new embeddings into Lp improve on the previous embedding methods by achieving
optimal dimension.

One of the most important parameters of an embedding into a normed space is the
dimension of the embedding. This is of particular importance in applications and has
been one of the main objects of study in the paper by Linial, London and Rabinovich
[LLR95]. In particular, they ask: what is the dimension obtained by the embedding in
Theorem 1 ?

For embedding into Euclidean space, this can be addressed by applying the Johnson
and Lindenstrauss [JL84] dimension reduction lemma which states that any n-point met-
ric space in L2 can be embedded in Euclidean space of dimension O(log n) with constant
distortion. This reduces the dimension in Bourgain’s theorem to O(log n).

However, dimension reduction techniques cannot be used to generalize the low dimen-
sion bound to Lp for all p.2 In particular, while every metric space embeds isometrically
in L∞ there are super-constant lower bounds on the distortion of embedding specific
metric spaces into low dimensional L∞ space [Mat96].

This problem has been addressed by Linial, London, and Rabinovich [LLR95] and
separately by Matoušek [Mat90] where they observe that the embedding given in Bour-
gain’s proof of Theorem 1 can be used to bound the dimension of the embedding into Lp

by O(log2 n). Here we prove the following:

Theorem 4. For any 1 ≤ p ≤ ∞, every n-point metric space embeds in LD
p with distor-

tion O(log n) where D = O(log n).

In addition to the new embedding techniques discussed above the proof of Theorem 4
introduces a new trick of summing up the components of the embedding over all scales.
This is in contrast to previous embeddings where such components were allocated separate
coordinates. This saves us the extra logarithmic factor in the dimension.

Moreover, we show the following trade-off between distortion and dimension, which
generalizes Theorem 4:

Theorem 5. For any 1 ≤ p ≤ ∞ and D ≥ 1, every n-point metric space embeds into
L

O(D)
p with distortion O(n1/D log n).

2For 1 ≤ p < 2, a combination of lemmas of [JL84] and [FLM77] can be used to obtain an embedding
in dimension O(log n).
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In particular one can choose for any θ > 0, D = log n
θ log log n

and obtain dimension O(D)

with almost optimal distortion of O(log1+θ n). The bound in Theorem 5 is tight for all
n, p,D for the metric of an expander, as shown in Theorem 28.

Matoušek extended Bouragin’s proof to improve the distortion bound into Lp to
O(d log n

p
e). He also showed that this bound is tight [Mat97]. The dimension obtained

in Matoušek’s analysis of the embedding into Lp is eO(p) log2 n. Our methods extend to
give the following improvement:

Theorem 6. For any 1 ≤ p ≤ ∞ and any 1 ≤ k ≤ p, every n-point metric space embeds
in LD

p with distortion O
(
d log n

k
e
)

where D = eO(k) log n.

The bound on the dimension in Theorem 6 is nearly tight (up to lower order terms)
as follows from volume arguments by Matoušek [Mat96] (based on original methods of
Bourgain [Bou85]).

These results are proved in Chapter 4, in particular Corollary 4.1 implies Theorem 4
and Theorem 5, and Theorem 18 implies Theorem 6.

1.3 Infinite Compact Spaces

It is well known that infinite metric spaces may require infinite distortion when embedded
into Euclidean space, this is also implied by Bourgain’s result - the distortion tends to
infinity with the cardinality of (X, d). However, our bound on the average distortion (and
in general the `q-distortion) does not depend on the size of (X, d), hence we can apply
our embedding technique to infinite compact metric spaces as well.

For a compact metric space (X, d) equipped with a measure3 σ we define the product
distribution Π = Π(σ) over X ×X as Π(x, y) = σ(x)σ(y). Define the `q-distortion of an
embedding f as

`q-dist(f) = E(x,y)∼Π[distf (x, y)
q]1/q

Theorem 7. For any q ≥ 1, p ≥ 1, any compact metric space (X, d) and for every
probability measure σ on X there is a mapping f : X → Lp with `q-dist(f) = O(q).

In particular the embedding has constant average distortion. This extension is shown
in Chapter 5

1.4 Intrinsic Dimension

Metric embedding has important applications in many practical fields. Finding compact
and faithful representations of large and complex data sets is a major goal in fields like
data mining, information retrieval and learning. Many real world measurements are of
intrinsically low dimensional data that lie in extremely high dimensional space.

The fulklore lower bound on the dimension of Ω(logα n) for embedding into Euclidean
space with distortion α (see for instance [Mat02]) is associated with metrics that have high
intrinsic dimension. The intrinsic dimension of a metric spaceX is naturally measured by

3We may assume w.l.o.g that σ is a probability measure
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the doubling constant of the space: the minimum λ such that every ball can be covered by
λ balls of half the radius. The doubling dimension ofX is defined as dim(X) = log2 λ. The
doubling dimension of a metric space is the minimal dimension in which a metric space
can be embedded into a normed space, in a sense that using less dimensions necessarily
requires arbitrarily high distortion.

A fundamental question in the theory of metric embedding is the relationship between
the metric dimension of a metric space and its intrinsic dimension. That is, whether the
dimension in which it can be embedded in some real normed space is implied by the
intrinsic dimension which is reflected by the inherent geometry of the space.

Variants of this question were posed by Assouad [Ass83] as well as by Linial, Lon-
don and Rabinovich [LLR95], Gupta, Krauthgamer and Lee [GKL03], and mentioned
in [Mat05]. Assouad [Ass83] proved that for any 0 < γ < 1 there exists numbers
D = D(λ, γ) and C = C(λ, γ) such that for any metric space (X, d) with dim(X) = λ,
its “snowflake” version (X, dγ) can be embedded into a D-dimensional Euclidean space
with distortion at most C. Assouad conjectured that similar results are possible for
γ = 1, however this conjecture was disproved by Semmes [Sem96]. Gupta, Krathgamer
and Lee [GKL03] initiated a comprehensive study of embeddings of doubling metrics.
They analyzed the Euclidean distortion of the Laakso graph, which has constant dou-
bling dimension, and show a lower bound of Ω(

√
log n) on the distortion. They also

show a matching upper bound on the distortion of embedding doubling metrics, more
generally the distortion is O(log1/p n) for embedding into Lp. The best dependency on
dim(X) of the distortion for embedding doubling metrics is given by Krauthgamer et. al.
[KLMN04]. They show an embedding into Lp with distortion O((dim(X))1−1/p(log n)1/p),
and dimension O(log2 n).

However, all known embeddings for general spaces [Bou85, Mat96, LLR95, ABN06],
and even those that were tailored specifically for bounded doubling dimension spaces
[GKL03, KLMN04] require Ω(log n) dimensions. Replacing the dependence on n in the
dimension with a dependence on λ seems like a natural question. In this work we give
the first general low-distortion embeddings into a normed space whose dimension depends
only on dim(X) .

Theorem 8. For any n-point metric space (X, d) with dim(X) = log λ and any 0 < θ ≤
1, there exists an embedding f : X → LD

p with distortion O
(
log1+θ n

)
where D = O

(
log λ

θ

)
.

We present additional results in Section 2.5, including an embedding into Õ(dim(X))
dimensions with constant average distortion, a trade-off between distortion and dimen-
sion, and an extension of Assouad’s result. The proofs appear in Chapter 6.

1.5 Embedding into Trees

The problem of embedding general metric spaces into tree metrics with small distortion
has been central to the modern theory of finite metric spaces. Such embeddings provide an
efficient representation of the complex metric structure by a very simple metric. Moreover,
the special class of ultrametrics (rooted trees with equal distances to the leaves) plays a
special role in such embeddings [Bar96, BLMN05c]. Such an embedding provides an even
more structured representation of the space which has a hierarchical structure [Bar96].
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Probabilistic embedding into ultrametrics have led to algorithmic applications for a wide
range of problems (see [Ind01]).

An important variation is embedding a graph into a spanning tree of the graph. The
papers [AKPW95, EEST05] study the problem of constructing a spanning tree with low
average stretch, i.e., low average distortion over the edges of the graph. It is natural
to define our measure of quality for the embedding to be its average distortion over all
pairs, or alternatively the more strict measure of its `2-distortion. Such notions are very
common in most practical studies of embeddings (see for example [HS03, HFC00, AS03,
HBK+03, ST04, TC04]) .

Definition 1.1. An ultrametric (X, d) is a metric space satisfying a strong form of the
triangle inequality, for all x, y, z ∈ X, d(x, z) ≤ max{d(x, y), d(y, z)}. In particular, it is
also a tree metric.

Theorem 9. Any n-point metric space embed into an ultrametric and any finite weighted
graph on n vertices contains a spanning tree with average distortion O(1) and `2-distortion
O(
√

log n).

An additional result described in Theorem 26 we extend [FRT03] result of probabilistic
embedding into a distribution of ultrametrics, and obtain constant `q-distortion for all q
simultaneously. These results are shown in Chapter 8.

1.6 Embedding Methods

There are few general methods of embedding finite metric spaces that appear throughout
the literature. One is indeed the method introduced in Bourgain’s proof. This may be
described as a Fréchet-style embedding where coordinates are defined as distances to
randomly chosen sets in the space. Some examples of its use include [Bou85, LLR95,
Mat90, Mat97], essentially providing the best known bounds on embedding arbitrary
metric spaces into Lp.

The other embedding method which has been extensively used in recent years, is
based on probabilistic partitions of metric spaces [Bar96] originally defined in the con-
text of probabilistic embedding of metric spaces. Probabilistic partitions for arbitrary
metric spaces were also given in [Bar96] and similar constructions appeared in [LS91].
A ∆-bounded partition of a metric space is a collection of clusters, each with diameter
(maximum distance between two points in the cluster) at most ∆.

The probabilistic embedding of [Bar96] (and later improvements in [Bar98, FRT03,
Bar04]) provide in particular embeddings into L1 and serve as the first use of probabilistic
partitions in the context of embeddings into normed spaces.

A major step was done in a paper by Rao [Rao99] where he shows that a certain
padding property of such partitions can be used to obtain embeddings into L2. Informally,
a probabilistic partition is padded if every ball of a certain radius depending on some
padding parameter has a good chance of being contained in a cluster. Rao’s embedding
defines coordinates which may be described as the distance from a point to the edge of
its cluster in the partition and the padding parameter provides a lower bound on this
quantity (with some associated probability). While Rao’s original proof was done in the
context of embedding planar metrics, it has since been observed by many researchers that
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his methods are more general and in fact provide the first decomposition-based embedding
into Lp. However, the resulting distortion bound still did not match those achievable by
Bourgain’s original techniques.

This gap has been recently closed by Krauthgamer et. al [KLMN04]. Their embedding
method is based on the probabilistic partition of [FRT03], which in turn is based on an
algorithm of [CKR01] and further improvements by [FHRT03]. In particular, the main
property of the probabilistic partition of [FRT03] is that the padding parameter is defined
separately at each point of the space and depends in a delicate fashion on the growth
rate of the space in the local surrounding of that point.

This work uses novel probabilistic partitions with even more refined properties which
allow stronger and more general results on embedding of finite metric spaces.

Decomposition based embeddings also play a fundamental role in the recently devel-
oped metric Ramsey theory [BBM06, BLMN05c, MN06]. In [BLMN05a] it is shown that
the standard Fréchet style embeddings do not allow similar results. One indication that
our approach significantly differs from the previous embedding methods discussed above
is that our new theorems crucially rely on the use of non-Fréchet embeddings.

The main idea is the construction of uniformly padded probabilistic partitions. That
is the padding parameter is uniform over all points within a cluster. The key is that
having this property allows partition-based embeddings to use the value of the padding
parameter in the definition of the embedding in the most natural way. In particular, the
most natural definition is to let a coordinate be the distance from a point to the edge
of the cluster (as in [Rao99]) multiplied by the inverse of the padding parameter. This
provides an alternate embedding method with essentially similar benefits as the approach
of [KLMN04].

We present a construction of uniformly padded probabilistic partitions which still
posses intricate properties similar to those of [FRT03]. The construction is mainly based
on a decomposition lemma similar in spirit to a lemma which appeared in [Bar04], which
by itself is a generalization of the original probabilistic partitions of [Bar96, LS91].

We also give constructions of uniformly padded hierarchical probabilistic partitions.
The idea is that these partitions are padded in a hierarchical manner – a much stronger
requirement than for only a single level partition. Although these are not strictly neces-
sary for the proof of our main theorems they capture a stronger property of our partitions
and play a central role in showing that arbitrary metric spaces embed in Lp with constant
average distortion, while maintaining the best worst case distortion bounds.

The new probabilistic partitions appear in Chapter 3

1.7 Related Work

Average Distortion. Related notions to the ones studied in this thesis have been
considered before in several theoretical papers. Most notably, Yuri Rabinovich [Rab03]
studied the notion of distortion of average4 motivated by its application to the Sparsest
Cut problem. This however places the restriction that the embedding is Lipschitz or
non-expansive. Other recent papers have address this version of distortion of average
and its extension to weighted average. In particular, it has been recently shown (see for

4Usually this notion was called average distortion but the name is somewhat confusing.
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instance [FHL05]) that the work of Arora, Rao and Vazirani on Sparsest Cut [ARV04]
can be rephrased as an embedding theorem using these notions.

In his paper, Rabinovich observes that for Lipschitz embeddings the lower bound
of Ω(log n) still holds. It is therefore crucial in our theorems that the embeddings are
non-contractive.

To the best of our knowledge the only paper addressing such embeddings prior to
this work is by Lee, Mendel and Naor [LMN04] where they seek to bound the average
distortion of embedding n-point L1 metrics into Euclidean space. However, even for this
special case they do not give a constant bound on the average distortion5.

Network embedding. Our work is largely motivated by a surge of interest in the
networking community on performing passive distance estimation (see e.g. [FJJ+01, NZ02,
LHC03, CDK+04, ST04, CCRK04]), assigning nodes with short labels in such a way that
the network latency between nodes can be approximated efficiently by extracting informa-
tion from the labels without the need to incur active network overhead. The motivation
for such labelling schemes are many emerging large-scale decentralized applications that
require locality awareness, the ability to know the relative distance between nodes. For
example, in peer-to-peer networks, finding the nearest copy of a file may significantly
reduce network load, or finding the nearest server in a distributed replicated application
may improve response time. One promising approach for distance labelling is network
embedding (see [CDK+04]). In this approach nodes are assigned coordinates in a low
dimensional Euclidean space. The node coordinates form simple and efficient distance
labels. Instead of repeatedly measuring the distance between nodes, these labels allow
to extract an approximate measure of the latency between nodes. Hence these network
coordinates can be used as an efficient building block for locality aware networks that
significantly reduce network load.

As mentioned above a natural measure of efficiency in the networking research is
how the embedding performs on average. The phenomenon observed in measurements of
network distances is that the average distortion of network embeddings was bounded by
a small constant. Our work gives the first full theoretical explanation for this intriguing
phenomenon.

Embedding with relaxed guaranties. The theoretical study of such phenomena
was initiated by the work of Kleinberg, Slivkins and Wexler [KSW09]. They mainly focus
on the fact reported in the networking papers that the distortion of almost all pairwise
distances is bounded by some small constant. In an attempt to provide theoretical justi-
fication for such phenomena [KSW09] define the notion of a (1 − ε)-partial embedding6

where the distortion is bounded for at least some (1−ε) fraction of the pairwise distances.
They obtained some initial results for metrics which have constant doubling dimension
[KSW09]. In Abraham et. al. [ABC+05] is was shown that any finite metric space has a
(1− ε)-partial embedding into Euclidean space with O(log 2

ε
) distortion.

While this result is very appealing it has the disadvantage of lacking any promise for
some fraction of the pairwise distances. This may be critical for applications - that is we
really desire an embedding which in a sense does “as well as possible” for all distances.
To define formally such an embedding [KSW09] suggested a stronger notion of scaling

5The bound given in [LMN04] is O(
√

log n) which applies to a somewhat weaker notion.
6Called “embeddings with ε-slack” in [KSW09].
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distortion7. An embedding has scaling distortion of α(ε) if it has this bound on the
distortion of a (1 − ε) fraction of the pairwise distances, for any ε. In [KSW09], such
embeddings with α(ε) = O(log 2

ε
) were shown for metrics of bounded growth dimension,

this was extended in [ABC+05] to metrics of bounded doubling dimension. In addition
[ABC+05] gives a rather simple probabilistic embedding with scaling distortion, implying
an embedding into (high-dimensional) L1.

The most important question arising from the work of [KSW09, ABC+05] is whether
embeddings with small scaling distortion exist for embedding into Euclidean space. We
give the following theorem8 which lies at the heart of the proof of Theorem 3:

Theorem 10. For every finite metric space (X, d), there exists an embedding of X into
O(log n) dimensional Euclidean space with scaling distortion O(log 2

ε
).

This theorem is proven in Section 4 by Corollary 4.1.
Embedding into Trees Probabilistic embedding of metrics into dominating ultra-

metrics was introduced in [Bar96]. Other related results on embedding into dominating ul-
trametrics include work on metric Ramsey theory [BLMN05c], multi-embeddings [BM03]
and dimension reduction [BM04]. Embedding an arbitrary metric into any tree metric re-
quires Ω(n) distortion in the worst case even for the metric of the n-cycle [RR98a]. It is a
simple fact [HPM06, BLMN05c, Bar96] that any n-point metric embeds in an ultrametric
with distortion n−1. However the known constructions are not scaling and have average
distortion linear in n. The probabilistic embedding theorem [FRT03, Bar04] (improving
earlier results of [Bar96, Bar98]) states that any n-point metric space probabilistically em-
beds into a distribution over dominating ultrametrics with expected distortion O(log n).
This result has been the basis to many algorithmic applications (see [Ind01]). This the-
orem implies the existence of a single ultrametric with average distortion O(log n) (a
constructive version was given in [Bar04]).

It is a basic fact that the minimum spanning tree in an n-point weighted graph
preserves the (shortest paths) metric associated with the graph up to a factor of n − 1
at most. This bound is tight for the n-cycle. Here too, it is easy to see that the MST
does not have scaling distortion, and may result in linear average distortion (for instance,
in a slightly perturbed complete graph, the MST will contain a linear long path). Alon,
Karp, Peleg and West [AKPW95] studied the problem of computing a spanning tree of a
graph with small average stretch (over the edges of the graph). This can also be viewed
as the dual of probabilistic embedding of the graph metric in spanning trees. Their work
was significantly improved by Elkin, Emek, Speilman and Teng [EEST05] who show that
any weighted graph contains a spanning tree with average stretch O(log2 n log log n), and
in [ABN08b] it is further improved to a nearly tight Õ(log n). This result can also be
rephrased in terms of the average distortion (but not the `2-distortion) over all pairs.

1.8 Applications

In addition to our main results, there are several other contributions: we extend the
results on average distortion to weighted averages. We show the bound is O(log Φ) where
Φ is the effective aspect ratio of the weight distribution.

7Called “gracefully degrading distortion” in [KSW09].
8In fact in this theorem the definition of scaling distortion is even stronger.
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Then we demonstrate some basic algorithmic applications of our theorems, mostly
due to their extensions to general weighted averages. Among others is an application
to uncapacitated quadratic assignment [PRW94, KT02]. We also extend our concepts to
analyze Distance Oracles of Thorup and Zwick [TZ05] providing results with strong rela-
tion to the questions addressed by [KSW09]. Finally we prove some theorems on partial
embeddings, providing a method that transfers practically any standard embedding into
the partial model.

The applications are discussed in Chapter 11

1.9 Additional Results

There are several other results we obtained, that are not included here because of space
considerations. In what follows we give a short introduction and overview of the main
results.

1.9.1 Local Embedding

Introduction. In many important applications of embedding, preserving the distances
of nearby points is much more important than preserving all distances. Indeed, it is
sometimes the case in distance estimation, that determining the distance of nearby objects
can be done easily, while far away objects may just be labeled as “far” and only a rough
estimate of the distance between them will be given. Thus large distances may already
incorporate an inherently larger error factor. In such scenarios it is natural to seek local
embeddings that maintain only distances of close by neighbors. Indeed both [BN03] and
[XSB06] study low dimensional embeddings that maintain distances only to the k nearest
neighbors.

One aspect studied by Kleinberg [Kle00] is the algorithmic aspects of the “small world”
phenomena: how messages are greedily routed in networks that arise from a social and
geographical structure. In this model the network is assumed to have a local property:
the probability of choosing a close neighbor as an associate is larger than that of choosing
a far away neighbor. In the context of using metric space embedding in “small world”
networks it is natural to require that the distortion of close neighbors would be better
than that of far away neighbors.

Our work and the work of [KSW09, ABC+05] indeed gives better bounds on the
distortion of most pairs, however it is almost always the case that the nearest neighbors
suffer the highest distortion, while the ”far away” pairs are preserved relatively well.

Definitions. In a separate line of work [ABN07b, ABN09] we study local embeddings:
in which we want to obtain better distortion bounds for pairs which are close neighbors,
and still maintain the best possible worse case bounds. Formally, for a metric spaces
(X, d), (Y, ρ) an embedding f : X → Y has k-local distortion α if

• For all x, y ∈ X, ρ(f(x), f(y)) ≤ d(x, y).

• If y is among the k nearest neighbors of x in X, then ρ(f(x), f(y)) ≥ d(x, y)/α.
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We say that the mapping has scaling local distortion α, for some non-decreasing function
α : N → R if it has k-local distortion α(k) for all values of k simultaneously.

Main Results. The main theorems shown in [ABN07b] are:

Theorem 11. Any metric space (X, d) embeds into Euclidean space with scaling local
distortion Õ(log k), in dimension O(log n).

Theorem 12. Any metric space (X, d) with weak growth bound9 embeds into Euclidean
space with k-local distortion O(log k), in dimension O(log k).

Note that both distortion and dimension are a function of k only.

Theorem 13. Any metric space (X, d) embeds into a distribution of ultrametrics with
scaling local distortion Õ(log k).

All these result are tight or nearly tight, and in addition have the best possible worse
case bound on all pairs, hence they are a strict improvement of Bourgain’s theorem.

In a followup work [ABN09], we show how to remove the growth bound condition of
Theorem 12 while paying a small price in the dimension.

Theorem 14. Any metric space (X, d) embeds into Euclidean space with k-local distortion
O(log k), in dimension O(log2 k).

A natural question that can be asked is about local dimension reduction. Adi Shraib-
man and Gideon Schechtman [SS09] recently showed that embedding an n point subset
of Euclidean space into dimension O(log k) with k-local distortion 1 + ε is impossible in
general, even for k = 2. On the positive side, we show in [ABN09] a local dimension
reduction for ultrametrics10:

Theorem 15. Let (X, d) be an ultrametric, then for any p ≥ 1, ε > 0 and k ≤ |X| there
is an embedding of X into Lp with k-local distortion 1 + ε and dimension O((log k)/ε3).

1.9.2 Low Stretch Spanning Trees

As mentioned above, we show an improved and almost tight bound for the problem of
low stretch spanning tree. For an edge-weighted graph G = (V,E,w) that satisfy the
triangle inequality and a spanning tree T of G, define for every edge (u, v) ∈ E its stretch

under T as stretchT (u, v) = dT (u,v)
w(u,v)

, and then define

avg-str(T) =
1

|E|
∑

(u,v)∈E

stretchT (u, v) .

Note that the average stretch is define with respect to the edges only, while average dis-
tortion is over all pairs of points - recall that we show in Theorem 9 that the average
distortion is bounded by a universal constant, while there is a non-constant lower bound
on the average stretch. Previous work on the average stretch was initiated by [AKPW95]

9X has a χ weak growth bound if |B(u, 2r)| ≤ |B(u, r)|χ for all u, r > 0 such that |B(u, r)| > 1
10It is known that any ultrametric is isomorphic to a subset of Lp for any 1 ≤ p ≤ ∞
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who show that for any graph G on n vertices there is a spanning tree T such that
avg-str(T) ≤ 2O(

√
log n·log log n), and also showed a lower bound: that for any size n there

exist graphs on n vertices such that for any spanning tree T , avg-str(T) ≥ Ω(log n), in fact
those graphs include the d-dimensional grid, for any d ≥ 2. In a recent work [EEST05]
improve the upper bound to O(log2 n log log n). We extend the star-decomposition tech-
nique of [EEST05] and show the following theorem

Theorem 16. Any weighted graph G = (V,E,w) contains a spanning tree T with
avg-str(T) = Õ(log n)

Which is nearly tight (up to poly(log log n) factors). The main new ingredient in the
proof is a new bound on the increase in the radius of the spanning tree, which is obtained
by building ”highways” to carefully selected points.

Approximating graphs by trees has been a very successful paradigm in approximation
algorithms - given some NP-hard problem on a graph, embed it into a tree, solve the
problem for the tree, which in many cases induces an approximate solution for the origi-
nal problem. However, in some cases it is crucial that the tree is a spanning tree of the
original graph, for instance in the minimum communication cost spanning tree problem.
Another notable application of finding low stretch spanning tree is solving sparse sym-
metric diagonally dominant linear systems of equations. This approach was suggested
by Boman, Hendrickson and Vavasis [BHV08] and later improved by Spielman and Teng
[ST04]. In the algorithm of Spielman and Teng, finding efficiently a low stretch spanning
tree is one of the basic steps of the algorithm, and the stretch obtained translates into
the running time of the solver.
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Chapter 2

Definitions and Results

In this chapter we give the basic definitions that will be used throughout the thesis,
including the novel notions of distortion. We then proceed to state all the theorems
formally.

2.1 Preliminaries

Consider a finite metric space (X, d) and let n = |X|. For any point x ∈ X and a
subset S ⊆ X let d(x, S) = mins∈S d(x, s). The diameter of X is denoted diam(X) =
maxx,y∈X d(x, y). Given x ∈ X let radx(X) = maxy∈X d(x, y). When a cluster X has a
center x ∈ X that is clear from the context we will omit the subscript and write rad(X)
instead of radx(X). For a point x and r ≥ 0, the ball at radius r around x is defined
as BX(x, r) = {z ∈ X|d(x, z) ≤ r}. We omit the subscript X when it is clear form the
context. For any ε > 0 let rε(x) denote the minimal radius r such that |B(x, r)| ≥ εn. For
sets A,B,C ⊆ X we denote by A ./ (B,C) the property that A∩B 6= ∅ and A∩C 6= ∅.

2.2 Average Distortion

Given two metric spaces (X, dX) and (Y, dY ) an injective mapping f : X → Y is called an
embedding of X into Y . An embedding f is called non-contractive if for any u 6= v ∈ X:
dY (f(u), f(v)) ≥ dX(u, v). In the context of this work we will restrict attention to non-
contractive embeddings. This has no difference for the classic notion of distortion but
has a crucial role for the results presented in this thesis. We will elaborate more on this
issue in the sequel.

For a non-contractive embedding define the distortion function of f , distf :
(

X
2

)
→ R+,

where for u 6= v ∈ X: distf (u, v) = dY (f(u),f(v))
dX(u,v)

. The distortion of f is defined as

dist(f) = supu 6=v∈X distf (u, v).

Definition 2.1 (`q-Distortion). Given a distribution Π over
(

X
2

)
define for 1 ≤ q ≤ ∞

the `q-distortion of f with respect to Π:

`q-dist(Π)(f) = ‖distf (u, v)‖(Π)
q = EΠ[distf (u, v)

q]1/q,
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where ‖ · ‖(Π)
q denotes the normalized q norm over the distribution (Π), defined as in the

equation above. Let U denote the uniform distribution over
(

X
2

)
. The `q-distortion of f

is defined as: `q-dist(f) = `q-dist(U)(f).

In particular the classic distortion may be viewed as the `∞-distortion: dist(f) =
dist∞(f). An important special case of `q-distortion is when q = 1:

Definition 2.2 (Average Distortion). Given a distribution Π over
(

X
2

)
define the average

distortion of f with respect to Π as: avgdist(Π)(f) = `1-dist(Π)(f), and the average
distortion of f is given by: avgdist(f) = `1-dist(f).

Another natural notion is the following:

Definition 2.3 (Distortion of `q-Norm). Given a distribution Π over
(

X
2

)
define the

distortion of `q-norm of f with respect to Π:

distnorm(Π)
q (f) =

EΠ[dY (f(u), f(v))q]1/q

EΠ[dX(u, v)q]1/q
,

and let distnormq(f) = distnorm(U)
q (f).

Again, an important special case of distortion of `q-norm is when q = 1:

Definition 2.4 (Distortion of Average). Given a distribution Π over
(

X
2

)
define the

distortion of average of f with respect to Π as: distavg(Π)(f) = distnorm
(Π)
1 (f) and the

distortion of average of f is given by: distavg(f) = distnorm1(f).

For simplicity of the presentation of our main results we use the following notation:
`q-dist∗(Π)(f) = max{`q-dist(Π)(f), distnorm(Π)

q (f)}, `q-dist∗(f) = max{`q-dist(f), distnormq(f)},
and avgdist∗(f) = max{avgdist(f), distavg(f)}.
Definition 2.5. A probability distribution Π over

(
X
2

)
, with probability function π :(

X
2

)
→ [0, 1], is called non-degenerate if for every u 6= v ∈ X: π(u, v) > 0. The aspect

ratio of a non-degenerate probability distribution Π is defined as:

Φ(Π) =
maxu 6=v∈X π(u, v)

minu 6=v∈X π(u, v)
.

In particular Φ(U) = 1. If Π is not non-degenerate then Φ(Π) = ∞.
For an arbitrary probability distribution Π over

(
X
2

)
, define its effective aspect ratio

as:1 Φ̂(Π) = 2 min{Φ(Π),
(

n
2

)
} .

Theorem 17 (Embedding into Lp). Let (X, d) an n-point metric space, and let 1 ≤ p ≤
∞. There exists an embedding f of X into Lp of dimension eO(p) log n, such that for every

1 ≤ q ≤ ∞, and any distribution Π over
(

X
2

)
: `q-dist∗(Π)(f) = O(dmin{q, log n}/pe +

log Φ̂(Π)). In particular, avgdist∗(Π)(f) = O(log Φ̂(Π)). Also: dist(f) = O(dlog n/pe),
`q-dist∗(f) = O(dq/pe) and avgdist∗(f) = O(1).

Theorem 29, Lemma 2.2 and Theorem 30 show that all the bounds in the theorem
above are tight.

The proof of Theorem 17 follows directly from results on embedding with scaling
distortion, discussed in the next paragraph, in particular it follows from Lemma 2.1 and
Theorem 18.

1The factor of 2 in the definition is placed solely for the sake of technical convenience.
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2.3 Partial Embedding and Scaling Distortion

Following [KSW09] we define:

Definition 2.6 (Partial Embedding). Given two metric spaces (X, dX) and (Y, dY ), a
partial embedding is a pair (f,G), where f is a non-contractive embedding of X into Y ,
and G ⊆

(
X
2

)
. The distortion of (f,G) is defined as: dist(f,G) = sup{u,v}∈G distf (u, v).

For ε ∈ (0, 1), a (1 − ε)-partial embedding is a partial embedding such that |G| ≥
(1− ε)

(
n
2

)
.2

Next, we would like to define a special type of (1− ε)-partial embeddings. Let Ĝ(ε) =
{{x, y} ∈

(
X
2

)
| min{|B(x, d(x, y))|, |B(y, d(x, y))|} ≥ εn/2}. A coarsely (1 − ε)-partial

embedding f is a partial embedding (f, Ĝ(ε))3.

Definition 2.7 (Scaling Distortion). Given two metric spaces (X, dX) and (Y, dY ) and a
function α : (0, 1) → R+, we say that an embedding f : X → Y has scaling distortion α if
for any ε ∈ (0, 1), there is some set G(ε) such that (f,G(ε)) is a (1− ε)-partial embedding
with distortion at most α(ε). We say that f has coarsely scaling distortion if for every ε,
G(ε) = Ĝ(ε).

We can extend the notions of partial probabilistic embeddings and scaling distortion to
probabilistic embeddings. For simplicity we will restrict to coarsely partial embeddings.4

Definition 2.8 (Partial/Scaling Prob. Embedding). Given (X, dX) and a set of metric
spaces S, for ε ∈ (0, 1), a coarsely (1 − ε)-partial probabilistic embedding consists of a
distribution F̂ over a set F of coarsely (1 − ε)-partial embeddings from X into Y ∈ S.
The distortion of F̂ is defined as: dist(F̂) = sup{u,v}∈Ĝ(ε) E(f,Ĝ(ε))∼F̂ [distf (u, v)].

The notion of scaling distortion is extended to probabilistic embedding in the obvious
way.

We observe the following relation between partial embedding, scaling distortion and
the `q-distortion.

Lemma 2.1 (Scaling Distortion vs. `q-Distortion). Given an n-point metric space (X, dX)
and a metric space (Y, dY ). If there exists an embedding f : X → Y with scaling distortion
α then for any distribution Π over

(
X
2

)
:5

`q-dist(Π)(f) ≤

(
2

∫ 1

1
2(

n
2)
−1

Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)1/q

+ α(Φ̂(Π)−1).

In the case of coarsely scaling distortion this bound holds for `q-dist∗(Π)(f).

2Note that the embedding is strictly partial only if ε ≥ 1/
(
n
2

)
.

3It is elementary to verify that indeed this defines a (1− ε)-partial embedding. We also note that in
most of the proofs we can use a max rather than min in the definition of Ĝ(ε). However, this definition
seems more natural and of more general applicability.

4Our upper bounds use this definition, while our lower bounds hold also for the non-coarsely case.
5Assuming the integral is defined. We note that lemma is stated using the integral for presentation

reasons.
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Combined with the following theorem we obtain Theorem 17. We note that when
applying the lemma we use α(ε) = O(log 2

ε
) and the bounds in the theorem mentioned

above follow from bounding the corresponding integral.

Theorem 18 (Scaling Distortion Theorem into Lp). Let 1 ≤ p ≤ ∞. For any n-point
metric space (X, d) there exists an embedding f : X → Lp with coarsely scaling distortion
O(d(log 2

ε
)/pe) and dimension eO(p) log n.

This theorem is proven in Section 4.3.

2.4 Infinite Compact Spaces

For embedding of infinite compact spaces we require slightly different definitions. Let
(X, d) be a compact metric space, equipped with a probability measure σ (in compact
space every measure is equivalent to a probability measure). Define the product distribu-
tion Π = Π(σ) over X×X as Π(x, y) = σ(x)σ(y). Now the `q-distortion of an embedding
f will be defined with respect to Π

E(x,y)∼Π[distf (x, y)
q]1/q

The definition of Ĝ(ε) for coarse scaling embedding will become
Ĝ(ε) =

{
(x, y) ∈

(
X
2

)
| min{σ(B(x, d(x, y))), σ(B(y, d(x, y)))} ≥ ε/2

}
.

In order to prove Theorem 7 we again will show an embedding with scaling distortion.

Theorem 19 (Scaling Distortion for Compact Spaces). Let 1 ≤ p ≤ ∞ and let (X, d)
be a compact metric space. There exists an embedding F : X → Lp with coarsely scaling
distortion O(d(log 2

ε
)e). The `q-distortion of this embedding is: distq(F ) = O(q).

2.5 Intrinsic Dimension

The intrinsic dimension of a metric space is naturally measured by its doubling constant:

Definition 2.9. The doubling constant of a metric space (X, d) is the minimal λ such
that for any x ∈ X and r > 0 the ball B(x, 2r) can be covered by λ balls of radius r.
The doubling dimension denoted by dim(X) is define as log2 λ.

The doubling dimension of a metric space (X, d) provides an inherent bound on the
dimension in which the metric can be embedded into some normed space with small
distortion. Specifically, a simple volume argument suggests that to embed X into L2 with
distortion α requires at least Ω(dim(X)/ logα) dimensions. In addition to Theorem 8 we
have the following results:

We prove the following theorem which shows that Assouad’s conjecture is true for
any practical propose: low dimensional data embeds into constant dimensional space
with constant average distortion:

Theorem 20. For any 1 ≤ p ≤ ∞ and any λ-doubling metric space (X, d) there
exists an embedding f : X → LD

p with coarse scaling distortion O
(
log26(1

ε
)
)

where
D = O(log λ log log λ).
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Obtaining bounds on the scaling distortion in a dimension which depends only on
dim(X) is more demanding. The technical difficulties are discussed in Section 6.2

The next theorem shows a trade-off between distortion and dimension that has better
guarantees than Theorem 5 for metrics with low doubling dimension. A similar tradeoff
result was recently obtained by Chan, Gupta and Talwar [CGT08].

Theorem 21. For any 1 ≤ p ≤ ∞ and any λ-doubling metric space (X, d) on n points,
and for any log log λ ≤ D ≤ (log n)/ log λ there exists an embedding into Lp with distor-

tion O(log1/p n((log n)/D)1−1/p) in dimension O(D · log λ · log log λ · log((log n)/D)).

We also show a theorem that strengthen Assouad’s result [Ass83], regarding embed-
ding of a ”snowflake” of metrics with low doubling dimensions, that is, for a metric (X, d)
embed (X, dα) for some 0 < α < 1 with distortion and dimension that depend only on
the doubling dimension of (X, d). For simplicity of presentation the result is stated for
(X, d1/2).

Theorem 22. For any n point λ-doubling metric space (X, d), any 1 ≤ p ≤ ∞, any
θ ≤ 1 and any 2192/θ ≤ k ≤ log λ, there exists an embedding of (X, d1/2) into Lp with

distortion O(k1+2θλ1/(pk)) and dimension O
(

λ1/k ln λ
θ

)
.

2.6 Scaling Embedding into Trees

We prove the following theorems about embedding into a single ultrametric/spanning
tree:

Theorem 23. Any n-point metric space (X, d) embeds into an ultrametric with scaling
distortion O(

√
1/ε). In particular, its `q-distortion is O(1) for 1 ≤ q < 2, O(

√
log n) for

q = 2, and O(n1−2/q) for 2 < q ≤ ∞.

Theorem 24. Any weighted graph G = (V,E,w) with |V | = n, contains a spanning tree
with scaling distortion O(

√
1/ε). In particular, its `q-distortion is O(1) for 1 ≤ q < 2,

O(
√

log n) for q = 2, and O(n1−2/q) for 2 < q ≤ ∞.

These results are tight, as shown in Corollary 10.1. We also present a result about
probabilistic embedding into ultrametrics:

Theorem 25 (Scaling Probabilistic Embedding). For any n-point metric space (X, d)
there exists a probabilistic embedding into a distribution over ultrametrics with coarse
scaling distortion O(log 2

ε
).

Applying Lemma 2.1 to Theorem 25 we obtain:

Theorem 26. Let (X, d) an n-point metric space. There exists a probabilistic embedding
F̂ of X into ultrametrics, such that for every 1 ≤ q ≤ ∞, and any distribution Π over(

X
2

)
: dist∗(Π)

q (F̂) = O(min{q, log n}+ log Φ̂(Π)).

For q = 1 and for a given fixed distribution Theorem 26 can be given a deterministic
version, which follows from the method of [CCG+98] for finding a single ultrametric, as
stated in the following theorem.

Theorem 27. Given an arbitrary fixed distribution Π over
(

X
2

)
, for any finite metric

space (X, d) there exists embeddings f, f ′ into ultrametrics, such that avgdist(Π)(f) =
O(log Φ̂(Π)) and distavg(Π)(f ′) = O(log Φ̂(Π)).
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2.7 Lower Bounds

In Chapter 10 We show that our results are tight. First we show that the distortion-
dimension tradeoff of Theorem 5 is indeed tight.

Theorem 28. For any fixed 1 ≤ p < ∞ and any θ > 0, if the metric of an n-node
constant degree expander embeds into Lp with distortion O(log1+θ n) then the dimension
of the embedding is Ω(log n/dlog(min{p, log n}) + θ log log ne).

Then the following theorem shows that the bound on the weighted average distortion
(and distortion of average) is tight as well.

Theorem 29. For any 1 ≤ p ≤ 2 and any large enough n ∈ N there exists a metric
space (X, d) on n points, and a non-degenerate probability distribution Π on

(
X
2

)
, such

that any embedding f of X into Lp will have avgdist(Π)(f) = Ω(log(Φ(Π))) and there is a

non-degenerate probability distribution Π′ such that for any embedding f , distavg(Π)(f) =
Ω(log(Φ(Π′))).

The following simple Lemma gives a relation between lower bound on partial embed-
ding and the `q distortion. .1

Lemma 2.2 (Partial Embedding vs. `q-Distortion). Let Y be a target metric space, let
X be a family of metric spaces. If for any ε ∈ (0, 1), there is a lower bound of α(ε) on
the distortion of (1 − ε) partial embedding of metric spaces in X into Y , then for any
1 ≤ q ≤ ∞, there is a lower bound of 1

2
α(2−q) on the `q-distortion of embedding metric

spaces in X into Y .

Finally we give a lower bound on partial embeddings. In order to describe the lower
bound, we require the notion of metric composition introduced in [BLMN05c].

