
SIAM J. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 2, pp. 227--248

USING PETAL-DECOMPOSITIONS TO BUILD A LOW STRETCH
SPANNING TREE\ast

ITTAI ABRAHAM\dagger AND OFER NEIMAN\ddagger

Abstract. We prove that any weighted graph G = (V,E,w) with n points and m edges has

a spanning tree T such that
\sum

\{ u,v\} \in E
dT (u,v)
w(u,v)

= O(m logn log logn). Moreover, such a tree can

be found in time O(m logn log logn). Our result is obtained using our new petal-decomposition
approach which guarantees that the radius of each cluster in the tree is at most four times the radius
of the induced subgraph of the cluster in the original graph.

Key words. low stretch, spanning tree, distortion, embedding

AMS subject classifications. 68R10, 05C85

DOI. 10.1137/17M1115575

1. Introduction. Let G = (V,E,w) be a finite graph, where w : E \rightarrow \BbbR + is a
weight function on the edges. For any subgraph H = (V \prime , E\prime , w\prime) of G, let dH be the
induced shortest path metric with respect to H, where w\prime is the restriction of w to
E\prime . In particular, for any edge \{ u, v\} \in E and any spanning tree T of G, dT (u, v)
denotes the (unique) shortest path distance between u and v in T .

Given a spanning tree T , let

(1) avg stretchT (G) =
1

| E|
\sum

\{ u,v\} \in E

dT (u, v)

w(u, v)
.

Let avg stretch(n) = maxG=(V,E,w) : | V | =n minT \{ avg stretchT (G)\} . Figure 1 summa-
rizes current progress on the bounds for avg stretch(n) and the time complexity of
building such trees.

avg stretch(n) Time

[AKPW95] \Omega (log n), exp(O(
\surd
log n log log n)) O(m2)

[EEST05] O((log n)2 log log n) O(m log2 n)

[ABN08] O(log n(log log n)3) O(m log2 n)
[ABN08] O(log n log log n(log log log n)3) O(m2)
[KMP11] O(log n(log log n)3) O(m log n log log n)
This paper O(log n log log n) O(m log n log log n)

Fig. 1. Summary of progress on a low stretch spanning tree.

For the class of Series-Parallel graphs, Emek and Peleg [EP06] obtained avg
stretch(n) = \Theta (log n).

\ast Received by the editors February 9, 2017; accepted for publication (in revised form) January
7, 2019; published electronically March 21, 2019. A preliminary version of this paper appeared in
STOC 2012.

http://www.siam.org/journals/sicomp/48-2/M111557.html
Funding: The second author was supported in part by ISF grant 1817/17 and BSF grant

2015813.
\dagger VMware, Palo Alto, CA 94043 (iabraham@vmware.com).
\ddagger Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

(neimano@cs.bgu.ac.il).

227

http://www.siam.org/journals/sicomp/48-2/M111557.html
mailto:iabraham@vmware.com
mailto:neimano@cs.bgu.ac.il

228 ITTAI ABRAHAM AND OFER NEIMAN

The main result of this paper is a new upper bound on avg stretch(n) that is
tight up to an O(log log n) factor and can be constructed in time O(m log n log log n).

Theorem 1.
avg stretch(n) = O (log n log log n) .

Moreover, such a tree can be found in O(m log n log log n) time.

Our tree is created by a hierarchical clustering method we call petal-decomposition,
which has the desirable property that the radius of the tree created from each cluster
is at most four times larger than the radius of the cluster. This technique opens a new
path towards obtaining optimal O(log n) average stretch. Due to technical difficulties
described below, the current optimal padded partitions [FRT03, Bar04] cannot be
used with the petal-decomposition, so we applied the suboptimal partitions of [Sey95,
EEST05]. It remains an open question whether one can construct a suitable optimal
strong diameter padded partition, which would imply O(log n) average stretch. See
section 1.2.2 for more details.

Since our result holds for multigraphs, it follows from a reduction of [EEST05]
that given any probability distribution over pairs c :

\bigl(
V
2

\bigr)
\rightarrow [0, 1], there exists a

spanning tree T with \sum
\{ u,v\} \in (V2)

c(u, v) \cdot dT (u, v)
w(u, v)

= O(log n log log n) .

By the minimax theorem (see, e.g., [AF09]), there exists a distribution over spanning
trees such that for any edge \{ u, v\} \in E,

\BbbE
\biggl[
dT (u, v)

w(u, v)

\biggr]
\leq O(log n log log n) .

There are several algorithmic applications for low stretch spanning trees, such
as minimum cost communication spanning trees [Hu74] and network visualization
[McK15]; we refer the reader to [EEST05, ABN08] for more details. One of the
applications is a fast solver for a symmetric diagonally dominant system of linear
equations [ST04, KOSZ13, CKM+14]. There are very recent works (e.g., [KS16,
KLP+16]) exhibiting faster solvers that do not use low stretch spanning trees.

1.1. Related work. Embedding metric spaces and graphs into tree metrics and
spanning trees has received a lot of attention over the last two decades. The basic
motivation is that problems on simple graphs such as trees are often much easier
than those on arbitrary graphs, and embedding the original graph into a tree (or a
distribution over trees) is a basic step in approximation algorithms, network design,
online algorithms, and other settings. As mentioned above, the first results were
obtained by [AKPW95], who showed an exp(O(

\surd
log n log log n)) bound on the average

stretch. If we drop the requirement that the tree is spanning (that is, allow adding and
not only deleting edges, while maintaining that distances in the tree are no smaller
than those in the graph), then [Bar96, Bar98, CCGG98, FRT03] in a sequence of works
showed optimal average stretch of \Theta (log n). This line of work proved very fruitful,
because in many settings we can suffer from nonspanning trees. If we replace the
right-hand side of (1) by averaging over all pairs, then [ABN07] showed a universal
constant bound on that quantity, which is called the average distortion.

A related line of research studies a relative guarantee approximation: Given a
graph, can we approximate the best possible tree. For the question of maximum

PETAL-DECOMPOSITION 229

stretch over all pair distances, [BIS07] showed how to obtain a (c log n)O(
\surd
log\Delta) factor,

where c is the optimal maximum stretch and \Delta is the diameter. They also showed
O(1) approximation for the case where the graph is unweighted. The constant was
recently improved by [CDN+10]. For embedding unweighted graphs into a spanning
tree, [EP04] showed O(log n) approximation for maximum stretch. However, for the
setting of average stretch, essentially nothing is known (except for the trivial \~O(log n)1

absolute bound shown here and in [ABN08]).

1.2. Techniques.

1.2.1. Petal decomposition and radius increase. The star-decomposition
technique of Elkin et al. [EEST05] is a method to iteratively build a spanning tree.
In each iteration it partitions the vertices of the current graph into clusters that are
connected in a star structure: a central cluster is connected to every other cluster
by a single edge, and all other edges between clusters are dropped. In both previous
manifestations of star-decompositions (see [EEST05] and [ABN08]) the first step in
each iteration is to define the central cluster as an appropriately chosen ball around
some center point. After the central ball is defined, then the remaining clusters (called
cones) are defined sequentially.

The radius of a graph is the maximal distance from a designated center. One of
the main difficulties in the spanning tree construction is that the radius may increase
by a small factor at every application of the star decomposition, which translates to
increased stretch. If we drop the requirement that the tree is a spanning tree of the
graph and just require a tree metric, then this difficulty does not appear, and indeed
optimal \Theta (log n) bound is known on the average stretch [FRT03, Bar04]. In order
to control the radius increase, [EEST05] had to pay an additional factor of O(log n).
This was improved by [ABN08], where a subtle change to the algorithm and a careful
analysis of the radius increase allowed the factor to be reduced to \~O(log log n). One
of the main contributions of this work is a new decomposition scheme which we call
petal-decomposition, allowing essentially optimal control on the radius increase of the
spanning tree; it increases by at most a factor of 4 over all the recursion levels.

Our new petal-decomposition technique is also a method to iteratively build a
spanning tree. In each iteration it starts by sequentially building a series of clusters
which we call petals. Once no more petals can be built, the remaining central cluster
is called the stigma. Then the petals and the stigma are connected to form a tree
using some of the intercluster edges, and all other edges between clusters are dropped.

The petal-decomposition approach differs from star-decompositions in several as-
pects.

1. First, it is not the case that all petals are necessarily connected to the stigma
by an edge (as would be the case in the star-partition); each petal is connected
either to the stigma or to another petal by an edge. The petal connections
form a rooted tree whose root is the stigma.