Definition 2.10. Let N be a metric space, assume we have a collection of disjoint metric
spaces Cx associated with the elements x of N , and let C = {Cx}x∈N . The β-composition

of N and C, for β ≥ 1
2
, denoted M = Cβ[N ], is a metric space on the disjoint union

⋃̇
xCx.

Distances in C are defined as follows: let x, y ∈ N and u ∈ Cx, v ∈ Cy, then:

dM(u, v) =

{
dCx(u, v) x = y
βγdN(x, y) x 6= y

where γ = maxx∈N diam(Cx)
minu,v∈N dN (u,v)

, guarantees that M is indeed a metric space.

Definition 2.11. Given a class X of metric spaces, we consider compβ(X ), its closure
under ≥ β-composition. X is called nearly closed under composition if for every δ > 0
there exists some β ≥ 1/2, such that for every X ∈ compβ(X ) there is X̂ ∈ X and an

embedding of X into X̂ with distortion at most 1 + δ.

Among the families of metric spaces that are nearly closed under composition we find
the following: tree metrics, any family of metrics that exclude a fixed minor (including
planar metrics) and normed spaces. When the size of all the composed metrics Cx is
equal, also doubling metrics are nearly closed under composition.
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Theorem 30 (Partial Embedding Lower Bound). Let Y be a target metric space, let X
be a family of metric spaces nearly closed under composition. If for any k > 1, there is
Z ∈ X of size k such that any embedding of Z into Y has distortion at least α(k), then
for all n > 1 and 1

n
≤ ε ≤ 1 there is a metric space X ∈ X on n points such that the

distortion of any (1− ε) partial embedding of X into Y is at least α
(
d 1

4
√

ε
e
)
/2.

See Corollary 10.1 for some implication of this Theorem.

2.8 Additional Results

Decomposable Metrics

For metrics with a decomposability parameter τ (see Definition 3.6 for precise definition)6

we obtain the following theorem, which is the scaling analogous of the main result of
[KLMN04].

Theorem 31. Let 1 ≤ p ≤ ∞. For any n-point τ -decomposable metric space (X, d) there
exists an embedding f : X → Lp with coarse scaling distortion O(min{τ 1−1/p(log 2

ε
)1/p, log 2

ε
})

and dimension O(log2 n).

Partial Embedding Results

Even though partial embeddings are inferior to embeddings with scaling distortion, in a
sense that they guarantee distortion bound only on a fraction of pairs, they can be useful
since the dimension of the embedding can be much lower. We show general theorems
that convert any embedding to partial embedding, for subset-closed7 families of metric
spaces. See Chapter 12 for the specific theorems.

2.9 Algorithmic Applications

We demonstrate some basic applications of our main theorems. We must stress however
that our current applications do not use the full strength of these theorems. Most of our
applications are based on the bound given on the distortion of average for general distri-
butions of embeddings f into Lp and into ultrametrics with distavg(Π)(f) = O(log Φ̂(Π)).
In some of these applications it is crucial that the result holds for all such distributions
Π. This is useful for problems which are defined with respect to weights c(u, v) in a
graph or in a metric space, where the solution involves minimizing the sum over dis-
tances weighted according to c. This is common for many optimization problem either as
part of the objective function or alternatively it may come up in the linear programming
relaxation of the problem. These weights can be normalized to define the distribution Π.
Using this paradigm we obtain O(log Φ̂(c)) approximation algorithms, improving on the
general bound which depends on n in the case that Φ̂(c) is small. This is the first result
of this nature.

6In particular doubling metrics and planar metrics have constant decomposability parameter
7A family of metrics X is subset-closed if for all X ∈ X , any sub-metric Y of X satisfies Y ∈ X
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We are able to obtain such results for the following group of problems: general sparsest
cut [LR99, AR98, LLR95, ARV04, ALN05], multi cut [GVY93], minimum linear arrange-
ment [ENRS00, RR98b], embedding in d-dimensional meshes [ENRS00, Bar04], multiple
sequence alignment [WLB+98] and uncapacitated quadratic assignment [PRW94, KT02].

We would like to emphasize that the notion of bounded weights is in particular natural
in the last application mentioned above. The problem of uncapacitated quadratic assign-
ment is one of the most basic problems in operations research (see the survey [PRW94])
and has been one of the main motivations for the work of Kleinberg and Tardos on metric
labelling [KT02].

We also give a different use of our results for the problem of min-sum k-clustering
[BCR01].

2.9.1 Distance Oracles

Thorup and Zwick [TZ05] study the problem of creating distance oracles for a given
metric space. A distance oracle is a space efficient data structure which allows efficient
queries for the approximate distance between pairs of points.

They give a distance oracle of space O(kn1+1/k), query time of O(k) and worst case
distortion (also called stretch) of 2k− 1. They also show that this is nearly best possible
in terms of the space-distortion tradeoff.

We extend the new notions of distortion in the context of distance oracles. In par-
ticular, we can define the `q-distortion of a distance oracle. Of particular interest are
the average distortion and distortion of average notion. We also define partial distance
oracles, distance oracle scaling distortion, and extend our results to distance labels and
distributed labeled compact routing schemes in a similar fashion. Our main result is the
following strengthening of [TZ05]:

Theorem 32. Let (X, d) be a finite metric space. Let k = O(lnn) be a parameter.
The metric space can be preprocessed in polynomial time, producing a data structure
of O(n1+1/k log n) size, such that distance queries can be answered in O(k) time. The
distance oracle has worst case distortion 2k − 1. Given any distribution Π, its average
distortion (and distortion of average) with respect to Π is O(log Φ̂(Π)). In particular the
average distortion (and distortion of average) is O(1).

Our extension of Assouad’s theorem can yield an improved distance oracle for metrics
with small doubling dimension. Taking p = (log λ)/k and θ = 1/ log k in Theorem 22

yields a distance oracle with O(k) stretch and O(λ1/
√

k log λ log k) memory. This distance
oracle improves known constructions when dim(X) = o(log n/

√
k).

2.10 Organization of the Thesis

In Chapter 3 we define the new probabilistic partitions, including a unform padding
lemma, a lemma for decomposable metrics and a hierarchical padding lemma.

Chapter 4 contains the proof of our main results: In Section 4.1 we present the
main technical lemma, that gives an embedding into the line with “good” properties. In
Section 4.2 this lemma is used to prove Theorems 4, 5 on embedding into LD

p with the
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optimal distortion-dimension tradeoff. We also give its extension to scaling distortion
thus proving Theorem 10, which by Lemma 2.1 implies O(1) average distortion, and `q-
distortion of O(q) as stated in Theorems 2, 3. Later in Section 4.3 we extend the previous
result for embedding with scaling distortion into Lp with smaller distortion as p increases,
proving Theorem 18 (which imply also Theorem 6).

In Chapter 5 we show how to extend the embedding for infinite compact metric spaces,
proving a scaling distortion result stated in Theorem 19 and showing how it implies the
O(q) bound on the `q-distortion for infinite spaces mentioned in Theorem 7.

In Chapter 6 we prove the theorems regarding the intrinsic dimension of metric spaces,
that are described in Section 2.5, in particular the result on low distortion embedding
for λ-doubling metric spaces into Lp of dimension O(log λ), as stated in Theorem 8. In
Chapter 7 we continue and prove Theorem 31, a generalization of our techniques tailored
for decomposable metrics, which improves the distortion for this family of metric spaces.

In Chapter 8 we prove the embedding into trees theorems: Theorem 23, Theorem 24,
which gives a constant average distortion embedding into a single ultrametric and a single
spanning tree of the graph respectively, and also Theorem 25, in which the embedding is
into a distribution over ultrametrics.

In Chapter 9 we prove Lemma 2.1, showing the relation between scaling distortion
and our notions of average distortion,

In Chapter 10 we prove all the lower bound results mentioned in Section 2.7, including
the tightness of the distortion-dimension tradeoff shown in Theorem 28, and a tight lower
bound on partial (and hence also on scaling) distortion given in Theorem 30.

In Chapter 11 we show some algorithmic applications of our methods, we also discuss
distance oracles in Section 11.6. Finally in Chapter 12 we show some partial embedding
results, and conclude with possible future research directions in Chapter 13
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Chapter 3

Partition Lemmas

In this chapter we show the main tool of our embedding: uniformly padded probabilistic
partitions. We give several versions of these partitions, first a general one, then an
extension of it to decomposable metrics (defined formally in the sequel), and finally a
hierarchical construction of partitions. These partitions will be used in almost all the
embedding results.

Definition 3.1. The local growth rate of x ∈ X at radius r > 0 for given scales γ1, γ2 > 0
is defined as

ρ(x, r, γ1, γ2) = |B(x, rγ1)|/|B(x, rγ2)|.

Given a subspace Z ⊆ X, the minimum local growth rate of Z at radius r > 0 and
scales γ1, γ2 > 0 is defined as ρ(Z, r, γ1, γ2) = minx∈Z ρ(x, r, γ1, γ2). The minimum local
growth rate of x ∈ X at radius r > 0 and scales γ1, γ2 > 0 is defined as ρ̄(x, r, γ1, γ2) =
ρ(B(x, r), r, γ1, γ2).

Claim 3.1. Let x, y ∈ X, let γ1, γ2 > 0 and let r be such that 2(1 + γ2)r < d(x, y) ≤
(γ1 − γ2 − 2)r, then

max{ρ̄(x, r, γ1, γ2), ρ̄(y, r, γ1, γ2)} ≥ 2.

Proof. Let Bx = B(x, r(1 + γ2)), By = B(y, r(1 + γ2)), and assume w.l.o.g that |Bx| ≤
|By|. As r(1 + γ2) < d(x, y)/2 we have Bx ∩ By = ∅. Note that for any x′ ∈ B(x, r),
B(x′, rγ2) ⊆ Bx, and similarly for any y′ ∈ B(y, r), B(y′, rγ2) ⊆ By. On the other hand
B(x′, rγ1) ⊇ Bx ∪ By, since for any y′ ∈ By, d(x

′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) ≤
r + r(γ1 − γ2 − 2) + r(1 + γ2) = rγ1. We conclude that

ρ(x′, r, γ1, γ2) = |B(x′, rγ1)|/|B(x′, rγ2)| ≥ (|Bx|+ |By|)/|Bx| ≥ 2.

Definition 3.2 (Partition). A partition P of X is a collection of pairwise disjoint sets
C(P ) = {C1, C2, . . . , Ct} for some integer t, such that X = ∪jCj. The sets Cj ⊆ X are
called clusters. For x ∈ X denote by P (x) the cluster containing x. Given ∆ > 0, a
partition is ∆-bounded if for all j ∈ [t], diam(Cj) ≤ ∆. For Z ⊆ X we denote by P [Z]
the restriction of P to points in Z.
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Definition 3.3 (Probabilistic Partition). A probabilistic partition P̂ of a metric space
(X, d) is a distribution over a set P of partitions of X. Given ∆ > 0, P̂ is ∆-bounded
if each P ∈ P is ∆-bounded. Let supp(P̂) ⊆ P be the set of partitions with non-zero
probability under P̂ .

Definition 3.4 (Uniform Function). Given a partition P of a metric space (X, d), a
function f defined on X is called uniform with respect to P if for any x, y ∈ X such that
P (x) = P (y) we have f(x) = f(y).

Let P̂ be a probabilistic partition. A collection of functions defined onX, f = {fP |P ∈
P} is uniform with respect to P if for every P ∈ P , fP is uniform with respect to P .

Definition 3.5 (Uniformly Padded Local PP). Given ∆ > 0 and 0 < δ ≤ 1, let P̂ be a
∆-bounded probabilistic partition of (X, d). Given collection of functions η = {ηP : X →
[0, 1]|P ∈ P}, we say that P̂ is (η, δ)-locally padded if the event B(x, ηP (x)∆) ⊆ P (x)
occurs with probability at least δ regardless of the structure of the partition outside
B(x, 2∆).

Formally for all C ⊆ X \B(x, 2∆) and all partitions P ′ of C,

Pr[B(x, ηP (x)∆) ⊆ P (x) | P [C] = P ′] ≥ δ

Let 0 < δ̂ ≤ 1. We say that P̂ is strong (η, δ̂)-locally padded if for any δ̂ ≤ δ ≤ 1, P̂ is
(η · ln(1/δ), δ)-padded.

We say that P̂ is (η, δ)-uniformly locally padded if η is uniform with respect to P .

The following lemma is a generalization of a decomposition lemma that appeared
in [Bar04], which by itself is a generalization of the original probabilistic partitions of
[Bar96, LS91]. Recall that A ./ (B,C) stands for A ∩B 6= ∅ and A ∩ C 6= ∅.

Lemma 3.1 (Probabilistic Decomposition). For any metric space (Z, d), point v ∈ Z,
real parameters χ ≥ 2,∆ > 0, let r be a random variable sampled from a truncated
exponential density function with parameter λ = 8 ln(χ)/∆

f(r;λ) =

{
χ2

1−χ−2λe
−λr r ∈ [∆/4,∆/2]

0 otherwise

If S = B(v, r) and S̄ = Z \ S then for any θ ∈ [χ−1, 1] and any x ∈ Z such that
d(x, v) ≤ ∆:

Pr
[
B(x, η∆) ./ (S, S̄)

]
≤ (1− θ)

(
Pr
[
B(x, η∆) * S̄

]
+

2θ

χ

)
.

where η = 2−4 ln(1/θ)/ lnχ.

Proof. Let x ∈ Z. Let a = infy∈B(x,η∆){d(v, y)} and b = supy∈B(x,η∆){d(v, y)}. By the
triangle inequality: b− a ≤ 2η∆. We have:

Pr[B(x, η∆) ./ (S, S̄)] =∫ b

a

f(r)dr = ( χ2

1−χ−2 )χ
− 8a

∆ (1− χ−8 b−a
∆ )

≤ ( χ2

1−χ−2 )χ
− 8a

∆ (1− θ), (3.1)
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which follows since:

8(b− a)

∆
≤ 16η∆

∆
= 16η = lnχ(1/θ).

Pr[B(x, η∆) * S̄] =∫ ∆/2

a

f(r)dr = ( χ2

1−χ−2 )(χ
− 8a

∆ − χ−4). (3.2)

Therefore we have:

Pr[B(x, η∆) ./ (S, S̄)]− (1− θ) · Pr[B(x, η∆) * S̄]

≤ (1− θ)( χ2

1−χ−2 )χ
−4 ≤ (1− θ) · 2χ−2,

where in the last inequality we have used the assumption that χ ≥ 2. Since χ−1 ≤ θ, this
completes the proof of the lemma.

3.1 Uniform Padding Lemma

The following lemma describes the uniform probabilistic partition, the uniformity is with
respect to η - the padding parameter, which will the same for all points that are in the
same cluster. This η will actually be a function of local growth rate of a single point,
“the center“ of the cluster, which has the minimal local growth rate among all the other
points in the cluster. The purpose of the function ξ is to indicate which clusters have
significantly high enough local growth rate at their centers for η to be as above, while
the threshold for being high enough is set by the parameter δ̂.

Lemma 3.2. Let (Z, d) be a finite metric space. Let 0 < ∆ ≤ diam(Z). Let δ̂ ∈ (0, 1/2],
γ1 ≥ 2 , γ2 ≤ 1/16. There exists a ∆-bounded probabilistic partition P̂ of (Z, d) and
a collection of uniform functions {ξP : Z → {0, 1} | P ∈ P} and {ηP : Z → (0, 1] |
P ∈ P} such that the probabilistic partition P̂ is a strong (η, δ̂)-uniformly locally padded
probabilistic partition; and the following conditions hold for any P ∈ supp(P̂) and any
x ∈ Z:

• If ξP (x) = 1 then: 2−6/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−6/ ln(1/δ̂).

• If ξP (x) = 0 then: ηP (x) = 2−6/ ln(1/δ̂) and ρ̄(x, 2∆, γ1, γ2) < 1/δ̂.

Proof. We generate a probabilistic partition P̂ of Z by invoking the probabilistic decom-
position Lemma 3.1 iteratively. Define the partition P of Z into clusters by generating a
sequence of clusters: C1, C2, . . . Cs, for some fixed s ∈ [n]. Notice that we are generating
a distribution over partitions and therefore the generated clusters are random variables.
First we deterministically assign centers v1, v2, . . . , vs and parameters χ1, χ2, . . . , χs. Let
W1 = Z and j = 1. Conduct the following iterative process:

1. Let vj ∈ Wj be the point minimizing χ̂j = ρ(x, 2∆, γ1, γ2) over all x ∈ Wj.

2. Set χj = max{2/δ̂1/2, χ̂j}.
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3. Let Wj+1 = Wj \B(vj,∆/4).

4. Set j = j + 1. If Wj 6= ∅ return to 1.

Now the algorithm for the partition and functions ξ, η is as follows: Let Z1 = Z. For
j = 1, 2, 3 . . . s:

1. Let (Svj
, S̄vj

) be the partition created by Svj
= BZj

(vj, r) and S̄vj
= Zj \ Svj

where
r is distributed as in Lemma 3.1 with parameter λ = 8 ln(χj)/∆.

2. Set Cj = Svj
, Zj+1 = S̄vj

.

3. For all x ∈ Cj let ηP (x) = 2−6/max{ln χ̂j, ln(1/δ̂)}. If χ̂j ≥ 1/δ̂ set ξP (x) = 1,
otherwise set ξP (x) = 0.

Throughout the analysis fix some δ̂ ≤ δ ≤ 1. Let θ = δ1/2, hence θ ≥ 2χ−1
j for all j ∈ [s].

Let ηj = 2−4 ln(1/θ)/ lnχj = 2−5 ln(1/δ)/ lnχj. Note that for all x ∈ Cj we have ηP (x) ·
ln(1/δ) = 2−6 ln(1/δ) min{1/ ln χ̂j, 1/ ln(1/δ̂)} ≤ 2−5 ln(1/δ) min{1/ ln χ̂j, 1/ ln(2/δ̂1/2)} =
ηj. Observe that some clusters may be empty and that it is not necessarily the case that
vm ∈ Cm. We now prove the properties in the lemma for some x ∈ Z. Consider the
distribution over the clusters C1, C2, . . . Cs as defined above. For 1 ≤ m ≤ s, define the
events:

Zm = {∀j, 1 ≤ j < m, B(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, ηj∆) ./ (Svj

, S̄vj
)|Zm}.

Also let T = Tx = B(x,∆). We prove the following inductive claim: For every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

χ−1
j ). (3.3)

Note that Pr[Es] = 0. Assume the claim holds for m+ 1 and we will prove for m. Define
the events:

Fm = {B(x, ηm∆) ./ (Svm , S̄vm)|Zm},
Gm = {B(x, ηm∆) ⊆ S̄vm|Zm} = {Zm+1|Zm},
Ḡm = {B(x, ηm∆) * S̄vm|Zm} = {Z̄m+1|Zm}.

First we bound Pr[Fm]. Recall that the center vm of Cm and the value of χm are de-
termined deterministically. The radius rm is chosen from the interval [∆/4,∆/2]. Since
ηm ≤ 1/2, if B(x, ηm∆) ./ (Svm , S̄vm) then d(vm, x) ≤ ∆, and thus vm ∈ T . Therefore if
vm /∈ T then Pr[Fm] = 0. Otherwise by Lemma 3.1

Pr[Fm] (3.4)

= Pr[B(x, ηm∆) ./ (Svm , S̄vm)|Zm]

≤ (1− θ)(Pr[B(x, ηm∆) * S̄vm|Zm] + θχ−1
m )

= (1− θ)(Pr[Ḡm] + θχ−1
m ).
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Using the induction hypothesis we prove the inductive claim:

Pr[Em] ≤ Pr[Fm] + Pr[Gm] Pr[Em+1]

≤ (1− θ)(Pr[Ḡm] + θ1{vm∈T}χ
−1
m ) +

Pr[Gm] · (1− θ)(1 + θ
∑

j≥m+1,vj∈T

χ−1
j )

≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

χ−1
j ),

The second inequality follows from 3.4 and the induction hypothesis. Since the choice of
radius is the only randomness in the process of creating P , the event of padding for z ∈ Z
is independent of all choices of radiuses for centers vj /∈ Tz. That is, for any assignment
to clusters of points outside B(z, 2∆) (this may determine radius choices for points in
Z \B(z,∆)), the padding probability will not be affected.

Fix some x ∈ Z, T = Tx. Observe that for all vj ∈ T , d(vj, x) ≤ ∆, and so we
get B(vj, 2γ2∆) ⊆ B(x, 2∆). On other hand B(vj, 2γ1∆) ⊇ B(x, 2∆). Note that the
definition of Wj implies that if vj is a center then all the other points in B(vj,∆/4)
cannot be a center as well, therefore for any j 6= j′, d(vj, vj′) > ∆/4 ≥ 4γ2∆, so that
B(vj, 2γ2∆) ∩B(vj′ , 2γ2∆) = ∅. Hence, we get:∑

j≥1,vj∈T

χ−1
j ≤

∑
j≥1,vj∈T

χ̂j
−1

≤
∑

j≥1,vj∈T

|B(vj, 2γ2∆)|
|B(vj, 2γ1∆)|

≤
∑

j≥1,vj∈T

|B(vj, 2γ2∆)|
|B(x, 2∆)|

≤ 1.

Let j ∈ [s] such that P (x) = Cj, then as ηP (x) · ln(1/δ) ≤ ηj follows B(x, ηP (x) ·
ln(1/δ)∆) ⊆ B(x, ηj∆). We conclude from the claim (3.3) for m = 1 that:

Pr[B(x, ηP (x) · ln(1/δ)∆) * P (x)] ≤ Pr[E1] ≤
(1− θ)(1 + θ ·

∑
j≥1,vj∈T

χ−1
j ) ≤ (1− θ)(1 + θ) = 1− δ.

It follows that P̂ is strong uniformly padded. Finally, we show the properties stated
in the lemma. Let x ∈ Z and j ∈ [s] be such that x ∈ Cj. For the first property

if ξP (x) = 1 by definition χ̂j ≥ 1/δ̂ so ηP (x) = 2−6/ ln ρ(vj, 2∆, γ1, γ2) and by the

minimality of vj, ηP (x) ≥ 2−6/ ln ρ(x, 2∆, γ1, γ2). By definition also ηP (x) ≤ 2−6/ ln(1/δ̂).

As for the second property, ξP (x) = 0 implies that χ̂j = ρ(vj, 2∆, γ1, γ2) < 1/δ̂ and

ρ̄(x, 2∆, γ1, γ2) ≤ ρ(vj, 2∆, γ1, γ2), also by definition ηP (x) = 2−6/ ln(1/δ̂).

The following corollary shows that our probabilistic partitions yield a similar result
to the one given in [FRT03] (which are based on [CKR01] and improved analysis of
[FHRT03]).
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Corollary 3.1. Let (X, d) be a metric space. Let γ1 = 2, γ2 = 1/32. For any ∆ > 0
there exists a ∆-bounded probabilistic partition P̂, which for any 1/2 ≤ δ ≤ 1 is (η, δ)
padded, where

η(x) = min

{
ln(1/δ)

26 ln(ρ(x, 2∆, γ1, γ2))
, 2−6

}
.

Proof. Let δ̂ = 1/2, and let P̂ be a ∆-bounded probabilistic partition as in Lemma 3.2
with parameters δ̂, γ1, γ2. Let ρ(x) = ρ(x, 2∆, γ1, γ2), B(x) = B(x, η(x)∆) and let 1/2 ≤
δ ≤ 1. We distinguish between two cases:

Case 1: ρ(x) < 2. We will show that Pr[B(x) * P (x)] = 0. Let j be the minimal
such that vj is a center of a cluster Cj that intersects B(x). If d(x, vj) ≤ ∆/8 then
since η(x) ≤ 2−6, it follows that B(x) ⊆ B(x,∆/26) ⊆ B(vj,∆/4) ⊆ Cj = P (x).
Otherwise d(x, vj) > ∆/8 will lead to a contradiction: Let A = |B(x, 4∆)|, a =
|B(x,∆/16)|, B = |B(vj, 4∆)| and b = |B(vj,∆/16)|. Note that ρ(x) = A/a and
ρ(vj) = B/b. As d(x, vj) ≤ ∆/2+∆/32 ≤ ∆ we have a+ b ≤ A, a+ b ≤ B. On the
other hand B(x,∆/16) ∩ B(vj,∆/16) = ∅. From the minimality of ρ(vj) follows
ρ(vj) < ρ(x) < 2, therefore A < 2a and B < 2b, hence A + B < 2a + 2b ≤ A + B,
contradiction.

Case 2: ρ(x) ≥ 2. In this case we simply use Lemma 3.2 which states that if x ∈ Cj with
center vj then x is (ηP (x) ln(1/δ), δ)-padded for ηP (x) = 2−6/max{ln(ρ(vj)), ln 2},
and as vj minimizes ρ(vj) ≤ ρ(x), we have that η(x) ≤ ηP (x) it follows that

Pr[B(x) ⊆ P (x)] ≥ δ .

3.2 Padding Lemma for Decomposable Metrics

In this section we extend the uniform padding lemma, and obtain an additional lower
bound on the padding parameter with respect to the ”decomposability“ of the metric
space, as given by the following definition.

Definition 3.6. Let (X, d) be a finite metric space. Let τ ∈ (0, 1] and let 0 < ∆ ≤
diam(X). We say that X admits a (local) τ -decomposition if there exists a ∆-bounded
probabilistic partition P̂ of X such that for all δ ≤ 1 satisfying ln(1/δ) ≤ 26τ−1, P̂ is
(τ · ln(1/δ), δ)-(locally) padded.

It is known [LS91, Bar96] that any metric space admits a Ω(1/ log n)-decomposition,
however there are certain families of metric spaces which have a much larger decomposi-
tion parameter, such as doubling metric and metrics derived from graphs that exclude a
fixed minor. Note that we require padding for a wide range of the parameter δ and not
just a fixed value (a common value used in many places is δ = 1/2).

Lemma 3.3 (Uniform Padding Lemma for Decomposable Metrics). Let (X, d) be a finite
metric space. Let 0 < ∆ ≤ diam(X). Assume X admits a (local) τ -decomposition.
Let δ̂ ∈ (0, 1/2] satisfying ln(1/δ̂) ≤ 26τ−1, and let γ1 ≥ 2 ,γ2 ≤ 1/16. There exists
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a ∆-bounded probabilistic partition P̂ of (X, d) and a collection of uniform functions
{ξP : X → {0, 1} | P ∈ P} and {ηP : X → (0, 1/ ln(1/δ̂)] | P ∈ P} such that the
probabilistic partition P̂ is a strong (η, δ̂)-uniformly padded probabilistic partition; and
the following conditions hold for any P ∈ P and any x ∈ X:

• ηP (x) ≥ τ/2.

• If ξP (x) = 1 then: 2−7/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−7/ ln(1/δ̂).

• If ξP (x) = 0 then: ηP (x) = 2−7/ ln(1/δ̂) and ρ̄(x, 2∆, γ1, γ2) < 1/δ̂.

Furthermore, if X admits a local τ -decomposition then P̂ is local.

Proof. We generate a probabilistic partition P̂ of X in two phases. the first phase is done
by invoking the probabilistic decomposition Lemma 3.1 iteratively. By sub-partition we
mean a partition {Ci}i lacking the requirement that

⋃
iCi = X. The intuition behind

the construction is that we do the same partition as in Lemma 3.2 while the local growth
rate is small enough. Once the growth rate is large with respect to the decomposability
parameter, we assign all the points who were not covered by the first partition, a cluster
generated by the probabilistic partition known to exists from Definition 3.6. This is done
in two phases:

Phase 1: Define the sub-partition P1 of X into clusters by generating a sequence of
clusters: C1, C2, . . . Cs, for some s ∈ [n]. Notice that we are generating a distribution
over sub-partitions and therefore the generated clusters are random variables. First
we deterministically assign centers v1, v2, . . . , vs and parameters χ1, χ2, . . . , χs. Let
W1 = X and j = 1. Conduct the following iterative process:

1. Let vj ∈ Wj be the point minimizing χ̂j = ρ(x, 2∆, γ1, γ2) over all x ∈ Wj.

2. If 26 ln(χ̂j) > τ−1 set s = j − 1 and stop.

3. Set χj = max{2/δ̂1/4, χ̂j}.
4. Let Wj+1 = Wj \B(vj,∆/4).

5. Set j = j + 1. If Wj 6= ∅ return to 1.

Now the algorithm for the partition and functions ξ, η is as follows: Let Z1 = X.
For j = 1, 2, 3 . . . s:

1. Let (Svj
, S̄vj

) be the partition created by invoking Lemma 3.1 on Zj with center
v = vj and parameter χ = χj.

2. Set Cj = Svj
, Zj+1 = S̄vj

.

3. For all x ∈ Cj let ηP (x) = 2−7/max{ln χ̂j, ln(1/δ̂)}. If χ̂j ≥ 1/δ̂ set ξP (x) = 1,
otherwise set ξP (x) = 0.

Fix some δ̂ ≤ δ ≤ 1. Let θ = δ1/4. Note that θ ≥ 2χ−1
j for all j ∈ [s] as required.

Recall that ηj = 2−4 ln(1/θ)/ lnχj = 2−6 ln(1/δ)/ lnχj (it is easy to verify that
ηP (x) · ln(1/δ) ≤ ηj). Observe that some clusters may be empty and that it is not
necessarily the case that vm ∈ Cm.

32



Phase 2: In this phase we assign any points left un-assigned from phase 1. Let P ′
2 =

{D1, D2, . . . , Dt} be a ∆-bounded probabilistic partition of X, such that for all
δ ≤ 1 satisfying ln(1/δ) ≤ 26τ−1, P ′

2 is (τ · ln(1/δ), δ)-padded. Let Z =
⋃s

i=1Ci and
Z̄ = X \ Z (the un-assigned points), then let P2 = {D1 ∩ Z̄,D2 ∩ Z̄, . . . , Dt ∩ Z̄}.
For all x ∈ Z̄ let ηP (x) = τ/2 and ξP (x) = 1. It can be checked that η

(δ)
P (x) ≤ ηj

for all j ∈ [s]. Notice that by the stop condition of phase 1, τ ≤ 2−6/ ln χ̂j,

since by definition τ ≤ 2−6/ ln(1/δ̂) as well follows that for all x ∈ Z̄ and j ∈ [s],
ηP (x) · ln(1/δ) ≤ ηj.

Define P = P1 ∪ P2. We now prove the properties in the lemma for some x ∈ X,
first consider the sub-partition P1, and the distribution over the clusters C1, C2, . . . Cs as
defined above. For 1 ≤ m ≤ s, define the events:

Zm = {∀j, 1 ≤ j < m, B(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, ηj∆) ./ (Svj

, S̄vj
)|Zm}.

Also let T = Tx = B(x,∆). We prove the following inductive claim: For every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

χ−1
j ). (3.5)

Note that Pr[Es] = 0. Assume the claim holds for m+ 1 and we will prove for m. Define
the events:

Fm = {B(x, ηm∆) ./ (Svm , S̄vm)|Zm},
Gm = {B(x, ηm∆) ⊆ S̄vm|Zm} = {Zm+1|Zm},
Ḡm = {B(x, ηm∆) * S̄vm|Zm} = {Zm+1|Zm}.

First we bound Pr[Fm]. Recall that the center vm of Cm and the value of χm are de-
termined deterministically. The radius rm is chosen from the interval [∆/4,∆/2]. Since
ηm ≤ 1/2, if B(x, ηm∆) ./ (Svm , S̄vm) then d(vm, x) ≤ ∆, and thus vm ∈ T . Therefore if
vm /∈ T then Pr[Fm] = 0. Otherwise by Lemma 3.1

Pr[Fm] (3.6)

= Pr[B(x, ηm∆) ./ (Svm , S̄vm)|Zm]

≤ (1− θ)(Pr[B(x, ηm∆) * S̄vm|Zm] + θχ−1
m )

= (1− θ)(Pr[Ḡm] + θχ−1
m ).

Since the choice of radius is the only randomness in the process of creating P1, the event
of padding for z ∈ Z, and the event B(z, ηP (z)∆) ∩ Z = ∅ for z ∈ Z̄ are independent of
all choices of radii for centers vj /∈ Tz. That is, for any assignment to clusters of points
outside B(z, 2∆) (which may determine radius choices for points in X \ B(x,∆)), the
padding probability will not be affected. Using the induction hypothesis we prove the
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inductive claim:

Pr[Em] ≤ Pr[Fm] + Pr[Gm] Pr[Em+1]

≤ (1− θ)(Pr[Ḡm] + θ1{vm∈T}χ
−1
m ) +

Pr[Gm] · (1− θ)(1 + θ
∑

j≥m+1,vj∈T

χ−1
j )

≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

χ−1
j ),

The second inequality follows from (3.6) and the induction hypothesis. Fix some x ∈ X,
T = Tx. Observe that for all vj ∈ T , d(vj, x) ≤ ∆, and so we get B(vj, 2γ2∆) ⊆ B(x, 2∆).
On the other hand B(vj, 2γ1∆) ⊇ B(x, 2∆). Note that the definition of Wj implies that if
vj is a center then all the other points in B(vj,∆/4) cannot be a center as well, therefore
for any j 6= j′, d(vj, vj′) > ∆/4 ≥ 4γ2∆, so that B(vj, 2γ2∆) ∩ B(vj′ , 2γ2∆) = ∅. Hence,
we get: ∑

j≥1,vj∈T

χ−1
j ≤

∑
j≥1,vj∈T

χ̂j
−1

≤
∑

j≥1,vj∈T

|B(vj, 2γ2∆)|
|B(vj, 2γ1∆)|

≤
∑

j≥1,vj∈T

|B(vj, 2γ2∆)|
|B(x, 2∆)|

≤ 1.

We conclude from the claim (3.5) for m = 1 that

Pr[E1] ≤ (1− θ)(1 + θ ·
∑

j≥1,vj∈T

χ−1
j ) ≤ (1− θ)(1 + θ) ≤ 1− δ1/2

Hence there is probability at least δ1/2 that event ¬E1 occurs. Given that this happens,
we will show that there is probability at least δ1/2 that x is padded. If x ∈ Z, then let
j ∈ [s] such that P (x) = Cj, then ηP (x) · ln(1/δ) ≤ ηj and so B(x, ηP (x) · ln(1/δ)∆) ⊆
B(x, ηj∆). Note that if x ∈ Z is padded in P1 it will be padded in P . If x ∈ Z̄: since for
any j ∈ [s], ηP (x)·ln(1/δ) ≤ ηj we have that ¬E1 implies that B(x, ηP (x)·ln(1/δ)∆)∩Z =
∅. As P2 is performed independently of P1 we have Pr[B(x, (τ/2) ln(1/δ)) ⊆ P2(x)] ≥ δ1/2,
hence

Pr[B(x, (τ/2) ln(1/δ)) ⊆ P (x)] ≥ Pr[B(x, (τ/2) ln(1/δ)) ⊆ P (x) | ¬E1]·Pr[¬E1] ≥ δ1/2·δ1/2 = δ.

It follows that P̂ is uniformly padded. Finally, we show the properties stated in the
lemma. The first property follows from the stop condition in phase 1 and from the
definition of ηP (x). The second property holds: first take x ∈ Z and let j be such
that x ∈ Cj, then ξP (x) = 1 implies that χ̂j ≥ 1/δ̂ hence ηP (x) = 2−7/ ln χ̂j =
2−7/ ln ρ(vj, 2∆, γ1, γ2) and by the minimality of vj, ηP (x) ≥ 2−7/ ln ρ(x, 2∆, γ1, γ2). By

definition ηP (x) ≤ 2−7/ ln(1/δ̂). If x ∈ Z̄ then ηP (x) = τ/2, by the stop condition of
phase 1 τ/2 ≥ 2−7/ ln χ̂j. Again by definition of δ̂ follows that τ/2 ≤ 2−7/ ln(1/δ̂). As
for the third property, which is meaningful only for x ∈ Z, let j such that x ∈ Cj, then

ξP (x) = 0 implies that χ̂j < 1/δ̂ hence ηP (x) = 2−7/ ln(1/δ̂) and since d(x, vj) ≤ ∆ also

ρ̄(x, 2∆, γ1, γ2) ≤ ρ(vj, 2∆, γ1, γ2) < 1/δ̂.
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Lemma 3.4 (Local Padding Lemma for Doubling Metrics). Every finite metric space
(X, d) is locally τ -decomposable for any 0 < ∆ < diam(X) where τ = 2−6/dim(X).

Proof. Fix 0 < ∆ < diam(X) and let λ denote the doubling constant of X. We generate
a probabilistic partition P̂ of X by invoking the probabilistic decomposition Lemma 3.1
iteratively. Define the partition P of X into clusters by generating a sequence of clusters:
C1, C2, . . . Cs.

First we deterministically assign centers v1, v2, . . . , vs, by choosing an arbitrary se-
quence of an arbitrary ∆/4-net of X. Now the algorithm for the partition is as follows:
Let Z1 = X. For j = 1, 2, 3 . . . s:

1. Let (Svj
, S̄vj

) be the partition created by invoking Lemma 3.1 on Zj with center
v = vj and parameter χ = χj = λ4.

2. Set Cj = Svj
, Zj+1 = S̄vj

.

Throughout the analysis fix some δ and let θ = δ1/2. Note that θ ≥ λ−3 ≥ 2χ−1 as
required, where we use the fact that λ ≥ 2 assuming |X| > 1.

Recall that ηj = 2−4 ln(1/θ)/ lnχj = 2−5 ln(1/δ)/ lnχj, and define: ηP (x) = ηj/ ln(1/δ) =
τ/2.

Define the events

Zm = {∀j, 1 ≤ j < m, B(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, ηj∆) ./ (Svj

, S̄vj
)|Zm}.

Also let T = Tx = B(x,∆). The following inductive claim is identical to that in
Lemma 3.2: For every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

χ−1
j ).

Now consider a fixed choice of partition P . Let tT be the number of center points vj

such that vj ∈ T . Consider covering of T by balls of radius ∆/8. Observe that there exists
such a covering with at most λ4. Since the centers are a net for any j 6= j′, d(vj, v

′
j) > ∆/4.

It follows that each of the balls in the covering of T contains at most one vj and therefore
tT ≤ λ4. We therefore obtain: ∑

j≥1,vj∈T

χ−1
j = tT · λ−4 ≤ 1.

For x ∈ X, if P (x) = Svj
then by definition ηP (x) ln(1/δ) = ηj. We conclude that:

Pr[B(x, (ηP (x)) ln(1/δ)∆) * P (x)] = Pr[E1] ≤ (1−θ)(1+θE[
∑

j≥1,vj∈T

χ−1
j ]) ≤ (1−θ)(1+θ) = 1−δ.

We also have the following Lemma from [KPR93, FT03]

Lemma 3.5. Let G be a weighted graph that excludes the minor Kr. Then the metric
(X, d) derived from the graph is τ -decomposable for any 0 < ∆ < diam(X) where τ =
2−6/r2.
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3.3 Hierarchical Padding Lemma

Definition 3.7. [Hierarchical Partition] Given a finite metric space (X, d) and a pa-

rameter k > 1, let Λ =
maxx,y∈X{d(x,y)}
minx6=y∈X{d(x,y)} be the aspect ratio of (X, d) and let I = {0 ≤

i ≤ logk Λ|i ∈ N}. Let ∆0 = diam(X), and for each 0 < i ∈ I, ∆i = ∆i−1/k. A
k-hierarchical partition H of (X, d) is a hierarchical collection of partitions {Pi}i∈I , each
Pi is ∆i-bounded, where P0 consists of a single cluster equal to X and for any 0 < i ∈ I
and x ∈ X, Pi(x) ⊆ Pi−1(x).

Definition 3.8 (Prob. Hierarchical Partition). A probabilistic k-hierarchical partition
Ĥ of a finite metric space (X, d) consists of a probability distribution over a set H of
k-hierarchical partitions. A collection of functions defined on X, f = {fP,i|Pi ∈ H,H ∈
H, i ∈ I} is uniform with respect to H if for every H ∈ H, i ∈ I, fP,i is uniform with
respect to Pi.

Definition 3.9 (Uniformly Padded PHP). Let Ĥ be a probabilistic k-hierarchical par-
tition. Given collection of functions η = {ηP,i : X → [0, 1]|i ∈ I, Pi ∈ H,H ∈ H} and

δ̂ ∈ (0, 1], Ĥ is called (η, δ̂)-padded if the following condition holds for all i ∈ I and for
any x ∈ X:

Pr[B(x, ηP,i(x)∆i) ⊆ Pi(x)] ≥ δ̂.

Ĥ is called strong (η, δ̂)-padded if for all δ̂ ≤ δ ≤ 1, Ĥ is (η · ln(1/δ), δ)-padded. We say
Ĥ is uniformly padded if η is uniform with respect to H.

In order to construct partitions in a hierarchical manner, one has to note that the
padding in level i ∈ I can fail because of the partition of level j < i. The intuition is
that this probability decays exponentially with i− j, however in order to make this work
we will use the fact that our partitions are strongly padded, and argue about padding in
all the levels 1, . . . , i − 1 with larger value of δ. The main property of the hierarchical
partition is that the sum of the inverse padding parameters over all levels in which there
actually was a local growth rate (this is indicated by ξ = 1) is bounded by a logarithm
of a ”global“ growth rate - this is attained by a telescopic sum argument.

Lemma 3.6 (Hierarchical Uniform Padding Lemma for Decomposable Metrics). Let
(X, d) be a τ -decomposable finite metric space, and let γ1 = 16, γ2 = 1/16. Let δ̂ ∈ (0, 1

2
]

such that ln(1/δ̂) ≤ 26τ−1. There exists a probabilistic 2-hierarchical partition Ĥ of (X, d)
and uniform collections of functions ξ = {ξP,i : X → {0, 1}|i ∈ I, Pi ∈ H,H ∈ H} and

η = {ηP,i : X → {0, 1/ ln(1/δ̂)}|i ∈ I, Pi ∈ H,H ∈ H}, such that Ĥ is strong (η, δ̂)-
uniformly padded, and the following properties hold:

• ∑
j≤i

ξP,j(x)ηP,j(x)
−1 ≤ 214 ln

(
n

|B(x,∆i+4)|

)
.

and for any H ∈ H, 0 < i ∈ I, Pi ∈ H:

• ηP,i ≥ τ/8.

• If ξP,i(x) = 1 then: ηP,i(x) ≤ 2−9/ ln(1/δ̂).
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• If ξP,i(x) = 0 then: ηP,i(x) = 2−9/ ln(1/δ̂) and ρ̄(x,∆i−1, γ1, γ2) < 1/δ̂.

Proof. We create a probability distribution over hierarchical partitions, by showing how
to sample a random H ∈ H, and uniform functions ξ and η. Define P0 as a single cluster
equal to X. For all x ∈ X, set η̂P,0(x) = 2−9/ ln(1/δ̂), ξP,0(x) = 0. The rest of the levels
of the partition are created iteratively using Lemma 3.3 as follows. Let i = 1.

1. For each cluster S ∈ Pi−1, let P [S] be a ∆i-bounded probabilistic partition created
by invoking Lemma 3.3 on S with the parameters δ̂, γ1, γ2, and let ξ′P [S], η

′
P [S] be

the uniform functions defined in Lemma 3.3.

2. Let Pi = ∪S∈Pi−1
P [S].

3. For each cluster S ∈ Pi−1 and each x ∈ S let ηP,i(x) = min{1
4
·η′P [S](x),

3
2
·ηP,i−1(x)}.

If it is the case that ηP,i(x) = 1
4
· η′P [S](x) and also ξ′P [S](x) = 0 then set ξP,i(x) = 0,

otherwise ξP,i(x) = 1.

4. Let i = i+ 1, if i ∈ I, return to 1.

Note, that for i ∈ I, x, y ∈ X such that Pi(x) = Pi(y), it follows by induction
that ηP,i(x) = ηP,i(y) and ξP,i(x) = ξP,i(y), by using the fact that η′ and ξ′ are uniform
functions with respect to P [S], where S = Pi−1(x) = Pi−1(y).

We prove by induction on i that Pi is strong (η, δ̂)-uniformly padded, i.e. that it is
(η · ln(1/δ), δ)-padded for all δ̂ ≤ δ ≤ 1. Assume it holds for i− 1 and we will prove for
i. Now fix some δ̂ ≤ δ ≤ 1. Let Bi = B(x, ηP,i(x) ln(1/δ)∆i). We have:

Pr[Bi ⊆ Pi(x)] =

Pr[Bi ⊆ Pi−1(x)] · Pr[Bi ⊆ Pi(x)|Bi ⊆ Pi−1(x)]. (3.7)

Let S = Pi−1(x). Note that ηP,i(x) ln(1/δ) ≤ 1
4
· η′P [S](x) ln(1/δ) = η′P [S](x) ln(1/δ1/4).

Since δ1/4 ≥ δ̂, we have by Lemma 3.3 on S that Pr[Bi ⊆ Pi(x)|Bi ⊆ Pi−1(x)] ≥ δ1/4.
Next observe that by definition ηP,i(x) ln(1/δ) ≤ 3

2
·ηP,i−1(x) ln(1/δ) = 3

2
·4
3
ηP,i−1(x) ln(1/δ3/4) =

2ηP,i−1(x) ln(1/δ3/4). Since ∆i = ∆i−1/2 we get that ηP,i(x) ln(1/δ)∆i ≤ ηP,i−1(x) ln(1/δ3/4)∆i−1.
Therefore Bi ⊆ B(x, ηP,i−1(x) ln(1/δ3/4)∆i−1). Using the induction hypothesis it follows
that Pr[Bi ⊆ Pi−1(x)] ≥ δ3/4. We conclude from (3.7) above that the inductive claim
holds: Pr[Bi ⊆ Pi(x)] ≥ δ1/4 · δ3/4 = δ. This completes the proof that H is strong
(η, δ̂)-uniformly padded.

We now turn to prove the properties stated in the lemma. The second property
holds by induction on i: assume ηP,i−1(x) ≥ τ/8 and by the first property of Lemma 3.3
ηP,i(x) = min{1

4
· η′P [S](x),

3
2
· ηP,i−1(x)} ≥ min{1

4
· τ/2, 3

2
· τ/8} = τ/8. Consider some

i ∈ I, x ∈ X and let S = Pi−1(x). The third property holds as ηP,i(x) ≤ 1
4
η′P [S](x) ≤

2−9/ ln(1/δ̂), using Lemma 3.3. Let us prove the fourth property. By definition if ξP,i(x) =
0 then ηP,i(x) = 1

4
η′P [S](x) and ξ′P [S](x) = 0. Using Lemma 3.3 we have that ηP,i(x) =

2−9/ ln(1/δ̂) and that ρ̄(x,∆i−1, γ1, γ2) < 1/δ̂.
It remains to prove the first property of the lemma. Define ψP,i(x) = 2−9·ξP,i(x)ηP,i(x)

−1.
Using Lemma 3.3 it is easy to derive the following recursion: ψP,i(x) ≤ ln ρ(x,∆i−1, γ1, γ2)+
(2/3)ψP,i−1(x). A simple induction on t shows that for any 0 ≤ t < i:

∑
t<j≤i ψP,j(x) ≤
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3
∑

t<j≤i ln ρ(x,∆j−1, γ1, γ2)+2ψP,t(x). Now observe that as γ1 = 16, γ2 = 1/16 and that
for any j ∈ I:

ln ρ(x,∆j, γ1, γ2) = ln

(
|B(x,∆jγ1)|
|B(x,∆jγ2)|

)
=

4∑
h=−3

ln

(
|B(x, 2∆j+h)|
|B(x,∆j+h)|

)
.

It follows that ∑
0<j≤i

ψP,j(x) ≤ 3
∑

0<j≤i

ln ρ(x,∆j−1, γ1, γ2)

= 3
∑

0≤j<i

4∑
h=−3

ln

(
|B(x, 2∆j+h)|
|B(x,∆j+h)|

)

= 3
4∑

h=−3

∑
0≤j<i

ln

(
|B(x, 2∆j+h)|
|B(x,∆j+h)|

)
= 24 ln

(
n

|B(x,∆i+4)|

)
.

This completes the proof of the first property of the lemma.
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Chapter 4

Embedding with Scaling Distortion
into Normed Spaces

In this section we prove our main theorem on embeddings with scaling distortion. The
construction is based on the following lemma which gives an embedding into the real line,
which is good for all pairs in expectation. The main tool that this lemma uses is the
probabilistic partitions given in Section 3. The parameter ζ determines the quality of the
embedding, and as a consequence the number of coordinates needed (which is calculated
in Section 4.2).

4.1 Main Scaling Lemma

Lemma 4.1. Let (X, d) be a finite metric space on n points and let 0 < ζ ≤ 1, then there
exists a distribution D over functions f : X → R such that for all u, v ∈ X:

1. For all f ∈ supp(D),

|f(u)− f(v)| ≤ C

⌈
ln

(
n

|B(u, d(u, v))|

)⌉
· d(u, v).

2.
Pr

f∼D

[
|f(u)− f(v)| ≥ ζ3 · d(u, v)/C

]
≥ 1− ζ

where C is a universal positive constant.

In the reminder of this section we prove this lemma, let us begin with the construction
of the distribution D.

Let ∆0 = supu,v∈X d(u, v). For i ∈ N let ∆i = (ζ/8)i∆0 and let Pi be a ∆i-bounded

partition. Let s :
(

X
2

)
→ N by s(u, v) = k for the unique k satisfying 8∆k ≤ d(u, v) <

8∆k−1. For all i ∈ N let σi : X → [0, 1], ξi : X → {0, 1}, ηi : X → R+ be uniform
functions with respect to Pi, the functions ηi and ξi will be randomly generated by the
probabilistic partition. For every scale i ∈ N define ϕi : X → R+ as

ϕi(x) = min

{
ξi(x)

ηi(x)
d (x,X \ Pi(x)) , ζ∆i/4

}
, (4.1)
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and for i ∈ N define ψi : X → R+ as

ψi(x) = σi(x) · ϕi(x).

Finally let f : X → R+ be defined as f =
∑

i∈N ψi. Note that f is well defined because
f(x) =

∑
i∈N ψi(x) ≤

∑
i∈N ∆i ≤ 2∆0.

The distribution D on embeddings f is obtained by choosing each Pi from the dis-
tribution P̂i as in Lemma 3.2 with parameters Z = X, ∆ = ∆i, δ̂ = 1/2, γ1 = 64/ζ
and γ2 = 1/16. For each i ∈ N set ξi = ξPi

and ηi = ηPi
as defined in the lemma.

For each i ∈ N let σi be a uniform function with respect to Pi defined by setting
{σi(C)|C ∈ Pi, 0 < i ∈ I} as i.i.d random variables chosen uniformly in the interval
[0, 1].

Lemma 4.2. For all u, v ∈ X, f ∈ supp(D),

|f(u)− f(v)| ≤ C

⌈
ln

(
|X|

|B(u, d(u, v))|

)⌉
d(u, v)

where C is a universal constant.

Proof. Fix some u, v ∈ X and f ∈ supp(D). Hence {Pi}i∈N, {σi}i∈N are fixed. Let ` ∈ N
be the maximum index such that ∆` ≥ 2d(u, v), if no such ` exists then let ` = 0. We
bound |f(u)− f(v)| by separating the sum into two intervals 0 ≤ i < `, and i ≥ `:

|f(u)− f(v)| ≤
∑

0≤i<`

|ψi(u)− ψi(v)|+
∑
i≥`

|ψi(u)|+
∑
i≥`

|ψi(v)|

Each term is bounded as follows:

Claim 4.1. For any u, v ∈ X, ψi(u)− ψi(v) ≤ ξi(u)
ηi(u)

d(u, v).

Proof. For any set U ⊂ X and r ∈ R+, it follows from the triangle inequality that
min{d(u, U), r} − min{d(v, U), r} ≤ d(u, v). The fact that σi, ξi, ηi are uniform implies

that for each 0 ≤ i < `: if it is the case that Pi(u) = Pi(v) then ψi(u)−ψi(v) ≤ ξi(u)
ηi(u)

d(u, v).

Otherwise, if Pi(u) 6= Pi(v), then d(u,X \ Pi(u)) ≤ d(u, v) and hence ψi(u) − ψi(v) ≤
ψi(u) ≤ ξi(u)

ηi(u)
d(u, v).

By symmetry we have that

|ψi(u)− ψi(v)| ≤
ξi(u)

ηi(u)
d(u, v) +

ξi(v)

ηi(v)
d(u, v) .
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For any x ∈ X ∑
0≤i<`

ξi(x)

ηi(x)
=

∑
0≤i<`:ξi(x)=1

ηi(x)
−1 (4.2)

≤
∑

0≤i<`:ξi(x)=1

26 ln ρ(x, 2∆i, γ1, γ2)

≤ 26
∑

0≤i<`

ln

(
|B(x, 2γ1∆i)|
|B(x, 2γ2∆i)|

)
≤ 26 · 3 ln

(
|X|

|B(x,∆`−1/8)|

)
≤ 29 ln

(
|X|

|B(x,∆`)|

)
.

The first inequality follows from the first property of Lemma 3.2, and the third inequality
holds as 2γ1∆i ≤ 2γ2∆i−3 (since γ1/γ2 ≤ (8/ζ)3), this suggests that the sum is telescopic
and is bounded accordingly. And now, noticing that |ψi(u)| ≤ ζ∆i/4 for all u ∈ X and
i ∈ N,

|f(u)− f(v)| ≤
∑

0≤i<`

|ψi(u)− ψi(v)|+
∑
i≥`

|ψi(u)|+
∑
i≥`

|ψi(v)|

≤
∑

0≤i<`

(
ξi(u)

ηi(u)
+
ξi(v)

ηi(v)

)
d(u, v) + (ζ/4)

∑
i≥`

∆i + (ζ/4)
∑
i≥`

∆i

≤ 29

(
ln

(
|X|

|B(u,∆`)|

)
+ ln

(
|X|

|B(v,∆`)|

))
d(u, v) + ζ∆`

≤ C

⌈
ln

(
|X|

|B(u, d(u, v))|

)⌉
d(u, v)

The third inequality uses (4.2). The last inequality uses the fact that B(u, d(u, v)) ⊆
B(u,∆`) ∩B(v,∆`) and that the maximality of ` suggests that ∆` ≤ 16d(u, v)/ζ.

Lemma 4.3. For each u, v ∈ X, Pr [|f(u)− f(v)| ≥ ζ3 · d(u, v)/C] ≥ 1− ζ

We will use the following claims:

Claim 4.2. For each u, v ∈ X, let k = s(u, v), then ξk(u) + ξk(v) > 0.

Proof. Using Claim 3.1 with parameters r = 2∆k, γ1, γ2, we have that indeed 2(1+γ2)r <
8∆k ≤ d(u, v) and (γ1−γ2−2)r ≥ 8∆k−1 > d(u, v) so max{ρ̄(u, 2∆k, γ1, γ2), ρ̄(v, 2∆k, γ1, γ2)} ≥
2. By the second property of Lemma 3.2 it follows that ξk(u) + ξk(v) > 0, using that
1/δ̂ = 2.

Claim 4.3. Let A,B ∈ R+ and let α, β be i.i.d random variables uniformly distributed
in [0, 1]. Then for any C ∈ R and γ > 0:

Pr[|C + Aα−Bβ| < γ ·max{A,B}] < 2γ.
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Proof. Assume w.l.o.g A ≥ B. Consider the condition |C+Aα−Bβ| < γ ·max{A,B} =
γA. If C −Bβ ≥ 0 then it implies α < γ. Otherwise |α− Bβ−C

A
| < γ.

Proof of the lemma. Fix u, v ∈ X and let k = s(u, v). Since ξk(u)+ξk(v) > 0 then assume
without loss of generality that ξk(u) = 1. Recall that P̂k is a strong (ηk, 1/2) locally
padded probabilistic partition, hence it is (η · ln(1/δ), δ)-padded for all 1/2 ≤ δ ≤ 1.

We take δ = 1 − ζ/2. Note that as 0 < ζ ≤ 1, 1
1−ζ/2

= 1 + ζ/2
1−ζ/2

≥ e
ζ/2

2(1−ζ/2) hence

ln
(

1
1−ζ/2

)
≥ ζ/4

Let Eu−pad be the event {B(u, ηk(u) · ζ∆k/4) ⊆ Pk(u)}. From the properties of
Lemma 3.2 we have Pr[Eu−pad] ≥ 1− ζ/2. In this case, given Eu−pad,

ϕk(u) = min

{
d(u,X \ Pk(u))

ηk(u)
, ζ∆k/4

}
≥ ζ∆k/4

Let Eu−color be the event that |
∑

0<j≤k(ψj(u) − ψj(v))| ≥ (ζ/4)2∆k and Euv−good be
the event that both events Eu−pad, Eu−color hold. We will show that

Pr[Eu−color | Eu−pad] ≥ 1− ζ/2 , (4.3)

therefore

Pr[Euv−good] = Pr[Eu−pad ∧ Eu−color] = Pr[Eu−pad] ·Pr[Eu−color | Eu−pad] ≥ (1− ζ/2)2 ≥ 1− ζ

Now to prove (4.3). Define A = ϕk(u), B = ϕk(v), α = σk(u), β = σk(v) and
C =

∑
j<k(ψj(u)−ψj(v)). Since diam(Pk(u)) ≤ ∆k < d(u, v) we have that Pk(v) 6= Pk(u).

Thus α and β are independent random variables uniformly distributed in [0, 1], hence we
can apply Claim 4.3 with γ = ζ/4, noticing that given Eu−pad, max{A,B} ≥ ζ∆k/4

Pr[¬Eu−color | Eu−pad] ≤ Pr[|C + Aα−Bβ| < γ ·max{A,B} | Eu−pad]

≤ Pr[|C + Aα−Bβ| < (ζ/4)2∆k | Eu−pad]

< ζ/2.

Note that |ψj(u)− ψj(v)| ≤ ζ∆j/4, hence

|
∑
j>k

(ψj(u)− ψj(v))| ≤ (ζ/4)
∑
j<k

∆j ≤ (ζ/4) · ζ∆k/6 = (2/3) · (ζ/4)2∆k .

We conclude that with probability at least 1− ζ event Euv−good occur and then

|f(u)−f(v)| ≥ |
∑

0<j≤k

(ψj(u)−ψj(v))|−|
∑
j>k

(ψj(u)−ψj(v))| ≥ (1/3)·(ζ/4)2∆k ≥ ζ3d(u, v)/C ,

for C ≥ 384.

Lemma 4.4. The embedding of Lemma 4.3 can actually give a stronger local result. For
any pair u, v with s(u, v) = k define Q = Q(u, v) ⊆

(
X
2

)
by

Q =

{
(u′, v′) ∈

(
X

2

)
| s(u′, v′) < k ∨ (s(u′, v′) = k ∧ d({u, v}, {u′, v′}) ≥ 4∆k)

}
,
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then

Pr

¬Euv−good |
∧

(u′,v′)∈Q

Eu′v′−good

 ≤ ζ

Proof. The observation is that the bound on the probability of event Euv−good depends
only on random variables σk(u), σk(v) and w.l.o.g the event Eu−pad, given any outcome for
scales 1, 2, . . . k − 1, and is oblivious to all events that happen in scales k + 1, k + 2, . . . .
The events {Eu′v′−good}(u′,v′)∈Q either depend on scale < k, in this case Euv−good holds with
probability at least 1− ζ given any outcome for those events. If s(u′, v′) = k then it must
be that d({u, v}, {u′, v′}) ≥ 4∆k, now the locality of the partition suggests that the event
Eu−pad has probability at least 1−ζ/2 given any outcome for Eu′v′−good. Since any partition

Pk ∈ supp(P̂k) is ∆k-bounded it follows that {Pk(u), Pk(v)} ∩ {Pk(u
′), Pk(v

′)} = ∅, i.e.
the random variables σk for each pair are independent.

4.2 Scaling Distortion with Low Dimension

Now we prove the following corollary of the embedding into the line

Corollary 4.1. For any 1 ≤ p ≤ ∞, any finite metric space (X, d) on n points and
any θ ≥ 12/ log log n there is an embedding F : X → Lp with coarse scaling distortion

O(log(2/ε) · logθ n) and dimension O
(

log n
θ log log n

)
.

This implies Theorems 4, 5 and Theorem 10 when taking θ = 12/ log log n.

Proof. Let D = c · log n/(θ log log n) for some constant c to be determined later. Let
ζ = 1

lnθ/3 n
. We sample for any t ∈ [D] an embedding f (t) : X → R+ as in Lemma 4.1

with parameter ζ and let F = D−1/p
⊕

t f
(t). Fix any ε > 0 and let u, v ∈ Ĝε. Let

Zt = Zt(u, v) be the indicator for the event ¬Euv−good, i.e. we failed in the t-th coordinate.
Let Z = Z(u, v) =

∑
t∈[D]Zt. We are interested to bound the probability of the bad

event, that Z ≥ D/2. Note that E[Z] ≤ ζD, so let a ≥ 1 such that E[Z] = ζD/a. Using
Chernoff bound:

Pr[Z ≥ D/2] = Pr [ζE[Z]/(2a)] ≤
(

ea/(2ζ)−1

(a/(2ζ))a/(2ζ)

)E[Z]

≤ (2eζ)D/2 (4.4)

As
√
ζ = 1

lnθ/6 n
≤ 1

2e
it follows that

Pr[Z ≥ D/2] ≤
√
ζ

D/2
=

(
1

lnθ/6 n

)c·log n/(θ log log n)

= 1/n3

for large enough constant c.
As there are

(
n
2

)
pairs, by the union bound there is probability at least 1− 1/n that

none of the bad events Z(u, v) occur, in such a case, using the first property of Lemma 4.1

‖F (u)− F (v)‖p
p = D−1

∑
t∈[D]

|f (t)(u)− f (t)(v)|p (4.5)

≤ D−1 ·D
(
C

⌈
ln

(
n

|B(u, d(u, v))|

)⌉
d(u, v)

)p

= O((ln(2/ε) · d(u, v))p),
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since by definition of Ĝε, |B(u, d(u, v)| ≥ εn/2.
Let S = S(u, v) ⊆ [D] be the subset of coordinates in which event Euv−good holds,

then as |S| ≥ D/2 and by the second property of Lemma 4.1

‖F (u)− F (v)‖p
p = D−1

∑
t∈[D]

|f (t)(u)− f (t)(v)|p

≥ D−1
∑
t∈S

|f (t)(u)− f (t)(v)|p

≥ D−1|S|
(
ζ3d(u, v)/C

)p
= Ω

(
d(u, v)

lnθ n

)p

4.3 Embedding into Lp

In this section we show the proof of Theorem 18, which gives an improved scaling dis-
tortion bound of O(dlog(2/ε)/pe), when embedding into Lp, with the price of higher
dimension. As in the previous section, the bulk of the proof is showing an embedding
into the line with the desired properties, described in the following lemma.

Lemma 4.5. Let (X, d) be a finite metric space on n points and let κ ≥ 1, then there
exists a distribution D over functions f : X → R such that for all ε ∈ (0, 1] and all
x, y ∈ Ĝ(ε):

1. For all f ∈ supp(D),

|f(x)− f(y)| ≤ C

⌈
ln

(
2

ε

)
/κ+ 1

⌉
· d(x, y).

2.

Pr
f∼D

[|f(x)− f(y)| ≥ d(x, y)/C] ≥ 1

4e5κ

where C is a universal positive constant.

The proof of this lemma is in the spirit of Lemma 4.1, the main difference is that we
choose a partition with very small probability of padding, i.e. the parameter δ̂ ≈ e−κ.
This will improve the distortion by a factor of ln(1/δ̂) = κ, but choosing δ̂ in such a way
Claim 4.2 does not hold anymore. There may be pairs x, y such that ξi(x) = ξi(y) = 0. For
such cases we need to modify f by adding additional terms that are essentially distances
to random subsets of the space, similarly to Bourgain’s original embedding, and show
that if indeed ξi(x) = ξi(y) = 0 then we can get the contribution from these additional
terms.

Let s = eκ. Let I and ∆i for i ∈ I be as in Definition 3.7. We will define functions
ψ, µ : X → R+ and let f = ψ+µ. In what follows we define ψ. We construct a uniformly
(η, 1/s)-padded probabilistic 2-hierarchical partition Ĥ as in Lemma 3.6, and let ξ be as
defined in the lemma. Now fix a hierarchical partition H = {Pi}i∈I ∈ H. We define the
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embedding by defining the coordinates for each x ∈ X. For each 0 < i ∈ I we define a
function ψi : X → R+ and for x ∈ X, let ψ(x) =

∑
i∈I ψi(x).

Let σi : X → {0, 1} be a uniform function with respect to Pi define by letting
{σi(C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random variables.
The embedding is defined as follows: for each x ∈ X and 0 < i ∈ I let

ψi(x) = σi(x) ·min

{
ξi(x)

κ · ηi(x)
· d(x,X \ Pi(x)),∆i

}
Next, we define the function µ, based on the embedding technique of Bourgain [Bou85]

and its generalization by Matoušek [Mat90]. Let T ′ = dlogs ne and K = {k ∈ N|1 ≤ k ≤
T ′}. For each k ∈ K define a randomly chosen subset Ak ⊆ X, with each point of X
included in Ak independently with probability s−k. For each k ∈ K and x ∈ X, define:

Ik(x) = {i ∈ I|∀u ∈ Pi(x), s
k−2 < |B(u, 4∆i)| ≤ sk}.

We make the following simple observations:

Claim 4.4. The following hold for every i ∈ I:

• For any x ∈ X: |{k|i ∈ Ik(x)}| ≤ 2.

• For every k ∈ K: the function i ∈ Ik(x) is uniform with respect to Pi.

We define ik : X → I, where ik(x) = min{i|i ∈ Ik(x)}.
For each k ∈ K we define a function µk : X → R+ and let µ(x) =

∑
k∈K µk(x). The

function µk is defined as follows: for each x ∈ X and k ∈ K, let i = ik(x) and

µk(x) = min

{
1

8
d(x,Ak), 2

9d(x,X \ Pi(x)),∆i

}
Upper Bound Proof

Claim 4.5. For any i ∈ I and x, y ∈ X,

ψi(x)− ψi(y) ≤ min

{
ξi(x)

κ · ηi(x)
· d(x, y),∆i

}
The proof is essentially the same as the proof of Claim 4.1.

Claim 4.6. For any k ∈ K and x, y ∈ X,

µk(x)− µk(y) ≤ min{29d(x, y),∆ik(x)}

Proof. Let i = ik(x) and i′ = ik(y). There are two cases. In Case 1, assume Pi(x) = Pi(y),
and first we show that i = i′. By Claim 4.4 we have that i ∈ Ik(y), implying i′ ≤ i. Since
H = {Pi}i∈I is a hierarchical partition we have that Pi′(x) = Pi′(y). Hence Claim 4.4
implies that i′ ∈ Ik(x), so that i ≤ i′, which implies i′ = i.

Since µk(x) ≤ ∆i we have that µk(x) − µk(y) ≤ µk(x) ≤ ∆i. To prove µk(x) −
µk(y) ≤ 29d(x, y) consider the value of µk(y). If µk(y) = 1

8
d(y, Ak) then µk(x)− µk(y) ≤

1
8
(d(x,Ak)− d(y, Ak)) ≤ 1

8
d(x, y). Otherwise, if µk(y) = 29d(y,X \ Pi(x)) then

µk(x)− µk(y) ≤ 29(d(x,X \ Pi(x))− d(y,X \ Pi(x))) ≤ 29d(x, y).
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Finally, if µk(y) = ∆i then µk(x)− µk(y) ≤ ∆i −∆i = 0.
Next, consider Case 2 where Pi(x) 6= Pi(y). In this case we have that d(x,X \Pi(x)) ≤

d(x, y) which implies that

µk(x)− µk(y) ≤ µk(x) ≤ min{29d(x, y),∆i} .

Let ` be largest such that ∆`+4 ≥ d(x, y) ≥ max{rε/2(x), rε/2(y)}. If no such ` exists
then let ` = 0.

By Claim 4.5 and Lemma 3.6 we have∑
0<i≤`

(ψi(x)− ψi(y)) ≤
∑

0<i≤`

ξi(x)

κ · ηi(x)
· d(x, y)

≤ 214 · ln
(

n

|B(x,∆`+4)|

)
· d(x, y)/κ ≤ (214 ln(2/ε)) · d(x, y)/κ.

We also have that∑
`<i∈I

(ψi(x)− ψi(y)) ≤
∑

`<i∈I

∆i ≤ ∆` ≤ 25d(x, y).

It follows that

|ψ(x)− ψ(y)| = |
∑

0<i∈I

(ψi(x)− ψi(y))| ≤
(
214 ln(2/ε)/κ+ 25

)
· d(x, y).

Let k′ be the largest such that sk′ ≤ εn/2. Note that |{k ∈ K | k > k′}| ≤ dlogs ne −
blogs(εn/2)c ≤ ln(2/ε)/κ+ 2, hence∑

k′<k∈K

(µk(x)− µk(y)) ≤
∑

k′<k∈K

29d(x, y) ≤ 29 · (ln(2/ε)/κ+ 2)d(x, y).

Now, if k ≤ k′ and i ∈ Ik(x) then for any u ∈ Pi(x) we have |B(x, 2∆i)| ≤
|B(u, 4∆i)| ≤ sk ≤ εn/2. It follows that d(x, y) ≥ rε/2(x) ≥ 2∆i. Let `′ = min{i ∈
I | d(x, y) ≥ 2∆i}. Using Claim 4.6 and the first property of Claim 4.4 we get∑
k′≥k∈K

(µk(x)− µk(y)) ≤
∑

k′≥k∈K

∆ik(x) ≤
∑

`′≤i∈I

∑
k∈K|i∈Ik(x)

∆i ≤
∑

`′≤i∈I

2∆i ≤ 4∆`′ ≤ 2d(x, y).

It follows that

|µ(x)− µ(y)| = |
∑
k∈K

(µk(x)− µk(y))| ≤ 29 (ln(2/ε)/κ+ 3) · d(x, y).

It follows that

|f(x)− f(y)| = |ψ(x) + µ(x)− ψ(y)− µ(y)| ≤ 215 (ln(2/ε)/κ+ 1) · d(x, y).

Lower Bound Proof
Let 0 < ` ∈ I be such that 8∆` < d(x, y) ≤ 16∆`. We distinguish between the

following two cases:
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• Case 1: Either ξ`(x) = 1 or ξ`(y) = 1.

Assume w.l.o.g that ξ`(x) = 1. Let Eu−pad be the event that

B(x, η`(x) ln s ·∆`) ⊆ P`(x)

As Ĥ is (η, 1/s)-padded, Pr[Eu−pad] ≥ 1/s, recalling that κ = ln s, if this event
occurs

ψ`(x) ≥ σ`(x) ·min

{
ξ`(x)

κ · η`(x)
· η`(x)κ ·∆`,∆`

}
= σ`(x) ·∆`.

Assume that Eu−pad occurs. Since diam(P`(x)) ≤ ∆` < d(x, y) we have that P`(y) 6=
P`(x), so the value of σ`(x) is independent of the value of f(y). We distinguish
between two cases:

– |f(x)−f(y)−ψ`(x)| ≥ 1
2
∆`. In this case there is probability 1/2 that σ`(x) = 0,

so that ψ`(x) = 0.

– |f(x)−f(y)−ψ`(x)| ≤ 1
2
∆`. In this case there is probability 1/2 that σ`(x) = 1,

so that ψ`(x) ≥ ∆`.

We conclude that with probability at least 1/(2s): |f(x)− f(y)| ≥ 1
2
∆`.

• Case 2: ξP,`(x) = ξP,`(y) = 0

It follows from Lemma 3.6 that max{ρ̄(x, 2∆`, γ1, γ2), ρ̄(y, 2∆`, γ1, γ2)} < s. Let
x′ ∈ B(x, 2∆`) and y′ ∈ B(y, 2∆`) such that ρ(x′, 2∆`, γ1, γ2) = ρ̄(x, 2∆`, γ1, γ2)
and ρ(y′, 2∆`, γ1, γ2) = ρ̄(y, 2∆`, γ1, γ2).

Recall that γ1 = 16, γ2 = 1/16. For z ∈ {x′, y′} we have:

s > ρ(z, 2∆`, γ1, γ2) =
|B(z, 32∆`)|
|B(z, 2∆`/16)|

≥ |B(x, 14∆`)|
|B(z,∆`/8)|

,

using that d(x, x′) ≤ 2∆` and d(x, y′) ≤ d(x, y)+d(y, y′) ≤ 18∆`, so thatB(x, 14∆`) ⊆
B(z, 32∆`).

Let k ∈ K be such that sk−1 < |B(x, 14∆`)| ≤ sk. We deduce that for z ∈ {x′, y′},
|B(z,∆`/8)| > sk−2. Consider an arbitrary point u ∈ P`(x), as d(u, x′) ≤ 3∆` it
follows that sk−2 < |B(u, 4∆`)| ≤ sk. This implies that ` ∈ Ik(x) and therefore
ik(x) ≤ `. As Ĥ is (η, 1/s)-padded we have the following bound

Pr[B(x, η`(x) · κ∆`) ⊆ P`(x)] ≥ 1/s.

Assume that this event occurs. Since H is hierarchical we get that for every i ≤ `,
B(x, η`(x) · κ∆`) ⊆ P`(x) ⊆ Pi(x) and in particular this holds for i = ik(x). As
ξ`(x) = 0 we have that η`(x) = 2−9/κ. Hence,

29 · d(x,X \ Pi(x)) ≥ 29 · η`(x)κ∆` = ∆`.

Implying:

µk(x) = min

{
1

8
d(x,Ak), 2

9 · d(x,X \ Pi(x)),∆i

}
≥ min

{
1

8
d(x,Ak),∆`

}
.
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The following is a variant on the original argument in [Bou85, Mat90]. Define
the events: A1 = B(y′,∆`/8) ∩ Ak 6= ∅, A2 = B(x′,∆`/8) ∩ Ak 6= ∅ and A3 =
[B(x, 14∆`) \B(y′,∆`/8)] ∩ Ak = ∅. Then for m ∈ {1, 2}:

Pr[Am] ≥ 1−
(
1− s−k

)sk−2

≥ 1− e−s−k·sk−2

= 1− e−s−2 ≥ s−2/2,

Pr[A3] ≥
(
1− s−k

)sk

≥ 1/4,

using s ≥ 2. Observe that d(x′, y′) ≥ d(x, y)− d(x, x′)− d(y, y′) ≥ d(x, y)− 4∆` ≥
4∆`, implying B(y′,∆`/8)∩B(x′,∆`/8) = ∅. It follows that eventA1 is independent
of either event A2 or A3.

Assume event A1 occurs. It follows that d(y, Ak) ≤ d(y, y′) + ∆`/8 ≤ 17
8
∆`. We

distinguish between two cases:

– |f(x)−f(y)− (µk(x)−µk(y))| ≥ 3
8
∆`. In this case there is probability at least

s−2/2 that event A2 occurs, in such a case d(x,Ak) ≤ d(x, x′) + ∆`/8 ≤ 17
8
∆`

so that |µk(x)− µk(y)| ≤ 1
8
max{d(x,Ak), d(y, Ak)} ≤ 17

64
∆`. We therefore get

with probability at least s−2/2 that |f(x)− f(y) ≥ 24
64

∆` − 17
64

∆` ≥ ∆`/10.

– |f(x)− f(y)− (µ`(x)−µ`(y))| < 3
8
∆`. In this case there is probability at least

1/4 that event A3 occurs. Observe that:

d(x,B(y′,∆`/8)) ≥ d(x, y)− d(y, y′)−∆`/8

≥ 8∆` − 2∆` −∆`/8 =
47

8
∆`,

implying that d(x,Ak) ≥ min {14∆`, d(x,B(y′,∆`/8))} ≥ 47
8
∆` and therefore

µk(x) ≥ min{1
8
· 47

8
∆`,∆`} = 47

64
∆`. Since µk(y) ≤ 1

8
d(y, Ak) ≤ 17

64
∆` we obtain

that: µk(x) − µk(y) ≥ 30
64

∆`. We therefore get with probability at least 1/4
that |f(x)− f(y)| ≥ 30

64
∆` − 3

8
∆` ≥ ∆`/10.

We conclude that given events Eu−pad and A1, with probability at least s−2/2:
|f(x)− f(y)| ≥ ∆`/10.

It follows that with probability at least s−5/4:

|f(x)− f(y)| ≥ ∆`/10 ≥ d(x, y)/160.

This concludes the proof of Lemma 4.5.

Proof of Theorem 18. Fix some 1 ≤ p <∞. 1 Let D = c ·ep log n for a universal constant
c and define F : X → LD

p by F (x) = D−1/p
⊕D

t=1 f
(t)(x) where each f (t) is sampled as in

Lemma 4.5. Let x, y ∈ Ĝ(ε), then by the first property of the lemma

‖F (x)− F (y)‖p
p = D−1

D∑
t=1

|f (t)(x)− f (t)(y)|p ≤ (C ln(2/ε)/κ+ 1)p d(x, y)p

1For p = ∞ we can simply use the isometric embedding of [Enf69] in n dimensions.
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By the second property of the lemma, by using that κ ≤ p and by applying Chernoff
bounds we get w.h.p for any x, y ∈ X:

‖F (x)− F (y)‖p
p ≥

1

8
e−5κ (Cd(x, y))p ≥ 1

8

(
e−5 · Cd(x, y)

)p
.
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Chapter 5

Extending to Infinite Compact
Spaces

In this section we extend our main result to infinite compact spaces. In what follows
(X, d) is a compact metric space equipped with a probability measure σ. Our aim is to
bound the `q-distortion of embedding X into Lp spaces by O(q), and as before the initial
step is to bound the scaling distortion.

Theorem 19. Let 1 ≤ p ≤ ∞ and let (X, d) be a compact metric space. There exists an
embedding F : X → Lp with coarsely scaling distortion O(d(log 2

ε
)e). The `q-distortion of

this embedding is: distq(F ) = O(q).

5.1 Uniform Probabilistic Partitions for Infinite Spaces

For the infinite metric spaces case we require a slightly different definition of local growth
rate, which can also be infinite.

Definition 5.1. The local growth rate of x ∈ X at radius r > 0 for given scales γ1, γ2 > 0
is defined as

ρ(x, r, γ1, γ2) =

{
σ(B(x,rγ1))
σ(B(x,rγ2))

σ(B(x, rγ2)) > 0

∞ σ(B(x, rγ2)) = 0

ρ̄ is defined as before.

The definitions for padded partitions remain the same, as the proof of Lemma 3.1.
Now the partition lemma will be the following

Lemma 5.1. Let (X, d) be a compact metric space. Let Z ⊆ X. Let 0 < ∆ ≤ diam(Z).
Let δ̂ ∈ (0, 1/2], γ1 ≥ 2 , γ2 ≤ 1/16. There exists a ∆-bounded probabilistic partition
P̂ of (Z, d) and a collection of uniform functions {ξP : Z → {0, 1} | P ∈ P} and
{ηP : Z → (0, 1] | P ∈ P} such that the probabilistic partition P̂ is a strong (η, δ̂)-
uniformly locally padded probabilistic partition; and the following conditions hold for any
P ∈ supp(P̂) and any x ∈ Z:

• If ξP (x) = 1 then:

– If ρ(x, 2∆, γ1, γ2) <∞ then 2−6/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−6/ ln(1/δ̂).
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– Otherwise, when ρ(x, 2∆, γ1, γ2) = ∞ then ηP (x) = 0.

• If ξP (x) = 0 then: ηP (x) = 2−6/ ln(1/δ̂) and ρ̄(x, 2∆, γ1, γ2) < 1/δ̂.

Our partition algorithm will be similar to the one of Lemma 3.2. First we determin-
istically assign a set of centers C = {v1, v2, . . . , vs} ⊆ Z and parameters χ1, χ2, . . . , χs ∈
R+ ∪ {∞}. Let W1 = Z and j = 1. Conduct the following iterative process:

1. Let vj ∈ Wj be the point minimizing χ̂j = ρ(x, 2∆, γ1, γ2) over all x ∈ Wj.

2. Set χj = max{2/δ̂1/2, χ̂j}.

3. Let Wj+1 = Wj \B(vj,∆/4).

4. Set j = j + 1. If Wj 6= ∅ return to 1.

One observation we require is that the number s of cluster centers in every partition
is indeed finite, using the following claim:

Claim 5.1. For any ∆ > 0 and the algorithm described above, there exists some s ∈ N
such that Ws = ∅.

Proof. Since the metric is compact by definition it is also totally bounded (i.e. for every
r > 0 there exists a finite cover of X with balls of radius at most r). The algorithm starts
by assigning a set of centers C that are actually a ∆/4-net, and we can show that this
net is finite. Take r = ∆/8 and consider the finite cover with balls of radius at most r.
Every net point c must be covered by this cover, so there is a ball Bc in the cover with
center x such that d(x, c) < r, which implies that these balls Bc are distinct for every
c ∈ C, so as the cover is finite also C is finite.

Let t ≤ s be the minimal index such that χt = ∞. Now the algorithm for the partition
and functions ξ, η is as follows: Let Z1 = Z. For j = 1, 2, . . . , t− 1:

1. Let (Svj
, S̄vj

) be the partition created by Svj
= BZj

(vj, r) and S̄vj
= Zj \ Svj

where
r is distributed as in Lemma 3.1 with parameter λ = 8 ln(χj)/∆.

2. Set Cj = Svj
, Zj+1 = S̄vj

.