2. Second, the stigma is not necessarily a ball; it is the remaining subgraph once
no more petals can be formed.

3. Third, each cone guarantees one edge in order to become part of the tree (the
edge connecting the cone to the central ball), while a petal contains a certain
shortest-path which will be included entirely in the tree.

In Figure 2, a star-decomposition each cone C(x0, x, r) is defined by three param-

1By g(n) \leq \~O(f(n)) we mean that there exists some constant k such that g(n) \leq O(f(n)) \cdot
logk(f(n)).

230 ITTAI ABRAHAM AND OFER NEIMAN

Fig. 2. Creating the first three petals with their highways. The first portal is connected by
a highway to x0 (this means that the shortest path from x0 to x1 will be included in the final
tree). Note that the portal edges do not necessarily connect the petal to the stigma, but may connect
between petals. In this example, the portal node y2 of X2 is contained in the petal X3. The algorithm
guarantees that this cannot happen to the first portal node y1 (thus y1 will be a part of the stigma X0).

eters: the center of the current cluster x0, the center of the cone x, and the radius r
of the cone; then the cone consists of all the points v such that d(x0, x) + d(x, v) -
d(x0, v) \leq r. The radius r of the cone determines the maximum increase in the radius
of the graph (with respect to the center x0).

A petal P (x0, t, r) is also defined by three parameters: the center of the current
cluster x0, the target of the petal t, and the radius r of the petal. The center of
the petal (denoted by x) is the point on the shortest path from t to x0 of distance
r from t. Moreover, we call the path from the center of the petal x to the target of
the petal t the highway of the petal. An important property of our construction is
that this highway path is guaranteed to be a part of the final spanning tree, which
is achieved by the so-called special petal. The special petal is defined as a union of
cones of varying radii. Specifically, let pk be the point of distance k from the target t
on the shortest path from t to x0. Then the petal P (x0, t, r) is defined as the union
of cones C(x0, pk, (r - k)/2) for all k \leq r.

Informally, the crucial property of a petal and its highway is the following: Assume
z \in P (x0, t, r), and that Px0z is the shortest path from the center x0 to z. By forming
the petal, we remove all edges between P (x0, t, r) and G \setminus P (x0, t, r) except for the
edge from the petal center x towards the center of the current cluster. Hence every
path from x0 to z will go through the petal center x. If the new shortest path P \prime

x0z

(after forming the petal) is (additively) \alpha longer than the length of Px0z, then P \prime
x0z

will contain part of the highway of length at least 2\alpha ; see Figure 3. Such a property
could foster wishful thinking: Suppose that in each iteration we increase the distance
of a point to the center by at most \alpha , but also mark a new portion of the path of
length 2\alpha as edges that are guaranteed to appear in the final tree (part of a highway).
In such a case it is easy to see that the final path will have stretch at most 2 (if the
original distance was b, once the total increase is b we have marked 2b---all of the
path---as a highway that will appear in the tree). Unfortunately, the shortest path

PETAL-DECOMPOSITION 231

Fig. 3. Definition of a petal with target tj , center xj , and highway path Pxjtj . The side radius
of each cone (that determines the maximum increase in the radius) is half of the highway path.

from x to z in the final tree may not use the prescribed highway of the parent cluster.
There may be a shorter path that avoids this highway, so the above ``wishful thinking""
argument does not work.

The key algorithmic idea to alleviate this problem is to decrease the weight of an
edge by half when it becomes part of a highway (we ensure that this happens at most
once for every edge). This reweighting signals later iterations to use the prescribed
highway (or use a shorter path, no longer than the reweighted highway). Therefore,
if we generate a new highway in the path from x0 to some z when we form P (x0, t, r),
then (after reweighting the highway) the length of the path does not increase at all
(it increased by at most \alpha , but length of at least 2\alpha was reduced by 1/2). The other
case is that no new highway is generated, which can only happen for the first cluster
created (some of the highway edges may have been reweighted already). In this case
we turn to the idea of [ABN08], that one may choose a certain target point y1 and have
that the shortest path connecting x0 to y1 will appear in the tree. Here we choose y1
as the point leading to the first cluster. This approach implies that even though we
may increase the radius, a constant fraction of the path is guaranteed not to increase
ever again. We use a subtle inductive argument to make this intuition precise, and
in fact we lose a factor of 2 for each of these cases, so the maximal increase is by a
factor of 4.

Constructing petals. An alternative way to define cones C(x0, x, r) and petals
P (x0, t, r) as a ball growing procedure on a directed graph shows their similarities.
This view is essential for a fast algorithm to construct the petals. Given a weighted
undirected graph G = (V,E) with a center x and a target t, let pk be the point
of distance k from t on the shortest path Ptx from t to x; all distances d are with
respect to G. Let \~G = (V,A, \=w) be the weighted directed graph induced by adding
the two directed edges (u, v), (v, u) \in A for each \{ u, v\} \in E and setting \=w(u, v) =
w(u, v) - (d(v, x) - d(u, x)). The cone C(x, t, r) is simply the ball around t of radius

232 ITTAI ABRAHAM AND OFER NEIMAN

r in \~G. The Petal P (x, t, r) is the ball around t of radius r/2 in \~G with one change:
the weight of each edge on the path Pt,pr\prime is changed to be 1/2 of its original weight
(that is, 1/2 of its weight in G), where r\prime \leq r is the maximal such that there exists a
point pr\prime on this path.

We shall elaborate on this in section 6.

1.2.2. Sparse graph decompositions. A basic tool that is often used in con-
structing tree metrics and spanning trees with low stretch is sparse graph decompo-
sition. The idea is to partition the graph into small diameter pieces such that few
edges are cut. Each cluster of the decomposition is partitioned recursively, which
yields a hierarchical decomposition. Creating a tree recursively on each cluster of the
decomposition, and connecting these in a tree structure, will yield a spanning tree of
the graph. The edges cut by the decomposition are potentially stretched by a factor
proportional to the diameter of the created tree. The construction has to balance
these two goals: cut a small number of edges while maintaining small diameter in the
created tree.

For a spanning tree we require both strong diameter partitions and control of
the diameter increase. The authors of [EEST05] build a tree with average stretch
O(log2 n log log n). A factor of O(log n log log n) is due to the partitions based on the
approach of [Sey95, Bar98], and another O(log n) is required to control the diameter
of the tree. The publication [ABN08] has a factor of O(log n) due to the partitions
based on the approach of [Bar04, ABN06], and another \~O(log log n) is required to
control the diameter of the tree.

In this work, we show a new petal-decomposition that incurs only a constant cost
to control the diameter of the tree. We hoped that the partition cost would be based
on local growth ratio bounds (as in [FRT03, Bar04, ABN06, ABN08]), which would
lead to optimal average stretch. Known strong diameter partitions (see [ABN08])
that obtain a local growth ratio bound require a careful selection of the center of
each cluster. However, our current petal-decomposition approach does not allow one
to choose the centers arbitrarily, and hence we could not directly use the technique
of [ABN08]. Therefore, we turn to the partitions of [EEST05], which is the only
reason for the extra O(log log n) factor. It remains an open question whether one can
construct an optimal strong diameter partition whose centers can be chosen arbitrarily.
Our results show that this open question is the only barrier to obtaining an optimal
low stretch tree.

Subsequent work. In [EFN15] the notion of terminal embedding was intro-
duced. Given a graph G = (V,E) with a designated set of terminals K \subseteq V , they
want an embedding that approximately preserves distances for all pairs containing a
terminal, whose distortion depends only on k = | K| . Using our petal-decomposition
they devise a distribution over spanning trees with expected stretch \~O(log k) (for any
pair containing a terminal).

In [ACE+18] the petal-decomposition approach was used to create Ramsey span-
ning trees. This can be viewed as a small collection of spanning trees, where each
vertex v has a tree in the collection that provides small stretch to all pairs containing
v.

1.3. Structure of the paper. In section 3 we describe the new petal-decompo-
sition and prove some of its basic properties. In section 4 we bound the total radius
increase by a factor of 4. In section 5 we analyze the total stretch, and provide the
improved bound ofO(log n log log n) on the average stretch, proving the first statement

PETAL-DECOMPOSITION 233

of Theorem 1. In section 6 we show an alternative view of forming a petal by shortest
paths in a certain graph that concludes the proof of Theorem 1.