3. For all x ∈ Cj let ηP (x) = 2−6/max{ln χ̂j, ln(1/δ̂)}. If χ̂j ≥ 1/δ̂ set ξP (x) = 1,
otherwise set ξP (x) = 0.

For j = t, t+ 1 . . . s:

1. Let Cj = BZj
(vj,∆/4), Zj+1 = Zj \ Cj.

2. For all x ∈ Cj let ηP (x) = 0, ξP (x) = 1.

The proof remains essentially the same, replacing every |B(x, r)| by σ(B(x, r)) in the
part that bounds

∑
j≥1,vj∈T χ

−1
j . It is easy to see that the padding analysis of Lemma 3.2

still holds for all points x ∈ Cj where j < t, and it will hold for j ≥ t since for such
points ηP (x) = 0, which means that we need to pad a ball of radius 0, so the padding
probability is 1, and the other properties are easily checked.
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5.2 Embedding Infinite Spaces into Lp

As in the finite case, we first construct an embedding into the real line, that is good in
expectation.

Lemma 5.2. Let (X, d) be a compact metric space with diameter ∆ and let 0 < ζ ≤ 1,
then there exists a distribution D over functions f : X → R such that for all u, v ∈ X:

1. For all f ∈ supp(D),

• If there exists ε > 0 such that u, v ∈ Ĝ(ε)

|f(u)− f(v)| ≤ C

⌈
ln

(
2

σ(B(u, d(u, v)))

)⌉
· d(u, v).

• Otherwise
|f(u)− f(v)| ≤ ∆0.

2.
Pr

f∼D

[
|f(u)− f(v)| ≥ ζ3 · d(u, v)/C

]
≥ 1− ζ

where C is a universal positive constant.

Proof. The proof of the lemma is very similar to the proof of Lemma 4.1, we highlight
the main differences.

The embedding f is defined as in Lemma 4.1, where ϕi : X → R+ is defined as

ϕi(x) =

{
min

{
ξi(x)
ηi(x)

d (x,X \ Pi(x)) , ζ∆i/4
}

ηi(x) > 0

ζ∆i/4 ηi(x) = 0
(5.1)

For the upper bound proof, fix a pair u, v ∈ X such that u, v ∈ Ĝ(ε) for ε > 0.
Then both σ(B(u, d(u, v))), σ(B(v, d(u, v))) > 0. The proof of Lemma 4.2 will still hold
for such u, v by the same argument shown there, just replacing the size of a ball by its
measure. This is true because the choice of scale ` was such that the growth rate is indeed
finite ρ(u, 2∆i, γ1, γ2) <∞ for all i < `.

For any pair u, v ∈ X, we have that ψi(u)− ψi(u) ≤ ζ∆i/4, hence

|f(u)− f(v)| = |
∑
i>0

ψi(u)− ψi(v)| ≤ ζ/4
∑
i>0

∆i < ∆0.

The proof of the lower bound is essentially the same as in Lemma 4.3.

Proof of Theorem 19. Define the embedding F : X → Lp(D) as a convex direct sum of all
f ∈ supp(D), each f is naturally weighted by Pr(f). It can be seen that ‖F (x)−F (y)‖p

p =
Ef∼D [|f(x)− f(y)|p], hence applying Lemma 5.2 with ζ = 1/2 we get that for any ε > 0

and all (u, v) ∈ Ĝ(ε),
distF (u, v) ≤ O(log(2/ε)) .
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5.3 Scaling Distortion Vs. `q-distortion for Infinite

Spaces

The main difference from the proof of Lemma 2.1 is that not all pairs u, v ∈ X have an
ε > 0 such that (u, v) ∈ Ĝ(ε). This means in particular that having scaling distortion
gives no guarantees on the distortion of such pairs. Luckily, the measure of the set of
such pairs is zero, hence it is enough to obtain for every pair some finite bound on the
distortion.

Let C be the universal constant of the distortion. Let Gi = Ĝ(2−i) \ Ĝ(2−(i−1)) and

G∞ =
(

X
2

)
\
(⋃

ε>0 Ĝ(ε)
)
, and note that for all x ∈ X if Gi(x) = {y ∈ X | (x, y) ∈ Gi}

then σ(Gi(x)) ≤ 2−(i−1), hence Π(Gi) =
∫

x

∫
y
1y∈Gi(X)dσdσ ≤ 2−(i−1). Also note that as

Π(Ĝ(ε)) ≥ 1 − ε/2, we have that Π(G∞) = 0. We can now bound the `q-distortion as
follows:

E(x,y)∼Π[distF (x, y)q]1/q =

(∫
x

∫
y

distF (x, y)qdσdσ

)1/q

=

(∫
x

(
∞∑
i=1

∫
y∈Gi(x)

distF (x, y)qdσ +

∫
y∈G∞(x)

distF (x, y)qdσ

)
dσ

)1/q

≤ 2C

(∫
x

(
∞∑
i=1

∫
y∈Gi(x)

(log(2i))qdσ + 0

)
dσ

)1/q

≤ 2C

(
∞∑
i=1

iq

2i

)1/q

= O(q)

Given weights w : X × X → R+ on the pairs such that
∫

x

∫
y
w(x, y)Π(x, y)dσdσ =

1, an analogous calculation to the finite case also bound the weighted `q-distortion by

O(q + log Φ̂(w)) (above was shown the case that for all x, y ∈ X, w(x, y) = 1).
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Chapter 6

Embedding of Doubling Metrics

In this section we focus on metrics with bounded doubling constant λ (recall Defini-
tion 2.9. The main result of this section is a low distortion embedding of metric spaces
into Lp of dimension O(log λ). Other results shown here are an extension to scaling
distortion, which implies constant average distortion with low dimension Õ(log λ), a
distortion-dimension tradeoff for doubling metrics and ”snow-flake“ embedding in the
spirit of Assouad.

6.1 Low Dimensional Embedding for Doubling Met-

rics

Theorem 8. For any n-point metric space (X, d) with dim(X) = log λ and any 0 < θ ≤
1, there exists an embedding f : X → LD

p with distortion O
(
log1+θ n

)
where D = O

(
log λ

θ

)
.

One can take θ to be any small constant and obtain low distortion in the (asymp-
totically) optimal dimension. Another interesting choice is to take θ = 12/ log log n, and
get the standard O(log n) distortion with only O(log log n · log λ) dimensions. The proof
is also based on the embedding into the line of Lemma 4.1, with the parameter ζ being
much smaller. The analysis uses nets of the space for each scale, which is standard tech-
nique for doubling metrics, then argues that it is enough to have a successful embedding
only for certain pairs of points in the net in order to have a successful embedding for
all pairs. The low dimension is then obtain by arguing that there are few dependencies
between the relevant pairs of points in the nets, and then using Lovasz local lemma in
order to show that small number of dimensions is sufficient to obtain a positive success
probability for all relevant pairs in the nets. Now for the formal proof:

Let λ = 2dim(X) be the doubling constant of X and D = (c log λ)/θ for some constant
c to be determined later. Let ζ = 1

lnθ/3 n
and let C be the constant from Lemma 4.1. For

any t ∈ [D] let f (t) : X → R+ be an embedding as in Lemma 4.1 with parameter ζ (the
exact choice of f (t) will be determined later), and let F = D−1/p

⊕D
t=1 f

(t). Fix any ε > 0

and let x, y ∈ Ĝε.
By the same calculation as in (4.5) we have that

‖F (x)− F (y)‖p = O(ln(2/ε) · d(u, v))
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The proof on the contraction of the embedding uses a set of nets of the space.
For any i ∈ N, let Ni be a ζ3∆i

C2 ln n
-net of X. Let M ⊆

(
X
2

)
be the set of net pairs

for which we would like the embedding to give the distortion bound, formally M ={
(u, v) ∈

(
X
2

)
| ∃i ∈ N : u, v ∈ Ni, 7∆i ≤ d(u, v) ≤ 9∆i−1

}
. For all (u, v) ∈ M , let E(u,v)

be the event that E (t)
uv−good holds for at least D/2 of the coordinates t ∈ [D]. Define the

event E =
⋂

(u,v)∈M E(u,v) that captures the case that all pairs in M have the desired
property. The main technical lemma is that E occurs with non-zero probability:

Lemma 6.1. Pr[E ] > 0.

Let us first show that if the event E took place, then the contraction of every pair
x, y ∈ X is bounded. Let i = s(x, y). Consider u, v ∈ Ni satisfying d(x, u) = d(x,Ni) and
d(y, v) = d(y,Ni), then d(u, v) ≤ d(x, y) + d(u, x) + d(y, v) ≤ 8∆i−1 + 2∆i ≤ 9∆i−1 and
d(u, v) ≥ d(x, y)− d(x, u)− d(y, v) ≥ 8∆i − 2∆i

C2 ≥ 7∆i, so by the definition of M follows
that (u, v) ∈M . The next claim shows that since x, y are very close to u, v respectively,
then by the triangle inequality the embedding F of x, y cannot differ by much from that
of u, v (respectively).

Claim 6.1. Let x, y, u, v ∈ X be as above, then given E:

‖F (x)− F (y)‖p ≥ ζ3d(x, y)/(12C) .

Proof. First note that if event E(u,v) holds then letting S ⊆ [D] be the subset of good
coordinates for u, v, by Lemma 4.1 in each good coordinate there is contribution of at
least ζ3d(u, v)/C, and since there are at least D/2 good coordinates,

‖F (u)− F (v)‖p
p ≥ D−1

∑
t∈S

|f (t)(u)− f (t)(v)|p ≥ (ζ3d(u, v)/(2C))p. (6.1)

Since Ni is ζ3∆i

C2 ln n
-net, then d(x, u) ≤ ζ3∆i

C2 ln n
. By the first property of Lemma 4.1,

‖F (x)−F (u)‖p
p = D−1

D∑
t=1

|f (t)(x)−f (t)(u)|p ≤ (C lnn·d(x, u))p ≤ (ζ3∆i/C)p ≤ (ζ3d(x, y)/(8C))p

using that ∆i ≤ d(x, y)/8. Similarly ‖F (y)− F (v)‖p ≤ ζ3d(x, y)/(8C), then

‖F (x)− F (y)‖p = ‖F (x)− F (u) + F (u)− F (v) + F (v)− F (y)‖p

≥ ‖F (u)− F (v)‖p − |F (x)− F (u)‖p − ‖F (y)− F (v)‖p

≥ ζ3d(u, v)/(2C)− 2 · ζ3d(x, y)/(8C)

≥ ζ3d(x, y)/(12C)

in the second inequality using (6.1) and in the last inequality using that d(u, v) ≥
2d(x, y)/3.

Proof of Lemma 6.1:
We begin with a variation of Lovasz local lemma in which the bad events have rating,

and events may only depend on other events with equal or larger rating. See the general
case in Lemma 6.7 for a proof.
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Lemma 6.2 (Local Lemma). Let A1,A2, . . .An be events in some probability space.
Let G(V,E) be a directed graph on n vertices with out-degree at most d, each vertex
corresponding to an event. Let c : V → N be a rating function of events, such that if
(Ai,Aj) ∈ E then c(Ai) ≤ c(Aj). Assume that for any i = 1, . . . , n

Pr

[
Ai |

∧
j∈Q

¬Aj

]
≤ p

for all Q ⊆ {j : (Ai,Aj) /∈ E ∧ c(Ai) ≥ c(Aj). If ep(d+ 1) ≤ 1, then

Pr

[
n∧

i=1

¬Ai

]
> 0

Define a directed dependency graph G = (V,E), where V = {E(u,v) | (u, v) ∈M}, and
the rating of a vertex c(E(u,v)) = s(u, v). Define that (E(u,v), E(u′,v′)) ∈ E iff i = s(u, v) =
s(u′, v′) and d({u, v}, {u′, v′}) ≤ 4∆i.

Claim 6.2. The out-degree of G is bounded by λ15 ln ln n

Proof. Fix E(u,v) ∈ V , we bound the number of pairs u′, v′ ∈M such that (E(u,v), E(u′,v′)) ∈
E.

Since i = s(u, v) = s(u′, v′) we have that 8∆i ≤ d(u, v), d(u′, v′) < 8∆i−1, hence
if (u, v) ∈ Ni′ or (u′, v′) ∈ Ni′ then i′ satisfies i − 1 ≤ i′ ≤ i + 1 by the definition
of M , so let N = Ni−1 ∪ Ni ∪ Ni+1. Assume w.l.o.g d(u, u′) ≤ 4∆i, hence d(u, v′) ≤
d(u, u′) + d(u′, v′) ≤ 4∆i + 8∆i−1 ≤ ∆i−2 and it follows that u, v, u′, v′ ∈ B = B(u,∆i−2).
The number of pairs can be bounded by |N ∩B|2. Since (X, d) is λ-doubling, the ball B

of radius r1 = (8/ζ)2∆i can be covered by A = λdlog(r1/r2)e balls of radius r2 = ζ4∆i

16C2 ln n
,

and A ≤ λ8+2 log C+log ln n+log(1/ζ6). Each of these small balls of radius r2 contains at most
one point in the net Ni+1. Recall that ζ = 1

lnθ/3 n
, so assuming n is large enough it follows

that |N ∩B|2 ≤ |Ni−1 ∩B|2 + |Ni ∩B|2 + |Ni+1 ∩B|2 ≤ λ15 ln ln n.

The construction of the graph is based on the proposition that pairs of net points that
do not have an edge connecting them in G, are either farther than ≈ ∆i apart or have
different scales and hence do not change each other’s bound on their success probability.
Indeed by Lemma 4.4 the bound on the probability of some event E(u, v) still holds given
any outcome for events E(u′, v′) of smaller or equal rating such that (E(u,v), E(u′,v′)) /∈ E.

Claim 6.3.

Pr

¬E(u,v) |
∧

(u′,v′)∈Q

E(u′,v′)

 ≤ λ−16 ln ln n,

for all Q ⊆
{
(u′, v′) | s(u, v) ≥ s(u′, v′) ∧

(
E(u,v), E(u′,v′)

)
/∈ E

}
.

Proof. By Lemma 4.4 for all t ∈ [D]

Pr

¬E (t)
uv−good |

∧
(u′,v′)∈Q

E(u′,v′)

 ≤ ζ

56



It follows from Chernoff bound (similarly to (4.4)) that the probability that more than
D/2 coordinates fail is bounded above by:

Pr

¬E(u,v) |
∧

(u′,v′)∈Q

E(u′,v′)

 ≤√ζ
D/2

≤ λ−16 ln ln n. (6.2)

For large enough constant c.

Apply Lemma 6.2 to the graph G we defined, by Claim 6.2 let d = λ15 ln ln n and by
Claim 6.3 we can let p = λ−16 ln ln n satisfying the first condition of Lemma 6.2. It is
easy to see that the second condition also holds (since λ ≥ 2 and assuming ln lnn ≥ 2).
Therefore Pr[E ] = Pr[

∧
(u,v)∈M E(u,v)] > 0, which concludes the proof of Lemma 6.1.

6.2 Low Dimensional Embedding of Doubling Met-

rics with Scaling Distortion

In this section we show an extension of the previous result to embedding with the scaling
distortion property.

Theorem 20. For any 1 ≤ p ≤ ∞ and any λ-doubling metric space (X, d) there
exists an embedding f : X → LD

p with coarse scaling distortion O
(
log26(1

ε
)
)

where
D = O(log λ log log λ).

Proof overview:
We highlight the differences between the proof of Theorem 8 and Theorem 20. We

assume the reader is familiar with the proof of Theorem 8.

1. The main difference is that in the analysis of the lower bound, a contribution for
a pair is ”looked for” in one of many scales, instead of examining a single critical
scale.

2. We partition the possible ε ∈ (0, 1] values into ≈ log log log n buckets (see equation
6.3 and definition of εk). For each scale ∆i and each of the ≈ log log log n possible
values of ε we build a ≈ ∆i/polylog(λ, 1/ε)-net.

A naive approach would be to assign separate coordinates for each εk and increase
the dimension and hence the distortion by a factor of log log log n. To avoid paying
this log log log n factor we sieve the nets N̄ i

k in a subtle manner (see definition of
N i

k for details).

3. The local growth rate of each node is defined with respect to some ε value in non
standard manner - this is done so that for sufficiently many levels (as a function of
ε) there will be a local growth rate change. This is defined by γ1(x, i).

4. A pair with distance≈ ∆i and epsilon that falls into bucket k (hence k ≈ log log(2/ε))
“looks” for a contribution in the levels i+k/2, . . . , i+k, see the definition of Ê(i,k,u,v)

for details. This is necessary to avoid collisions between contributing scales of pairs
with different ε values.

57



5. Showing independence of lower bound successes between two pairs is technical and
relies on the sieving process. For a pair u, v related to a net Nk

i the scales examined
are ≈ i+ k/2, . . . i+ k. Claim 6.10 shows that examining only these scales ensures
that u, v are independent of a pair u′, v′ if one of the following occurs (1) u′, v′

belong to a different scale than that of u, v; (2) u′, v′ are far enough from u, v in
the metric space; (3) u′, v′ has a different εk value from that of u, v.

6. Proving that all pairs have the desired scaling distortion given that the sieved net
points N i

k have this property is more involved now since it depends on the ε, see
Lemma 6.5.

7. The application of the local lemma is complicated due to two issues - (1) we use
the general case (2) we do not proceed simply from scale i to scale i+1, but rather
use the ranking function in a non-trivial manner, see proof of Lemma 6.4.

The proof

Let C be a constant to be defined later, and D = C log λ log log λ. Let ∆0 = diam(X),
I = {i ∈ Z | 1 ≤ i ≤ (log ∆0 + log log n)/3}. For i ∈ I let ∆i = ∆0/8

i. By Lemma 3.4 we
have that (X, d) is locally τ -decomposable for τ = 2−6/ log λ.

Define an ε-value for every point in every scale i ∈ I. The idea is that the number of
scales we seek contribution from depends on the density around the point in scale i, so
the growth rate ratio must be defined beforehand with respect to this density. Let c = 12.
For any i ∈ I, x ∈ X let εi(x) = |B(x, 2∆i)|/n, and let γ1(x, i) = 82c+4 log2c(64/εi(x)).
Fix γ2 = 1/16. We shall define the embedding f by defining for each 1 ≤ t ≤ D, a
function f (t) : X → R+ and let f = D−1/p

⊕
1≤t≤D f

(t).

Fix t, 1 ≤ t ≤ D. In what follows we define f (t). For each 0 < i ∈ I construct a
∆i-bounded (ηi, 1/2)-padded probabilistic partition P̂i, as in Lemma 3.3 with parameters
τ , γ1(·, i), γ2 and δ̂ = 1/2. Fix some Pi ∈ Pi for all i ∈ I.

We define the embedding by defining the coordinates for each x ∈ X. Define for
x ∈ X, 0 < i ∈ I, φ(t)

i : X → R+, by φ
(t)
i (x) = ξP,i(x)ηP,i(x)

−1.

Claim 6.4. For any x ∈ X, 1 ≤ t ≤ D and i ∈ I we have∑
j≤i

φ
(t)
j (x) ≤ c29 log2

(
n

|B(x,∆i+1)|

)
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Proof. ∑
j≤i

φj(x) =
∑

j≤i:ξj(x)=1

η−1
j (x) ≤

∑
j≤i:ξj(x)=1

27 log ρ(x, 2∆j, γ1(x, j), γ2)

≤ 27
∑
j≤i

1∑
h=− log8(γ1(x,j))

log

(
|B(x, 8∆j+h)|
|B(x,∆j+h)|

)

≤ 27

1∑
h=−2c−4−2c log log(2/εi(x))

∑
j≤i

log

(
|B(x, 8∆j+h)|
|B(x,∆j+h)|

)

≤ 27

(
4c

(
1 + log log

(
n

|B(x,∆i+1)|

)))
log

(
n

|B(x,∆i+1)|

)
≤ c29 log2

(
n

|B(x,∆i+1)|

)

For each 0 < i ∈ I we define a function f
(t)
i : X → R+ and for x ∈ X, let f (t)(x) =∑

i∈I f
(t)
i (x).

Let {σ(t)
i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random

variables. The embedding is defined as follows: for each x ∈ X:

• For each 0 < i ∈ I, let f
(t)
i (x) = σ

(t)
i (Pi(x)) ·min{φ(t)

i (x) · d(x,X \ Pi(x)),∆i}.

Lemma 6.3. There exists a universal constant C1 > 0 such that for any (x, y) ∈ Ĝ(ε):

|f (t)(x)− f (t)(y)| ≤ C1 log2(2/ε) · d(x, y).

Proof. Define ` to be largest such that ∆`+1 ≥ d(x, y) ≥ max{rε/2(x), rε/2(y)}. If no such
` exists then let ` = 0.

By Claim 6.4 we have∑
0<i≤`

(f
(t)
i (x)− f

(t)
i (y)) ≤

∑
0<i≤`

φ
(t)
i (x) · d(x, y)

≤ c29 log2

(
n

|B(x,∆`+1)|

)
· d(x, y)

≤ c29 log2(2/ε) · d(x, y).

We also have that∑
`<i∈I

(f
(t)
i (x)− f

(t)
i (y)) ≤

∑
`<i∈I

∆i ≤ ∆` ≤ 82 · d(x, y).

It follows that

|f (t)(x)− f (t)(y)| = |
∑

0<i∈I

(f
(t)
i (x)− f

(t)
i (y))|

≤
(
c210 log2(2/ε) + 82

)
· d(x, y).
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Scaling Lower Bound Analysis

For any x, y ∈ X let εx,y = max
{
|B◦(x,d(x,y))|

n
, |B

◦(y,d(x,y))|
n

}
. Let

K =
{
k ∈ [dlog log ne] | k = cj, j ∈ N

}
(6.3)

For any k ∈ K let εk = 2−8k
and define ε1 = 1. Define Ik = {i ∈ I | i = jk, j ∈ N}. For

any i ∈ Ik let N̄ i
k be a ∆i

220 log λ log3(2/εk)
-net.

We now wish to sieve the nets: for any k ∈ K and i ∈ Ik remove all the points u from
the net N̄ i

k if one of these conditions apply:

• |B(u,∆i−1)| ≥ εk/cn, or

• |B(u,∆i−k−4)| < εkn,

and call the resulting set N i
k. The intuition is that the nets we created contain “too

many” points, in a sense that the degree of the dependency graph of the Lovasz Local
Lemma will be large, so we ignore those net points that play no role in the embedding
analysis.

Let M = {(i, k, u, v) | k ∈ K, i ∈ Ik, u, v ∈ N i
k, 7∆i−1 ≤ d(u, v) ≤ 65∆i−k−1}. Define

a function T : M → 2[D] such that for t ∈ [D] :

t ∈ T (i, k, u, v) ⇔
∣∣f (t)(u)− f (t)(v)

∣∣ ≥ ∆i

4 log(2/εk)
.

For all (i, k, u, v) ∈M , let E(i,k,u,v) be the event that |T (i, k, u, v)| ≥ 15D/16.
Then we define the event E =

⋂
(i,k,u,v)∈M E(i,k,u,v). The main Lemma to prove is:

Lemma 6.4.
Pr[E ] > 0,

we defer the proof for later. In what follows we show that using this lemma we can prove
the main theorem.

Let x, y ∈ X, ε = εx,y (note that 1/n ≤ ε < 1). Let c ≤ k = kx,y ∈ K be such that
εk ≤ ε < εk/c. Let i′ ∈ I be such that ∆i′−2 ≤ d(x, y) < ∆i′−3, and let i = ix,y ∈ Ik
be the minimal such that i ≥ i′. Let u = u(x) ∈ N̄ i

k and v = v(y) ∈ N̄ i
k such that

d(x, u) = d(x, N̄ i
k) and d(y, v) = d(y, N̄ i

k).
The following claim show that indeed we did not remove points from the nets, that

were needed for the embedding.

Claim 6.5. For any x, y ∈ X, u(x), v(y) ∈ N ix,y

kx,y
.

Proof. Let k = kx,y, i = ix,y, u = u(x), v = v(y). Since N̄ i
k is a ∆i

220 log λ log3(2/εk)
-net,

|B(u,∆i−1)| ≤ |B(x,∆i−2/2)| ≤ εx,yn < εk/cn. On the other hand
|B(u,∆i−k−4)| ≥ |B(u,∆i′−4)| ≥ max{|B(x, d(x, y))|, |B(y, d(x, y))|} ≥ εx,yn ≥ εkn.

The argument for v is similar.

We will use the following claim
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Claim 6.6. For any t ∈ [D] and (i, k, u, v) ∈ M , let m ∈ I be the minimal such that
∆m ≤ ∆i

32 log(2/εk)
. Then for w ∈ {u, v}:∑

j≤m

φ
(t)
j (w) ≤ 213 log2(2/εk) log λ

Proof. By definition of ∆m we have that m ≤ i + 2 log8 log(2/εk) + log8(32) + 1. From
the proof of Claim 6.5 we have that |B(u,∆i−k−4)|, |B(v,∆i−k−4)| ≥ εkn.

By Lemma 3.3 for any i ∈ I, ηP,i(w) ≥ 1/(27 log λ). Using Claim 6.4 we get

∑
j≤m

φ
(t)
j (w) =

∑
j≤i−k−5

φ
(t)
j (w) +

m∑
j=i−k−4

φ
(t)
j (w)

≤ 27 log2

(
n

|B(w,∆i−k−4)|

)
+ (m− (i− k − 4) + 1)27 log λ

≤ 27 log2(2/εk) + (2 log8 log(2/εk) + 8)27 log λ

≤ 213 log2(2/εk) log λ

We now show the analogue of Claim 6.1 for the scaling case, in this case a more
delicate argument is needed, as there is no sufficiently small universal upper bound on
the distortion, but one that depends on ε, hence we consider the contribution of different
scales: small, medium and large, separately.

Lemma 6.5. For any t ∈ T (i, k, u, v)∣∣f (t)(x)− f (t)(y)
∣∣ ≥ ∆i

16 log(2/εk)

Proof. Let m ∈ I be the minimal such that ∆m ≤ ∆i

32 log(2/εk)
.

By Claim 6.5, we have that max{d(x, u), d(y, v)} ≤ ∆i

220 log λ log3(2/εk)
. We define for any

u, x ∈ X
Ju,x = {j ∈ I | Pj(u) = Pj(x)}

∣∣∣∣∣∑
j∈I

(
f

(t)
j (u)− f

(t)
j (v)

)∣∣∣∣∣ (6.4)

≤

∣∣∣∣∣∑
j≤m

(
f

(t)
j (u)− f

(t)
j (v)

)∣∣∣∣∣+
∣∣∣∣∣∑
j>m

(
f

(t)
j (u)− f

(t)
j (v)

)∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (u)−

∑
j∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

j /∈Ju,x;j≤m

f
(t)
j (u)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣
+
∑
j>m

∆j
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First we bound the contribution of coordinates in which the points x, y fall in different
clusters than u, v respectively, using Claim 6.6

∣∣∣∣∣∣
∑

j /∈Ju,x;j≤m

f
(t)
j (u)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣ (6.5)

≤
∑

j /∈Ju,x;j≤m

f
(t)
j (u) +

∑
j /∈Jv,y ;j≤m

f
(t)
j (v)

≤
∑

j /∈Ju,x;j≤m

φ
(t)
j (u)d(u, x) +

∑
j /∈Jv,y ;j≤m

φ
(t)
j (v)d(v, y)

≤ ∆i

220 log λ log3(2/εk)
214 log2(2/εk) log λ

≤ ∆i

25 log(2/εk)

However we know that∣∣∣∣∣∑
j∈I

f
(t)
j (u)− f

(t)
j (v)

∣∣∣∣∣ ≥ ∆i

4 log(2/εk)
,

and since
∑

j>m ∆j ≤ ∆m ≤ ∆i

32 log(2/εk)
, by plugging this and (6.5) into (6.4) we get∣∣∣∣∣∣

∑
j∈Ju,x;j≤m

f
(t)
j (u)−

∑
j∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣ ≥ ∆i

4 log(2/εk)
− ∆i

25 log(2/εk)
− ∆i

32 log(2/εk)

≥ 3∆i

16 log(2/εk)
.

Assume w.l.o.g that
∑

j∈Ju,x
f

(t)
j (x) −

∑
j∈Jv,y

f
(t)
j (y) > 0, then notice that for any

j ∈ Ju,x, t ∈ D: d(u,X \ Pj(u)) ≤ d(u, x) + d(x,X \ Pj(u)), and since the partition is
uniform we get that

f
(t)
j (x) ≥ f

(t)
j (u)− φ

(t)
j (u) · ∆i

220 log λ log3(2/εk)

and similarly

f
(t)
j (y) ≤ f

(t)
j (v) + φ

(t)
j (v) · ∆i

220 log λ log3(2/εk)
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Then by Claim 6.6∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (x)−

∑
j∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

(
f

(t)
j (u)−

φ
(t)
j (u) ·∆i

220log λ log3(2/εk)

)
−
∑

j∈Jv,y ;j≤m

(
f

(t)
j (v)+

φ
(t)
j (v) ·∆i

220 log λ log3(2/εk)

)∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (u)−

∑
j∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣−
∣∣∣∣∣∑
j≤m

φ
(t)
j (u) ·∆i

220 log λ log3(2/εk)
+

φ
(t)
j (v) ·∆i

220 log λ log3(2/εk)

∣∣∣∣∣
≥ 3∆i

16 log(2/εk)
− 2

∆i

26 log(2/εk)

=
5∆i

32 log(2/εk)
,

Using the same argument as in (6.5) we get that∣∣∣∣∣∣
∑

j /∈Ju,x;j≤m

f
(t)
j (x)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣ ≤ ∆i

25 log(2/εk)
,

as well. and finally∣∣∣∣∣∑
j≤m

(
f

(t)
j (x)− f

(t)
j (y)

)∣∣∣∣∣ ≥

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (x)−

∑
j∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑

j /∈Ju,x;j≤m

f
(t)
j (x)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣
≥ 5∆i

32 log(2/εk)
− ∆i

25 log(2/εk)

≥ ∆i

8 log(2/εk)
.

Notice that
∣∣∣∑j>m

(
f

(t)
j (x)− f

(t)
j (y)

)∣∣∣ ≤ ∆i

32 log(2/εk)
, hence∣∣∣∣∣∑

j∈I

(
f

(t)
j (x)− f

(t)
j (y)

)∣∣∣∣∣ ≥ ∆i

16 log(2/εk)

As in the previous section, we have

Lemma 6.6. If event E took place then there exists a universal constant C2 > 0 such
that for any ε′ > 0 and any x, y ∈ Ĝε′

‖f(x)− f(y)‖p ≥ C2
d(x, y)

log2c(2/ε′)
.
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Proof. Any ε′ such that d(x, y) > max{rε′/2(x), rε′/2(y)} satisfies ε′ ≤ 2ε = 2εx,y, hence

it is enough to lower bound the contribution by Ω
(

d(x,y)

log2c(2/ε)

)
. Let i = ix,y, k = kx,y and

u = u(x), v = v(y). Noticing that ∆i−k−3 ≥ d(x, y), |T (i, k, u, v)| ≥ D/16 and that
log(2/εk) ≤ logc(2/ε) for all ε ≤ 1/28, we get from Lemma 6.5 that

‖f(x)− f(y)‖p
p = D−1

∑
t∈D

|f (t)(x)− f (t)(y)|p

≥ D−1
∑

t∈T (i,k,u,v)

(
∆i

16 log(2/εk)

)p

≥ D−1|T (i, k, u, v)|
(

d(x, y)

213 log2(2/εk)

)p

≥
(

d(x, y)

217 log2c(2/ε)

)p

So set C2 = 218. (If it is the case that ε ≥ 1/28 then log(2/εk) = 8c, so we show
‖f(x)− f(y)‖p

p ≥ C ′
2d(x, y)).

Proof of Lemma 6.4

Define for every (i, k, u, v) ∈M , i+ k/2 ≤ ` < i+ k and t ∈ [D] the event F(i,k,u,v,t,`) as(∣∣f (t)
` (u)− f

(t)
` (v)

∣∣ > ∆` ∧
∣∣∑

j<`

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∆`

2

)∨
((
f

(t)
` (u) = f

(t)
` (v) = 0

)
∧
∣∣∑

j<`

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆`

2

)

Now define event Ê(i,k,u,v) as

∃S ⊆ [D], |S| ≥ 15D/16,∀t ∈ S,∃` s.t. i+ k/2 ≤ ` < i+ k and F(i,k,u,v,t,l) holds.

Claim 6.7. For all (i, k, u, v) ∈M , Ê(i,k,u,v) implies E(i,k,u,v)

Proof. Let S ⊆ [D] be the subset of good coordinates from the definition of Ê(i,k,u,v). For
any t ∈ S, let i+k/2 ≤ `(t) < i+k be such that F(i,k,u,v,t,`(t)) holds. Then for such t ∈ S:∣∣ ∑

j≤`(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆`(t)

2

We also have that ∣∣ ∑
j>`(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∑
j>`(t)

∆j ≤
∆`(t)

4

Which implies that∣∣∑
j∈I

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆`(t)

4
≥ ∆i8

−(k−1)

4
≥ ∆i

4 log(2/εk)

as required.
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Now we shall use a variation the general case of the local Lemma, the reason being
that in the graph we shall soon define the degree of the vertices will depend on k, and
cannot be uniformly bounded.

Lemma 6.7 (Lovasz Local Lemma - General Case). Let A1,A2, . . .An be events in some
probability space. Let G(V,E) be a directed graph on n vertices, each vertex corresponds
to an event. Let c : V → [m] be a rating function of events, such that if (Ai,Aj) ∈ E
then c(Ai) ≤ c(Aj). Assume that for all i = 1, . . . , n there exists xi ∈ [0, 1) such that

Pr

[
Ai |

∧
j∈Q

¬Aj

]
≤ xi

∏
j:(i,j)∈E

(1− xj),

for all Q ⊆ {j : (Ai,Aj) /∈ E ∧ c(Ai) ≥ c(Aj)}, then

Pr

[
n∧

i=1

¬Ai

]
> 0

Proof. We iteratively apply the Lovasz Local Lemma on every rating level k ∈ [m], and
prove the property by induction on k. For k ∈ [m] denote by Vk ⊆ V all the events with
rating k, and by Gk = (Vk, Ek) the induced subgraph on Vk. The base of the induction
k = 1, by the assumption for all Ai ∈ V1,

Pr

[
Ai |

∧
j∈Q

¬Aj

]
≤ xi

∏
j:(i,j)∈E1

(1− xj),

for any Q satisfying Q ⊆ {j : (Ai,Aj) /∈ E1 ∧ c(Aj) = 1}. This means that by the usual
local lemma on the graph G1 there is a choice of randomness for which all the bad events
in V1 do not occur.

Fix some k ∈ [m] and assume all events in V1, . . . Vk−1 do not hold. Note that by
definition event in Vk depends only on events of rating k or higher, so given that events
in V1, . . . Vk−1 are fixed to not happen, for all Ai ∈ Vk by the assumption

Pr

[
Ai |

∧
j∈Q

¬Aj

]
≤ xi

∏
j:(i,j)∈Ek

(1− xj),

for any Q satisfying Q ⊆ {j : (Ai,Aj) /∈ Ek ∧ c(Aj) = k} ∪ {j : Aj ∈ V1 ∪ · · · ∪ Vk−1}.
So once again by the usual local lemma on Gk there is non-zero probability that all the
events in Vk do not occur.

Define a directed graph G = (V,E), where V =
{
Ê(i,k,u,v) | (i, k, u, v) ∈M

}
. Define

c : V → I by c(Ê(i,k,u,v)) = i+ k.

We say that a pair of vertices
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
∈ E if all of these conditions apply:

• d({u, v}, {u′, v′}) ≤ 4∆i.
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• i = i′.

• k = k′.

Claim 6.8. The out-degree of Ê(i,k,u,v) ∈ G is bounded by λ30k log log(2λ)

Proof. Fix some Ê(i,k,u,v) ∈ V , we will see how many pairs u′, v′ ∈ N i
k can exists such that

(Ê(i,k,u,v), Ê(i,k,u′,v′)) ∈ E.
For any such u′, v′ assume w.l.o.g that d(u, u′) ≤ 4∆i, hence as d(u, v), d(u′, v′) ≤

65∆i−k−1 we get u, v, u′, v′ ∈ B = B(u,∆i−k−4). The number of pairs can be bounded by
|N i

k ∩B|2. Since (X, d) is λ-doubling the ball B can be covered by λ33+12k+log log λ balls of
radius ∆i

87+3k log λ
, each of these contains at most one point of the set N i

k. As k ≥ c = 12,

|N i
k ∩B|2 ≤ λ30k log log(2λ).

Lemma 6.8.

Pr

¬E(i,k,u,v) |
∧

(i′,k′,u′,v′)∈Q

E(i′,k′,u′,v′)

 ≤ λ−32k log log(2λ),

for all Q ⊆ {(i′, k′, u′, v′) | i+ k ≥ i′ + k′ ∧
(
E(i,k,u,v), E(i′,k′,u′,v′)

)
/∈ E}

Before we prove this lemma, let us see that it implies Lemma 6.4. Apply Lemma 6.7 to
the graph G we defined. For any (i, k, u, v) ∈M assign the number xk = λ−30k log log(2λ) for

the vertex Ê(i,k,u,v). From the definition of G it can be seen that if
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
∈

E then xk′ = xk.
By Claim 6.8 there at most λ30k log log(2λ) neighbors to the vertex Ê(i,k,u,v), so for any

such vertex:

xk

∏
(i′,k′,u′,v′):(Ê(i,k,u,v),Ê(i′,k′,u′,v′))∈E

(1− xk′) ≥ xk (1− xk)
λ30k log log(2λ)

≥ 1/4 · xk ≥ λ−32k log log(2λ).

By Lemma 6.8 we get that indeed

Pr

¬Ê(i,k,u,v) |
∧

(i′,k′,u′,v′):(Ê(i,k,u,v),Ê(i′,k′,u′,v′))/∈E

E(i′,k′,u′,v′)

 ≤ λ−32k log log(2λ),

as required by Lemma 6.7, hence

Pr[
∧

(i,k,u,v)∈M

Ê(i,k,u,v)] > 0.

By Claim 6.7 we have

Pr[E ] = Pr[
∧

(i,k,u,v)∈M

E(i,k,u,v)] > 0.
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Proof of Lemma 6.8

Claim 6.9. Let (i, k, u, v) ∈M , t ∈ [D] and i+ k/2 ≤ ` < i+ k, then

Pr
[
F(i,k,u,v,t,`)

]
≥ 1/8

Proof. We begin by showing that ξP,`(u) = 1 which will imply that φ
(t)
` (u) = ηP,`(u)

−1. In
order to show that we will prove that max{ρ̄(u, 2∆`, γ1(·, `), γ2), ρ̄(v, 2∆`, γ1(·, `), γ2)} ≥ 2,
and then assume w.l.o.g that ρ̄(u, 2∆`, γ1(·, `), γ2) ≥ 2. It follows from Lemma 3.3 that
ξP,`(u) = 1. Now to prove that max{ρ̄(u, 2∆`, γ1(·, `), γ2), ρ̄(v, 2∆`, γ1(·, `), γ2)} ≥ 2:

Consider any a ∈ B(u, 2∆`) (a is a potential center to the cluster containing u in scale
`). As k > 2 we have that `−1 > i, then since |B(a, 2∆`)| ≤ |B(u,∆i−1)| < εk/cn we have
that ε`(a) ≤ εk/c which implies that γ1(a, `) ≥ 84 log2c(64/εk/c) ≥ 84+2c(k/c) = 84+2k. Since

∆` ≥ 8∆i/8
k we get that γ1(a, `)2∆` ≥ 84+2k · 16∆i

8k = 84+2k · 16∆i−k−1

8k+k+1 ≥ 2 · 65∆i−k−1 ≥
2d(u, v), where the last inequality is by the definition of M .

The same argument shows that for any a ∈ B(v, 2∆`), γ1(a, `)2∆` ≥ 2d(u, v) as well.
Therefore by Claim 3.1 we have max{ρ̄(u, 2∆`, γ1(·, `), γ2), ρ̄(v, 2∆`, γ1(·, `), γ2)} ≥ 2 as
required.

We now consider the 2 cases in F(i,u,v,t,`): If it is the case that

∣∣∑
j<`

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∆`

2

then we wish that the following will hold

• B(u, η
(t)
P,`(u)∆`) ⊆ P`(u).

• σ
(t)
` (P`(u)) = 1.

• σ
(t)
` (P`(v)) = 0.

Each of these happens independently with probability at least 1/2, the first since P` is
(η`, 1/2)-padded and the other two follow from d(u, v) ≥ 3∆` ⇒ P`(u) 6= P`(v).

Similarly if it is the case that∣∣∑
j<`

f
(t)
j (u)− f

(t)
j (v)

∣∣ > ∆`

2

then we wish that the following will hold

• σ
(t)
` (P`(u)) = σ

(t)
` (P`(v)) = 0.

And again there is probability 1/2 for each of these.
So we have probability at least 1/8 for event F(i,u,v,t,`).

The main independence claim is the following:
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Claim 6.10. Let (i, k, u, v) ∈M , t ∈ [D] and i+ k/2 ≤ ` < i+ k. Then

Pr

¬F(i,k,u,v,t,`) |
∧

(i′,k′,u′,v′)∈Q

E(i′,k′,u′,v′)

 ≤ 7/8,

for all Q ⊆ {(i′, k′, u′, v′) | i+ k ≥ i′ + k′ ∧
(
E(i,k,u,v), E(i′,k′,u′,v′)

)
/∈ E}

Proof. Fix some E(i′,k′,u′,v′) such that
(
E(i,k,u,v), E(i′,k′,u′,v′)

)
/∈ E and i+ k ≥ i′ + k′.

First consider the case that d({u, v}, {u′, v′}) > 4∆i. Then since the partition is local,
for any ` ∈ [i+ k/2, i+ k) the probability of the padding event and choice of σ for scale
` are not affected by of the outcome of events such as E(i′,k′,u′,v′).

From now on assume that d({u, v}, {u′, v′}) ≤ 4∆i, and w.l.o.g d(u, u′) ≤ 4∆i. The
idea is to show that i′ + k′ ≤ i + k/2, and hence as event E(i′,k′,u′,v′) is concerned with
scales at most i′ + k′− 1 the padding and choice of σ for scales i+ k/2, . . . , i+ k− 1 will
be independent of the outcome of events such as E(i′,k′,u′,v′).

Case 1: k′ < k. By the definition of K follows that k′ ≤ k/c. If it is the case that
i′ ≤ i then i′ + k′ ≤ i + k/c < i + k/2. If i′ > i, then assume by contradiction
that i′ + k′ ≥ i + k/2. By the nets sieving process we have εk′n < |B(u′,∆i′−k′−4)|
and also εk′n ≥ εk/cn ≥ |B(u,∆i−1)|. Now i′ − k′ − 4 ≥ i + k/2 − k′ − k′ − 4 ≥
i + k(1/2 − 2/c) − 4 ≥ i, as c = 12 and k ≥ c. Since d(u, u′) ≤ 4∆i follows that
|B(u′,∆i′−k′−4)| ≤ |B(u′,∆i)| ≤ |B(u,∆i−1)| ≤ εk′n. Contradiction.

Case 2: k′ > k. Then it must be that i′ < i. We will show that this cannot
be. Note that since i + k ≥ i′ + k′ and k ≤ k′/c then i ≥ i′ + k′ − k ≥
i′ + k′(1− 1/c). Now similarly to the previous case we have εkn < |B(u,∆i−k−4)| ≤
|B(u,∆i′+k′(1−1/c)−k′/c−4)| ≤ |B(u,∆i′)| ≤ |B(u′,∆i′−1)| ≤ εk′/cn ≤ εkn. Contradic-
tion.

Case 3: If k = k′ then by the construction of G i 6= i′, therefore i′ < i. By the definition
of Ik, i

′ + k′ ≤ i < i+ k/2.

We conclude that if indeed
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
/∈ E then Claim 6.9 suggests that

there is probability at least 1/8 for event F(i,k,u,v,t,`) to hold, independently of Ê(i′,k′,u′,v′).

Now we are ready to prove Lemma 6.8. First consider the case where k < 60, then
fix some ` ∈ [i+ k/2, i+ k), and let Ẑt be the indicator event for F(i,k,u,v,t,`), Pr[Ẑt] ≥ 1/8

and let Ẑ =
∑D

t=1 Ẑt. As each coordinate is independent of the others, and E[Ẑ] ≥ D/8,
using Chernoff’s bound:

Pr[Ẑ < D/16] ≤ Pr[Ẑ < E[Ẑ]/2] ≤ e−D/64 ≤ λ−32·60 log log(2λ) ≤ λ−32k log log(2λ),

for large enough constant C.
On the other hand if k ≥ 60, then for every coordinate t ∈ [D], we have k/2 possible

values of `. In each scale `, by Claim 6.10 there is probability at most (7/8) to fail,
this probability is unaffected by of all other scales `′ < `. Let Y` be the indicator event
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for ¬F(i,k,u,v,t,`). The probability that we failed for all scales ` ∈ [i + k/2, i + k) can be
bounded by:

Pr

 i+k−1∧
`=i+k/2

Y`

 =
i+k−1∏

`=i+k/2

Pr

Y` |
`−1∧

j=i+k/2

Yj

 ≤ (7/8)k/2 = z.

Let Zt be the event that we failed in the t-th coordinate, Pr[Zt] ≤ z, and Z =
∑

t∈D Zt.
We have that E[Z] ≤ zD, let α ≥ 1 such that E[Z] = zD

α
. Using Chernoff bound:

Pr[Z > D/2] ≤
(

eα/(2z)−1

(α/(2z))α/(2z)

)zD/α

≤ (2ez)D/2 ≤ λ(log(2e)+(k/2) log(7/8))(C/2) log log(2λ)

≤ λ(k/4) log(7/8)(C/2) log log(2λ)

≤ λ−32k log log(2λ),

since for k ≥ 60 we have log(2e) < −(k/4) log(7/8), and for large enough constant C.
This concludes the proof of Lemma 6.8 and hence the proof of Theorem 20.

6.3 Distortion-Dimension Tradeoff for Doubling Met-

rics

Theorem 21. For any 1 ≤ p ≤ ∞ and any λ-doubling metric space (X, d) on n points,
and for any log log λ ≤ D ≤ (log n)/ log λ there exists an embedding into Lp with distor-

tion O(log1/p n((log n)/D)1−1/p) in dimension O(D · log λ · log log λ · log((log n)/D)).

In particular choosing D = (log n)/ log λ we get an embedding into Lp with distortion

O(log1/p n · log1−1/p λ) and dimension O(log n(log log λ)2), which matches the best known
distortion bound from [KLMN04] with better dimension. On the other hand, choosing
D = O(log log λ) we get distortion O(log n) with dimension O(log log n · log λ(log log λ)2),
which almost matches the distortion-dimension tradeoff of Theorem 8 when choosing
there θ = 12/ log log n, so in a sense these two theorems give a range of tradeoffs from
dimension O(log λ) to roughly O(log n).
Proof overview:

In order to improve the usual distortion bound of O(log n) we use the properties of
Lp, and divide the scales between D coordinates for some parameter log log λ ≤ D ≤
(log n)/ log λ. This division is done in a subtle manner - for every point x ∈ X assign

scales ibegin, ibegin+1, . . . , iend such that
∑iend

i=ibegin η
−1
i (x) ≈ (log n)/D. In order for the

upper bound argument to hold, it is essential that points in the same cluster in scale i
will have the same coordinate arrangement until the i-th scale. This is why we require a
hierarchical partition - the padding parameter is uniform, so points that are separated in
scale ` for the first time, will have the same coordinate arrangement until the `-th scale.

Since we need hierarchical partitions without long-range dependencies, this prevents
us from using the hierarchical partition of Lemma 3.6, since the hierarchical top-down
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constructions lack the ”local” property. Instead we create partitions in a bottom-up
fashion by choosing partitions independently for every scale, and defining S ≈ log log λ
bundles of partitions, each bundle being all partitions with radius a power of t ≈ log λ.
We use the fact the padding parameter is bounded from below by Ω(1/ log λ), and a
lemma from [KLMN04] to make all partition bundle hierarchical (loosing only a constant
factor in the padding parameter).

When considering the lower bound for some net pair x, y, it might be that the co-
ordinate containing the critical scale for x (from which we want contribution), contains
completely different scales than for y, hence we use one-sided contribution, that is, con-
sider not only the value of the coordinate for x, y in scales with larger radiuses than the
critical scale, but also the value of the current scale of y.
The proof:

The first step in proving the theorem is creating a small collection of partitions for
every scale. We require that the partitions will have the padding property only for a
small number of net points, hence the number of partitions, using the Local Lemma, can
depend only on the doubling dimension.

Lemma 6.9. Let (X, d) be a λ-doubling metric space on n points. Fix some γ1 ≥ 2,
γ2 ≤ 1/16, ∆ > 0 and M > 0. Let N be a ∆

M
-net of X. There exists a collection

of T = O(log λ logM) ∆-bounded partitions P and a collection of uniform functions
ξ = {ξP : X → {0, 1}|P ∈ P} and η = {ηP : X → [0, 1]|P ∈ P} such that for all x ∈ N
there are at least T/4 partitions P ∈ P satisfying B(x, ηP (x)∆) ⊆ P (x)].

The following conditions hold for all 1 ≤ k ≤ T , i ∈ I and x ∈ X:

• ηP (x) ≥ 2−9/(lnλ).

• If ξP (x) = 1 then: 2−7/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−7.

• If ξP (x) = 0 then: ηP (x) ≥ 2−7 and ρ̄(x, 2∆, γ1, γ2) < 2.

Proof. By Lemma 3.4 we have that (X, d) is 2−6/ log λ-decomposable, so let P̂ be a ∆-
bounded (η, 1/2)-padded probabilistic partition as in Lemma 3.3 with parameters γ1, γ2,
δ̂ = 1/2 and τ = 2−6/ log λ. We will use the Local Lemma to choose T = C log λ logM
partitions for a constant C to be determined later. Let N be a ∆

M
-net of X. Note that

the partition is local, and any ball B(x, 2∆) contains at most λ2 log M points in N .
Define an indicator ”good” event Ex for all x ∈ N which is 1 if x is padded in more

than T/4 partitions. Let G = (V,E) be a graph whose vertices are the events {Ex}x∈N ,
two events (Ex, Ey) ∈ E iff d(x, y) ≤ 2∆. Note that the degree of the graph is bounded
by λ2 log M .

Let Ax be the number of partitions in which x ∈ N is padded. E[Ax] ≥ T/2, since all
partitions are chosen independently of each other, using Chernoff bound

Pr[¬Ex] = Pr[Ax ≤ T/4] ≤ Pr[Ax ≤ E[Ax]/2] ≤ e−T/24 ≤ λ−3 log M ,

for C ≥ 72. Now apply Lemma 6.2 on G with d = λ2 log M and p = λ−3 log M , hence
Pr[∩x∈NEx] > 0, which suggests that these T partitions can be found using standard
algorithmic versions of the Local Lemma.

The following lemma was shown in [KLMN04]
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Lemma 6.10. Let t = 4 log λ, ∆0 = diam(X), I = {i ∈ N | 1 ≤ i ≤ logt ∆0}, for
all i ∈ I let ∆i = ∆0/t

i, and let Qi be a ∆i-bounded partition. Then a t-hierarchical
partition H = {P1, P2, . . . , P|I|} can be created from all the Qi such that for all x ∈ X
and all η ≥ 1/(210t), if B(x, η∆i) ⊆ Qi(x) then B(x, η∆i/2) ⊆ Pi(x).

Sketch. We give the simple “bottom-up” construction for completeness. The proof ap-
pears in [KLMN04].

For i = |I| − 1, . . . , 0 do the following: For any C ∈ Qi let SC = {A ∈ Qi+1 | A∩C 6=
∅ ∧ A * C} and replace C with the sets A ∈ SC and the set C \

⋃
A∈SC

A.

Proof of Theorem 21. Let ∆0 = diam(X), T = C log λ log((log n)/D), I = {i : 1 ≤ i ≤
log ∆0} For all i ∈ I let ∆i = ∆0/8

i and let Ni be a ∆i

217(log n)/D
-net. Using Lemma 6.9

create for each i ∈ I a collection Qi = {Q(1)
i , . . . , Q

(T )
i } of T ∆i-bounded partitions

with parameters γ1 = 128, γ2 = 1/64, such that for all x ∈ Ni we have B(x, ηk,i(x)∆i) ⊆
Q

(k)
i (x) for at least T/4 values of 1 ≤ k ≤ T , where ηk,i and ξk,i are given from Lemma 6.9.

The next step is to make these partitions hierarchical, this can be done if the scales
are decreasing by a factor of 4 log λ, so let t = 4 log λ, S = log8 t. We shall define S
bunches of hierarchical partitions, each will consist of scales which are multiples of t.

For all 0 ≤ j ≤ S − 1 let Ij = {i ∈ I | i = j( mod S)}, and create from each

{Qi | i ∈ Ij}0≤j≤S−1 a collection of T t-hierarchical partitions Hj = {H(1)
j , . . . , H

(T )
j },

i.e. each H
(k)
j = {P (k)

i }i∈Ij
(starting with ∆j as the largest radius), such that for all

0 ≤ j ≤ S − 1, i ∈ Ij, x ∈ Ni there exists at least T/4 values of 1 ≤ k ≤ T such that
B(x, (1/2)ηk,i(x)∆i) ⊆ Pi(x), using Lemma 6.10.

For all 1 ≤ k ≤ T , i ∈ I and C ∈ P
(k)
i let σk,i(C) be an i.i.d Bernoulli symmetric

{0, 1} random variable. Let

φk,i(x) =
2ξk,i(x)

ηk,i(x)

Claim 6.11. For any 1 ≤ k ≤ T , x ∈ X we have
∑

i∈I φk,i(x) ≤ 211 log n.

Proof. ∑
i∈I

φk,i(x) =
∑

i∈I|ξi(x)=1

2ηk,i(x)
−1

≤ 28 · 2
∑
i∈I

ρ(x, 2∆i, 128, 1/64)

≤ 28
∑
i∈I

log

(
|B(x, 28∆i)|
|B(x,∆i/32)|

)
≤ 211 log n.

The embedding:
We define the embedding by defining D · S · T coordinates (Recall that D is a pa-

rameter of the theorem such that log log λ ≤ D ≤ (log n)/ log λ, S = log8(4 log λ), T =
C log λ logM where C is a constant defined later). Fix some 1 ≤ k ≤ T , 0 ≤ j ≤ S − 1,
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and define for each x ∈ X, D coordinates f
(k,j)
1 (x), . . . , f

(k,j)
D (x) recursively. For each coor-

dinate f
(k,j)
m (x), 1 ≤ m ≤ D, we will associate two scales ibegin(m, k, j, x), iend(m, k, j, x) ∈

Ij when m, k, j, x are clear from the context we omit some of the indexes.
Fix x ∈ X, 1 ≤ k ≤ T , 0 ≤ j ≤ S − 1. Set iend(0, k, j, x) = j − S and assume we

defined the coordinates f
(k,j)
1 (x), . . . f

(k,j)
m−1(x) and their associated scales ibegin, iend. We

now define ibegin(m,k,j,x), iend(m,k,j,x), f
(k,j)
m (x), as follows:

• If iend(m− 1, k, j, x) = ∞ set f
(k,j)
m (x) = 0, and ibegin(m, k, j, x) = iend(m, k, j, x) =

∞

• Otherwise define ibegin(m, k, j, x) as iend(m− 1, k, j, x) + S, define iend(m, k, j, x) as
the minimal i ∈ Ij such that

∑
`∈Ij ,ibegin(m,k,j,x)≤`≤i

φ`,k(x) ≥
212 log n

D
.

If no such i exists let iend(m, k, j, x) = ∞.

• For every ` ∈ Ij let

ψ
(k,j)
` (x) = σ`,k(P

(k)
` (x)) ·min{φ`,k(x) · d(x,X \ P (k)

` (x)),∆`},

define
f (k,j)

m (x) =
∑

`∈Ij ,ibegin(m,k,j,x)≤`≤iend(m,k,j,x)

ψ
(k,j)
` (x)

For any 1 ≤ k ≤ T define f (k) : X → LD·S
p by

f (k)(x) =
S−1⊕
j=0

D⊕
m=1

f (k,j)
m (x).

Finally

f(x) = T−1/p

T⊕
k=1

f (k)(x).

Upper bound:

Claim 6.12. For all x, y ∈ X, 1 ≤ k ≤ T , 0 ≤ j ≤ S − 1 and 1 ≤ m ≤ D we have

|f (k,j)
m (x)− f (k,j)

m (y)| ≤ 213(log n)/D · d(x, y).

Proof. Let i′ = ibegin(m, k, j, x) and i = iend(m, k, j, x). Consider the partitions {P (k)
h }h∈Ij ,h∈[i′,i].

Let h ∈ [i′, i] be the largest satisfying that P
(k)
h (x) = P

(k)
h (y) (if no such h exists take

h = i′ − 1), then since the partition H
(k)
j is hierarchical we have that P

(k)
h′ (x) = P

(k)
h′ (y)

for all h′ ≤ h such that h′ ∈ Ij. This suggests that x and y had the same coordinate
arrangement until the m-th coordinate. Since φk,` is a uniform function for all ` ∈ I, then
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for all h′ ∈ [i′, h] such that h′ ∈ Ij we have that if ψ
(k,j)
h′ (y) = φh′,k(y) · d(y,X \ P (k)

h′ (y))
then

ψ
(k,j)
h′ (x)−ψ(k,j)

h′ (y) ≤ φh′,k(x)·d(x,X\P (k)
h′ (x))−φh′,k(y)·d(y,X\P (k)

h′ (y)) ≤ φh′,k(x)·d(x, y).

Also if ψ
(k,j)
h′ (y) = ∆h′ then ψ

(k,j)
h′ (x)− ψ

(k,j)
h′ (y) ≤ ∆h′ −∆h′ = 0.

Now consider the scales h < h′ ≤ i, then since the partition is hierarchical y /∈ P (k)
h′ (x),

and we get that

ψ
(k,j)
h′ (x)− ψ

(k,j)
h′ (y) ≤ φh′,k(x) · d(x,X \ P (k)

h′ (x)) ≤ φh′,k(x) · d(x, y).

Note that since for all ` ∈ I, φ`,k(x) ≤ 210 log λ < 212 log n
D

, which means that a single

scale will not cause f
(k,j)
m (x) to be larger than 213 log n

D
, i.e. we have that

f (k,j)
m (x)− f (k,j)

m (y) ≤
∑

h′∈Ij ,i′≤h′≤h

(ψ
(k,j)
h′ (x)− ψ

(k,j)
h′ (y)) +

∑
h′∈Ij ,h<h′≤i

ψ
(k,j)
h′ (x)

≤ d(x, y)
∑

h′∈Ij ,i′≤h′≤i

φh′,k(x)

≤ 213d(x, y) log n

D
.

Let Dk,j(x) be such that for any 1 ≤ m ≤ Dk,j(x) we have ibegin(m, k, j, x) 6= ∞.

Claim 6.13. For any 1 ≤ k ≤ T , 0 ≤ j ≤ S − 1 and x ∈ X,

S−1∑
j=0

Dj,k(x) ≤ D.

Proof. Let L
(k)
j =

∑
`∈Ij

φ`,k(x) and note that Dk,j(x) ≤ D · L(k)
j /(212 log n) + 1. By

Claim 6.11 follows that
∑S

j=1 L
(k)
j ≤ 211 log n, hence

S−1∑
j=0

Dj,k(x) ≤
S−1∑
j=0

(D · L(k)
j /(212 log n) + 1)

= D/(212 log n)
S−1∑
j=0

L
(k)
j + S

≤ (D/2 + log log λ/3 + 1) ≤ D.

Lemma 6.11. For all x, y ∈ X, ‖f(x)− f(y)‖p ≤ 214d(x, y) log n ·D1/p−1
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Proof. Fix some 1 ≤ k ≤ T , 0 ≤ j ≤ S − 1. Using Claim 6.12

D∑
m=1

|f (k,j)
m (x)− f (k,j)

m (y)|p ≤
Dk,j(x)∑
m=1

|f (k,j)
m (x)− f (k,j)

m (y)|p +

Dk,j(y)∑
m=1

|f (k,j)
m (x)− f (k,j)

m (y)|p

≤ (Dk,j(x) +Dk,j(y))

(
213d(x, y) log n

D

)p

.

And now using Claim 6.13 the upper bound follows:

‖f(x)− f(y)‖p
p = T−1

T∑
k=1

‖fk(x)− fk(y)‖p
p

= T−1

T∑
k=1

S∑
j=1

D∑
m=1

|f (k,j)
m (x)− f (k,j)

m (y)|p

≤ T−1

T∑
k=1

S∑
j=1

(Dk,j(x) +Dk,j(y))

(
213d(x, y) log n

D

)p

≤ 2D
(
213(log n)/D · d(x, y)

)p
.

Lower Bound:
The first step is showing that the embedding will have the required distortion on

all appropriate pairs of the points in the nets. Define M = {(`, u, v) | ` ∈ I, u, v ∈
N`, 7∆`−1 ≤ d(u, v) ≤ 65∆`−1}.

For (`, u, v) ∈M by Claim 3.1 it must be that max{ρ̄(u, 2∆`, γ1, γ2), ρ̄(v, 2∆`, γ1, γ2)} ≥
2. If it is the case that ρ̄(u, 2∆`, γ1, γ2) ≥ 2. It follows from Lemma 3.3 that ξk,`(u) = 1
for all k ∈ [T ]. In such a case let G = G(u) ⊆ [T ] be the collection of partitions indexes
for which u are padded in the `-th scale. As u is padded in at least T/4 of the partitions
|G| ≥ T/4. For all k ∈ G let m = mk(u) be the coordinate that contains the `-th scale
for u. Let 0 ≤ j ≤ S− 1 such that ` ∈ Ij. For all (`, u, v) ∈M and k ∈ G define an event
F(`,u,v,k,0) asψ(k,j)

` (u) ≥ ∆` ∧

∣∣∣∣∣∣
∑

ibegin(m,k,j,u)≤h<`,h∈Ij

ψ
(k,j)
h (u)−

∑
ibegin(m,k,j,v)≤h≤`,h∈Ij

ψ
(k,j)
h (v)

∣∣∣∣∣∣ ≤ ∆`/2

∨
ψ(k,j)

` (u) = 0 ∧

∣∣∣∣∣∣
∑

ibegin(m,k,j,u)≤h<`,h∈Ij

ψ
(k,j)
h (u)−

∑
ibegin(m,k,j,v)≤h≤`,h∈Ij

ψ
(k,j)
h (v)

∣∣∣∣∣∣ > ∆`/2

 ,

Otherwise it must be the case that ρ̄(v, 2∆`, γ1, γ2) ≥ 2 (i.e. ξk,`(v) = 1 for all k ∈ [T ]),
define F(`,u,v,k,1) by switching the roles of u, v. Define the event E(`,u,v) as(

ρ̄(u, 2∆`, γ1, γ2) ≥ 2 ⇒ ∃G′ ⊆ G(u), |G′| ≥ |G(u)|/4, ∀k ∈ G′ : F(`,u,v,k,0)

)∧(
(ρ̄(u, 2∆`, γ1, γ2) < 2 ∧ ρ̄(v, 2∆`, γ1, γ2) ≥ 2) ⇒ ∃G′ ⊆ G(v), |G′| ≥ |G(v)|/4, ∀k ∈ G′ : F(`,u,v,k,1)

)
.
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Claim 6.14. For all (`, u, v) ∈ M , let 0 ≤ j ≤ S − 1 such that ` ∈ Ij, event E(`,u,v)

implies that for all k ∈ G′ there exists m ∈ [D] such that

|f (k,j)
m (u)− f (k,j)

m (v)| ≥ ∆`/4.

Proof. Assume w.l.o.g that ρ̄(u, 2∆`, γ1, γ2) ≥ 2, hence event F(`,u,v,k,0) holds, let m =
mk(u) , then

|f (k,j)
m (u)− f (k,j)

m (v)|
= |

∑
ibegin(m,k,j,u)≤h≤iend(m,k,j,u),h∈Ij

ψ
(k,j)
h (u)−

∑
ibegin(m,k,j,v)≤h≤iend(m,k,j,v),h∈Ij

ψ
(k,j)
h (v)|

≥
∣∣∣ψ(k,j)

` (u)−
∣∣ ∑

ibegin(m,k,j,u)≤h<`,h∈Ij

ψ
(k,j)
h (u)−

∑
ibegin(m,k,j,v)≤h≤`,h∈Ij

ψ
(k,j)
h (v)

∣∣∣∣∣
−
∣∣ ∑

`<h≤iend(m,k,j,u)

ψ
(k,j)
h (u)−

∑
`<h≤iend(m,k,j,v)

ψ
(k,j)
h (v)

∣∣.
Note that

|
∑

`<h≤iend(m,k,j,u)

ψ
(k,j)
h (u)−

∑
`<h≤iend(m,k,j,v)

ψ
(k,j)
h (v)| ≤

∑
`<h

∆h = ∆`

∑
i>0

8−i = ∆`/7,

so by the definition of F(`,u,v,k,0) follows that

|f (k,j)
m (u)− f (k,j)

m (v)| ≥ ∆` −∆`/2−∆`/7 ≥ ∆`/4.

Now we wish to use the Local Lemma in order to show that there exist choices of σ
for which all the good events occur simultaneously. Define a graph P = (V,E) whose
vertices are the events {E(`,u,v)}(`,u,v)∈M , the rating of a vertex is c

(
E(`,u,v)

)
= `. Two

vertices
(
E(`,u,v), E(`′,u′,v′)

)
∈ E iff the following holds:

• ` = `′.

• d({u, v}, {u′, v′}) ≤ ∆`.

Claim 6.15. The degree of P is bounded by λ66+6 log((log n)/D).

Proof. Fix some E(`,u,v) ∈ V , we will see how many pairs u′, v′ ∈ N` can exists such that
(E(`,u,v), E(`,u′,v′)) ∈ E.

Assume w.l.o.g d(u, u′) ≤ ∆`, since d(u, v), d(u′, v′) ≤ 65∆`−1 follows u, v, u′, v′ ∈ B =
B(u,∆`−4). The number of pairs can be bounded by |N`∩B|2. Since (X, d) is λ-doubling,
the ball B can be covered by λ33+3 log((log n)/D) balls of radius ∆`

221((log n)/D)3
, each of these

contains at most one point in the net N`.
It follows that |N` ∩B|2 ≤ λ66+6 log((log n)/D).
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Claim 6.16.

Pr

¬E(`,u,v) |
∧

(`′,u′,v′)∈Q

E(`′,u′,v′)

 ≤ λ−68−6 log((log n)/D),

for all Q ⊆ {(`′, u′, v) ∈M | `′ ≤ ` ∧ (E(`,u,v), E(`′,u′,v′)) /∈ E}.

Proof. Let 0 ≤ j ≤ S − 1 be such that ` ∈ Ij. First note that if `′ < `, then
the randomness for events F(`,u,v,k,0) and F(`,u,v,k,1) is independent of events such as
E(`′,u′,v′). If `′ = `, then it must be that d({u, v}, {u′, v′}) > ∆`, which means that

P
(k)
` (u), P

(k)
` (v), P

(k)
` (u′), P

(k)
` (v′) are all different. Assume w.l.o.g that ρ̄(u, 8∆`, γ1, γ2) ≥

2, and recall that then ξk,`(u) = 1. Since for any k ∈ G(u), u is padded in scale ` with
parameter η`,k(u)/2, it follows that

ψ
(k,j)
` (u) = σ`,k(P

(k)
` (u)) ·min{φ`,k(u) · d(u,X \ P (k)

` (u)),∆`}
≥ σ`,k(P

(k)
` (u)) ·min{2η`,k(u)

−1 · (η`,k(u)/2)∆`,∆`}
= σ`,k(P

(k)
` (u)) ·∆`.

If it is the case that∣∣∣∣∣∣
∑

ibegin(m,k,j,u)≤h<`,h∈Ij

ψ
(k,j)
h (u)−

∑
ibegin(m,k,j,v)≤h≤`,h∈Ij

ψ
(k,j)
h (v)

∣∣∣∣∣∣ ≤ ∆`/2,

then there is probability of 1/2 that σ`,k(P
(k)
` (u)) = 1, otherwise there is probability of

1/2 that σ`,k(P
(k)
` (u)) = 0, independently of choices of σ for partitions in scales before

the `-th scale and choices for clusters of v, u′, v′ in the `-th scale. We conclude that there
is probability 1/2 for event F(`,u,v,k,0).

The clusters of partitions for different values of k are colored by σ independently, so
if we denote by Z the number of k ∈ G(u) for which the event F(`,u,v,k,0) failed, then
E[Z] ≤ |G(u)|/2 and by Chernoff bound

Pr[Z > 3|G|/4] ≤ e−|G|/24 ≤ e−T/96 ≤ λ−68−6 log((log n)/D),

for large enough value of C. The case that ρ̄(v, 8∆`, γ1, γ2) ≥ 2 is symmetric for event
F(`,u,v,k,1).

Now we can use the Local Lemma again on the graph P with d = λ66+6 log((log n)/D)

and p = λ−68−6 log((log n)/D), and conclude that there is positive probability that all the
good events {E(`,u,v)}(`,u,v)∈M hold simultaneously.

The Next step is to show that once the net point are well embedded, other pairs have
the desired distortion as well.

Let x, y ∈ X, and let ` ∈ Ij such that ∆`−2 ≤ d(x, y) < ∆`−3. Let u, v be the nearest
points in the net N` to x, y respectively. Note that since d(x, u), d(y, v) ≤ D·∆`

217 log n
we have

that (`, u, v) ∈ M , hence if G′ ⊆ [T ] is the set of good coordinates for u, v then for each

k ∈ G′ by Claim 6.14 there exists some m ∈ [D] such that |f (k,j)
m (u)− f

(k,j)
m (v)| ≥ ∆`/4.
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On the other hand by Claim 6.12

|f (k,j)
m (u)− f (k,j)

m (x)| ≤ 213d(u, x)(log n)/D ≤ ∆`/16,

and similarly |f (k,j)
m (v)− f

(k,j)
m (y)| ≤ ∆`/16.

So the triangle inequality implies that

|f (k,j)
m (x)− f (k,j)

m (y)| ≥ ∆`/4−∆`/16−∆`/16 = ∆`/8,

for all k ∈ G′. As ∆` ≥ d(x, y)/29 and |G′| ≥ T/16:

‖f(x)− f(y)‖p
p ≥ T−1

∑
k∈G′

‖f (k)(x)− f (k)(y)‖p
p

≥ T−1
∑
k∈G′

|f (k,j)
m (x)− f (k,j)

m (y)|p

≥ (1/16) · (∆`/8)p ≥ (d(x, y)/216)p.

6.4 Snowflake Results

Theorem 22. For any n point λ-doubling metric space (X, d), any 1 ≤ p ≤ ∞, any
θ ≤ 1 and any 2192/θ ≤ k ≤ log λ, there exists an embedding of (X, d1/2) into Lp with

distortion O(k1+2θλ1/(pk)) and dimension O
(

λ1/k ln λ
θ

)
.

Proof overview:
The high level approach is similar to that of Theorem 8. However here it is sufficient

to use Lemma 3.4 instead of Lemma 3.3. In each term for scale i of the embedding
(i.e. fi(x)) we introduce a factor of ∆

−1/2
i . Hence the upper bound of Lemma 6.12 is

independent of the number of scales or the number of points in the metric. We exploit
the higher norm Lp in the lower bound, Lemma 6.15. The main technical lemma is
Lemma 6.16 which requires a subtle use of Cherneff bounds.
The proof:

Let ∆0 = diam(X), I = {i ∈ Z | 1 ≤ i ≤ (log ∆0 + θ log log λ)/3}. For i ∈ I let

∆i = ∆0/8
i. Set D = cλ1/k ln λ

θ
for some constant c to be determined later.

Let δ = λ−1/k, τ = 2−7 ln(1/δ)/ ln(λ) = 2−7/k. We shall define the embedding f by
defining for each 1 ≤ t ≤ D, a function f (t) : X → R+ and let f = D−1/p

⊕
1≤t≤D f

(t).

Fix t, 1 ≤ t ≤ D. In what follows we define f (t). For each 0 < i ∈ I construct a
∆i-bounded (τ, δ)-padded probabilistic partition P̂i, as in Lemma 3.4. Fix some Pi ∈ Pi

for all i ∈ I.
For each 0 < i ∈ I we define a function f

(t)
i : X → R+ and for x ∈ X, let f (t)(x) =∑

i∈I f
(t)
i (x). Let {σ(t)

i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli
random variables. The embedding is defined as follows: for each x ∈ X:

• For each 0 < i ∈ I, let f
(t)
i (x) = σ

(t)
i (Pi(x)) ·∆−1/2

i min{τ−1 · d(x,X \ Pi(x)),∆i}.
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Claim 6.17. For any 0 < i ∈ I and x, y ∈ X: f
(t)
i (x) − f

(t)
i (y) ≤ ∆

−1/2
i · min{τ−1 ·

d(x, y),∆i}.

Lemma 6.12. For any (x, y) ∈ X and t ∈ [D]:

|f (t)(x)− f (t)(y)| ≤ 210k · d(x, y)1/2.

Proof. Let ` ∈ I be the minimal such that d(x, y) ≥ ∆`.∑
0<i<`

|f (t)
i (x)− f

(t)
i (y)| ≤ τ−1 · d(x, y)

∑
0<i<`

∆
−1/2
i ≤ 27k · d(x, y)∆−1/2

` ≤ 29k · d(x, y)1/2 ,

and ∑
i≥`

|f (t)
i (x)− f

(t)
i (y)| ≤

∑
i≥`

∆
1/2
i ≤ 2∆

1/2
` ≤ 2d(x, y)1/2 .

To conclude
|f (t)(x)− f (t)(y)| ≤ 210k · d(x, y)1/2.

Lower Bound Analysis:
The lower bound analysis uses a set of nets. First we define a set of scales in which

we hope to succeed with high probability. Let r = d(θ/3) log ke, note that r ≥ 2 and let
R = {i ∈ I : r|i}. For any 0 < i ∈ R let Ni be a ∆i

230k4 -net of X.
Let M = {(i, u, v) | i ∈ K, u, v ∈ Ni, 7∆i−1 ≤ d(u, v) ≤ 65∆i−r−1}. Given an embed-

ding f define a function T : M → 2D such that for t ∈ [D] :

t ∈ T (i, u, v) ⇔
∣∣f (t)(u)− f (t)(v)

∣∣ ≥ ∆
1/2
i

8kθ
.

For all (i, u, v) ∈ M , let E(i,u,v) be the event |T (i, u, v)| ≥ λ−1/kD/4. Then we define
the event E =

⋂
(i,u,v)∈M E(i,u,v) that captures the case that all triplets in M have the

desired property.
The main technical lemma is the following:

Lemma 6.13.
Pr[E ] > 0

We defer the proof for later, and now show that if the event E took place, then we
can show the lower bound. Let x, y ∈ X, and let 0 < i′ ∈ I be such that 8∆i′−1 ≤
d(x, y) ≤ 64∆i′−1. Let i ∈ R be the minimal such that i ≥ i′, note that ∆i ≥ ∆i′

kθ .
Consider u, v ∈ Ni satisfying d(x, u) = d(x,Ni) and d(y, v) = d(y,Ni), as d(u, v) ≤
d(u, x)+ d(x, y)+ d(y, v) ≤ 64∆i′−1 +∆i ≤ 65∆i−r−1, by the definition of M follows that
(i, u, v) ∈ M . The next lemma shows that since x, y are very close to u, v respectively,
then by the triangle inequality the embedding f of x, y cannot differ by much from that
of u, v (respectively).

Lemma 6.14. Let x, y ∈ X, let i′ such that 8∆i′−1 ≤ d(x, y) ≤ 64∆i′−1, let i ∈ R be the
minimal such that i ≥ i′, let u, v ∈ Ni satisfying d(x, u) = d(x,Ni) and d(y, v) = d(y,Ni).

Given E, for any t ∈ T (i, u, v):∣∣f (t)(x)− f (t)(y)
∣∣ ≥ ∆

1/2
i

16kθ
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Proof. Since Ni is ∆i

230k4 -net, then d(x, u) ≤ ∆i

230k4 . By Lemma 6.12 |f (t)(x) − f (t)(u)| ≤
210k · d(x, u)1/2 ≤ ∆

1/2
i

25kθ , and similarly |f (t)(y)− f (t)(v)| ≤ ∆
1/2
i

25kθ . By the triangle inequality
we get that

|f (t)(x)− f (t)(y)| = |f (t)(x)− f (t)(u) + f (t)(u)− f (t)(v) + f (t)(v)− f (t)(y)|
≥ |f (t)(u)− f (t)(v)| − |f (t)(x)− f (t)(u)| − |f (t)(y)− f (t)(v)|

≥ ∆
1/2
i

8kθ
− 2∆

1/2
i

32kθ

=
∆i

16kθ
.

This Lemma and Lemma 6.13 implies the following:

Lemma 6.15. There exists a universal constant C2 > 0 and an embedding f such that
for any x, y ∈ X

‖f(x)− f(y)‖p ≥ C2
d(x, y)1/2

k2θλ1/(pk)
.

Proof. Let f be an embedding such that event E took place. Let i′ ∈ I such that ∆i′−2 ≤
d(x, y) < ∆i′−3, i ∈ R the minimal such that i ≥ i′ and u, v be the nearest points to x, y

respectively in the net Ni. Noticing that ∆i ≥ d(x,y)
29kθ and that |T (i, u, v)| ≥ λ−1/kD/4 we

get from Lemma 6.14 that

‖f(x)− f(y)‖p
p = D−1

∑
t∈[D]

|f (t)(x)− f (t)(y)|p

≥ D−1
∑

t∈T (i,u,v)

(
∆

1/2
i

16kθ

)p

≥ D−1|T (i, u, v)|
(
d(x, y)1/2

29k2θ

)p

≥ λ−1/k

(
d(x, y)1/2

212k2θ

)p

Proof of Lemma 6.13:
Define for every (i, u, v) ∈M , i ≤ ` < i+ r and t ∈ [D] the event F(i,u,v,t,`) as(∣∣f (t)

` (u)− f
(t)
` (v)

∣∣ ≥ ∆
1/2
` ∧

∣∣∑
j<`

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∆
1/2
`

2

)∨
((
f

(t)
` (u) = f

(t)
` (v) = 0

)
∧
∣∣∑

j<`

f
(t)
j (u)− f

(t)
j (v)

∣∣ > ∆
1/2
`

2

)

And define event Ê(i,u,v) as

∃S ⊆ [D], |S| ≥ D/2,∀t ∈ S,∃i ≤ ` < i+ r : F(i,u,v,t,`) holds.

79



Claim 6.18. For all (i, u, v) ∈M , Ê(i,u,v) implies E(i,u,v).

Proof. Let S ⊆ [D] be the subset of coordinates from the definition of Ê(i,u,v). For any
t ∈ S, let i ≤ `(t) < i+ r be such that F(i,u,v,t,`(t)) holds. Then for such t ∈ S:

∣∣ ∑
j≤`(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆
1/2
`(t)

2

From Claim 6.17 it follows that

∣∣ ∑
j>`(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∑
j>`(t)

∆
1/2
j ≤

∆
1/2
`(t)√
8

Which implies that ∣∣∑
j∈I

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆
1/2
`(t)

8
≥ ∆

1/2
i

8kθ

as required.

Define a graph G = (V,E), where V = {Ê(i,u,v) | (i, u, v) ∈ M}, and the rating of a

vertex c(Ê(i,u,v)) = i. We say that a pair of vertices (Ê(i,u,v), Ê(i′,u′,v′)) ∈ E if

• d({u, v}, {u′, v′}) ≤ 4∆i, and

• i = i′.

Claim 6.19. The out-degree of G is bounded by λ95+10 log k

Proof. Fix some Ê(i,u,v) ∈ V , we will see how many pairs u′, v′ ∈ Ni can exists such that

(Ê(i,u,v), Ê(i,u′,v′)) ∈ E.
Assume w.l.o.g d(u, u′) ≤ 4∆i, since d(u, v), d(u′, v′) ≤ 65∆i−r−1 follows u, v, u′, v′ ∈

B = B(u,∆i−r−4). The number of pairs can be bounded by |Ni ∩ B|2. Since (X, d) is
λ-doubling, the ball B can be covered by λ47+5 log k balls of radius ∆i

235k4 , each of these
contains at most one point in the net Ni. It follows that |Ni ∩B|2 ≤ λ95+10 log k.

Notice that events Ê(i,u,v) do not depend on the choice of partitions for scales greater
than i+ r.

Lemma 6.16.

Pr

¬Ê(i,u,v) |
∧

(i′,u′,v′)∈Q

Ê(i′,u′,v′)

 ≤ λ−97−10 log k,

for all Q ⊆
{

(i′, u′, v′) | i ≥ i′ ∧
(
Ê(i,u,v), Ê(i′,u′,v′)

)
/∈ E

}
.

Before we prove this lemma, let us see that it implies Lemma 6.13.
Apply Lemma 6.2 to the graph G we defined, by Claim 6.19 let d = λ95+10 log k and by

Lemma 6.16 we can let p = λ−97−10 log k satisfying the first condition of Lemma 6.2. It is
easy to see that the second condition also holds (since λ ≥ 2), hence
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Pr[
∧

(i,u,v)∈M

Ê(i,u,v)] > 0

By Claim 6.18 we have

Pr[E ] = Pr[
∧

(i,u,v)∈M

E(i,u,v)] > 0

Which concludes the proof of Lemma 6.13.
Proof of Lemma 6.16:

In order to prove this lemma, we first show the following claim, a slight variation of
a claim shown in [ABN06].