2. Preliminaries. Let G = (V,E,w) be a weighted undirected graph; we shall
assume throughout the paper that w(e) \geq 1 for all edges e \in E. For any X \subseteq V ,
G(X) is the subgraph induced on X with edges E(X) = \{ \{ u, v\} \in E | u, v \in X\} .
For Y \subseteq X denote by \partial X(Y) = \{ \{ u, v\} \in E(X) : | Y \cap \{ u, v\} | = 1\} the set of edges
with exactly one end point in Y (in the graph induced by X). Let dX : X2 \rightarrow \BbbR + be
the shortest path metric in G(X). Let diam(X) = maxy,z\in X\{ dX(y, z)\} . For x \in X
let radx(X) = maxy\in X\{ dX(x, y)\} ; we omit the subscript when it is clear from the
context (note that diam(X)/2 \leq rad(X) \leq diam(X)). For any x \in X and r \geq 0 let
B(X,d)(x, r) = \{ y \in X | dX(x, y) \leq r\} (we omit the metric d whenever d = dX is the
standard shortest-path metric).

By contracting an edge \{ u, v\} we mean identifying its endpoints to a single vertex
w, while preserving all the edges leaving u or v (so we may have multiple edges leaving
w). By expanding back w we undo the contracting operation.

For a spanning tree T = T [X] of a subgraph G(X), define the total stretch on
edges in G(X) as

TS[X] =
\sum

\{ u,v\} \in E(X)

dT (u, v)

w(u, v)
.

For X \subseteq V and vertices u, v \in X, let Puv(X) be a fixed shortest path between
u, v in G(X) (assuming that G(X) is connected). We may assume that there is a
unique such path. By T = SPTx(G(X)) we mean the shortest path tree rooted at
x (the subscript is dropped when the center x is clear from the context). Such a
tree may be constructed in near linear time using Dijkstra's algorithm, which satisfies
dT (x, y) = dX(x, y) for all y \in X.

A \xi -concentric system \{ Lr \subseteq X : r \geq 0\} is a generalization of balls and should
satisfy that L0 \not = \emptyset , Lr \subseteq Lr\prime for r < r\prime , and for an edge \{ u, v\} , if u \in Lr, then
v \in Lr+\xi \cdot w(u,v). For balls we have \xi = 1, and for petals defined below we will have
\xi = 2.

Define the cost of an edge e \in E to be cost(e) = 1/w(e), and the cost of a set of
edges F \subseteq E is cost(F) =

\sum
e\in F cost(e). For a 2-concentric system \{ Lr\} we would

like to define the volume of its members as the number of edges they contain plus
the appropriate fraction of the edges in \partial X(Lr). To make this precise, fix r \geq 0 and
e = \{ u, v\} , and let ru (resp., rv) be the minimal r such that u \in Lr (resp., v \in Lr).
Without loss of generality, we assume ru \leq rv, and define for r \in [ru, rv], \alpha e =

r - ru
2w(u,v) .

Intuitively, \alpha e measures the ``fraction"" of e that lies in Lr. Observe also that since
\{ Lr\} is a 2-concentric system, we have rv \leq ru + 2w(u, v), so that \alpha e \in [0, 1], and

volX(Lr) = 1 + | E(Lr)| +
\sum

e\in \partial X(Lr)

\alpha e .

The 1 is added for technical convenience. We shall omit the subscript X where X is
clear from the context. Observe that the volume is a nondecreasing function of the
radius r, and the derivative of this function is half the cost of the edges in \partial X(Lr) (as
long as there is no edge leaving \partial X(Lr) when we increase r slightly).

Definition 1 (cone-metric2). Given a graph G = (V,E,w), subset X \subseteq V , and

2In fact, the cone-metric is a pseudo-metric.

234 ITTAI ABRAHAM AND OFER NEIMAN

T = hierarchical-petal-decomposition(G(X), x0, t):
1. If | X| = 1, return T consisting of a single vertex.
2. (X0, . . . , Xs, (y1, x1), . . . , (ys, xs), t0, . . . , ts)

= petal-decomposition(G(X), x0, t);
3. For each j \in [0, . . . , s]:

(a) Tj = hierarchical-petal-decomposition(G(Xj), xj , tj);
4. Let T be the tree formed by connecting T0, . . . , Ts using the edges

\{ y1, x1\} , . . . , \{ ys, xs\} ;

Fig. 4. hierarchical-petal-decomposition algorithm. The input is a graph G(X) and two
vertices x0, t \in X, and the output is a spanning tree of G(X).

points x, y \in X, define the cone-metric \rho = \rho (X,x, y) : X2 \rightarrow \BbbR + as \rho (u, v) =
| (dX(x, u) - dX(y, u)) - (dX(x, v) - dX(y, v))| .

Observe that this definition is slightly different from the definition given in [ABN08],
which is based on [EEST05] (the one given here is less general, but suffices for our
needs). Note that a ball B(X,\rho)(y, r) in the cone-metric \rho = \rho (X,x, y) is the set of
all points z \in X such that dX(x, y) + dX(y, z) - dX(x, z) \leq r. Note that distances
in the cone-metric can be at most twice the shortest-path distance (and that they
can be much shorter); this is because \rho (u, v) \leq | dX(u, x) - dX(x, v)| + | dX(v, y) -
dX(y, u)| \leq 2dX(u, v) (where X,x, y are as defined above). This implies that for any
z \in V , \{ B(X,\rho)(z, r)\} r is a 2-concentric system, since for u \in B(X,\rho)(z, r) and an edge
\{ u, v\} \in E, we see that v \in B(X,\rho)(z, r + 2dX(u, v)) (and dX(u, v) \leq w(u, v)). In
particular, for a ball B in a cone-metric

(2) volX(B) \leq 1 + | E(B)| + 2| \partial (B)| .

3. Petal-decomposition.

Hierarchical-petal-decomposition algorithm. See Figure 4 for the algorithm.
Let G = (V,E) be a weighted graph. Here and in what follows n = | V | and m = | E| .
For ease of presentation we first assume that the aspect ratio of the graph (the ratio be-
tween the largest and smallest distance) is at most polynomial in n, and in section 6 we
remark how to handle arbitrary weights. Create a spanning tree T by choosing an ar-
bitrary vertex x0 \in V and calling it hierarchical-petal-decomposition(G, x0, x0).
In section 4 we show that this tree satisfies rad(T) \leq O(rad(G)).

3.1. Properties and correctness. Fix some subset X \subseteq V , and consider run-
ning petal-decomposition on G(X) with some x0 \in X and target t \in X. See Fig-
ure 5. Denote \Delta = radx0(X). The algorithm partitions X to X0, X1, . . . , Xs, finds
edges (x1, y1), . . . , (xs, ys) connecting these clusters, and assigns centers t0, . . . , ts for
each new cluster. The first cluster created X1 may be a special cluster, whose purpose
is to preserve the shortest path from x0 to t. The main properties we want from this
partition are the following:

\bullet Each cluster Xj , 0 \leq j \leq s, is connected, has smaller radius radxj (Xj) \leq
3\Delta /4, and contains the shortest path from its center xj to its target tj .

\bullet The edges (x1, y1), . . . , (xs, ys) connecting the clusters form a tree (when
thinking of each cluster as a single vertex). This is achieved by ensuring
xj \in Xj and yj /\in X1 \cup \cdot \cdot \cdot \cup Xj for each 1 \leq j \leq s.

\bullet The shortest path from the center x0 to the target t is either fully contained
in X0 or in X0 \cup X1 (if X1 is special).

PETAL-DECOMPOSITION 235

(X0, . . . , Xs, (y1, x1), . . . , (ys, xs), t0, . . . , ts) = petal-decomposition(G(X), x0, t):
1. Let \Delta = radx0

(X); Let Y0 = X; Set j = 1;
2. If dX(x0, t) > 5\Delta /8, create a special first petal:

(a) Let (X1, x1) = create-petal(X,X, t, x0, [dX(x0, t) - 5\Delta /8,
dX(x0, t) - \Delta /2]);

(b) Y1 = Y0 \setminus X1;
(c) Let y1 be the neighbor of x1 on Px0t (the one closer to x0); Set t0 = y1,

t1 = t;
(d) Set j = 2;

3. Otherwise, if dX(x0, t) \leq 5\Delta /8, set t0 = t.
4. Creating the petals:

(a) While Yj - 1 \setminus BX(x0, 3\Delta /4) \not = \emptyset :
i. Let tj \in Yj - 1 be an arbitrary point satisfying dX(x0, tj) > 3\Delta /4;
ii. Let (Xj , xj) = create-petal(X,Yj - 1, tj , x0, [0,\Delta /8]); Yj =

Yj - 1 \setminus Xj (see Figure 6);
iii. For each edge e \in Pxjtj , set its weight to be w(e)/2;
iv. Let yj be the neighbor of xj on Px0tj (the one closer to x0);
v. Let j = j + 1;

(b) Let s = j - 1;
5. Creating the stigma X0:

(a) Let X0 = Ys;

Fig. 5. petal-decomposition algorithm. The input is a graph G(X) and two vertices x0, t \in X.
The output is a partition of X into connected clusters X0, . . . , Xs of radius at most 3rad(X)/4, and
s edges (x1, y1), . . . , (xs, ys) connecting these clusters. These edges satisfy xj \in Xj for all 0 \leq j \leq s,
and yj /\in X1 \cup \cdot \cdot \cdot \cup Xj (i.e., yj is not clustered by the first j clusters). Finally, targets t0, . . . , ts
with tj \in Xj are specified for each new cluster.

(W,x) = create-petal(X,Y, t, x0, [lo, hi]):
1. Let R = hi - lo;
2. Define Wr =

\bigcup
p\in Px0t : dY (p,t)\leq r B(Y,\rho (Y,x0,p))(p, (r - dY (p, t))/2);

3. Let L = \lceil log log n\rceil ; Set q = 1;
4. Loop:

(a) Set a = lo+ (q - 1)R/L; Fix \chi = | E(X)| +1
volY (Wa)

;

(b) If volY (Wa) \leq 4| E(X)|
2(log m)1 - q/L +1, exit the loop; Otherwise, set q = q+1

and repeat;
5. Find r \in [a, a+R/L] such that cost(\partial Y (Wr)) \leq volY (Wr) \cdot 2L ln\chi

R ;
6. Let r\prime \leq r be the maximal such that there exists a point pr\prime with

dY (t, pr\prime) = r\prime on Px0t;
7. Return (Wr, pr\prime);

Fig. 6. create-petal algorithm. The input is a set of vertices X, a subset Y \subseteq X on which
we work right now, two vertices x0, t \in Y , and a range [lo, hi] satisfying hi - lo = radx0 (X)/8 from
which to pick the radius. The output is a cluster W \subseteq Y and a center x \in W .

In what follows we formally prove all of these properties. Recall that Yj - 1 =
X \setminus (X1 \cup \cdot \cdot \cdot \cup Xj - 1) is the vertex set of the graph from which a petal is carved in
iteration j of the petal-decomposition algorithm. First, we show that the shortest
path from any z \in Yj to the center x0 is fully contained in Yj . This proof essentially

236 ITTAI ABRAHAM AND OFER NEIMAN

appeared in [EEST05, ABN08], and we include it for the sake of completeness.

Claim 1. Let 1 \leq j \leq s be an integer, and let z \in Yj; then Px0z(X) \subseteq G(Yj).

Proof. Seeking a contradiction, assume that Px0z(X) \nsubseteq G(Yj), and let 1 \leq h \leq j
be the minimal such that there exists u \in Px0z(X) and u \in Xh. We will have a
contradiction once it is shown that z \in Xh as well. Let xh and th be the center
and target of the petal Xh, respectively. Let rh be the radius that was chosen for
creating Xh. Let pk be the point on Pxhth(Yh - 1) of distance k from th such that
u \in B(Yh - 1,\rho)(pk, (rh - k)/2), where \rho = \rho (Yh - 1, x0, pk). By Definition 1 this means
that

(3) dYh - 1
(x0, u) + (rh - k)/2 \geq dYh - 1

(x0, pk) + dYh - 1
(pk, u) .

By the minimality of h it follows that Px0z(X) is fully contained in G(Yh - 1) (even if
h = 1, recall that Y0 = X). Since u lies on Px0z(X), it follows that dYh - 1

(x0, z) =
dYh - 1

(x0, u) + dYh - 1
(u, z). Now

dYh - 1
(x0, z) + (rh - k)/2 = dYh - 1

(x0, u) + (rh - k)/2 + dYh - 1
(u, z)

(3)

\geq dYh - 1
(x0, pk) + dYh - 1

(pk, u) + dYh - 1
(u, z)

\geq dYh - 1
(x0, pk) + dYh - 1

(pk, z);

hence z \in B(Yh - 1,\rho)(pk, (rh - k)/2) and thus should also be in Xh, which yields a
contradiction.

Corollary 2. The cluster X0 is connected.

Proof. Applying Claim 1 to Ys = X0, we conclude that if z \in X0, it is connected
to x0.

Observation 3. For each j \geq 1, Pxjtj (X) \subseteq G(Xj).

Proof. As xj was chosen on the shortest path connecting x0 to tj , and since by
Claim 1 Px0tj (X) \subseteq Yj - 1, we get that by definition of cone-metric, d(Yj - 1,\rho (Yj - 1,x0,xj))

(xj , p) = 0 for all p \in Pxjtj (X). This suggests that the entire path Pxjtj (X) \subseteq
G(Xj).

Corollary 4. For each integer j \geq 1, Xj is connected.

Proof. By Observation 3, Pxjtj (X) is fully contained in G(Xj), and since Xj

is a union of balls (in a cone-metric) centered at the points of Pxjtj (X), it is then
connected.

The following two claims show that the radii of clusters decreases by a constant
factor at each level. They are similar to claims proven in [EEST05, ABN08]; we
provide proofs for the sake of completeness.

Claim 5. BX(x0,\Delta /2) \subseteq X0 \subseteq BX(x0, 3\Delta /4).

Proof. For the right inclusion, note that for any j \geq 1, if there is a point in
Yj - 1 \setminus BX(x0, 3\Delta /4), we continue creating petals; therefore, Ys \setminus BX(x0, 3\Delta /4) = \emptyset
and X0 = Ys \subseteq BX(x0, 3\Delta /4).

To see the left inclusion, fix any z \in X with dX(x0, z) \leq \Delta /2; we will show that
z /\in Xj for any j \geq 1. First, consider the case when the special petal is built, which
happens when dX(x0, t) > 5\Delta /8, and we conclude that the petal radius r1 is at most

(4) r1 \leq hi = dX(x0, t) - \Delta /2 .

PETAL-DECOMPOSITION 237

For any 0 \leq k \leq r1 and pk \in Px1t(X), we now show that the cone of pk will not
contain z. Recall that dX(pk, t) = k, so that

(5) dX(x0, pk) = dX(x0, t) - k ,

and we have that

dX(z, pk) + dX(pk, x0) \geq dX(pk, x0) - dX(x0, z) + dX(pk, x0)

(5)

\geq 2dX(x0, t) - 2k - \Delta /2

= (dX(x0, t) - \Delta /2 - k)/2 + (3/2)(dX(x0, t) - k) - \Delta /4

(4)
> (r1 - k)/2 + \Delta /2

\geq dX(x0, z) + (r1 - k)/2 .(6)

By the definition of cone-metric, this implies that z /\in X1. The calculation for the
other petals is similar: fix any j \geq 1 (j = 1 only if there is no special petal), and
consider the petal Xj with target tj with radius rj \leq \Delta /8, recalling that dX(x0, tj) \geq
3\Delta /4. Here, in fact, we can show a stronger bound; it suffices that z \in X has
dX(x0, z) < 5\Delta /8 to be left outside of the petal Xj . We will use Claim 1 to argue
that distances from x0 in Yj - 1 are the same as those in X (this also holds for distances
between vertices on the shortest-paths emanating from x0, e.g., on Pxjtj (X)). For
any 0 \leq k \leq rj and pk \in Pxjtj (X) we have that

dYj - 1
(z, pk) + dYj - 1

(pk, x0) \geq dX(pk, x0) - dX(x0, z) + dX(pk, x0)

\geq 2dX(x0, tj) - 2k - 5\Delta /8

\geq (3/2)\Delta - k/2 - (3/2) \cdot \Delta /8 - 5\Delta /8

= 5\Delta /8 + (\Delta /8 - k)/2

\geq dYj - 1(x0, z) + (rj - k)/2 ,(7)

where we used that k \leq \Delta /8 in the third inequality. Again by the definition of
cone-metric, this implies that z /\in Xj as well.

Claim 6. For each 1 \leq j \leq s, radxj
(Xj) \leq 3\Delta /4.

Proof. Consider first the special petal X1 with radius

(8) r1 \leq dX(x0, t) - \Delta /2 .

For z \in X1, let 0 \leq k \leq r1 and pk \in Px1t(X) of distance k from t be such that
z \in B(X,\rho)(pk, (r1 - k)/2) (with \rho = \rho (X,x0, pk)). In particular,

(9) dX(x0, pk) = dX(x0, t) - k .

By definition of cone-metric we get that

(10) dX(x0, pk) + dX(pk, z) \leq dX(x0, z) + (r1 - k)/2 .