Claim 6.20. Let (i, u, v) ∈M , t ∈ [D] and i ≤ ` < i+ r then Pr
[
F(i,u,v,t,`)

]
≥ λ−1/k/4.

Proof. Let i ≤ ` < i+ r and consider the two cases in F(i,u,v,t,`):

If it is the case that
∣∣∑

j<` f
(t)
j (u)− f (t)

j (v)
∣∣ ≤ ∆

1/2
`

2
then it is enough for the following

to hold

• B(u, τ∆`) ⊆ P`(u).

• σ
(t)
` (P`(u)) = 1.

• σ
(t)
` (P`(v)) = 0.

The second and third events happen independently with probability at least 1/2, the first
happens with probability at least δ = λ−1/k, since P` is (τ, δ)-padded. If all these events

occur then |f (t)
` (u)− f

(t)
` (v)| ≥ ∆

−1/2
` min{τ−1 · d(u,X \ P`(u)),∆`} ≥ ∆

1/2
` .

Similarly, if it is the case that
∣∣∑

j<` f
(t)
j (u)− f

(t)
j (v)

∣∣ > ∆
1/2
`

2
then it is enough that

• σ
(t)
` (P`(u)) = σ

(t)
` (P`(v)) = 0.

Again there is probability 1/2 for each of these. So we have probability at least λ−1/k/4
for event F(i,u,v,t,`).

Claim 6.21. Let (i, u, v) ∈M , t ∈ [D] and i ≤ ` < i+ k. Then

Pr

¬F(i,u,v,t,`) |
∧

(i′,u′,v′)∈Q

Ê(i′,u′,v′)

 ≤ 1− λ−1/k/4,

for all Q ⊆ {(i′, u′, v′) | i ≥ i′ ∧
(
Ê(i,u,v), Ê(i′,u′,v′)

)
/∈ E}.

Proof. First note that if i′ < i, then event Ê(i′,u′,v′) depend on events F(i′,u′,v′,t′,`′), where by
definition `′ < i′ + r ≤ i (recall that R contains only integers that divide by r), and these
events depend only on the choice of partition for scales at most `′. Hence the padding
probability for u, v in scale ` and the choice of σ` is independent of these events.

If it is the case that i′ = i, let (i, u′, v′) ∈ M such that
(
Ê(i,u,v), Ê(i,u′,v′)

)
/∈ E. We

know by the construction of G that u′, v′ /∈ B(u, 4∆i) and u′, v′ /∈ B(v, 4∆i). Hence
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u′, v′ are far from u, v and they fall into different clusters in every possible partition
of scale `. Moreover, the locality of our partition suggests that the padding of u, v in
scale `, for all ` ∈ [i, i + k), depends only on the partition of their local neighborhoods,
B(u, 2∆`) ∪B(v, 2∆`), which is disjoint from that of u′, v′.

Note that even though event F(i,u,v,t,`) is defined with respect to scales `′ ≥ `, since
the padding probability and coloring by σ for u, v in scale ` will be as in Claim 6.20, no
matter what happened in scales `′ < ` or “far away” in scale `.

Now we are ready to prove the Lemma. For every coordinate t ∈ [D], we have
r = d(θ/3) log ke possible values of `. In each scale `, by Claim 6.21 there is probability
at most q = 1− λ−1/k/4 to fail, this probability is unaffected by of all other scales `′ < `.
Let Y` be the indicator event for ¬F(i,u,v,t,`). The probability that we failed for all scales
` ∈ [i, i+ r) can be bounded by:

Pr

[
i+r−1∧

`=i

Y`

]
=

i+r−1∏
`=i

(
Pr

[
Y` |

`−1∧
j=i

Yj

])
≤ qd(θ/3) log ke = z.

Case 1: Assume first that (θ/48)λ−1/k log k ≥ 1, then let Zt be the event that we failed
in the t-th coordinate (i.e. , F(i,u,v,t,`) does not hold for all ` ∈ [i, i + r)). Then
Pr[Zt] ≤ z, and Z =

∑
t∈D Zt. We know that E[Z] ≤ zD, let α ≥ 1 be such that

E[Z] = zD
α

. Using Chernoff’s bound implies that

Pr[Z > qD] = Pr
[
Z >

(qα
z

)
E[Z]

]
≤

(
eqα/z−1

(qα/z)qα/z

)zD/α

≤ (ez/q)qD

Note that q ≥ q(θ/6) log k hence z/q ≤ z1/2 = q(θ/6) log k. By the assumption we have

that e ≤ e(θ/48)λ−1/k log k ≤ z−1/4. Since q > 1/2, and q ≤ e−λ1/k/4 as well, follows
that

(ez/q)qD ≤ zD/8 = q(θ/24) log k·c·λ1/k(ln λ)/θ ≤ e−λ1/k/4·(θ/24) log k·c·λ1/k(ln λ)/θ = λ−c log k/96

taking c = 96 · 107 implies that Pr[Z > qD] ≤ λ−97−10 log k, as required.

Case 2: (θ/48)λ−1/k log k < 1 we consider Ẑt the event that for some ` ∈ [i, i+ r), event
F(i,u,v,t,`) holds, we have that

Pr[Ẑt] ≥ 1−
(
1− λ−1/k/4

)(θ/3) log k ≥ 1− e−λ−1/k(θ/48) log k ≥ λ−1/k(θ/96) log k,

the last inequality holds since 1 − e−x ≥ x/2 when 0 ≤ x ≤ 1. Let q′ =
λ−1/k(θ/96) log k, and let Ẑ =

∑
t∈D Ẑt. Obviously E[Ẑ] ≥ q′D, using Chernoff

bound implies that

Pr[Ẑ ≤ λ−1/kD] ≤ Pr[Ẑ ≤ λ−1/kE[Ẑ]/q′]

= Pr[Ẑ ≤ 96E[Ẑ]/(θ log k)]

≤ e−E[Ẑ](1−96/(θ log k))2/2.
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Since θ log k ≥ 192 we have that (1− 96/(θ log k))2 ≥ 1/4 hence

Pr[Ẑ ≤ λ−1/kD] ≤ e−q′D/4 ≤ e−λ−1/k(θ/96) log k·cλ1/k(ln λ)/θ ≤ λ−(c/96) log k.

Again taking c = 96 · 107 implies that Pr[Ẑ ≤ λ−1/kD] ≤ λ−97−10 log k as required.

83



Chapter 7

Scaling Distortion for Decomposable
Metric

Theorem 31. Let 1 ≤ p ≤ ∞. For any n-point τ -decomposable metric space (X, d) there
exists an embedding f : X → Lp with coarse scaling distortion O(min{τ 1−1/p(log 2

ε
)1/p, log 2

ε
})

and dimension O(log2 n).

Let D = c lnn for a constant c to be determined later. Let D′ = d32 lnne. We will
define an embedding f : X → LD′D

p , by defining for each 1 ≤ t ≤ D, an embedding

f (t) : X → LD′
p and let f = D−1/p

⊕
1≤t≤D f

(t).

Fix t, 1 ≤ t ≤ D. In what follows we define f (t). We construct a strong (η, 1/2)-
uniformly padded probabilistic 2-hierarchical partition Ĥ as in Lemma 3.6, and let ξ
be as defined in the lemma. Now fix a hierarchical partition H = {Pi}i∈I ∈ H. Let
D(x) =

∑
0<i∈I ξP,i(x). Another consequence of Lemma 3.6 is:

Claim 7.1. For any x ∈ X: D(x) ≤ D′.

Proof. Note that ηP,i(x) ≤ 2−9, it follows that

D(x) =
∑

0<i∈I

ξP,i(x) ≤
∑

0<i∈I

2−9ξP,i(x)ηP,i(x)
−1 ≤ 32 log n ≤ D′

Let J = {1 ≤ j ≤ D′|j ∈ Z} the set of indexes of the coordinates, and for x ∈ X, let
J(x) = {1 ≤ j ≤ D(x)|j ∈ Z} and let J̄(x) = J \ J(x). For each x ∈ X and i ∈ I, let
ĵi(x) =

∑
0<i′≤i ξP,i′(x). For j ∈ J(x), let îj(x) be the smallest i such that ĵi(x) = j.

We have following important property:

Claim 7.2. If for some 0 < i ∈ I, we have that Pi(x) = Pi(y) then for all 1 ≤ j ≤ ĵi(x),
îj(x) = îj(y).

Proof. Since the partition is hierarchical we have that P`(x) = P`(y) for all 0 < ` ≤ i.
Since ξ is uniform with respect to H we have that ξP,`(x) = ξP,`(y). This implies that
ĵ`(x) = ĵ`(y) for all ` ≤ i. Let 1 ≤ j ≤ ĵi(x) and ` the smallest such that ĵ`(x) = ĵ`(y) = j,
it follows that îj(x) = îj(y) = `.
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We define the embedding f (t) by defining the coordinates for each x ∈ X. For every
i ∈ I let σ

(t)
i : X → {0, 1} be a uniform function with respect to Pi define by letting

{σ(t)
i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random variables.

Let f (t) : X → LD′
p be defined as f (t) =

⊕
j∈[D′] ψ

(t)
j . For each j ∈ [D′] define ψ

(t)
j : X →

R+ as
ψ

(t)
j (x) = σ

(t)
j (x) · ϕ(t)

j (x),

where ϕ
(t)
j : X → R+ is defined as

ϕ
(t)
j (x) =

{
min

{
ξP,i(x)

ηP,i(x)1/pd (x,X \ Pi(x)) ,∆i

}
j ∈ J(x), i = îj(x)

0 j ∈ J̄(x)
(7.1)

Define g
(t)
i : X × X → R+ as follows: g

(t)
i (x, y) = min

{
ξP,i(x)

ηP,i(x)1/p · d(x, y),∆i

}
(Note

that g
(t)
i is nonsymmetric).

Claim 7.3. For any x, y ∈ X such that D(x) ≥ D(y):

• For any j ∈ J(x) ∩ J(y), let i = îj(x) and i′ = îj(y), then

|ψ(t)
j (x)− ψ

(t)
j (y)| ≤ max{g(t)

i (x, y), g
(t)
i′ (y, x)}

• For any j ∈ J(x) \ J(y), let i = îj(x), then |ψ(t)
j (x)− ψ

(t)
j (y)| ≤ g

(t)
i (x, y).

Proof. Assume w.l.o.g j ∈ J(x), and first we prove the first bullet. We have two cases.
In Case 1, assume Pi(x) = Pi(y) then by Claim 7.2 we get that i′ = îj(y) = îj(x) = i. It
follows that

|ψ(t)
j (x)− ψ

(t)
j (y)| = σ

(t)
i (Pi(x)) · |ϕ(t)

i (x)− ϕ
(t)
i (y)|.

We will show that ϕ
(t)
j (x) − ϕ

(t)
j (y) ≤ g

(t)
i (x, y). The bound ϕ

(t)
j (x) − ϕ

(t)
j (y) ≤ ∆i is

immediate. To prove ϕ
(t)
j (x) − ϕ

(t)
j (y) ≤ ξP,i(x)

ηP,i(x)1/p · d(x, y) consider the value of ϕ
(t)
j (y).

Assume first ϕ
(t)
j (y) =

ξP,i(y)

ηP,i(y)1/p · d(y,X \ Pi(y)). From the uniform padding property of

H we get that ξP,i(y) = ξP,i(x) and ηP,i(y) = ηP,i(x) therefore

ϕ
(t)
j (x)− ϕ

(t)
j (y) ≤ ξP,i(x)

ηP,i(x)1/p
· (d(x,X \ Pi(x))− d(y,X \ Pi(x))) ≤

ξP,i(x)

ηP,i(x)1/p
· d(x, y).

In the second case ϕ
(t)
j (y) = ∆i and therefore ϕ

(t)
i (x) − ϕ

(t)
i (y) ≤ ∆i − ∆i = 0. Thus

proving the claim in this case.
Next, consider Case 2 where Pi(x) 6= Pi(y). In this case we have that d(x,X \Pi(x)) ≤

d(x, y) which implies that

ψ
(t)
j (x)− ψ

(t)
j (y) ≤ ϕ

(t)
j (x) ≤ gi(x, y). (7.2)

The bound g
(t)
i′ (y, x) is obtained by considering ϕ

(t)
j (y)− ϕ

(t)
j (x).

For the second bullet it must be that Pi(x) 6= Pi(y) (otherwise we would get i′ = i

which would be a contradiction). Since j /∈ J(y) then ψ
(t)
j (y) = 0 and we are done by

(7.2).
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Lemma 7.1. There exists a universal constant C1 > 0 such that for any ε > 0 and any
(x, y) ∈ Ĝ(ε):

|f (t)(x)− f (t)(y)|p ≤ ln(2/ε) · (C1 · d(x, y))p.

Proof. Assume w.l.o.g D(x) ≥ D(y). Claim 7.3 implies that

‖f (t)(x)− f (t)(y)‖p
p =

∑
j∈J

|ψ(t)
j (x)− ψ

(t)
j (y)|p

≤
∑

j∈J(x)∩J(y)

max{g(t)

îj(x)
(x, y), g

(t)

îj(y)
(y, x)}p +

∑
j∈J(x)\J(y)

g
(t)

îj(x)
(x, y)p

≤
∑

0<i∈I

(
g

(t)
i (x, y)p + g

(t)
i (y, x)p

)
. (7.3)

Now, define ` to be largest such that ∆`+4 ≥ d(x, y) ≥ max{rε/2(x), rε/2(y)}. If no
such ` exists then let ` = 0.

By Lemma 3.6 we have∑
0<i≤`

g
(t)
i (x, y)p ≤

∑
0<i≤`

ξP,i(x)

ηP,i(x)
· d(x, y)p

≤ 214 · ln
(

n

|B(x,∆`+4)|

)
· d(x, y)p ≤ (214 ln(2/ε)) · d(x, y)p.

We also have that ∑
`<i∈I

g
(t)
i (x, y)p ≤

∑
`<i∈I

∆p
i ≤ ∆p

` ≤ 25pd(x, y)p.

Therefore, using (7.3) we get

|f (t)(x)− f (t)(y)|p =
∑

0<i∈I

(
g

(t)
i (x, y)p + g

(t)
i (y, x)p

)
≤ 2

(
214 ln(2/ε) + 25p

)
· d(x, y)p.

Lemma 7.2. There exists a universal constant C2 > 0 such that for any x, y ∈ X, with
probability at least 1/8:

|f (t)(x)− f (t)(y)|p ≥ τ 1−p · (C2 · d(x, y))p.

Proof. Let 0 < ` ∈ I be such that 8∆` ≤ d(x, y) ≤ 16∆`. By Claim 3.1 we have that
max{ρ̄(x, 2∆`, γ1, γ2), ρ̄(y, 2∆`, γ1, γ2)} ≥ 2. Assume w.l.o.g that ρ̄(x, 2∆`, γ1, γ2) ≥ 2. It
follows from Lemma 3.6 that ξP,`(x) = 1. As Ĥ is (η, 1/2)-padded we have the following
bound

Pr[B(x, ηP,`(x)∆`) ⊆ P`(x)] ≥ 1/2.

Therefore with probability at least 1/2:(
ξP,`(x)

ηP,`(x)1/p
· d(x,X \ P`(x))

)p

≥ 1

ηP,`(x)
· (ηP,`(x)∆`)

p = ηP,`(x)
p−1∆p

` ≥ (τ/8)p−1∆p
` ,(7.4)
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where the last inequality follows from the second property of Lemma 3.6.
Let j = ĵ`(x). Note that since ξP,`(x) = 1 we have that ` = îj(x). Since diam(P`(x)) ≤

∆` < d(x, y) we have that P`(y) 6= P`(x). Now, if j /∈ J(y) then ψ
(t)
j (y) = 0 and

with probability 1/2 we have σ`(P`(x)) = 1 so that by (8.2) |ψ(t)
j (x) − ψ

(t)
j (y)|p =

min
{(

ξP,`(x)

ηP,`(x)1/p · d(x,X \ P`(x))
)p

,∆p
i

}
≥ (τ/8)p−1∆p

` . Otherwise, if j ∈ J(y), then for

`′ = îj(y) we have P`(x) 6= P`′(y). We get that there is probability 1/4 that σ`(P`(x)) = 1

and σ`′(P`′(y)) = 0 so that |ψ(t)
j (x)− ψ

(t)
j (y)|p ≥ (τ/8)p−1∆p

` .
We conclude that with probability at least 1/2 · 1/4 = 1/8:

|f (t)(x)− f (t)(y)|p ≥ |(ψ(t)
j (x)− ψ

(t)
j (y))|p ≥ (τ/8)p−1∆p

` ≥ (τ/8)p−12−4pd(x, y)p.

Lemma 7.3. There exists a universal constants C ′
1, C

′
2 > 0 such that w.h.p for any ε > 0

and any (x, y) ∈ Ĝ(ε):

C ′
2 · τ 1−1/p · d(x, y) ≤ ‖f(x)− f(y)‖p ≤ C ′

1 (ln(1/ε))1/p · d(x, y).

Proof. By definition

‖f(x)− f(y)‖p
p = D−1

∑
1≤t≤D

|f (t)(x)− f (t)(y)|p.

Lemma 7.1 implies that

‖f(x)− f(y)‖p
p ≤ ln(1/ε) (C1 · d(x, y))p .

Using Lemma 7.2 and applying Chernoff bounds with c large enough we get w.h.p for
any x, y ∈ X:

‖f(x)− f(y)‖p
p ≥ 2−7τ p−1 · (C2 · d(x, y)p.
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Chapter 8

Embedding into Trees with Scaling
Distortion

8.1 Scaling Embedding into an Ultrametric

Theorem 23. Any n-point metric space (X, d) embeds into an ultrametric with scaling
distortion O(

√
1/ε). In particular, its `q-distortion is O(1) for 1 ≤ q < 2, O(

√
log n) for

q = 2, and O(n1−2/q) for 2 < q ≤ ∞.

We begin with the following definition of ultrametric, which is equivalent to Defini-
tion 1.1 , and is somewhat more convenient to work with.

Definition 8.1. An ultrametric U is a metric space (U, dU) whose elements are the leaves
of a rooted labeled tree T . Each v ∈ T is associated a label Φ(v) ≥ 0 such that if u ∈ T
is a descendant of v then Φ(u) ≤ Φ(v) and Φ(u) = 0 iff u ∈ U is a leaf. The distance
between leaves x, y ∈ U is defined as dU(x, y) = Φ(lca(x, y)) where lca(x, y) is the least
common ancestor of x and y in T .

The proof is by induction on the size of X (the base case is where |X| = 1 and is
trivial). Assume the claim is true for any metric space with less than n points. Let (X, d)
be a metric space with n = |X| and ∆ = diam(X). The ultrametric U is defined in
a standard manner by defining the labeled tree T whose leaf-set is X. The high level
construction of T is as follows: find a partition P of X into X1 and X2 = X \ X1, the
root of T will be labelled ∆, and its children T1, T2 will be the trees formed recursively
on X1 and X2 respectively. Let u ∈ X be such that |B(u,∆/2)| ≤ n/2 (such a point
can always be found). For any 0 < ε ≤ 1 denote by Bε(X) the total number of pairs
x, y ∈ X such that dU(x, y) > (150/

√
ε)dX(x, y). For a partition P = (X1;X2) let

B̂ε(P ) = |{(x, y) | x ∈ X1 ∧ y ∈ X2 ∧ dX(x, y) ≤ (
√
ε/150) ·∆}|.

Claim 8.1. Let ε ∈ (0, 1] and let (X, d) be a metric space, if there exists a non-trivial
partition of X, P = (X1;X2) such that B̂ε(P ) < ε|X1| · |X2| then Bε(X) ≤ ε

(|X|
2

)
.
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Proof. Let P = (X1;X2) be a partition of X such that B̂ε(P ) ≤ ε|X1|·|X2|. By induction,

Bε(X) ≤ B̂ε(P ) +Bε(X1) +Bε(X2)

≤ ε

((
|X1|
2

)
+

(
|X2|
2

)
+ |X1| · |X2|

)
= ε/2

(
|X1|2 − |X1|+ |X2|2 − |X2|+ 2|X1| · |X2|

)
= ε/2 ((|X1|+ |X2|)(|X1|+ |X2| − 1))

= ε

(
|X|
2

)
.

So it is sufficient to show that there exists a partition satisfying Claim 8.1 for all
ε ∈ (0, 1] simultaneously.

Partition Algorithm. Let ε̂ = max{ε ∈ (0, 1] | |B(u,
√
ε∆/4)| ≥ εn}. Observe that

1/n ≤ ε̂ ≤ 1/2 by the choice of u . Define the intervals Ŝ = [
√
ε̂∆/4,

√
ε̂∆/2], S =

[(1
4

+ 1
25

)
√
ε̂∆, (1

2
− 1

25
)
√
ε̂∆], s = 17

100

√
ε̂∆, and the shell Q = {w | d(u,w) ∈ Ŝ}. We

partition X by choosing some r ∈ S such that X1 = B(u, r) and X2 = X \ X1. The
following property will be used in several cases:

Claim 8.2. |B(u,
√
ε̂∆/2)| ≤ 4ε̂n.

Proof. There are two cases: If ε̂ ≤ 1/4 then |B(u,
√
ε̂∆/2)| = |B(u,

√
4ε̂∆/4)| ≤ 4ε̂n

(otherwise contradiction to maximality of ε̂). Otherwise, ε̂ ∈ (1/4, 1]. In such a case
|B(u,

√
ε̂∆/2)| ≤ |B(u,∆/2)| ≤ n/2 ≤ 2ε̂n.

We will now show that some choice of r ∈ S will produce a partition that satisfies
Claim 8.1 for all ε ∈ (0, 32ε̂]. For any r ∈ S and ε ≤ 32ε̂ let Sr(ε) = (r −

√
ε∆/150, r +√

ε∆/150), s(ε) =
√
ε∆/75, and let Qr(ε) = {w | d(u,w) ∈ Sr(ε)}. Notice that for any

r ∈ S and any ε ≤ 32ε̂ : Sr(ε) ⊆ Ŝ. Define that properly Ar(ε) holds if cutting at radius
r is “good” for ε, formally: Ar(ε) iff |Qr(ε)| <

√
ε · ε̂/2 · n. For any ε ≤ 32ε̂, note that in

any partition to X1 = B(u, r), X2 = X \X1 the triangle inequality implies that only pairs
(x, y) such that x, y ∈ Qr(ε) are distorted by more than 150/

√
ε. If property Ar(ε) holds

then B̂ε(P ) ≤ ε · ε̂n2/2. Since ε̂n ≤ |X1| ≤ n/2 then ε · ε̂n2/2 ≤ εn/2|X1| ≤ ε|X1||X2| so
Ar(ε) implies Claim 8.1 for ε. Hence for ε ∈ (0, 32ε̂] the following is sufficient:

Claim 8.3. There exists some r ∈ S such that properly Ar(ε) holds for all ε ∈ (0, 32ε̂].

Proof. The proof is based on the following iterative process that greedily deletes the
“worst” interval in S. Initially, let I0 = S, and j = 1:

1. If for all r ∈ Ij−1 and for all ε ≤ 32ε̂ property Ar(ε) holds then set t = j − 1, stop
the iterative process and output It.

2. Let Sj = {Sr(ε) | r ∈ Ij−1, ε ≤ 32ε̂,¬Ar(ε)}. We greedily remove the interval S ∈ Sj

that has maximal ε. Formally, let rj, εj be parameters such that Srj
(εj) ∈ Sj and

εj = max{ε | ∃Sr(ε) ∈ Sj}.
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3. Set Ij = Ij−1 \ Srj
(εj), set j = j + 1, and goto 1.

Let Q = {Qr(ε)} and note that |Q| = O(n2) and it is easy to show that for every
j ∈ {1, . . . , t}, Q′ ∈ Q, the maximum of {ε | Sr(ε) ∈ Sj, Qr(ε) = Q} is obtained inside
the set and can be found in O(n2) time.

We now argue that It 6= ∅ and hence such a value r ∈ S can be found. Since for
any 1 ≤ j < i ≤ t, s(εj) ≥ s(εi) it follows that any x ∈ Q appears in at most 2 “bad”
intervals. From this and Claim 8.2:

t∑
j=1

|Qrj
(εj)| ≤ 2|Q| ≤ 8ε̂n.

Recall that since Arj
(εj) does not hold then for any 1 ≤ j ≤ t : |Qrj

(εj)| ≥
√
εj · ε̂/2 · n

which implies that
t∑

j=1

√
εj ≤ 12

√
ε̂.

On the other hand, by definition

t∑
j=1

s(εj) ≤
t∑

j=1

√
εj∆/75 ≤ 12/75 ·

√
ε̂∆ = 16/100 ·

√
ε̂∆.

Since s = 17/100 ·
√
ε̂∆ then indeed It 6= ∅ so any r ∈ It satisfies the condition of the

claim.

It remains to show that any choice of r ∈ S will produce a partition that satisfies
Claim 8.1 for all ε ∈ (32ε̂, 1].

Claim 8.4. If ε ∈ (32ε̂, 1], r ∈ S and P = (B(u, r);X \B(u, r)) then B̂ε(P ) < ε|X1|·|X2|.

Proof. Let ε ∈ (32ε̂, 1] and fix some r ∈ S. Only pairs (x, y) such that x ∈ X1 and
y ∈ B(u, r +

√
ε∆/16) ∩ X2 can be distorted by more than 16

√
1/ε and hence may be

counted in B̂ε(P ). Since
√
ε̂ ≤

√
ε/2/4 and r <

√
ε̂∆/2 then |B(u, r +

√
ε∆/16)| ≤

|B(u,
√
ε/2(1

8
+ 1

8
)∆)| = |B(u,

√
ε/2∆/4)| < εn/2 by the maximality of ε̂. Since |X2| ≥

n/2 it follows that B̂ε(P ) ≤ ε|X1| · |X2|, as required.

Proof of Theorem 23. From Claim 8.3 and Claim 8.4, it follows that our partition scheme
finds a cut P = (X1;X2) such that B̂ε(P ) < ε|X1| · |X2| for all ε. Hence when applying
the partition scheme inductively, by Claim 8.1 the theorem follows.

8.2 Scaling Embedding of a Graph into a Spanning

Tree

Here we extended the techniques of the previous section, in conjunction with the con-
structions of [EEST05] to achieve the following:
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Theorem 24. Any weighted graph G = (V,E,w) with |V | = n, contains a spanning tree
with scaling distortion O(

√
1/ε). In particular, its `q-distortion is O(1) for 1 ≤ q < 2,

O(
√

log n) for q = 2, and O(n1−2/q) for 2 < q ≤ ∞.

Given a graph, the spanning tree is created by recursively partitioning the metric
space using a hierarchical star partition. The algorithm has three components, with the
following high level description:

1. A decomposition algorithm that creates a single cluster. The decomposition algo-
rithm is similar in spirit to the decomposition algorithm used in the previous section for
metric spaces. We will later explain the main differences.

2. A star partition algorithm. This algorithm partitions a graph X into a central
ball X0 with center x0 and a set of cones X1, . . . , Xm and also outputs a set of edges
of the graph (y1, x1), . . . , (ym, xm) that connect each cone set, xi ∈ Xi to the central
ball, yi ∈ X0. The central ball is created by invoking the decomposition algorithm with a
center x to obtain a cluster whose radius is in the range [(1/2)radx0(X) . . . (5/8)radx0(X)].
Each cone setXi is created by invoking the decomposition algorithm on the “cone-metric”
obtained from x0, xi. Informally, a ball in the cone-metric around xi with radius r is the
set of all points x such that d(x0, xi) + d(xi, x) − d(x0, x) ≤ r. Hence each cone Xi is
a ball whose center is xi in some appropriately defined “cone-metric”. The radius of
each ball in the cone metric is chosen to be ≈ τ kradx0(X) where τ < 1 is some fixed
constant and k is the depth of the recursion. Unfortunately, at some stage the radius
may be too small for the decompose algorithm to preform well enough. In such cases we
must reset the parameters that govern the radius of the cones. (in the next bullet, we
will define more accurately how the recursion is performed and when this parameter of a
cluster may be reset). The main property of this star decomposition is that for any point
x ∈ Xi, the distance to the center x0 does not increase by too much. More formally,
dX0∪{(yi,xi)}∪Xi

(x0, x)/d(x0, x) ≤
∏

j≤k(1 + τ j) where k is the depth of the recursion.
Informally, this property is used in order to obtain a constant blowup in the diameter of
each cluster in the final spanning tree.

3. Recursive application of the star partition. As mentioned in the previous bullet,
the radius of the balls in the cone metric are exponentially decreasing. However at certain
stages in the recursion, the cone radius becomes too small and the parameters governing
the cone radius must be reset. Clusters in which the parameters need to be restarted
are called reset clusters. The two parameters that are associated with a reset cluster
X are n = |X|, and Λ = rad(X). Specifically, a cluster is called a reset cluster if its
size relative to the size of the last reset cluster is larger than some constant times its
radius relative to radius of the last reset cluster. In that case n and Λ are updated to
the values of the current cluster. This implies that reset clusters have small diameter,
hence their total contribution to the increase of radius is small. Moreover, resetting the
parameters allows the decompose algorithm to continue to produce the clusters with the
necessary properties to obtain the desired scaling distortion. Using resets, the algorithm
can continue recursively in this fashion until the spanning tree is formed.

Decompose algorithm. The decompose algorithm receives as input several param-
eters. First it obtains a pseudo-metric space (W, d) and point u (for the central ball
this is just the shortest-paths metric, while for cones, this pseudo metric is the so called

91



“cone-metric” which will be formally defined in the sequel). The goal of the decompose
algorithm is to partition W into a cluster which is a ball Z = B(u, r) and Z̄ = W \ Z.

Informally, this partition P is carefully chosen to maintain the scaling property: for
every ε, the number of pairs whose distortion is too large is “small enough”. Let Λ̂ be
a parameter corresponding to the radius of the cluster over which the star-partition is
performed. Pairs that are separated by the partition may risk the possibility of being
at distance Θ(Λ̂) in the constructed spanning tree. We denote by B̂ε(P ) the number of
pairs that may be distorted by at least Ω(

√
1/ε) if the distance between them will grow

to Λ̂. There are several parameters that control the number of pairs in B̂ε(P ). Given a
parameter n ≥ |W | which corresponds to the size of the last reset cluster containingW , we
expect the number of “bad” pairs for a specific value of ε to be at most O(ε|Z| ·(n−|Z|)).
To allow to control this bound even tighter we have an additional parameter β so that
the partition P will have the property that B̂ε(P ) = O(ε|Z| · (n − |Z|) · β). However,
if we insist that this property holds true for all ε we cannot maintain a small enough
bound on the maximum value for the radius r. Since this value determines the amount
of increase in the radius of the cluster, we would like to be able to bound it. Therefore,
we keep another parameter, denoted εlim. That is, the partition P will be good only for
those values of ε satisfying ε ≤ εlim.

The radius r of the ball is controlled by the parameters Λ̂, θ and a value α ≤ √
εlim.

The guarantee is that r ∈ [θΛ̂, (θ + α)Λ̂]. Recall that Λ̂, corresponds to the radius of
the cluster over which the star-partition is performed. For the central ball of the star-
partition θ is fixed to 1/2 and for the star’s cones θ is fixed to 0. Indeed, as indicated
above, the value of εlim determines the increase in the radius of the cluster by setting the
value for α. This cannot, however, be set arbitrarily small, in order to satisfy all of the
partition’s properties, and so εlim must be set above some minimum value of |W |/(n · β).
Intuitively, we can only keep α small if |W | � n.

Let us explain now how the decompose algorithm will be used within our overall
scheme. The parameter β is chosen such that it is bounded by µk where µ < 1 is some
fixed constant and k is the depth of the recursion from the last reset cluster. There will
be three types of ways to count distorted pairs: Our decompose algorithm generates a
parameter ε̄ for each cluster it cuts, which distinguishes small and large values of epsilon.

1. For each ε < ε̄ the notation B̂ε(P ) for a partition P = (S, Ŝ) will stand for the
number of pairs that may be distorted by the partition P , informally it consists
of all the pairs (u, v) such that at least one of u, v is of distance less than ≈

√
εΛ̂

from the cut. The property obtained by the decompose algorithm is that Bε(P ) is
at most O(ε|Z| · (n− |Z|) · µk).

2. For ε̄ ≤ ε ≤ εlim if a point u is close enough ( ≈
√
εΛ̂) to the partition we simply

throw away all pairs (u, v) such that d(u, v) < c
√
εΛ̂ for some constant c, these are

all the pairs that can be distorted by more than O(
√

1/ε), our decompose scheme
will guarantee that there are only ≈ εn such points for any fixed u ∈ X. Although
the metric induced by the graph changes after each cut is made, distances can only
increase, hence once we throw for a point u all of its close neighbors we will not have
any other distorted pair that contains u in the next cuts and in the depth of the
recursion - this count is done only once per point in the whole recursive algorithm.
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3. For ε that are larger than εlim, we show that the number of points in the current
cluster is less than an ε fraction of the number of points in the last reset cluster,
hence we can discard all the pairs in such clusters and the total sum of all such
discarded pairs is small.

Assuming X is partitioned to X0, X1, . . . , Xm by invoking the decompose algorithm that
generates partitions P1, . . . , Pm, then define recursively

Bε(X) =
m∑

j=1

B̂ε(Pi) +
m∑

j=0

Bε(Xi)

where the base case is when |X| = 1, or when ε > εlim in such a case Bε(X) =
∣∣(X

2

)∣∣.
Note that the definition of Bε(X) ignores the pairs thrown due to the second bullet, for
ε̄ ≤ ε ≤ εlim. Indeed those pairs will be accounted for separately.

Now, if X is not a reset cluster then |X|/n is small compared to the ratio of its radius
and the radius of the last reset cluster. We show that this ratio drops exponentially,
bounded by (5

8
)k, where k is the depth of the recursion since the last reset cluster. By

letting εlim = |X|/(n ·β), and as µ < 5
8
, we maintain that α ≤ √

εlim = τ k for some τ < 1,
as we desired.

We now turn to the formal description of the algorithm and its analysis. We will
make use of the following predefined constants: c = 2e, c′ = e(2e + 1), ĉ = 44, and
C = 16

√
c · ĉ. Finally, the distortion is given by Ĉ = 150C · c′. The exact properties of

the decomposition algorithm is captured by the following Lemma:

Lemma 8.1. Given a metric space (W, d), a point u ∈ W and parameters n ≥ |W |,
Λ̂ > 0, and β, θ > 0, there exists an algorithm decompose((W, d), u, Λ̂, θ, n, εlim, β) that
computes a partition P = (Z; Z̄) of W such that Z = B(W,d)(u, r) and r/Λ̂ ∈ [θ, θ + α]

where α =
√
εlim/C. It also returns a parameter ε̄ ≤ εlim where εlim ≥ |W |

β·n . Let Sε(P ) =

B(W,d)

(
u, r +

√
ε·Λ̂

150C

)
\ B(W,d)

(
u, r −

√
ε·Λ̂

150C

)
and for ε ≤ ε̄ let B̂ε(P ) = |S|2. The partition

has the property that for any ε ∈ (0, ε̄]:

B̂ε(P ) ≤ ε|Z| · (n− |Z|) · β.

For any ε ∈ [ε̄, εlim] and for any x ∈ Sε(P ),∣∣∣∣∣B(W,d)

(
x,

√
ε · Λ̂

150C

)∣∣∣∣∣ ≤ εn/8.

Star-Partition algorithm. Consider a cluster X with center x0 and parameters n,Λ.
Recall that parameters n,Λ are the number of points and the radius (respectively) of
the last reset cluster. A star-partition, partitions X into a central ball X0, and cone-
sets X1, . . . , Xm and edges (y1, x1), . . . , (ym, xm), the value m is determined by the star-
partition algorithm when no more cones are required. Each cone-set Xi is connected to
X0 by the edge (yi, xi), yi ∈ X0, xi ∈ Xi. Denote by P0 the partition creating the central
ball X0 and by {Pi}m

i=1 the partitions creating the cones. In order to create the cone-set
Xi use the decompose algorithm on the cone-metric `x0

xi
defined below.
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Definition 8.2 (cone metric1). Given a metric space (X, d) set Y ⊂ X, x ∈ X, y ∈ Y
define the cone-metric `xy : Y 2 → R+ as `xy(u, v) = |(dX(x, u) − dY (y, u)) − (dX(x, v) −
dY (y, v))|.

Note that B(Y,`x
y)(y, r) = {v ∈ Y |dX(x, y) + dY (y, v)− dX(x, v) ≤ r}.

(X0, . . . , Xm, (y1, x1), . . . , (ym, xm)) = star-partition(X, x0, n,Λ):

1. Set i = 0 ; β = 1
ĉ

(
radx0 (X)

Λ

)1/4

; εlim = |X|/(βn); Λ̂ = radx0(X);

2. (Xi, Yi) = decompose((X, d), x0, Λ̂, 1/2, εlim, β);

3. If Yi = ∅ set m = i and stop; Otherwise, set i = i+ 1;

4. Let (xi, yi) be an edge in E such that yi ∈ X0, xi ∈ Yi−1;

5. Let ` = `x0
xi

be cone-metric of x0, xi on the subspace Yi−1;

6. (Xi, Yi) = decompose((Yi−1, `), xi, Λ̂, 0, εlim, β);

7. goto 3;

Figure 8.1: star-partition algorithm

Hierarchical-Star-Partition algorithm. Given a graph G = (X,E, ω), create the
tree by choosing some x ∈ X, setting X as a reset cluster and calling:
hierarchical-star-partition(X, x, |X|, radx(X)).

T = hierarchical-star-partition(X, x, n,Λ):

1. If |X| = 1 set T = X and stop.

2. (X0, . . . , Xm, (y1, x1), . . . , (ym, xm)) = star-partition(X, x, n,Λ);

3. For each i ∈ [1, . . . ,m]:

4. If |Xi|
n
≤ c

radxi (Xi)

Λ
then Ti = hierarchical-star-partition(Xi, xi, n,Λ);

5. Otherwise, Xi is a reset cluster,
Ti = hierarchical-star-partition(Xi, xi, |Xi|, radxi

(Xi));

6. Let T be the tree formed by connecting T0 with Ti using edge (yi, xi) for each
i ∈ [1, . . . ,m];

Figure 8.2: hierarchical-star-partition algorithm

1In fact, the cone-metric is a pseudo-metric.
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Algorithm Analysis

The hierarchical star-partition of G = (X,E, ω) naturally induces a laminar family F ⊆
2X . Let G be the rooted construction tree whose nodes are sets in F , F ∈ F is a parent
of F ′ ∈ F if F ′ is a cluster formed by the partition of F . Observe that the spanning tree
T obtained by our hierarchical star decomposition has the property that every F ∈ F
corresponds to a sub tree T [F ] of T . Let R ⊆ F be the set of all reset clusters. For each
F ∈ F , let GF be the sub-tree of the construction tree G rooted at F , that contains all
the nodes X whose path to F (excluding F and X) contains no node in R. For F ∈ F
let R(F ) ⊆ R be the set of reset cluster which are descendants of F in GF (These are the
leaves of the construction sub-tree GF rooted at F ). In what follows we use the following
convention on our notation: wheneverX is a cluster in G with center point x0 with respect
to which the star-partition of X has been constructed, we define rad(X) = radx0(X). We
first claim the following bound on α produced by the decompose algorithms.

Claim 8.5. Fix F ∈ F and GF . Let X ∈ GF \ R(F ), such that dG(X,F ) = k. By our
construction, in each iteration of the partition algorithm the radius decreases by a factor
of at least 5

8
, hence rad(X) ≤ rad(F ) · (5

8
)k.

Proof. For any cluster F , the radius of the central ball in the star decomposition of F is
at most ((1/2) + α)rad(F ). Since the radius of this ball is also at least (1/2)rad(F ) then
the radius of each cone is at most ((1/2) + 2α)rad(F ) as well (see [EEST05] for a proof).
It remains to show that α ≤ 1/16. Let Y ∈ R such that X ∈ GY . Since C = 16

√
c · ĉ

then α =
√
εlim/C =

√
|X|
c|Y |

(
rad(Y )
rad(X)

)1/4

/16 ≤ 1
16

√(
rad(X)
rad(Y )

)3/4

≤ 1
16

.

We now show that the spanning tree of each cluster increases its diameter by at most
a constant factor. Recall that c′ = e(2e+ 1).

Lemma 8.2. For every F ∈ F and T [F ] ⊆ T we have rad(T [F ]) ≤ c′ · rad(F )).