Using Observation 3 and the fact that each point on Ppkz(X) must be in X1 as well,

238 ITTAI ABRAHAM AND OFER NEIMAN

recalling d(x1, pk) = r1 - k it follows that

dX1
(x1, z) \leq dX(x1, pk) + dX(pk, z)

(10)

\leq r1 - k + dX(x0, z) + (r1 - k)/2 - dX(x0, pk)

(9)
= 3r1/2 + dX(x0, z) - dX(x0, t) - k/2

(8)

\leq 3(dX(x0, t) - \Delta /2)/2 + dX(x0, z) - dX(x0, t)

\leq 3\Delta /4 ,

where in the last inequality we use that every distance from x0 is at most \Delta . For the
other petals, considerXj with radius rj for some j \geq 1, and let z \in Xj . Let 0 \leq k \leq rj
and pk \in Pxjtj (Yj - 1) be of distance k from t such that z \in B(Yj - 1,\rho)(pk, (rj - k)/2)
(with the cone-metric \rho = \rho (Yj - 1, x0, pk)). By definition of cone-metric and as rj \leq
\Delta /8, we get that

(11) dYj - 1(x0, pk) + dYj - 1(pk, z) \leq dX(x0, z) + (rj - k)/2 < 9\Delta /8 .

And finally, applying Observation 3 and Claim 1 we get that

dXj
(xj , z) \leq dYj - 1

(xj , pk) + dYj - 1
(pk, z)

(11)

\leq rj + 9\Delta /8 - dX(x0, pk)

\leq 5\Delta /4 - 5\Delta /8

< 3\Delta /4 ,

where we used in the third inequality that d(x0, pk) \geq 5\Delta /8, which holds since rj \leq
\Delta /8 and the target tj is at least 3\Delta /4 away from x0.

Claim 7. If a special first petal is created, then y1 \in X0.

Proof. As the radius r1 of the special petal is at least dX(x0, t) - 5\Delta /8, and as
y1 /\in X1, it follows that dX(y1, t) > dX(x0, t) - 5\Delta /8, and as y1 is on the shortest
path Px0t(X) we get that dX(x0, y1) = dX(x0, t) - dX(y1, t) < 5\Delta /8. It remains to
show that for any other j \geq 2, if z \in Xj , then dX(x0, z) \geq 5\Delta /8, but this was proved
in Claim 5 (see above, before (7)).

Claim 8. If a special first petal is created, then Px0t(X) \subseteq G(X0 \cup X1). Other-
wise, Px0t(X) \subseteq G(X0).

Proof. If a special petal is created, then it surely contains its target t. Consider
the shortest path Px0t(X), and divide it into Px0y1

(X) and Px1t(X). By Observation 3
the path Px1t(X) is fully contained in X1. By Claim 7, y1 \in X0, and thus Claim 1
implies that Px0y1

(X) is also contained in X0.
If it is the case that there is no special petal, then dX(x0, t) \leq 5\Delta /8; thus t \in X0,

and again by Claim 1 the whole path Px0t(X) lies in X0.

Claim 9. At the time step in which hierarchical-petal-decomposition is
called on (G(X), x0, t), the edges of G(X) that are set to 1/2 of their original weight
are exactly those on Px0t(X).

Proof. We will prove by induction on the depth of the recursion of hierarchical-
petal-decomposition. The base case is trivial, since the first call to the algorithm
is on (G, x0, x0). Assume by induction that X with center x0 has a target t, and only

PETAL-DECOMPOSITION 239

edges on Px0t(X) are set to 1/2 of their weight. We partition X into X0, X1, . . . , Xs,
and for j \geq 1 (or j \geq 2 if there is a special petal), set the weight of each edge on
Pxjtj (X) to 1/2 of its original weight. First, observe that these edges' weights haven't
been changed before, because by the induction hypothesis on X the only edges set to
1/2 of their weight lie on Px0t(X), but by Claim 8 all of them are fully contained in
G(X0) or in G(X0 \cup X1) if X1 is a special petal.

Consider now X0 with center x0: if there is no special petal, then t0 = t \in X0,
and by the induction hypothesis, the only edges in G(X0) that are set to 1/2 of their
weight are those on Px0t0(X). If there is a special petal X1, then t0 = y1, and as y1
lies on Px0t, all the edges on Px0t0(X) are already set to 1/2 of their original weights.

If there is a special petal X1, then its target is t1 = t, and by the induction
hypothesis, only the path Px1t1 \subseteq Px0t(X) (which lies in G(X1) by Observation 3)
contains edges that were already set to 1/2 of their original weight.

For all of the other petals Xj , we noted that none of the edges of Px0t(X) (that
were already set to 1/2 of their weight) are in Xj , and the assertion holds by con-
struction.

Corollary 10. Every edge e \in E can have its weight multiplied by 1/2 at most
once throughout the running of the algorithm.

Proof. Consider running petal-decomposition(G(X), x0, t). By Claim 8 the
path Px0t(X) is fully contained in G(X0) (or G(X0\cup X1) if X1 is a special petal); thus
it is disjoint from all the regular petals created. Observe that the algorithm changes
the weights only for edges on Pxjtj (X) for regular petals Xj , and by Observation 3,
Pxjtj (X) \subseteq G(Xj), so Claim 9 implies that these edges have not been reweighted
before.

Claim 11. The algorithm returns a tree.

Proof. Assume by induction on the depth of the recursion of hierarchical-petal-
decomposition called on G(X) that a tree is created. The base case when | X| = 1
trivially holds. LetX \subseteq V be a cluster that is partitioned by the petal-decomposition
algorithm into X0, X1, . . . , Xs. By the induction hypothesis, running the algorithm
on every subgraph G(Xj) returns a tree Tj . Since every Tj contains | Xj | - 1 edges and
we add s edges to create T , the total number of edges in the tree T created from X is
indeed | X| - 1. It remains to show that there are no cycles. Seeking a contradiction,
assume that there is a cycle. Since the edges \{ x1, y1\} , . . . , \{ xs, ys\} are not inside any
cluster Xj , it must be that the cycle is not fully contained in a single Xj . Let h \geq 1 be
the minimal integer such that the cycle contains vertices from Xh; thus there are at
least two cycle edges leaving Xh. Observe that every edge \{ xj , yj\} we added satisfies
yj \in Yj ; in particular, if j \geq h, then yj /\in Xh. This means that only \{ xh, yh\} can
connect Xh to the other clusters in the cycle, which is a contradiction.

4. Radius bound. Fix any cluster X \subseteq V generated at some point during the
execution of the algorithm. Let T [X] be the tree created by calling hierarchical-

petal-decomposition(G(X), x0, t). In this section we show that the radius of T [X]
is bounded by a constant times the radius of X. The metric dX is the shortest
path metric on X with respect to the new edge weights that were set just before
calling hierarchical-petal-decomposition(G(X), x0, t). Recall that by Claim 9,
the specific edges on Px0t(X) had their weight set to 1/2 of the original weight. Also
the metric dT for any tree T is with respect to the new weights (note the tree is
formed once the algorithm terminates). We start off by showing that this highway
path is fully contained in T [X].

240 ITTAI ABRAHAM AND OFER NEIMAN

Claim 12. Let X be a cluster with center x0 and target t; then

(12) dT (x0, t) = dX(x0, t) .

Proof. It suffices to show that the shortest path is Px0t(X) \subseteq T and there is
no reweighting on these edges. This can be shown by induction on the depth of
the recursion of hierarchical-petal-decomposition. If there is no special petal
created when calling petal-decomposition on X, then by Claims 1 and 8, Px0t(X) =
Px0t(X0) \subseteq G(X0), and by the induction hypothesis indeed Px0t(X) \subseteq T without
reweighting. Otherwise, if there is a special petal X1, then Px0t(X) \subseteq G(X0 \cup X1).
Since we set t0 = y1 and t1 = t, by the induction hypothesis both Px0y1(X0) \subseteq T
and Px1t(X1) \subseteq T without reweighting (there is no reweighting on a special petal).
Also by definition the edge \{ y1, x1\} is added to T . Finally, recall that both x1 and y1
are chosen on Px0t(X), so again by Claim 1 we obtain that Px0t(X) = Px0y1

(X0) \cup
\{ y1, x1\} \cup Px1t(X1) \subseteq T .

Lemma 13. For any cluster X created at some point during the algorithm,

rad(T [X]) \leq 2rad(X) .

Proof. It suffices to prove by induction on depth of the recursion of hierarchical-
petal-decomposition that for any cluster X with center x0 and target t, and for
any y \in X,

(13) dT (x0, y) \leq 2dX(x0, y) .

Assume X is partitioned into clusters X0, X1, . . . , Xs. There are three cases to con-
sider: y \in X0, y \in X1 where X1 is a special petal, and y \in Xj for a regular petal
Xj . Before showing the formal proof, the following is a high level description of these
cases. Case 1 follows trivially by induction. Case 2 requires us to exploit the highway
leading to the special petal, that is, the path from x0 to the first petal will surely
appear in the tree by Claim 12. The third case crucially uses the definition of petals
and the reweighting of the highways. For every point y in a petal, the reweighting of
the petal highway leading to y compensates for the increased distance incurred by its
location in the petal.

Case 1. y \in X0. By Claim 1, Px0y(X) \subseteq X0. Applying the induction hypothesis
on X0 we obtain that dT (x0, y) \leq 2dX0(x0, y) = 2dX(x0, y). The equality holds since
the shortest path Px0y(X0) is the same as Px0y(X) by Claim 1 (recall that there is
no reweighting of edges in X0). This concludes the first case.

In the other two cases, y \in Xj for some j \geq 1. We now introduce some no-
tation and show properties that hold in these two cases. Let rj be the radius
chosen by create-petal for creating Xj . Fix any 0 \leq k \leq rj such that y \in
B(Yj - 1,\rho (Yj - 1,x0,pk))(pk, (rj - k)/2) (note that k is not necessarily unique). By def-
inition of a ball in a cone-metric (and using Claim 1 for distances involving x0),

(14) dX(x0, pk) + dYj - 1
(pk, y) \leq dX(x0, y) + (rj - k)/2 .

We shall use the following observations:

dXj (pk, y) \leq dYj - 1(pk, y),(15)

dX(x0, xj) + dX(xj , pk) = dX(x0, pk) .(16)

PETAL-DECOMPOSITION 241

Recall that dX is the metric induced on X with the new weights, occurring just before
decomposing X. We denote dYj - 1

as the induced metric with weights as in X. To see
(15), note that when taking a cone in the metric Yj - 1 centered at pk that contains y,
it must also contain the entire shortest path from pk to y, Ppky(Yj - 1). The inequality
follows because distances in Xj can be made shorter due to reweighting of the edges
on Pxjtj . For (16), this is simply because xj is pr\prime j , all pk are on the shortest path

from tj to x0, and by definition of r\prime j , k \leq r\prime j .

Case 2. There is a special petal X1 and y \in X1. In this case (15) implies that

(17) dX1
(x1, pk) \leq dX(x1, pk) .

By Claim 5 it follows that dX(x0, x1) \geq \Delta /2, and thus

(18) dX(x1, pk) < \Delta /2 .

Since a special petal was created we have that

(19) r1 \leq dX(x0, t) - \Delta /2 .

Recall that all the edges on Px0t(X) are already set to 1/2 of their weight in X,
and that y1, x1, pk are all on Px0t, so then t0 = y1, and by the induction hypothesis
on X1,

dT (x0, y) \leq dT (x0, y1) + dT (y1, x1) + dT (x1, y)

(12)\wedge (13)

\leq dX(x0, y1) + dX(y1, x1) + 2dX1
(x1, y)

(15)

\leq dX(x0, x1) + 2dX(x1, pk) + 2dX(pk, y)

(14)

\leq dX(x0, pk) + dX(x1, pk) + 2(dX(x0, y) + (r1 - k)/2 - dX(x0, pk))

= 2dX(x0, y) + r1 + dX(x1, pk) - (dX(x0, pk) + k)

(18)\wedge (19)

\leq 2dX(x0, y) + dX(x0, t) - \Delta /2 + \Delta /2 - dX(x0, t)

= 2dX(x0, y) .

This concludes the proof for the second case.

Case 3. y \in Xj for some (regular) petal Xj . Let us introduce some more
notation. The petal-tree of a petal-decomposition on a subgraph G(X) is a graph
H = (W,F), where W = \{ X0, X1, . . . , Xs\} and \{ Xh, Xh\prime \} \in F iff yh \in Xh\prime or
yh\prime \in Xh (that is, if the clusters are connected by one of the portal edges). Claim 11
suggests that H is a tree. Let X0 be the root of the tree, and let rank(Xh) denote the
depth of Xh in H. Observe that in the case of regular petals (all petals other than
the special one and the stigma), we have the following:

(20) dX(xj , pk) = 2dXj
(xj , pk).

This holds because when we partition X, we assign all edges on Pxjtj (X) half of their
original weights; also note that Claim 9 suggests that the edges along Pxjtj (X) were
not reweighted before. By Observation 3 the shortest path Pxjtj (X) \subseteq G(Xj), and
the reweighting reduces the shortest path distance by a factor of 2.

We will prove (13) in the case y \in Xj , for some regular petal Xj , by induction
on rank(Xj). The base case is when the rank is 1 (rank 0 was handled in Case 1) so

242 ITTAI ABRAHAM AND OFER NEIMAN

then it must be that yj \in X0. By Claim 1 we get Px0yj
(X) \subseteq G(X0), and there is no

reweighting of edges along Px0yj
, so

(21) dX0(x0, yj) = dX(x0, yj) .

Note that the edge \{ yj , xj\} will never have its weight reduced by 1/2, because by
Claim 9 this did not happen until now, and the edge will not be included in any
future cluster. This means that

(22) dX(yj , xj) = dT (yj , xj) .

By the induction hypothesis (13) on both X0 and Xj ,

dT (x0, y) \leq dT (x0, yj) + dT (yj , xj) + dT (xj , y)

(13)\wedge (22)

\leq 2dX0(x0, yj) + dX(yj , xj) + 2dXj (xj , y)

(21)

\leq 2dX(x0, xj) + 2dXj
(xj , pk) + 2dXj

(pk, y) - dX(yj , xj)

(20)\wedge (15)

\leq 2dX(x0, xj) + dX(xj , pk) + 2dYj - 1
(pk, y) - dX(yj , xj)

= 2(dX(x0, pk) + dYj - 1
(pk, y)) - dX(yj , pk)

(14)

\leq 2dX(x0, y) + (rj - k) - (rj - k)

= 2dX(x0, y) .(23)

Now we prove for the case rank(Xj) > 1. Let h \in [s] be such that (Xj , Xh) \in F
and rank(Xh) = rank(Xj) - 1. Observe that h is unique since H is a tree, and by
definition of rank we have yj \in Xh. By the induction hypothesis on the rank,

(24) dT (x0, yj) \leq 2dX(x0, yj) .

And exactly the same calculation as in (23) holds, with the slight difference that the
reason dT (x0, yj) \leq 2dX(x0, yj) holds is by induction on the rank, rather than on X0.
This concludes the inductive proof.

5. Analysis of total stretch. Recall that we apply hierarchical-petal-

decomposition on the graph G = (V,E) with center and target x0. We wish to
prove that the total stretch is bounded by O(m log n log log n). The proof is similar
to the proof of [EEST05]. Consider a single run of the algorithm create-petal on
input (X,Y, t, x0, [lo, hi]). In what follows we shall omit the subscript Y . Recall that
R = hi - lo, and let q \geq 1 be the value for which the loop terminated. We observe
that q \leq L, because when q = L, the term in the right-hand side at line 4b of the
algorithm is equal to 2m+1, but for any r, vol(Wr) \leq 2m+1 (the last bound follows

by (2)). Let a = lo + (q - 1)R/L and b = lo + qR/L. Recall that \chi = | E(X)| +1
vol(Wa)

and that r is chosen from [a, b]. The following claim is proved by a standard region
growing argument (see, e.g., [Bar04]).

Claim 14. The algorithm create-petal can find r \in [a, b] satisfying

(25) cost(\partial (Wr)) \leq vol(Wr) \cdot (2L ln\chi)/R .

Proof. First, note that increasing r by some small \delta > 0 will increase the radius of
Wr by \delta /2, and thus for any edge e \in \partial (Wr), its contribution to the volume of Wr will
increase by \delta \cdot cost(e)/2 (this is by the definition of volume, as long as e \in \partial (Wr+\delta)).

PETAL-DECOMPOSITION 243

Consider all the vertices x1, . . . , xt \in Wb \setminus Wa, ordered according to the first time
they enter Wr. In other words, take a \leq k1 \leq \cdot \cdot \cdot \leq kt \leq b such that for all i \in [t],
xi \in Wki

, but xi /\in Wki - \epsilon for any \epsilon > 0. Define the functions U : [a, b] \rightarrow \BbbR and
c : [a, b] \rightarrow \BbbR by U(r) = vol(Wr) and c(r) = cost(\partial (Wr)). We recall that for all
r \in [a, b] \setminus \{ k1, . . . , kt\} , U is differentiable at r, and its derivative is c(r)/2. If we
choose r uniformly at random from [a, b], then putting k0 = a and kt+1 = b we get
that

\BbbE r

\biggl[
c(r)

U(r)

\biggr]
=

1

b - a

t\sum
i=0

\int ki+1

ki

c(r)

U(r)
dr

=
2

b - a

t\sum
i=0

\int ki+1

ki

U \prime (r)

U(r)
dr

=
2

b - a

t\sum
i=0

[lnU(r)]
ki+1

ki

=
2

b - a

t\sum
i=0

(lnU(ki+1) - lnU(ki))

=
2

b - a
(lnU(b) - lnU(a))

\leq (2L ln\chi)/R .