Proof. Let Y ∈ R. We first prove by induction on the construction tree G that for every
X ∈ GY with t = dG(X, Y ) we have

rad(T [X]) ≤
∏
j≥t

(1 +
1

8
(
7

8
)j)

rad(X) +
∑

R∈R(Y )∩GX

rad(T [R])

 (8.1)

Fix some cluster X ∈ GY , such that t = dG(X, Y ) and assume the hypothesis is true for all
its children in GY . If X is a leaf of GY then it is a reset cluster and the claim trivially holds
(sinceX ∈ R(Y )∩GX). Otherwise, assume we partitionX intoX0, . . . , Xm. Let i ∈ [1,m]
such that Xi is the cluster such that ω(yi, xi)+rad(T [Xi]) is maximal, hence rad(T [X]) ≤
rad(T [X0])+ω(yi, xi)+rad(T [Xi]). There are four cases to consider depending on whether
X0 and Xi belong to R. Here we show the case of X0, Xi 6∈ R, the other cases are similar
and easier. Using Claim 8.5 we obtain the following bound on the increase in radius:

2α ≤ 1/8

√(
rad(X)
rad(Y )

)3/4

≤ 1/8(5/8)3t/8 ≤ 1/8(7/8)t. It follows that rad(X0) + ω(yi, xi) +

rad(Xi) ≤ rad(X)(1+2α) ≤ rad(X)(1+1/8(7/8)t). By the induction hypothesis we know
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that rad(T [X0]) ≤
∏

j≥t+1(1+1
8
(7

8
)j)(rad(X0)+

∑
R∈R(Y )∩GX0

rad(T [R])) and rad(T [Xi]) ≤∏
j≥t+1(1 + 1

8
(7

8
)j)(rad(Xi) +

∑
R∈R(Y )∩GXi

rad(T [R])), hence

rad(T [X]) ≤ rad(T [X0]) + ω(yi, xi) + rad(T [Xi])

≤
∏

j≥t+1

(1 +
1

8
(
7

8
)j)

rad(X0) + ω(yi, xi) + rad(Xi) +
∑

R∈R(Y )∩GX

rad(T [R])


≤

∏
j≥t+1

(1 +
1

8
(
7

8
)j)

rad(X)(1 +
1

8
(
7

8
)t) +

∑
R∈R(Y )∩GX

rad(T [R])


≤

∏
j≥t

(1 +
1

8
(
7

8
)j)

rad(X) +
∑

R∈R(Y )∩GX

rad(T [R])

 .

This completes the proof of (8.1). Now we continue to prove the Lemma. First, we prove
by induction on the construction tree G that the Lemma holds for the set of reset clusters.
In fact we show a stronger bound, which is necessary in order to obtain the bound for
non-reset clusters. Recall that c = 2e. We show that for every cluster Y ∈ R we have

rad(T [Y ]) ≤ c · rad(Y ) (8.2)

Assume the induction hypothesis is true for all descendants of Y in R. In particular,
for all R ∈ R(Y ), rad(T [R]) ≤ c · rad(R). Recall that R becomes a reset cluster since

rad(R) ≤ rad(Y )
c·|Y | |R|, hence

∑
R∈R(Y ) rad(R) ≤ rad(Y )/c. Using (8.1) we have that

rad(T [Y ]) ≤
∏
j≥0

(1 +
1

8
(
7

8
)j)

rad(Y ) +
∑

R∈R(Y )

rad(T [R])


≤ (e

1
8

P
j≥0( 7

8
)j

)(rad(Y ) + c · rad(Y )/c)

≤ e · 2rad(Y ) = c · rad(Y ).

Finally, we show the Lemma holds for all the other clusters. Let F ∈ F \ R and
Y ∈ R such that F ∈ GY . Let t = dG(F, Y ). Note that

∑
R∈R(Y )∩GF

|R| = |F |. Since

F /∈ R we have rad(Y )
c|Y | ≤ rad(F )

|F | hence∑
R∈R(Y )∩GF

rad(R) ≤ rad(Y )

c|Y |
∑

R∈R(Y )∩GF

|R| ≤ rad(F ).

By (8.1) and (8.2) we get

rad(T [F ]) ≤
∏
j≥t

(1 +
1

8
(
7

8
)j)

rad(F ) +
∑

R∈R(Y )∩GF

rad(T [R])


≤ e ·

rad(F ) + c
∑

R∈R(Y )∩GF

rad(R)


≤ e · rad(F )(c+ 1) = c′ · rad(F ),

proving the Lemma.
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We now proceed to bound for every ε the number of pairs with distortion Ω(
√

1/ε),
thus proving the scaling distortion of our constructed spanning tree. We begin with some
definitions that will be crucial in the analysis.

Definition 8.3. For each ε ∈ (0, 1] and R ∈ R let K(R, ε) = {F ∈ GR | |F | < ε/ĉ · |R|}.

Hence, a cluster is in K(R, ε) if it contains less than ε/ĉ fraction of the points of R.
Informally, when counting the badly distorted edges for a given ε, whenever we reach a
cluster in K(R, ε) we count all its pairs as bad. If X ∈ GR then let K(X, ε) = K(R, ε)∩GX .
For R ∈ R let GR,ε be the sub-tree rooted at R, that contains all the nodes X whose path
to R (excluding R and X) contains no node in R ∪ K(R, ε). Observe that GR,ε is a sub
tree of GR.

In the following lemma we bound Bε(R) for every reset cluster R, for any value of ε.
Note that the set Bε(R) does not count the distorted pairs for values of ε ∈ [ε̄, εlim], those
will be accounted for separately, as they occur only once for every point throughout the
recursion.

Lemma 8.3. For any R ∈ R, ε ∈ (0, 1] we have that Bε(R) ≤ ε
(

R
2

)
/2.

Proof. Fix some ε ∈ (0, 1]. Fix F ∈ R. In order to prove the claim for F , we will first
prove the following inductive claim for all X ∈ GF . Let t = dG(X,F ). Let E(X) =((

X
2

)
\
⋃

R∈R(X)

(
R
2

)
∪
⋃

K∈K(X,ε)

(
K
2

))
.

Bε(X) ≤ 2ε/ĉ
∑
i≥t

(9/10)i · |E(X)|+
∑

R∈R(F )∩GX

Bε(R) +
∑

K∈K(F,ε)∩GX

Bε(K). (8.3)

The base of the induction, where X is a leaf in GF , i.e. X ∈ R(F ) ∪ K(F, ε), is
trivial. Assume the claim holds for all the children X0, . . . , Xm of X. Let P = {Pi}m

i=0

be the star-partition of X, where Pi = (Xi, Yi), Yi = ∪m
j=i+1Xj. Note that the value

of εlim is equal for all the partitions Pi, however the value of ε̄ = ε̄(i) returned by the
decompose algorithm can be different for the partitions {Pi}. Now, since X /∈ K(F, ε)
then ε ≤ ĉ · |X|/|F | ≤ 1/β · |X|/|F | = εlim. Hence we can apply Lemma 8.1 to deduce a

bound on Bε(Pi). By Claim 8.5 we have β = 1
ĉ

(
rad(X)
rad(F )

)1/4

≤ 1
ĉ
(5

8
)t/4. From Lemma 8.1 we

obtain (if it is the case that in some partition Pi, ε ≥ ε̄(i) then by definition B̂ε(Pi) = 0)

B̂ε(P ) =
m∑

i=0

B̂ε(Pi) ≤ ε/ĉ · (5/8)t/4

m∑
i=0

|Xi||F \Xi| ≤ 2ε/ĉ · (9/10)t|E(X)|.
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Using the induction hypothesis we get that

Bε(X)

≤ B̂ε(P ) +
m∑

j=0

Bε(Xj)

≤ 2ε/ĉ · (9/10)t|E(X)|+
m∑

j=0

2ε/ĉ · |E(Xj)|
∑

i≥t+1

(9/10)i+
∑

R∈R(F )∩GXj

Bε(R)+
∑

K∈K(F,ε)∩GXj

Bε(K)


≤ 2ε/ĉ · (9/10)t|E(X)|+ 2ε/ĉ · |E(X)|

∑
i≥t+1

(9/10)i +
∑

R∈R(F )∩GX

Bε(R) +
∑

K∈K(F,ε)∩GX

Bε(K)

≤ 2ε/ĉ
∑
i≥t

(9/10)i|E(X)|+
∑

R∈R(F )∩GX

Bε(R) +
∑

K∈K(F,ε)∩GX

Bε(K),

which proves the inductive claim. We now prove the Lemma by induction on the con-
struction tree G. Let F ∈ R. By the induction hypothesis Bε(R) ≤ ε

(
R
2

)
/2 for ev-

ery R ∈ R(F ). Observe that if K ∈ K(F, ε) then we discard all pairs in K. Hence
Bε(K) ≤ |K|2 ≤ 1

ĉ
· ε|F | · |K|. Recall that ĉ = 44. From (8.3) we obtain

Bε(F )

≤ 2ε/44
∑
i≥0

(9/10)i · |E(F )|+ ε/2
∑

R∈R(F )

(
R

2

)
+

∑
K∈K(F,ε)

ε/44 · |F | · |K|

≤

20ε/44 · |E(F )|+ 20ε/44
∑

R∈R(F )

(
R

2

)+
2ε/44

∑
R∈R(F )

|R| · (|R| − 1)/2 + ε/44 · |F |
∑

K∈K(F,ε)

|K|


≤ 20ε/44

(
|F |
2

)
+ ε/44 · |F |

 ∑
R∈R(F )

(|R| − 1) +
∑

K∈K(F,ε)

|K|


≤ 20ε/44

(
|F |
2

)
+ ε/44 · |F |(|F | − 1)

= ε/2

(
|F |
2

)
,

where the third inequality follows from the definition of E(X) and the forth from the
fact that for each K ∈ K(F, ε), R ∈ R(F ) we have K ∩R = ∅.

Proof of Theorem 24. First we show that the total number of pairs discarded by our
algorithm is at most ε

(
n
2

)
for any value of ε. Indeed, applying Lemma 8.3 on the original

graph G suggests that Bε(G) ≤ ε
(

n
2

)
/2, by Lemma 8.1 we discard at most εn/8 additional

pairs for every x ∈ G, and hence at most εn2/8 ≤ ε
(

n
2

)
/2 additional pairs.

It remains to see that for pairs that were not discarded the distortion is O
(√

1/ε
)
.

Note that the definition of B̂ε(Pi) for the partition Pi = (Z; Z̄) when cutting some
cluster X with radius Λ̂, suggests that if a pair x, y ∈ X is not included, it must be
that either: for one of x, y, w.l.o.g x, we have that x /∈ Sε(u), or ε > ε̄. For the first
case, note that since cone distances are always smaller than the usual metric distances,
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if indeed x, y are separated by the partition, w.l.o.g x ∈ Z and y ∈ Z̄, it must be that
d(x, y) ≥

√
ε · Λ̂/(150C). By Lemma 8.2 we have that the radius of the tree created from

X is bounded by c′ · Λ̂, and it is easy to see that dT (x, y) ≤ 2rad(T ) ≤ c′ · Λ̂, and we

have distortion of O
(√

1/ε
)
. If it is the case that ε > ε̄, then if x ∈ Sε(Pi) we discard all

pairs containing x with a point in B(x,
√
ε · Λ̂/(150C)), and by the same argument the

distortion for all the other pairs is small enough.

Finally, we complete the proof of Lemma 8.1 stating the properties of our generic
decompose algorithm.

Proof of Lemma 8.1. In what follows all the balls are with respect to the metric (W, d)
(which may be a cone pseudo-metric). The proof is very similar to the proof of the
ultrametric case, the major difference is that we cannot choose the center point u to
satisfy that any possible ball around it will contain less than half of the points, therefore
we need to consider two cases: If indeed a certain ball contains less than n/2 points,
we choose the radius in a similar manner to Claim 8.3, so that Z will be small enough.
Otherwise, the roles of Z and Z̄ switch, and we choose the radius so that Z̄ will be small
enough.

Case 1: |B(u, (θ + α/2)Λ̂)| ≤ n/2.

In this case let ε̂ = max{ε ∈ (0, εlim] | |B(u, (θ +
√

ε
4C

)Λ̂)| ≥ ε · β · n}. Let Ŝ =

[(θ +
√

ε̂
4C

)Λ̂, (θ +
√

ε̂
2C

)Λ̂), and S =
[(
θ +

√
ε̂

C

(
1
4

+ 1
25

))
Λ̂,
(
θ +

√
ε̂

C

(
1
2
− 1

25

))
Λ̂
]
.

Case 2: |B(u, (θ + α/2)Λ̂)| > n/2. In this case let ε̂ = max{ε ∈ [0, εlim] | |W \B(u, (θ +

α −
√

ε
4C

)Λ̂)| ≥ ε · β · n}. Let Ŝ = [(θ + α −
√

ε̂
2C

)Λ̂, (θ + α −
√

ε̂
4C

)Λ̂], and S =[(
θ+α−

√
ε̂

C

(
1
2
− 1

25

))
Λ̂,
(
θ+α−

√
ε̂

C

(
1
4

+ 1
25

))
Λ̂
]
.

We show that one can choose r ∈ S and define the partition P = (Z, Z̄), by Z = B(u, r)
such that the property of the Lemma holds with ε̄ = 32ε̂. Fix any r ∈ S. For ε ∈ [ε̄, εlim]
let x ∈ Sε(P ).

Case 1: Note that since d(u, x) ≤ r+
√

εΛ̂
150C

we have that B
(
x,

√
εΛ̂

150C

)
⊆ B

(
u, r + 2

√
εΛ̂

150C

)
⊆

B
(
u,
(
θ +

√
ε

8C

)
Λ̂
)
, we used that r <

(
θ +

√
ε̂

2C

)
Λ̂ ≤

(
θ +

√
ε/32

2C

)
Λ̂. By the

maximality of ε̂ and since ε/16 ∈ [ε̂, εlim] we have that
∣∣∣B (u,(θ +

√
ε

8C

)
Λ̂
)∣∣∣ =∣∣∣∣B(u,(θ +

√
ε/16

4C

)
Λ̂

)∣∣∣∣ ≤ εβn/16 < εn/8.

Case 2: By a similar argument to the previous case we have that

B
(
x,

√
εΛ̂

150C

)
⊆W\B

(
u, d(u, x)−

√
εΛ̂

150C

)
⊆W\B

(
u, r − 2

√
εΛ̂

150C

)
⊆W\B

(
u,
(
θ + α−

√
ε

8C

)
Λ̂
)
,

and the maximality of ε̂ gives that
∣∣∣W \B

(
u,
(
θ + α−

√
ε

8C

)
Λ̂
)∣∣∣ ≤ εβn/16 < εn/8.

We next show the property of the Lemma hold for all ε ∈ (0, 32ε̂]. We will prove
the claim for Case 1. The argument for Case 2 is the analogous. As before we define
Q = {w | d(u,w) ∈ Ŝ}. Now we have
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Claim 8.6. |Q| ≤ 4 · ε̂ · β · n.

Proof. We have Q ⊆ B(u, (θ +
√
ε̂/(2C))Λ̂). We distinguish between 2 cases: If ε̂ ≤

εlim/4 then |B(u, (θ +
√

4ε̂/(4C))Λ̂)| ≤ 4ε̂ · β · n (by the maximality of ε̂). Otherwise,
ε̂ ∈ (εlim/4, εlim]. In this case |Q| ≤ |W | ≤ εlim · β · n ≤ 4ε̂ · β · n.

As before we will choose some r ∈ S and the partition P will be Z = B(u, r),
Z̄ = W \ Z. It is easy to check that for any r ∈ S we get ε̂ · n · β ≤ |Z| ≤ n/2. We
now find r ∈ S which satisfy the property of the Lemma for all 0 < ε ≤ 32ε̂: For any
r ∈ S and ε ≤ 32ε̂ let Sr(ε) = [r −

√
εΛ̂/(150C)), r +

√
εΛ̂/(150C))], s(ε) =

√
εΛ̂/(75C)

and let Qr(ε) = {w | d(u,w) ∈ Sr(ε)}. Note that the length of the interval S is given by
s = 17/(100C)

√
ε̂Λ̂. We say that properly Ar(ε) holds if cutting at radius r is “good”

for ε, formally: Ar(ε) iff |Qr(ε)| ≤
√
ε · ε̂/2 · n · β. Notice that only pairs (x, y) such that

x, y ∈ Qr(ε) may be distorted by more than 150C
√

1/ε.

Claim 8.7. There exists some r ∈ S such that properly Ar(ε) holds for all ε ∈ (0, 32ε̂].

Proof. As the proof of Claim 8.3 goes, we conduct exactly the same iterative process that
greedily deletes the “worst” interval in S, which are {Srj

(εj)}t
j=1, and we remain with

It ⊆ S. We now argue that It 6= ∅. As before we have
∑t

j=1 |Qrj
(εj)| ≤ 2|Q| ≤ 8ε̂ · β · n.

Recall that since Arj
(εj) does not hold then for any 1 ≤ j ≤ t : |Qrj

(εj)| >
√
εj · ε̂/2 ·β ·n

which implies that
∑t

j=1

√
εj < 12

√
ε̂. On the other hand, by definition

t∑
j=1

s(εj) ≤
t∑

j=1

√
εj∆/(75C) ≤ 12/(75C) ·

√
ε̂∆ = 16/(100C) ·

√
ε̂∆.

Since s = 17/(100C) ·
√
ε̂∆ then indeed It 6= ∅ so any r ∈ It satisfies the condition of the

claim.

Claim 8.7 shows that for any ε ∈ (0, 32ε̂] we have

B̂ε(P ) ≤ ε · ε̂/2 · (n · β)2 ≤ ε · β · |Z| · (n− |Z|),

which concludes the proof of the lemma.

8.3 Scaling Probabilistic Embedding into Ultramet-

rics

In this section we study scaling probabilistic embedding into trees, and show that a slight
variation of a result of [FRT03] gives a scaling distortion version. A full proof is given
for completeness. In particular the following theorem is proven.

Theorem 25. For any n-point metric space (X, d) there exists a probabilistic embedding
into a distribution over ultrametrics with coarse scaling distortion O(log 2

ε
).
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Proof. Let ∆ = ∆(X). For every i ∈ N let Pi be a ∆2−i bounded probabilistic partition
given by Corollary 3.1, and let ηi be as in the corollary. We build an ultrametric U by
defining a labelled tree (recall Definition 8.1), in the following manner. For every i > 1 we
iteratively alter Pi into P ′

i by replacing each C ∈ Pi with the clusters {C∩D | D ∈ Pi−1}.
Each cluster C ∈ P ′

i defines a node in the tree, its parent is the cluster in Pi−1 that contains
it, and the label of every cluster in P ′

i is ∆2−i. The root has label ∆ and is connected to
all the clusters in P1. Finally, leaves are formed by clusters that contain only one node.

For any u, v ∈ G(ε) let t be the integer such that ∆2−(t+1) ≤ d(u, v) < ∆2−t. Let

ρi(u) = ρ(u, 2∆2−i, 2, 1/32). Choose for each 1 ≤ i ≤ t − 6, δi = exp{−26d(u,v) ln ρi(u)
∆2−i }

and note that δi ≤ 1. Recall that in Corollary 3.1 ηi(u) = min
{

ln(1/δi)
26 ln ρi(u)

, 2−6
}

= d(u,v)
∆2−i

(because d(u,v)
∆2−i ≤ 2−6, and if ρi(u) = 1 we assume that 0/0 = 1).

If it is the case that δi ≥ 1/2 we may use the padding property shown in Corollary 3.1
and argue that for any 1 ≤ i ≤ t− 6

Pr[B(u, d(u, v)) * Pi(u)] = Pr[B(u, ηi(u)∆2−i) * Pi(u)] ≤ 1− δ ≤ 26d(u, v) ln ρi(u)

∆2−i
,

however if δ < 1/2 it will imply that ∆2−i < 26d(u, v) ln(ρi(u))/ ln 2 ≤ 27d(u, v) ln ρi(u)
and we will use that Pr[B(u, d(u, v)) * Pi(u)] ≤ 1. Finally write

E[dU(u, v)] ≤
t∑

i=1

Pr[B(u, d(u, v)) * Pi(u)]∆2−i

≤
t∑

i=t−5

∆2−i +
t−6∑
i=1

27d(u, v) ln ρi(u)

≤ 27d(u, v) + 210 ln

(
n

|B(u,∆2−t)|

)
· d(u, v)

= O

(
ln

2

ε

)
· d(u, v) ,

where the third inequality follows by a telescopic sum argument, similar arguments ap-
peared before (Section 4.1).
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Chapter 9

Partial Embedding, Scaling
Distortion and the `q-Distortion

In this section we show that the relation between scaling distortion and the `q-distortion.
The idea is to consider the values of ε which are some exponentially decreasing series (like
all powers of 1/2), then in the formula for the `q-distortion, partition the pairs according
to which ”ε-group” they belong to.

Lemma 9.1. Given an n-point metric space (X, dX) and a metric space (Y, dY ). If there
exists an embedding f : X → Y with scaling distortion α then for any distribution Π over(

X
2

)
:1

`q-dist(Π)(f) ≤

(
2

∫ 1

1
2(

n
2)
−1

Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)1/q

+ α(Φ̂(Π)−1).

Proof. We may restrict to the case Φ(Π) ≤
(

n
2

)
. Otherwise Φ̂(Π) >

(
n
2

)
and therefore

`q-dist(Π)(f) ≤ dist(f) ≤ α(Φ̂(Π)−1). Recall that

`q-dist(Π)(f) = ‖distf (u, v)‖(Π)
q = EΠ[distf (u, v)

q]1/q.

Define for each ε ∈ (0, 1) the set G(ε) of the (1 − ε)
(

n
2

)
pairs u, v of smallest distortion

distf (u, v) over all pairs in
(

X
2

)
. Since f is a (1− ε)-partial embedding for any ε ∈ (0, 1)

we have that for each {u, v} ∈ G(ε), distf (u, v) ≤ α(ε). Let Gi = G(2−iΦ̂(Π)−1) \
1Assuming the integral is defined. We note that lemma is stated using the integral for presentation

reasons.
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G(2−(i−1)Φ̂(Π)−1). Since α is a monotonic non-increasing function, it follows that

EΠ[distf (u, v)
q] =

∑
u 6=v∈X

π(u, v)distf (u, v)
q

≤
∑

{u,v}∈G(Φ̂(Π)−1)

π(u, v)α(Φ̂(Π)−1)q +

blog((n
2)Φ̂(Π)−1)c∑
i=1

∑
{u,v}∈Gi

π(u, v)α(2−iΦ̂(Π)−1)q

≤
∑

u 6=v∈X

π(u, v) · α(Φ̂(Π)−1)q +

blog((n
2)Φ̂(Π)−1)c∑
i=1

|Gi| ·

(
Φ̂(Π)(

n
2

) ∑
u 6=v∈X

π(u, v)

)
· α(2−iΦ̂(Π)−1)q

≤ α(Φ̂(Π)−1)q +

blog((n
2)Φ̂(Π)−1)c∑
i=1

2−i · α(2−iΦ̂(Π)−1)q

≤ α(Φ̂(Π)−1)q +

(
2

∫ 1

1
2(

n
2)
−1

Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)
.

In the next lemma we show that a similar relation holds between scaling distortion
and the distortion of the lq norm, provided that the scaling distortion is coarse.

Lemma 9.2 (Coarse Scaling Distortion vs. Distortion of `q-Norm). Given an n-point
metric space (X, dX) and a metric space (Y, dY ). If there exists an embedding f : X → Y
with coarse scaling distortion α then for any distribution Π over

(
X
2

)
:2

distnorm(Π)
q (f) ≤

(
2

∫ 1

1
2(

n
2)
−1

Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)1/q

+ α(Φ̂(Π)−1).

Proof. We may restrict to the case Φ(Π) ≤
(

n
2

)
. Otherwise Φ̂(Π) >

(
n
2

)
and therefore

distnorm(Π)
q (f) ≤ dist(f) ≤ α(Φ̂(Π)−1). Recall that

distnorm(Π)
q (f) =

EΠ[dY (f(u), f(v))q]1/q

EΠ[dX(u, v)q]1/q
.

For ε ∈ (0, 1) recall that Ĝ(ε) = {{x, y} ∈
(

X
2

)
|d(x, y) ≥ max{rε/2(x), rε/2(y)}}. Since

(f, Ĝ) is a (1−ε)-partial embedding for any ε ∈ (0, 1) we have that for each {u, v} ∈ Ĝ(ε),
distf (u, v) ≤ α(ε). Let Ĝi = Ĝ(2−iΦ̂(Π)−1) \ Ĝ(2−(i−1)Φ̂(Π)−1). We first need to prove
the following property:∑

{u,v}∈Ĝi

dX(u, v)q ≤ 2−iΦ̂(Π)−1
∑

u 6=v∈X

dX(u, v)q.

2Assuming the integral is defined.
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To prove this fix some u ∈ X. Let S = {v|{u, v} /∈ Ĝ(2−(i−1)Φ̂(Π)−1)}. Then S =
B(u, r2−iΦ̂(Π)−1(u)). Thus, |S| = 2−iΦ̂(Π)−1n and for each v ∈ S, v′ ∈ S̄ we have d(u, v) ≤
d(u, v′). It follows that:∑

v;u 6=v∈X

dX(u, v)q =
∑
v∈S

dX(u, v)q +
∑
v∈S̄

dX(u, v)q

≥ |S| ·
∑

v∈S dX(u, v)q

|S|
+ |S̄| ·

∑
v∈S dX(u, v)q

|S|
=

n

|S|
∑
v∈S

dX(u, v)q.

Since α is a monotonic non-increasing function, it follows that

EΠ[dY (f(u), f(v))q] =
∑

u 6=v∈X

π(u, v)dY (f(u), f(v))q

=
∑

u 6=v∈X

π(u, v)dX(u, v)qdistf (u, v)
q

≤
∑

{u,v}∈Ĝ(Φ̂(Π)−1)

π(u, v)dX(u, v)qα(Φ̂(Π)−1)q +

blog((n
2)Φ̂(Π)−1)c∑
i=1

∑
{u,v}∈Ĝi

π(u, v)dX(u, v)qα(2−iΦ̂(Π)−1)q

≤
∑

u 6=v∈X

π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q +

blog((n
2)Φ̂(Π)−1)c∑
i=1

∑
{u,v}∈Ĝi

dX(u, v)q · Φ̂(Π) · min
w 6=z∈X

π(w, z) · α(2−iΦ̂(Π)−1)q

≤
∑

u 6=v∈X

π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q +

blog((n
2)Φ̂(Π)−1)c∑
i=1

∑
u 6=v∈X

2−idX(u, v)q · min
w 6=z∈X

π(w, z) · α(2−iΦ̂(Π)−1)q

≤
∑

u 6=v∈X

π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q +

blog((n
2)Φ̂(Π)−1)c∑
i=1

∑
u 6=v∈X

π(u, v)dX(u, v)q · 2−i · α(2−iΦ̂(Π)−1)q

≤ EΠ[dX(u, v)q] ·

[
α(Φ̂(Π)−1)q +

(
2

∫ 1

1
2(

n
2)
−1

Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)]
.

9.1 Distortion of `q-Norm for Fixed q

Lemma 9.3. Let 1 ≤ q ≤ ∞. For any finite metric space (X, d), there exists an em-
bedding f from X into a star metric such that for any non-degenerate distribution Π:
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distnorm(Π)
q (f) ≤ 21/q(2q − 1)1/qΦ(Π)1/q. In particular: distnormq(f) ≤ 21/q(2q − 1)1/q ≤√

6.

Proof. Let w ∈ X be the point that minimizes (
∑

x∈X d(w, x)
q)1/q. Let Y = X ∪ {r}.

Define a star metric (Y, d′) where r is the center and for every x ∈ X: d′(r, x) = d(w, x).
Thus d′(x, y) = d(w, x) + d(w, y). Then

EΠ[d′(u, v)q] =
∑

u 6=v∈X

π(u, v)d′(u, v)q ≤
∑

u 6=v∈X

π(u, v) (d(u,w) + d(w, v))q

≤ (2q − 1)
∑

u 6=v∈X

π(u, v) (d(u,w)q + d(w, v)q)

≤ (2q − 1)
∑

u 6=v∈X

(
Φ(Π) min

s 6=t∈X
π(s, t)

)
· (d(u,w)q + d(w, v)q)

= (2q − 1) · Φ(Π) min
s 6=t∈X

π(s, t) · n− 1

2

(∑
u∈X

d(u,w)q +
∑
v∈X

d(w, v)q

)

≤ (2q − 1) · Φ(Π) · (n− 1) · 1

n

∑
z∈X

∑
u∈X

min
s 6=t∈X

π(s, t) · d(u, z)q

≤ 2(2q − 1) · Φ(Π) ·
∑

u 6=v∈X

π(u, v) · d(u, v)q

= 2(2q − 1) · Φ(Π) · EΠ[d(u, v)q].
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Chapter 10

Lower Bounds

10.1 Lower Bound for Weighted Average distortion

In this section we show that the upper bound on weighted average distortion is tight up
to a constant factor.

Theorem 29. For any 1 ≤ p ≤ 2 and any large enough n ∈ N there exists a metric
space (X, d) on n points, and a non-degenerate probability distribution Π on

(
X
2

)
, such

that any embedding f of X into Lp will have avgdist(Π)(f) = Ω(log(Φ(Π))) and there is a

non-degenerate probability distribution Π′ such that for any embedding f , distavg(Π)(f) =
Ω(log(Φ(Π′))).

Proof. Let G = (V,E) be a 3-regular expander graph on n vertices, i.e. the second
eigenvalue λ of the Laplace matrix of G is a universal constant independent of n, let (X, d)
be the usual shortest path metric on G. Let F =

(
V
2

)
\ E. Since for 1 ≤ p ≤ 2, lp space

embeds isometrically into l1 we may assume w.l.o.g that the embedding is f : X → l1.
We define Π as Z/n on all pairs in E and Z/n2 on all pairs in F , where Z = n

2(n−1)
≥ 1

2

is some normalizing factor. It follows that log(Φ(Π)) = log n. It is a easy fact that
at least 1/2 of the distances in F are at least blog3(n/2)c, hence

∑
(u,v)∈F d(u, v) ≥

|F |(log n)/4 ≥ n2(log n)/16 (for n large enough), and of course
∑

(u,v)∈E d(u, v) = 3n/2.

By [LLR95, Mat97] we know that if β is such that
∑

(u,v)∈E ‖f(u) − f(v)‖1 = β, then∑
(u,v)∈F ‖f(u)−f(v)‖1 ≤ O(λβn). Note that since f is an expansive embedding we have

that β ≥ Ω(n log n).

avgdist(Π)(f) =
∑

u,v∈X

Π(u, v)
‖f(u)− f(v)‖1

d(u, v)

=
∑

(u,v)∈E

Z‖f(u)− f(v)‖1

n
+
∑

(u,v)∈F

Z‖f(u)− f(v)‖1

n2 · d(u, v)

≥ Zβ

n
+
Z|F |
n2

≥ Ω(log n).

For the distortion of average we use the following distribution Π′ which is Z ′ on edges and
Z ′/n2 on (u, v) ∈ F , for some normalizing factor Z ′. In this case log(Φ(Π′)) = 2 log n.
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Then

distavg(Π)(f) =

∑
u,v∈X Π(u, v)‖f(u)− f(v)‖1∑

u,v∈X Π(u, v)d(u, v)

=

∑
(u,v)∈E Π(u, v)‖f(u)− f(v)‖1 +

∑
(u,v)∈F Π(u, v)‖f(u)− f(v)‖1∑

(u,v)∈E Π(u, v) +
∑

(u,v)∈F Π(u, v)d(u, v)

=

∑
(u,v)∈E ‖f(u)− f(v)‖1 + (1/n2)

∑
(u,v)∈F ‖f(u)− f(v)‖1∑

(u,v)∈E 1 + (1/n2)
∑

(u,v)∈F d(u, v)

≥
∑

(u,v)∈E ‖f(u)− f(v)‖1

2
∑

(u,v)∈E 1

≥ β

6n
≥ Ω(log n).

In the third equality the normalizing factor Z ′ cancels out, and the first inequality follows
since
(1/n2)

∑
(u,v)∈F d(u, v) ≤

∑
(u,v)∈E 1.

10.2 Lower Bound on Dimension

Theorem 28. For any fixed 1 ≤ p < ∞ and any θ > 0, if the metric of an n-node
constant degree expander embeds into Lp with distortion O(log1+θ n) then the dimension
of the embedding is Ω(log n/dlog(min{p, log n}) + θ log log ne).

Proof. Let G = (V,E) be a 3-regular expander graph on n vertices and let (X, d) the
shortest path metric on G. W.l.o.g let θ > 1/ log log n and assume that f : X → lp
is a non-expansive embedding with distortion C log1+θ n for a constant C. Note that
1
|E|
∑

(u,v)∈E ‖f(u) − f(v)‖p
p ≤ 1. Matousek [Mat97] extended a theorem of [LLR95] and

showed that there exists a number c = O(min{p, log n}p) where the constant in the big
O notation depends only on the expansion of G, such that 1

(n
2)

∑
u 6=v ‖f(u)− f(v)‖p

p ≤ c.

Define a graph H on {f(u)}u∈X where two vertices are connected iff ‖f(u)−f(v)‖p
p ≤

2c. There must be a vertex f(u) with degree at least n/2, as otherwise the average of all
pairs will be larger than c. Denote the set of f(u) and the neighbors of f(u) in H by M .

We claim that there exists a subset M ′ ⊆ M of cardinality at least
√
n/2 such that

for any x, y ∈M ′ we have d(x, y) ≥ (1/2) log3 n. To see this, greedily choose some point
x ∈M , add x to M ′, and remove all points z ∈M such that d(x, z) < (1/2) log3 n (note
that there are at most

√
n such points). Continue while M 6= ∅. Since there are n/2

points in M we must have chosen at least
√
n/2 points before M was exhausted.

Note that for any x, y ∈ M ′, it must be that (log−θ n)/(4C) ≤ ‖f(x) − f(y)‖p. This
holds since d(x, y) ≥ (log n)/4, so it cannot be contracted by the embedding to less than
(log−θ n)/(4C).

Now a volume argument suggests that having the points of M ′ in lp space requires
dimension at least Ω( log n

θ log log n
), by the following reasoning. Assume we embed into D

dimensions, the idea is that for all x ∈ M ′, by definition of M we have that f(x) ∈
B(f(u), (2c)1/p), let α = (2c)1/p = O(min{p, log n}). The ball B(f(u), α) can be covered

107



by 2D·log(4Cα/ log−θ n) balls of radius (log−θ n)/(4C), each of the small balls contains no more
than a single image of a point in M ′. As |M ′| ≥

√
n/2 it follows that 2O(D(log α+θ log log n)) ≥√

n/2, or D ≥ Ω( log n
log α+θ log log n

).

For 1 ≤ p ≤ O(logθ n) the the dimension required is at least Ω
(

log n
θ log log n

)
, which

implies that the trade-off between distortion and dimension given in Theorem 5 is tight
up to constant factors.

10.3 Partial Embedding Lower Bounds

Recall the definition of metric composition Definition 2.10 and composition closure Defi-
nition 2.11. The theorem we prove is

Theorem 30. Let Y be a target metric space, let X be a family of metric spaces nearly
closed under composition. If for any k > 1, there is Z ∈ X of size k such that any
embedding of Z into Y has distortion at least α(k), then for all n > 1 and 1

n
≤ ε ≤ 1

there is a metric space X ∈ X on n points such that the distortion of any (1− ε) partial

embedding of X into Y is at least α
(
d 1

4
√

ε
e
)
/2.

Proof. Given ε, let Z be a metric space on k = d 1
4
√

ε
e points, choose m = d4

√
εne for n

large enough, so that m is strictly bigger than 2k, let C = {Cx}x∈Z where each Cx ∈ X
with size m, and let X = Cβ[Z] be its β-composition space for β satisfying that X can

be embedded into some X̂ ∈ X with distortion 2.
Recall that a family of sets F is called almost disjoint if for any A,B ∈ F |A

⋂
B| ≤ 1.

Let H = {(x1, . . . , xk) : ∀i, xi ∈ Ci}, we shall use the following basic lemma, similar
arguments can be found in [BLMN05b].

Lemma 10.1. For any integer k let S1, . . . , Sk be disjoint sets of size m, where m/2 > k.
Then there is a family F of representatives, i.e. a family of almost disjoint sets of size k
containing a single element from each Si, such that |F| ≥ (m/2)2.

Proof. Let p be a prime satisfying m/2 < p ≤ m Assume any p elements in each Si are
numbered 0, 1, 2 . . . p−1 (we ignore the others). denote xij the j-th element in the set Si.
for each a, b ∈ Zp let

Aa,b = {xij : 1 ≤ i ≤ k, j = b+ ai (mod p)}

Aa,b is indeed a set of representatives - there is a unique 0 ≤ j ≤ p−1 for each i satisfying
the condition. Then take F = {Aa,b : a, b ∈ Zp}, |F| = p2.
Assume by contradiction that for Aa,b 6= Aa′,b′ we have |Aa,b

⋂
Aa′,b′| > 1, then there must

be xji, xj′i′ ∈ Aa,b

⋂
Aa′,b′ , then j = b + ai (mod p) = b′ + a′i (mod p) and j′ = b + ai′

(mod p) = b′+a′i′ (mod p). Now if a = a′ we have b = b′ (since p is prime), contradiction.
otherwise w.l.o.g assume a′ > a

b+ ai = b′ + a′i (mod p)

b = b′ + (a′ − a)i (mod p)

(b′ + (a′ − a)i) + ai′ = b′ + a′i′ (mod p)

(a′ − a)i = (a′ − a)i′ (mod p)
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and since a 6= a′ we have i = i′ - contradiction.

Consider a (1 − ε) partial embedding of X in Y . By the lemma there is an almost
disjoint family F ⊆ H of size at least (m/2)2 > 2εn2, each pair (u, v) ∈ X belongs to at
most one set in F .
Since

∣∣(X
2

)
\G
∣∣ < εn2, let Z ′ ∈ F be a set such that for all u, v ∈ Z ′, (u, v) ∈ G. up to

scaling, Z ′ is isomorphic to Z, therefore the (1− ε) partial embedding of X into Y must
incur distortion at least α(|Z|), and since X can be embedded into some X̂ ∈ X with
distortion 2, (1− ε) partially embedding X̂ into Y requires distortion at least α(|Z|)/2 =
α(d 1

4
√

ε
e)/2.

Notice that if we are dealing with probabilistic embedding into a set of metric spaces
S, the claim hold for embedding into every Y ∈ S, and the theorem follows from our
definition of probabilistic (1− ε) partial embedding.

The next Lemma gives an improved lower bound for coarse partial embeddings.

Lemma 10.2. Let Y be a target metric space, let X be a family of metric spaces nearly
closed under composition. If for any k > 1, there is Z ∈ X of size k such that any
embedding of Z into Y has distortion at least α(k), then for all n > 1 and 1

n
≤ ε ≤ 1

there is a metric space X ∈ X on n points such that the distortion of any coarse (1− ε)
partial embedding of X into Y is at least α

(
d 1

2ε
e
)
/2.

The proof is immediate using the same method of metric composition. Let Z be a
metric space on k = d 1

2ε
e points, and m = d2εne be the composition sets’ size. Then from

the coarse property only distances inside each Cx can be discarded, so many isomorphic
Z ′ have for all u, v ∈ Z ′, (u, v) ∈ G.

Corollary 10.1. For any 1/n < ε < 1

1. Ω

(
log( 1

ε )
p

)
distortion for (1− ε) partial embedding into Lp.

2. Any (1−ε) partial embedding with distortion α into Lp requires dimension Ω(logα
1
ε
).

3. Ω( 1√
ε
) distortion for (1− ε) partial embedding into trees.

4. Ω(1
ε
) distortion for coarse (1− ε) partial embedding into trees.

5. Ω
(
log
(

1
ε

))
distortion in probabilistic (1− ε) partial embedding to trees.

6. Ω(
√

log(2/ε)) distortion for (1− ε) partial embedding of l1 into l2.

7. Ω(
√

log log(2/ε)) distortion for (1− ε) partial embedding of trees into l2.

8. Ω(min{q, log n}/p) for q-norm of the distortion to Lp.

9. Ω(min{q, log n}) for q-norm of probabilistic distortion to trees.
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This follows from known lower bounds: (1) from [Mat97], (2) from equilateral dimen-
sion considerations, (3) and (4) from [RR98a], (5) from [Bar96], (6) from [Enf69] and
with (7) also from the fact shown in [BLMN05c] that every normed space and trees are
almost closed under composition, (7) also from [Bou86], (8) and (9) from Lemma 2.2.

.2

Theorem 33. Let Y be a target metric space, let X be a family of metric spaces. If for
any ε ∈ (0, 1), there is a lower bound of α(ε) on the distortion of (1−ε) partial embedding
of metric spaces in X into Y , then for any 1 ≤ q ≤ ∞, there is a lower bound of 1

2
α(2−q)

on the `q-distortion of embedding metric spaces in X into Y .