The last inequality uses that vol(Wb) \leq | E(X)| + 1. We conclude that there exists
r \in [a, b] such that

cost(\partial (Wr)) \leq vol(Wr) \cdot (2L ln\chi)/R,

and since c(r) remains constant in each interval (ki, ki+1), such an r can be found
efficiently by checking the values at r = ki for i \in [t].

Consider now the algorithm petal-decomposition invoked on some G(X) with
center x0 and target t. It decomposes X into X0, X1, . . . , Xs (for some integer s \geq 1).
For j \in [s], let \chi j be the value defined at line 4a of create-petal when creating the
petal Xj , and denote by index(Xj) the value of q for which the loop is terminated. For

q > 1, since the loop did not stop at q - 1 we have that vol(Wa) >
2| E(X)|

2log
1 - (q - 1)/L m

+1;

in particular, as long as | E(X)| \not = 0, we have \chi j = | E(X)| +1
vol(Wa)

\leq 2log
1 - (q - 1)/L m. Thus

we have

(26) ln\chi j \leq log1 - (q - 1)/L m+ 1 \leq 3 log1 - q/L m

(the last inequality is because log1/L m = 2log logm/ log logn \leq 5/2). Observe that (26)
holds also for q = 1, because vol(Wa) \geq 1 and | E(X)| \leq m. Also, if the degenerate
case | E(X)| = 0, we have ln\chi j = 0, so the inequality holds. Note that if some edge
\{ u, v\} \in E(X) is separated while decomposing the cluster X with radius \Delta (that is,
it belongs to some \partial (Xj)), then by Lemma 13

dT (u, v) \leq 2rad(T [X]) \leq 4\Delta ,

and by Corollary 10 the distance in T with respect to the original weights is at most
twice as large. We conclude that

(27) stretchT (u, v) \leq 8\Delta /w(u, v) = 8cost(u, v) \cdot \Delta .

244 ITTAI ABRAHAM AND OFER NEIMAN

We now start to calculate the total stretch. Every separated edge appears in some
\partial (Xj) for j \geq 1; recalling that R = \Delta /8 we get

TS[X]
(27)

\leq TS[X0] +

s\sum
j=1

(TS[Xj] + cost(\partial (Xj)) \cdot 8\Delta)

(25)

\leq TS[X0] +

s\sum
j=1

\bigl(
TS[Xj] + 27L \cdot vol(Xj) \cdot ln\chi j

\bigr)
(26)

\leq TS[X0] +

s\sum
j=1

TS[Xj] + 210L \cdot
L\sum

q=1

\sum
j:index(Xj)=q

vol(Xj) \cdot log1 - q/L m.(28)

Let us fix some edge e \in E and analyze its contribution to (28). For every level
of the recursion in which e participated in vol(Xj) with q = index(Xj) it contributes

O(L) \cdot log1 - q/L m. However, by the choice of q, | E(Xj)| \leq vol(Xj) \leq 4| E(X)|
2log

1 - q/L m
+ 1.

Intuitively, if q is small and thus the contribution is rather large, the volume of the
next cluster that contains e becomes much smaller, so e will participate in only a
few more levels. In particular, if the contribution to the total stretch of e in some
level is O(L \cdot i), then the number of edges in the cluster containing e is reduced by a
factor of \Omega (2i). Since the number of times the number of edges can halve is at most
O(logm), we get that the total contribution of each edge over all levels is at most
O(L \cdot logm) = O(log n log log n). We now show this formally. Let \ell q(e) denote the
number of recursive levels i in which e was contained in a cluster of index q. Then
the number of edges in the clusters containing e decreased by a factor of at least

2log
1 - q/L m - 3 for every one of the \ell q(e) levels (assuming 4| E(X)| \geq 2log

1 - q/L m, we

indeed have that | E(Xj)| \leq 8| E(X)|
2log

1 - q/L m
, but otherwise the cluster Xj contains at most

1 edge and the recursion will terminate the next level). So the total decrease is

L\prod
q=1

2\ell q(e)\cdot (log
1 - q/L m - 3) \leq m ,

because we started with m edges. This suggests that

L\sum
q=1

\ell q(e)(log
1 - q/L m) \leq logm+ 3

L\sum
q=1

\ell q(e) = O(logm) ,

where we used that e participates in O(log n) levels, that is,
\sum L

q=1 \ell q(e) = O(logm)
(this follows by the edge contractions; see below in the beginning of section 6). Also
note that when e is cut it, in fact, contributes twice to (28), but since this can happen
only once throughout the recursion, and the contribution is at most O(L \cdot logm) for
each edge, this adds an additional O(Lm log n) factor to the total stretch. Finally,

TS[V] \leq O(L)
\sum
e\in E

L\sum
q=1

\ell q(e) log
1 - q/L m+O(Lm log n) = O(Lm logm)

= O(m log n log log n) .

PETAL-DECOMPOSITION 245

6. Fast petal construction.

Handling arbitrary weights. We first give some details on handling graphs
with arbitrary weights (so far we assumed the aspect ratio is polynomial in n). We
use a well-known trick (see, e.g., [EEST05]) when handling a cluster X, contract
all the edges in G(X) of weight smaller than rad(X)/n2. As at most n - 1 edges
are contracted, distances in X and in its children X0, . . . , Xs can differ by at most
rad(X)/n. So we ignore this small factor when bounding the radius in section 4.

Running time. In order to bound the running time of our algorithm, we need
to argue that the petal construction can be performed efficiently. We first show that
by the contraction and expansion of edges, each edge participates in a logarithmic
number of levels. Consider any edge e \in E. Since e cannot be contained in clusters of
radius less than w(e)/2 and is contracted in clusters of radius greater than n2 \cdot w(e),
we have that e participates only at partitions of radius in the range [w(e)/2, n2 \cdot w(e)].
By Claims 5 and 6 the radii decrease by a factor of at least 3/4 at every level, so there
are at most O(log n) levels in which each edge participates.

It is shown in [KMP11] how to construct a star-decomposition on G = (V,E)
in time O(| E| + | V | log k), where k is the number of distinct edge weights. This
factor essentially comes from running an improved version of Dijkstra's algorithm
for computing the shortest path from the center of the cluster, as introduced by
[OMSW10]. By rounding down weights to the nearest power of 2, we change distances
by a factor of 2, and in every level there will be at most O(log n) different edge weights.
As there are O(log n) scales in which any edge is active, we conclude that the total
running time will be O((m + n log log n) \cdot log n). It remains to determine whether
petals, much like cones, can be constructed efficiently as a region growing scheme.

Given a weighted undirected graph G = (V,E) with a center x and a target
t, let pk be the point of distance k from t on the shortest path Ptx from t to x;
all distances d are with respect to G. Let \~G = (V,A, \=w) be the weighted directed
graph induced by adding the two directed edges (u, v), (v, u) \in A for each \{ u, v\} \in E
and setting \=w(u, v) = w(u, v) - (d(v, x) - d(u, x)). (Note that d(v, x) - d(u, x) \leq
d(u, v) \leq w(u, v), so the weights are positive.) We can efficiently compute all of
these weights by running the improved Dijkstra from the center x in G. The cone
C(x, t, r) is simply the ball around t of radius r in \~G. The Petal P (x, t, r) is the ball
around t of radius r/2 in \~G with one change: the weight of each edge on the path
Pt,pr\prime is changed to be 1/2 of its original weight (that is, 1/2 of its weight in G),
where r\prime \leq r is the maximal such that there exists a point pr\prime on this path. Recall
that the petal with center x, target t, and radius r were defined in the algorithm
as Wr =

\bigcup
p\in Pxt : d(p,t)\leq r B(V,\rho (V,x,p))(p, (r - d(p, t))/2). It remains to see that both

definitions yield the same result, and thus to compute the petals we can use the
improved Dijkstra on the graph \~G.

Claim 15. P (x, t, r) = Wr.

Proof. First, we prove that for any r \geq 0, Wr \subseteq P (x, t, r). Fix some v \in Wr,
and let 0 \leq k \leq r be such that v \in B(V,\rho (V,x,pk))(pk, (r - k)/2). Observe that by the
reweighting of the edges from t to pk we have that the length of the directed path
Ptpk

in \~G is k/2. It remains to show that there is a path in \~G from pk to v of length
at most (r - k)/2. By definition of cone-metric we have that d(v, pk) + d(pk, x) \leq
d(v, x) + (r - k)/2. Let pk = u0, u1, . . . , ul = v be the shortest path in G from pk to

246 ITTAI ABRAHAM AND OFER NEIMAN

v; then by definition of \=w it follows that

l\sum
j=1

\=w(uj - 1, uj) =

l\sum
j=1

w(uj - 1, uj) - d(uj , x) + d(uj - 1, x)

= d(pk, v) - d(v, x) + d(pk, x) \leq (r - k)/2 ,

as required.
Next, we prove that P (x, t, r) \subseteq Wr by induction on the radius. Let 0 = k1 <

k2 < \cdot \cdot \cdot < kl be all the possible values of r for which the size of P (x, t, r) changes.
The base case for k1 = 0, then W0 = \{ y : d(y, x) = d(y, t) + d(t, x)\} , and then
P (x, t, 0) will contain all points reachable with 0 weight edges; by definition these
edges (u, v) are the ones that satisfy d(v, x) - d(u, x) = w(u, v), so any path leaving
t using these edges will lead to a point y for which d(y, x) = d(y, t) + d(t, x), and so
y \in W0.

For the inductive step, assume P (x, t, ki - 1) \subseteq Wki - 1
and prove for ki. Let \delta =

ki - ki - 1. Let v \in P (x, t, ki) \setminus P (x, t, ki - 1), and assume u \in P (x, t, ki - 1) is such
that (u, v) \in A with \=w(u, v) \leq \delta /2. Then by definition of \=w we have that d(u, v) \leq
w(u, v) \leq \delta /2+d(v, x) - d(u, x). By the induction hypothesis we have that u \in Wki - 1

,
so let k be such that u \in B(V,\rho (V,x,pk))(pk, (ki - 1 - k)/2). By definition of cone-metric
d(u, pk) + d(pk, x) \leq d(u, x) + (ki - 1 - k)/2. It follows that

d(v, pk) + d(pk, x) \leq d(v, u) + d(u, pk) + d(pk, x)

\leq \delta /2 + d(v, x) - d(u, x) + d(u, x) + (ki - 1 - k)/2

= d(v, x) + (ki - k)/2 ,

meaning that v \in Wki
.

Acknowledgments. We would like to thank Yair Bartal, Michael Elkin, and
Kunal Talwar for helpful discussions, and we thank Arnold Filtser and Benny Kramer
for a careful reading of this paper and making useful suggestions.

REFERENCES

[ABN06] I. Abraham, Y. Bartal, and O. Neiman, Advances in metric embedding theory, in
Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Comput-
ing, STOC '06, ACM, New York, 2006, pp. 271--286.

[ABN07] I. Abraham, Y. Bartal, and O. Neiman, Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion, in Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '07,
SIAM, Philadelphia, 2007, pp. 502--511.

[ABN08] I. Abraham, Y. Bartal, and O. Neiman, Nearly tight low stretch spanning trees, in
FOCS '08: Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Soc., Washington, DC, 2008, pp. 781--790.

[ACE+18] I. Abraham, S. Chechik, M. Elkin, A. Filtser, and O. Neiman, Ramsey spanning
trees and their applications, in Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, SIAM, Philadelphia, 2018,
pp. 1650--1664.

[AF09] R. Andersen and U. Feige, Interchanging Distance and Capacity in Probabilistic
Mappings, https://arxiv.org/abs/0907.3631, 2009.

[AKPW95] N. Alon, R. M. Karp, D. Peleg, and D. West, A graph-theoretic game and its
application to the k-server problem, SIAM J. Comput., 24 (1995), pp. 78--100,
https://doi.org/10.1137/S0097539792224474.

[Bar96] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applica-
tions, in Proceedings of the 37th Annual Symposium on Foundations of Computer
Science, IEEE Computer Soc., Washington, DC, 1996, pp. 184--193.

https://arxiv.org/abs/0907.3631
https://doi.org/10.1137/S0097539792224474

PETAL-DECOMPOSITION 247

[Bar98] Y. Bartal, On approximating arbitrary metrices by tree metrics, in Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, STOC '98, ACM,
New York, 1998, pp. 161--168.

[Bar04] Y. Bartal, Graph decomposition lemmas and their role in metric embedding methods,
in Algorithms---ESA, S. Albers and T. Radzik, eds., Lecture Notes in Comput. Sci.
3221, Springer, Berlin, 2004, pp. 89--97.

[BIS07] M. B\v adoiu, P. Indyk, and A. Sidiropoulos, Approximation algorithms for embedding
general metrics into trees, in Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA '07, SIAM, Philadelphia, 2007, pp.
512--521.

[CCGG98] M. Charikar, C. Chekuri, A. Goel, and S. Guha, Rounding via trees: Determinis-
tic approximation algorithms for group steiner trees and k-median, in STOC '98:
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
ACM, New York, 1998, pp. 114--123.

[CDN+10] V. Chepoi, F. F. Dragan, I. Newman, Y. Rabinovich, and Y. Vax\`es, Constant
approximation algorithms for embedding graph metrics into trees and outerplanar
graphs, in Approximation, Randomization, and Combinatorial Optimization, Lec-
ture Notes in Comput. Sci. 6302, Springer, Berlin, 2010, pp. 95--109.

[CKM+14] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao, and
S. C. Xu, Solving sdd linear systems in nearly mlog1/2n time, in Proceedings of
the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC '14,
ACM, New York, 2014, pp. 343--352.

[EEST05] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, Lower-stretch spanning trees, in
STOC '05: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, ACM Press, New York, 2005, pp. 494--503.

[EFN15] M. Elkin, A. Filtser, and O. Neiman, Terminal embeddings, in Approximation, Ran-
domization, and Combinatorial Optimization, LIPIcs. Leibniz Int. Proc. Inform,
40, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Germany, 2015, pp. 242--264.

[EP04] Y. Emek and D. Peleg, Approximating minimum max-stretch spanning trees on un-
weighted graphs, in Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA '04, SIAM, Philadelphia, 2004, pp. 261--270.

[EP06] Y. Emek and D. Peleg, A tight upper bound on the probabilistic embedding of series-
parallel graphs, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA '06, ACM, New York, 2006, pp. 1045--1053.

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating ar-
bitrary metrics by tree metrics, in Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing, STOC '03, ACM, New York, 2003, pp. 448--
455.

[Hu74] T. C. Hu, Optimum communication spanning trees, SIAM J. Comput., 3 (1974), pp.
188--195, https://doi.org/10.1137/0203015.

[KLP+16] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman, Sparsified cholesky
and multigrid solvers for connection Laplacians, in Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, ACM, New York,
2016, pp. 842--850.

[KMP11] I. Koutis, G. L. Miller, and R. Peng, A nearly-m log n time solver for sdd linear
systems, in Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS '11, IEEE Computer Soc., Los Alamitos, CA, 2011,
pp. 590--598.

[KOSZ13] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, A simple, combinatorial
algorithm for solving sdd systems in nearly-linear time, in Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing, STOC '13, ACM, New
York, 2013, pp. 911--920.

[KS16] R. Kyng and S. Sachdeva, Approximate Gaussian elimination for Laplacians---fast,
sparse, and simple, in Proceedings of the 57th Annual IEEE Symposium on Foun-
dations of Computer Science---FOCS 2016, IEEE Computer Soc., Los Alamitos,
CA, 2016, pp. 573--582.

[McK15] R. L. McKnight, Low-Stretch Trees for Network Visualization, Ph.D. thesis, University
of British Columbia, Vancouver, BC, 2015.

[OMSW10] J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson, A faster algorithm
for the single source shortest path problem with few distinct positive lengths, J.
Discrete Algorithms, 8 (2010), pp. 189--198.

https://doi.org/10.1137/0203015

248 ITTAI ABRAHAM AND OFER NEIMAN

[Sey95] P. D. Seymour, Packing directed circuits fractionally, Combinatorica, 15 (1995), pp.
281--288.

[ST04] D. A. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems, in Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing, STOC '04, ACM, New York,
2004, pp. 81--90.

	Introduction
	Related work
	Techniques
	Petal decomposition and radius increase
	Sparse graph decompositions

	Structure of the paper

	Preliminaries
	Petal-decomposition
	Properties and correctness

	Radius bound
	Analysis of total stretch
	Fast petal construction
	References