Proof. For any 1 ≤ q ≤ ∞ set ε = 2−q and let X ∈ X be a metric space such that
any (1 − ε) partial embedding into Y has distortion at least α(ε). Now, let f be an
embedding of X into Y . It follows that there are at least ε

(
n
2

)
pairs (u, v) ∈

(
X
2

)
such

that distf (u, v) ≥ α(ε). Therefore:

(E [distf (u, v)
q])1/q ≥ (εα(ε)q)1/q ≥

(
2−qα

(
2−q
)q)1/q

=
1

2
α
(
2−q
)
.
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Chapter 11

Applications

Consider an optimization problem defined with respect to weights c(u, v) in a graph or in
a metric space, where the solution involves minimizing the sum over distances weighted
according to c:

∑
u,v c(u, v)d(u, v). It is common for many optimization problem that

such a term appears either in the objective function or alternatively it may come up in
the linear programming relaxation of the problem.

These weights can be normalized to define the distribution Π where π(u, v) = c(u,v)P
x,y c(x,y)

so that the goal translates into minimizing the expected distance according to the distri-
bution Π. We can now use our results to construct embeddings with small distortion of
average provided in Theorem 17, Theorem 26 and Theorem 27. Thus we get embeddings
f into Lp and into ultrametrics with distavg(Π)(f) = O(log Φ̂(Π)). In some of these ap-
plications it is crucial that the result holds for all such distributions Π (Theorems 17 and
26).

Define Φ(c) = Φ(Π) and Φ̂(c) = Φ̂(Π) . Note that if for all u 6= v, c(u, v) > 0 then

Φ(c) = maxu,v c(u,v)

minu,v c(u,v)
. Using this paradigm we obtainO(log Φ̂(c)) = O(min{log(Φ(c)), log n})

approximation algorithms.
This lemma below summarizes the specific propositions which will be useful in most

of the applications in the sequel:

Lemma 11.1. Let X be a metric space. For a weight function on the pairs c :
(

X
2

)
→ R+

. Then:

1. There exists an embedding f : X → Lp such that for any weight function c:∑
{u,v}∈(X

2 )

c(u, v)‖f(u)− f(v)‖p ≤ O(log Φ̂(c))
∑

{u,v}∈(X
2 )

c(u, v)dX(u, v)

2. There is a set of ultrametrics S and a probabilistic embedding F̂ of X into S such
that for any weight function c:

Ef∼F̂

 ∑
{u,v}∈(X

2 )

c(u, v)dY (f(u), f(v))

 ≤ O(log Φ̂(c))
∑

{u,v}∈(X
2 )

c(u, v)dX(u, v)
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3. For any given weight function c, there exists an ultrametric (Y, dY ) and an embed-
ding f : X → Y such that∑

{u,v}∈(X
2 )

c(u, v)dY (f(u), f(v)) ≤ O(log Φ̂(c))
∑

{u,v}∈(X
2 )

c(u, v)dX(u, v)

11.1 Sparsest cut

We show an approximation for the sparsest cut problem for complete weighted graphs,
i.e., for the following problem:

Given a complete graph G(V,E) with capacities c(u, v) : E → R+ and demands
D(u, v) : E → R+. Define the weight of a cut (S, S) as∑

u∈S,v∈S c(u, v)∑
u∈S,v∈S D(u, v)

We seek a subset S ⊆ V minimizing the weight of the cut.
The uniform demand case of the problem was first given an approximation algorithm

of O(log n) by Leighton and Rao [LR99]. For the general case O(log k) approximation
algorithms were given by Aumann and Rabani [AR98] and London, Linial and Rabinovich
[LLR95] via embeddings into L1 of Bourgain. Recently Arora, Rao and Vazirani improved
the uniform case bound to O(

√
log n) and subsequently Arora, Lee and Naor gave an

O(
√

log n log log n) approximation for the general demand case based on embedding of
negative-type metrics into `1.

We show an O(log Φ̂(c)) approximation. We apply the method of [LLR95]: build the
following linear program:

min
τ

∑
u,v

c(u, v)τ(u, v)

subject to:
∑
u,v

D(u, v)τ(u, v) ≥ 1

for all x, y, z : τ(x, y) ≤ τ(x, z) + τ(y, z)

τ ≥ 0

If the solution would yield a cut metric it would be the optimal solution. We solve
the relaxed program for all metrics, obtaining a metric (V, τ), then embed (V, τ) into `1,
using f of Lemma 11.1. Since the embedding is non-contractive τ(u, v) ≤ ‖f(u)−f(v)‖1,
hence ∑

u,v c(u, v)‖f(u)− f(v)‖1∑
u,v D(u, v)‖f(u)− f(v)‖1

≤ O(log Φ̂(c))

∑
u,v c(u, v)τ(u, v)∑
u,v D(u, v)τ(u, v)

Following [LLR95], we can obtain a cut that provides a O(log Φ̂(c)) approximation.

11.2 Multi cut

The multi cut problem is: given a complete graph G(V,E) with weights c(u, v) : E → R+,
and k set of pairs (si, ti) ⊆ V × V i = 1, . . . , k find a minimal weight subset E ′ ⊆ E,
such that removing every edge in E ′ disconnects every pair (si, ti).
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There best approximation algorithm for this problem due to Garg, Vazirani and Yan-
nakakis [GVY93] has performance O(log k).

We show a O(log Φ̂(c)) approximation. We slightly change the methods of [GVY93],
create a linear program:

min
τ

∑
(u,v)∈(V

2)

c(u, v)τ(u, v)

subject to: ∀i, j
∑

(u,v)∈pj
i

τ(u, v) ≥ 1

for all x, y, z : τ(x, y) ≤ τ(x, z) + τ(y, z)

τ ≥ 0

where pj
i is the j-th path from si to ti. Now solve the relaxed version obtaining metric

space (V, τ). Using (3.) of Lemma 11.1 we get an embedding f : V → Y into an HST
(Y, dY ) satisfying∑

(u,v)∈(V
2)

c(u, v)dY (u, v) ≤ O(log Φ̂(c))
∑

(u,v)∈(V
2)

c(u, v)τ(u, v) .

We use this metric to partition the graph instead of the region growing method introduced
by [GVY93].

We build a multi cut E ′: for every pair (si, ti) find their lca(si, ti) = ri, and create two
clusters containing all the vertices under each child: insert into E ′ all the edges between
the points in each subtree and the rest of the graph. Since we have the constraint
that

∑
(u,v)∈pj

i
τ(u, v) ≥ 1, we get from the fact that f is non-contractive that ∆(ri) =

dY (si, ti) ≥ 1. It follows that if an edge (u, v) ∈ E ′ n then d(u, v) ≥ 1. It follows that∑
(u,v)∈E′

c(u, v) ≤
∑

(u,v)∈(V
2)

c(u, v)dY (u, v) ≤ O(log Φ̂(c))OPT

11.3 Minimum Linear Arrangement

The same idea can be used in the minimum linear arrangement problem, where we have
an undirected graph G(V,E) with capacities c(e) for every e ∈ E, we wish to find a one
to one arrangement of vertices h : V → {1, . . . , |V |}, minimizing the total edge length:∑

(u,v)∈E c(u, v)|h(u)− h(v)|.
This problem was first given an O(log n log log n) approximation by Even, Naor, Rao

and Schieber [ENRS00], which was subsequently improved by Rao and Richa [RR98b] to
O(log n).

As shown in [ENRS00], this can be done using the following LP:

min
∑

u 6=v∈V

c(u, v)d(u, v)

s.t. ∀U ⊆ V, ∀v ∈ U :
∑
u∈U

d(u, v) ≥ 1

4
(|U |2 − 1)

∀(u, v) : d(u, v) ≥ 0
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which is proven there to be a lower bound to the optimal solution. Even et. al [ENRS00]
use this LP formulation to define a spreading metric which they use to recursively solve
the problem in a divide-and-conquer approach. Their method can be in fact viewed as
an embedding into an ultrametric (HST) (the argument is similar to the one given for
the special case of the multi cut problem) and so by using assertion (3.) of Lemma 11.1
we obtain an O(log Φ̂(c)) approximation.

The problem of embedding in d-dimensional meshes is basically an expansion of h to
d dimensions, and can be solved in the same manner.

11.4 Multiple sequence alignment

Multiple sequence alignments are important tools in highlighting similar patterns in a set
of genetic or molecular sequence.

Given n strings over a small character set, the goal is to insert gaps in each string as
to minimize the total number of different characters between all pairs of strings, when
the cost of gap is considered 0.

In their paper, [WLB+98] showed an approximation algorithm for the generalized
version, where each pair of string has an importance parameter c(u, v), they phrased
the problem as finding a minimum communication cost spanning tree, i.e. finding a tree
that minimizes

∑
u,v c(u, v)d(u, v), where d is the edit distance. They apply probabilistic

embedding into trees to bound the cost of such a tree. This gives an approximation ratio
of O(log n).

Using Lemma 11.1 we get an O(log Φ̂(c)) approximation.

11.5 Uncapacitated quadratic assignment

The uncapacitated quadratic assignment problem is one of the most studied problems
in operations research (see the survey [PRW94]) and is once of the main applications
of metric labelling [KT02]. Given three n × n input matrices C,D, F , such that C is
symmetric with 0 in the diagonal, D is a metric and all matrices are non-negative. The
objective is to minimize

min
σ∈Sn

∑
i,j

C(i, j)D (σ(i), σ(j)) +
∑

i

F (i, σ(i))

where Sn is the set of all permutations over n elements.
One of the major applications of uncapacitated quadratic assignment is in location theory:
where C(i, j) is the material flow from facility i to j, D (σ(i), σ(j)) is their distance after
locating them and F (i, σ(i)) is the cost for positioning facility i at location σ(i).

Unlike the previous applications here C is not a fixed weight function on the metric
D, but the actual weights depends on σ which is determined by the algorithm. Hence
we require the probabilistic result (1) of Lemma 11.1 which is oblivious to the weight
function C.
Kleinberg and Tardos [KT02] gave an approximation algorithm based on probabilistic
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embedding into ultrametrics. They give an O(1) approximation algorithm for an ultra-
metric (they in fact use a 3-HST). This implies an O(log k) approximation for general
metrics, where k is the number of labels.

As uncapacitated quadratic assignment is a special case of metric labelling it can be
solved in the same manner, yielding a O(log Φ̂(C)) approximation ratio by applying result
(1) of Lemma 11.1 together with the O(1) approximation for ultrametrics of [KT02].

11.5.1 Min-sum k-clustering

Recall the min-sum k-clustering problem, where one has to partition a graph H to k
clusters C1, . . . , Ck as to minimize

k∑
i=1

∑
u,v∈Ci

dH(u, v)

[BCR01] showed a dynamic programming algorithm that gives a constant approximation
factor for graphs that can be represented as HST. Then they used probabilistic embedding
into a family of HST to give approximation with a factor of O

(
1
ε
(log n)1+ε

)
for general

graphs H, with running time nO(1/ε). Let Φ = Φ(d).

Lemma 11.2. For a graph H equipped with the shortest path metric, there is a logO(log Φ) n
time algorithm that gives O (log(kΦ)) approximation for min-sum k-clustering problem.

Proof. Denote by OPT the optimum solution for the problem with clusters COPT
i , and

OPTT the optimum solution for an HST T with clusters COPTT
i . Also denote ALG for

the result of [BCR01] algorithm with clusters CALGT
i .

By Theorem 36 there exists a probabilistic (1 − ε) partial embedding of H into a
family of HST T . Recall that G is the set of pairs distorted by at most O(log 1

ε
). Note

that edges e ∈ G are expanded by O(log 1
ε
) and for e /∈ G the maximum expansion is Φ
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(no distance is contracted), therefore choosing ε = 1
k2Φ

yields:

E[ALG] =
∑
T∈T

Pr[T ]
k∑

i=1

∑
u,v∈C

ALGT
i

dH(u, v)

≤
∑
T∈T

Pr[T ]
k∑

i=1

∑
u,v∈C

ALGT
i

dT (u, v)

≤ O(1)
∑
T∈T

Pr[T ]
k∑

i=1

∑
u,v∈C

OPTT
i

dT (u, v)

≤ O(1)
∑
T∈T

Pr[T ]
k∑

i=1

∑
u,v∈COPT

i

dT (u, v)

≤ O(1)

 k∑
i=1

∑
u,v∈COPT

i ∩G

∑
T∈T

Pr[T ]dT (u, v) +
k∑

i=1

∑
u,v∈COPT

i \G

∑
T∈T

Pr[T ]dT (u, v)


≤ O(1)

 k∑
i=1

∑
u,v∈COPT

i ∩G

O (log (1/ε)) dH(u, v) +
k∑

i=1

∑
u,v∈COPT

i \G

Φ


≤ O((log (1/ε))OPT + kεn2Φ

= O (log(kΦ))OPT + n2/k = O (log(kΦ))OPT ,

the last equation follows from the fact that n2

2k
≤ OPT (assuming we scaled the distances

such that minu 6=v∈H dH(u, v) ≥ 1), in what follows we show this fact. Let the clusters

of the optimal solution be of sizes a1, . . . , ak, naturally
∑k

i=1 ai = n, and there are at

least
∑k

i=1 a
2
i /2 pairs of distance 1 inside clusters. Let b = (1, 1, . . . , 1) ∈ Rk. From

Cauchy-Schwartz we get(
k∑

i=1

ai

)2

= (〈a, b〉)2 ≤ ‖a‖2‖b‖2 =
∑

i

(a2
i )k

therefore
∑

i(a
2
i ) ≥ n2

k
, meaning OPT ≥ n2

2k
.

The running time of the algorithm is shown in [BCR01] to be logL n, where L is the
maximal number of levels in the HST family T . and this is at most O(logO(log Φ) n+ n2)

(which is nO(1) for Φ ≤ 2
log n

log log n ), (see [BCR01] for details).

11.6 Distance Oracles

A distance oracle for a metric space (X, d), |X| = n is a data structure that given any pair
returns an estimate of their distance. In this section we study scaling distance oracles
and partial distance oracles.
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11.6.1 Distance oracles with scaling distortion

Given a distance oracle with O(n1/k) bits, the worst case stretch can indeed be 2k − 1
for some pairs in some graphs. However we prove the existence of distance oracles with
a scaling stretch property. For these distance oracles, the average stretch over all pairs is
only O(1).

We repeat the same preprocessing and distance query algorithm of Thorup and Zwick
[TZ01a, TZ05] with sampling probability 3n−1/k lnn for the first set and n−1/k thereafter.

Given (X, d) and parameter k:
A0 := X ; Ak = ∅ ;
for i = 1 to k − 1

let Ai contain each element of Ai−1,

independently with probability

{
3n−1/k lnn i = 1
n−1/k i > 1

;

for every x ∈ X
for i = 0 to k − 1

let pi(x) be the nearest node in Ai,
so d(x,Ai) = d(x, pi(x));
let Bi(x) := {y ∈ Ai \Ai+1 | d(x, y) < d(x,Ai+1)};

Figure 11.1: Preprocessing algorithm.

Given x, y ∈ X:
z := x ; i := 0 ;
while z 6∈ Bi(y)

i := i + 1;
(x, y) := (y, x);
z := pi(x);

return d(x, z) + d(z, y);

Figure 11.2: Distance query algorithm.

Theorem 34. Let (X, d) be a finite metric space. Let k = O(lnn) be a parameter.
The metric space can be preprocessed in polynomial time, producing a data structure
of O(n1+1/k log n) size, such that distance queries can be answered in O(k) time. The

distance oracle has greedy scaling distortion bounded by
(
2
⌈

log(2/ε)k
log n

⌉
+ 1
)
.

Proof. Fix ε ∈ (0, 1), and x, y ∈ Ĝ(ε). Let j be the integer such that nj/k ≤ εn/2 <
n(j+1)/k. We prove by induction that at the end of the `th iteration of the while loop of
the distance query algorithm:

1. d(x, z) ≤ d(x, y) max{1, `− j}

2. d(z, y) ≤ d(x, y) max{2, `− j + 1}.
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Observe that

Pr[B(x, rn(i−k)/k(x)) ∩ Ai = ∅] ≤ (1− n−i/k3 lnn)ni/k ≤ n−3

for all x ∈ X and i ∈ {0, 1, 2, . . . , k − 1}. Hence with high probability (1.) holds for any
` < j since d(x, p`+1(x)) ≤ rε/2(x) ≤ d(x, y) and (2.) follows from (1.) and the triangle
inequality. For ` ≥ j, from the induction hypothesis, at the beginning of the `th iteration,
d(z′, y) ≤ d(x, y) max{1, `− j}, where z′ = p`(x), z

′ ∈ A`. Since z′ 6∈ B`(y) then after the
swap (the line (x, y) := (y, x)) we have

d(x, z) = d(x, p`+1(x)) ≤ d(x, y) max{1, `− j}

and d(z, y) ≤ d(x, y) max{2, `−j+1} follows from the triangle inequality. This competes
the inductive argument. Since pk−1(x) ∈ Ak−1 = Bk−1(y) then ` ≤ k − 1 and therefore

the stretch of the response is bounded by 2(k − j)− 1 ≤ 2
⌈

log(2/ε)k
log n

⌉
+ 1.

We note that a similar argument showing scaling stretch can be given for variation of
Thorup and Zwick’s compact routing scheme [TZ01b].

11.6.2 Partial distance oracles

We construct a distance oracle with linear memory that guarantees stretch to 1−ε fraction
of the pairs. Recall the definition of Ĝ(ε) given in Definition 2.6.

Theorem 35. Let (X, d) be a finite metric space. Let 0 < ε < 1 be a parameter. Let
k ≤ O(log 2

ε
). The metric space can be preprocessed in polynomial time, producing data

structure with either one of the following properties:

1. Either with O

(
n log(2/ε) + k

(
log(2/ε)

ε

)1+1/k
)

size, O(k) query time and stretch

6k − 1 for some set G ⊆
(

X
2

)
, |G| ≥ (1− ε)

(
n
2

)
.

2. Or, with O
(
n log n log(2/ε) + k log n(1/ε)1+1/k

)
size, O(k log n) query time and stretch

6k − 1 for the set Ĝ(ε).

Proof. We begin with a proof of (1.). Let b = d(8/ε) ln(16/ε)e. Let B be a set of b
beacons chosen uniformly at random. Construct a distance oracle of [TZ01a] on the
subspace (B, d) with parameter k ≤ log b yielding stretch 2k − 1 and using O(kb1+1/k)
storage. For every x ∈ X we store p(x), which is the closest node to x in B. The
resulting data structure’s size is O(n log b) + O(kb1+1/k) = O(n log b + kb1+1/k). Queries
are processed as follows: given two nodes x, y ∈ X let r be the response of the distance
oracle on the beacons p(x), p(y) then return d(x, p(x)) + r + d(p(y), y).

Observe that from triangle inequality the response is at least d(x, y). Let Ex for any
x ∈ X be the event

Ex = {d(x,B) > rε/8(x)} .
Then Pr[Ex] ≤ (1 − b/n)εn/8 ≤ ε/16 and so by Markov inequality, Pr[|{Ex | x ∈ X}| ≤
εn/8] ≥ 1/2. In such a case let

G = {(x, y) ∈
(
X

2

)
| ¬Ex ∧ ¬Ey ∧ d(x, y) ≥ max{rε/8(x), rε/8(y)}} .
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We bound the size of G. For every point x ∈ X at most εn/8 pairs (x, z) are removed
due to Ez occurring and at most εn/8 pairs (x, z) are removed because z ∈ B(x, rε/8(x)),

so |G| ≥ (1 − ε/4)n2 ≥ (1 − ε)
(

X
2

)
. For (x, y) ∈ G, we have d(p(x), p(y)) ≤ d(p(x), x) +

d(x, y) + d(p(y), y) ≤ d(x, y) + rε/8(x) + rε/8(y) ≤ 3d(x, y) so from the distance oracle
r ≤ (6k − 3)d(x, y) and in addition max{d(x, p(x)), d(y, p(y))} ≤ d(x, y) so the stretch is
bounded by 6k − 1.

The proof of (2.) is a slight modification of the above procedure. Let m = d3 lnne.
Let B1, . . . , Bm be sets each containing b = d16/εe beacons, chosen independently and
uniformly at random. Let DOi be the distance oracle on (Bi, d). For every x ∈ X we store
p1(x), . . . , pm(x) where pi(x) is the closest node in Bi. The resulting data structure’s size
is O(n log b lnn) + O(kb1+1/k lnn) = O(n log b lnn + kb1+1/k lnn). Queries are processed
as follows: given two nodes x, y ∈ X let ri be the response of the distance oracle DOi on
the beacons pi(x), pi(y) then return min1≤i≤m d(x, pi(x)) + ri + d(pi(y), y).

For every (x, y) ∈
(

X
2

)
, 1 ≤ i ≤ m define the event E i

x,y = {d(x,Bi) > rε/8(x) ∨
d(y,Bi) > rε/8(y)}. Then Pr[E i

x,y] ≤ 2(1− b/n)εn/8 ≤ 1/e, by independency Pr[∀i, E i
x,y] ≤

1/em ≤ 1/n3, and so by the union bound, Pr[∀x, y ∈ X,∃i | ¬E i
x,y] ≥ 1/n.

By a similar argument as in (1.) above, the stretch of d(x, pi(x)) + ri + d(pi(y), y) is
at most 6k − 1.
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Chapter 12

Partial Embedding

12.1 Embedding into Lp

Definition 12.1. We say that a family of metric spaces X is subset-closed, if for any
X ∈ X every sub-metric Y ⊆ X is also in X .

Theorem 36 (Partial Embedding Upper Bound). Let X be a subset-closed family of
finite metric spaces. If for any m ≥ 1 and any m-point metric space from X there exists
an embedding into Lp with distortion α(m) and dimension β(m). Then there exists is
a universal constant C > 0, such that for any X ∈ X and for any ε ∈ (0, 1) there

exists a (1 − ε) partial embedding into Lp with distortion α(C log(2/ε)
ε

) and dimension

β(C log(2/ε)
ε

) +O(log(2/ε)).

Proof. The idea of the proof is to choose a constant set of beacons, embed them, then
embed all the other points according to the nearest beacon, and add some auxiliary
coordinates. Formally, given ε > 0 let ε̂ = ε/20, and t = 100 log

(
1
ε̂

)
. Let B be a

uniformly distributed random set of t
ε̂

points in X (the beacons). Let g be an embedding
from B into Lp with distortion α( t

ε̂
) and dimension β( t

ε̂
), which exists since B ∈ X . Let

{σj(u) | u ∈ X, 1 ≤ j ≤ t} be i.i.d symmetric {0, 1}-valued Bernoulli random variables.
Define the following functions:

∀u ∈ X, 1 ≤ j ≤ t hj(u) = σj(u)rε̂(u)t
−1/p

∀u ∈ X f(u) = g(b) where b ∈ B such that dX(u, b) = dX(u,B)

The embedding will be ϕ = f ⊕ h. Let G′ =
(

X
2

)
\ (D1 ∪ D2) where D1 = {(u, v) |

dX(u, v) ≤ max {rε̂(u), rε̂(v)}} and D2 = {(u, v) | dX(u,B) ≥ rε̂(u), dX(v,B) ≥ rε̂(v)}.
Observe that |D1| ≤ ε̂n2. For any u ∈ X Pr[dX(u,B) ≥ rε̂(u)] ≤ (1− t/(nε̂))ε̂n ≤ e−t ≤ ε̂
so by Markov inequality with probability at least 1/2, |D2| ≤ 2ε̂n2. We begin with an
upper bound on ϕ for all (x, y) ∈ G′:∥∥∥ϕ(u)− ϕ(v)

∥∥∥p

p
= ‖f(u)− f(v)‖p

p +
t∑

j=1

|hj(u)− hj(v)|p

≤ (3dX(u, v))p +
t∑

j=1

∣∣t−1/p max{rε̂(u), rε̂(v)} − 0
∣∣p

≤ (3p + 1) (dX(u, v))p
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We now partition G′ into two sets G1 = {(u, v) ∈ G′ | max {rε̂(u), rε̂(v)} ≥ dX(u, v)/4}
and G2 = G′ \G1. For any (u, v) ∈ G1, 1 ≤ j ≤ t, assume w.l.o.g that rε̂(u) ≥ rε̂(v), and
let Ej(u, v) be the event

Ej(u, v) = {hj(u) =
rε̂(u)

t1/p
∧ hj(v) = 0}

Then Pr [Ej(u, v)] = 1
4
. Let A(u, v) =

∑t
j=1 1Ej(u,v), then E[A(u, v)] = t/4, using Cher-

noff’s bound we can bound the probability that A(u, v) is smaller than half it’s expecta-
tion:

Pr [A(u, v) ≤ t/8] ≤ e−t/50 ≤ ε̂

Let D3 = {(u, v) ∈ G1 | A(u, v) ≤ t/8} so by Markov inequality with probability at least
1/2, |D3| ≤ 2ε̂n2. Therefore, for any (u, v) ∈ G1 \D3 we lower bound the contribution.∥∥∥ϕ(u)− ϕ(v)

∥∥∥p

p
≥

t∑
j=1

|hj(u)− hj(v)|p ≥ (t/8)
(
rε̂(u)t

−1/p
)p ≥ 1/8(dX(u, v)/4)p

For any (u, v) ∈ G2 let bu, bv be the beacons such that f(u) = g(bu), f(v) = g(bv). Due
to the definition of D2 and G2 and from the triangle inequality follows

dX(bu, bv) ≥ dX(u, v)− dX(u, bu)− dX(v, bv) ≥ dX(u, v)− dX(u, v)

2
=
dX(u, v)

2

Therefore, we lower bound the contribution of (u, v) ∈ G2.∥∥∥ϕ(u)− ϕ(v)
∥∥∥p

p
≥
∥∥∥f(u)− f(v)

∥∥∥p

p
=
∥∥∥g(bu)− g(bv)

∥∥∥p

p

≥ 1

α( t
ε̂
)
dX(bu, bv) ≥

dX(u, v)

2α( t
ε̂
)

Finally we note that G =
(

X
2

)
\ (D1 ∪D2 ∪D3) so with probability at least 1/4 we have

|G| ≥
(

n
2

)
− 5ε̂n2 ≥

(
n
2

)
− εn/4 ≥ (1− ε)

(
n
2

)
as required.

Corollary 12.1 (Partial Embedding Upper Bounds). For any ε ∈ (0, 1):

1. Any finite metric space has a (1 − ε) partial embedding into Lp with distortion
O(log 1

ε
) and dimension O(log 1

ε
).

2. Any finite metric space has a (1 − ε) partial embedding into Lp with distortion
O(d(log 2

ε
)/pe) and dimension eO(p) log 1

ε
.

3. Any negative type metric (in particular l1 metrics) has a (1− ε) partial embedding

into `2 with distortion O
(√

log 1
ε
log log 1

ε

)
and dimension O(log 1

ε
).

4. Any tree metric has a (1−ε) partial embedding into `2 with distortion O
(√

log log 1
ε

)
and dimension O(log 1

ε
).

This follows from known upper bounds. (1) and (2) from [Bou85, Mat90] with dimen-
sion bound due to Theorem 17, (3) from [ALN05], and (4) from [Bou86, Mat99].

121



12.2 Coarse Partial Embedding into Lp

We now consider the coarse version of partial embedding into Lp. The trade off in getting
a coarse (1− ε) partial embedding is in higher dimension and stronger requirements.

Definition 12.2 (Strongly non-expansive). Let f is an embedding from X into Lk
p, where

f = (η1f1, . . . , ηkfk) and
∑k

i=1 η
p
i = 1, we say that f is strongly non-expansive if it is

non-expansive and

∀u, v ∈ X, i = 1 . . . k, |fi(u)− fi(v)| ≤ d(u, v)

Notice that the requirement of strongly non-expansion is not so restricting, since
almost every known embedding can be converted to a strongly non-expansive one. In
particular any generalized Fréchet embedding is strongly non-expansive.

Theorem 37. Consider a fixed space Lp, p ≥ 1. Let X be a subset-closed family of finite
metric spaces such that for any n ≥ 1 and any n-point metric space X ∈ X there exists
a strongly non-expansive embedding φX : X → Lp with distortion α(n) and dimension
β(n). Then there exists a universal constant C > 0 such that for any metric space X ∈ X
and any ε > 0 we have a coarse (1−ε) partial embedding into Lp, with distortion O(α(C

ε
))

and dimension β(C
ε
) ·O(log n).

Proof. This embedding is quite similar to the previous one, only this time we choose
O(log n) sets of beacons in order to succeed in some events with high probability - de-
pending on n instead of ε. This makes the proof more complex, and we need to embed
each point according to the ”best” beacon in each coordinate. Given ε > 0 let ε̂ = ε/4,
let τ = d100 log ne and denote T = {t ∈ N | 1 ≤ t ≤ τ}. Let m = d1

ε̂
e. For each t ∈ T ,

let Bt be an independent uniformly distributed random set of m points in X. For each

t ∈ T let ~φ(t) = (η
(t)
1 φ

(t)
1 , . . . , η

(t)
β(m)φ

(t)
β(m)) be a strongly non-expansive embedding from Bt

into Lp with distortion α(m) and dimension β(m). Let I = {i ∈ N | 1 ≤ i ≤ β(m)}.
When clear from the context we omit the ~φ(t) superscript and simply write ~φ. Let
{σt(u) | u ∈ X, t ∈ T} be i.i.d symmetric {0, 1}-valued Bernoulli random variables.
Define the following functions:

∀u ∈ X, t ∈ T h(t)(u) = σt(u)rε̂(u)τ
−1/p

∀u ∈ X, i ∈ I, t ∈ T f
(t)
i (u) = η

(t)
i min

b∈Bt

{d(u, b) + φ
(t)
i (b)}τ−1/p

Let f (t) = (f
(t)
1 , . . . , f

(t)
β(m)), f = (f (1), . . . , f (τ)), and h = (h(1), . . . , h(τ)), the final embed-

ding will be ϕ = f ⊕ h. Let D = {(u, v) | d(u, v) ≤ max{rε̂(u), rε̂(v)}} and G =
(

X
2

)
\D,

as in Theorem 36 before: |D| ≤ ε̂n2. We begin by an upper bound for all (u, v) ∈ G: For
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any t ∈ T, i ∈ I let bti ∈ Bt be the beacon that minimizes f
(t)
i (v):∥∥∥ϕ(u)− ϕ(v)

∥∥∥p

p
=

∥∥∥f(u)− f(v)
∥∥∥p

p
+
∥∥∥h(u)− h(v)

∥∥∥p

p

≤
∑
t∈T

∑
i∈I

∣∣∣f (t)
i (u)− f

(t)
i (v)

∣∣∣p +
∑
t∈T

(
τ−1/p max{rε̂(u), rε̂(v)}

)p
≤

∑
t∈T

τ−1
∑
i∈I

∣∣∣η(t)
i min

b∈Bt

{d(u, b) + φ
(t)
i (b)} − η

(t)
i min

b∈Bt

{d(v, b) + φ
(t)
i (b)}

∣∣∣p + d(u, v)p

≤
∑
t∈T

τ−1
∑
i∈I

η
(t)
i

p
∣∣∣(d(u, bti) + φ

(t)
i (bti)− d(v, bti)− φ

(t)
i (bti)

)∣∣∣p + d(u, v)p

≤
∑
t∈T

τ−1
∑
i∈I

η
(t)
i

p
d(u, v)p + d(u, v)p

≤ 2d(u, v)p

(recall that for any t ∈ T ,
∑

i∈I η
(t)
i

p
= 1) We now partition G into two sets G1 = {(u, v) ∈

G | max {rε̂(u), rε̂(v)} ≥ d(u,v)
16α(m)

and G2 = G \ G1. For any (u, v) ∈ G1, t ∈ T , assume

w.l.o.g that rε̂(u) ≥ rε̂(v), and let Et(u, v) be the event

Et(u, v) = {h(t)(u) = rε̂(u) ∧ h(t)(v) = 0}

Then Pr [Et(u, v)] = 1
4
. Let A(u, v) =

∑
t∈T 1Et(u,v), then E[A(u, v)] = τ/4, using Chernoff

bound we can bound the probability that A(u, v) is smaller than half it’s expectation:

Pr [A(u, v) ≤ τ/8] ≤ e−τ/50 ≤ 1/n2

Therefore with probability greater than 1/2, for any (u, v) ∈ G1, A(u, v) ≥ τ/8. Assume
that this happens, then we can lower bound the contribution for any (u, v) ∈ G1 :∥∥∥ϕ(u)− ϕ(v)

∥∥∥p

p
≥
∑
t∈T

∣∣h(t)(u)− h(t)(v)
∣∣p ≥ (τ/8) (rε̂(u))

p ≥ τ

8

(
d(u, v)

16α(m)

)p

For any (u, v) ∈ G2, t ∈ T let bu, bv ∈ Bt the nearest beacons to u, v respectively. Let

Ft(u, v) = {bu ∈ B
(
u, rε̂(u)

)
∧ bv ∈ B

(
v, rε̂(v)

)
}

Then Pr [Ft(u, v)] ≥ 1−2/e > 1/4, since for any u ∈ X, Pr[d(u,Bt) > rε̂(u)] = (1−ε̂)1/ε̂ ≤
e−1.
Let Z(u, v) =

∑
t∈T 1Ft(u,v), then E[Z(u, v)] ≥ τ/4, using Chernoff bound we can bound

the probability that Z(u, v) is smaller than half it’s expectation:

Pr [Z(u, v) ≤ τ/8] ≤ e−τ/50 ≤ 1/n2

Therefore with probability greater than 1/2 for any (u, v) ∈ G2, Z(u, v) ≥ τ/8, assume
from now on that this is the case. Fix a t ∈ T such that Ft(u, v) happened. We have

max
{
d(u, bu), d(v, bv)

}
≤ d(u, v)

16α(m)
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Claim 12.1.

τ 1/pη−1
i |fi(u)− fi(v)| ≥

∣∣∣|φi(bu)− φi(bv)| − (d(u, bu) + d(v, bv))
∣∣∣

Proof. W.l.o.g assume that fi(u) ≥ fi(v), then let bi ∈ Bt be the beacon minimizing
fi(u). Since for every i ∈ I, φi(bu)− φi(bi) ≤ d(bu, bi) we get

τ 1/pη−1
i fi(u) = d(u, bi) + φi(bi) ≥ d(u, bi) + φi(bu)− d(bu, bi) ≥ φi(bu)− d(u, bu)

and
τ 1/pη−1

i fi(v) ≤ d(v, bv) + φi(bv)

Let J = {i ∈ I | |φi(bu)−φi(bv)| ≥ d(u,v)
4α(m)

}. We claim that
∑

i∈J η
p
i |φi(bu)− φi(bv)|p ≥[

d(u,v)
4α(m)

]p
. Assume by contradiction that it is not the case, then∥∥∥~φ(bu)− ~φ(bv)

∥∥∥p

p
=

∑
i∈J

ηp
i

∣∣∣φi(bu)− φi(bv)
∣∣∣p +

∑
i/∈J

ηp
i

∣∣∣φi(bu)− φi(bv)
∣∣∣p

<

[
d(u, v)

4α(m)

]p

+
∑
i/∈J

ηp
i

[
d(u, v)

4α(m)

]p

≤ 2

[
d(u, v)

4α(m)

]p

<

[
d(bu, bv)

α(m)

]p

The last inequality follows since d(bu, bv) ≥ d(u, v)− 2 d(u,v)
16α(m)

≥ 7
8
d(u, v).

Thus contradicting the fact that ~φ has distortion α(m) on Bt. Now∥∥∥f (t)(u)− f (t)(v)
∥∥∥p

p
=

∑
i∈I

∣∣∣f (t)
i (u)− f

(t)
i (v)

∣∣∣p
≥ τ−1

∑
i∈J

ηp
i

∣∣∣φi(bu)− d(u, bu)− d(v, bv)− φi(bv)
∣∣∣p

≥ τ−1
∑
i∈J

ηp
i

∣∣∣|φi(bu)− φi(bv)| − |d(u, bu) + d(v, bv)|
∣∣∣p

≥ τ−1
∑
i∈J

ηp
i

∣∣∣∣∣φi(bu)− φi(bv)
∣∣− 2 max{d(u, bu), d(v, bv)}

∣∣∣p
≥ τ−1

∑
i∈J

ηp
i

∣∣∣∣∣φi(bu)− φi(bv)
∣∣− 2

4

d(u, v)

4α(m)

∣∣∣p
≥ τ−1

∑
i∈J

ηp
i

∣∣∣∣∣φi(bu)− φi(bv)
∣∣− 1

2

∣∣φi(bu)− φi(bv)
∣∣∣∣∣p

≥ τ−1

(
d(u, v)

8α(m)

)p
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Since we assumed that Ft(u, v) happened for at least τ/8 indexes from T we have the
lower bound ∥∥∥ϕ(u)− ϕ(v)

∥∥∥p

p
≥

∑
t∈T

∥∥∥f (t)(u)− f (t)(v)
∥∥∥p

p

≥ 1/8

(
d(u, v)

8α(m)

)p

12.3 Low Degree k-HST and Embeddings of Ultra-

metrics

In this section we study partial embedding of ultrametrics into low degree HSTs and into
Lp.

Claim 12.2. Let 0 < ε < 1. Given a set |X| = n and a partition of X into pair-wise
disjoint sets (X1, . . . , Xk) such that |Xi| ≤ εn for all 1 ≤ i ≤ k then

k∑
i=1

(
|Xi|
2

)
≤ ε

(
n

2

)
Proof.

k∑
i=1

(
|Xi|
2

)
=

k∑
i=1

|Xi|(|Xi| − 1)

2
≤ εn− 1

2

k∑
i=1

|Xi| =
εn− 1

2
n = ε

(
n

2

)
.

A k-HST is special type of ultrametric defined in [Bar96], which is an ultrametric T as
defined in Definition 8.1, and has the additional requirement that if u ∈ T is a descendant
of v then ∆(u) ≤ ∆(v)/k.

Lemma 12.1. Any ultrametric has a coarse (1−ε)-partial embedding into a 6-HST, such
that the internal nodes’ maximum degree is O(1/ε), with distortion O(1).

Proof. First we apply a lemma from [Bar96] and create a 6-HST by distorting any distance
by no more than 6. Let r be the root, denote the weight of a node as the number of leaves
in the tree below it. Let b1, . . . , bm be all the children of r such that weight(bj) <

εn
2
.

Do the following process recursively:
create a cluster Ci, while weight(Ci) <

εn
2

insert any bj into the cluster. when the cluster
is big enough, start filling another until all bj are clustered.
We create sets C1, . . . , Ck, that will replace b1, . . . , bm as children of r. note that the weight
of each Ci and each remaining child is at least εn

2
(except for maybe one), therefore we

have at most 2
ε
+1 degree of internal node in the HST. Observe that distances between any

clusters Ci, Cj are preserved, only distances inside clusters are discarded. By construction,
the weight of each Ci is at most εn, therefore by Claim 12.2 there are less than 2ε

(
n
2

)
such

distances, and we have a 6-HST with the desired distortion.
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The next step is to apply the following lemma [BLMN05c]

Lemma 12.2. For any k > 5, any k-HST can be
(

k+1
k−5

)
-embedded in Lh

p where h =
dC(1 + k/p)2 logDe, where D is maximal out degree of a vertex in the tree defining the
k-HST, and C > 0 is a universal constant.

Corollary 12.2. Any ultrametric has a (1 − ε)-partial embedding into Lp with O(1)
distortion and O(log(1/ε)) dimension.

Proof. We first embed the ultrametric in a 6-HST of degree O(1/ε). Choosing ε̂ = ε/4 for
this embedding then further embedding into Lp we discard at most ε

(
n
2

)
distances.
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Chapter 13

Conclusion and Future Directions

In this work we focused on novel notions of distortion: the average distortion and the `q-
distortion. We gave tight bounds on these, for embedding arbitrary metrics into normed
spaces and into tree metrics and spanning trees. Even though these results seems to be
mathematically interesting, from the computer science perspective it would be nice to
find more algorithmic applications for our embeddings (except for the somewhat limited
applications we show in Chapter 11).

We also studied metrics with bounded doubling dimension, and showed an embed-
ding into the doubling dimension with low distortion. It would be very interesting and
applicable to find an analogous of the dimension reduction lemma of [JL84] for doubling
metrics - that is, embed a doubling n point subset X of Euclidean space into dim(X)
dimensions with constant distortion.

Another interesting family of metric spaces are the metrics derived from a graph
excluding a fixed minor. We gave a scaling embedding into Lp for even a more gen-
eral family (decomposable metrics), however the worse case distortion bound remains
O(
√

log n). There is still an intriguing open problem regarding the embedding of such
metrics into L1. [GNRS99] conjectured that these metrics can be embedded to L1 with
distortion O(1), proving this conjecture, even for the family of planar metrics would be
very interesting.
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