
Using Petal-Decompositions to Build a Low Stretch
Spanning Tree

Ittai Abraham
Microsoft Research SVC

Mountain View, CA
ittaia@microsoft.com

Ofer Neiman
∗

Ben-Gurion University of the Negev
Beer-Sheva, Israel

neimano@cs.bgu.ac.il

ABSTRACT
We prove that any graph G = (V,E) with n points and m
edges has a spanning tree T such that

∑
(u,v)∈E(G) dT (u, v) =

O(m logn log logn). Moreover such a tree can be found in
time O(m logn log logn). Our result is obtained using a new
petal-decomposition approach which guarantees that the ra-
dius of each cluster in the tree is at most 4 times the radius
of the induced subgraph of the cluster in the original graph.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: [Graph Algorithms, Trees]

General Terms
Algorithms, Theory

Keywords
Stretch, Spanning Tree, Metric Embedding, distortion

1. INTRODUCTION
Let G = (V,E,w) be a finite graph, where w : E → R+

is a weight function on the edges. For any subgraph H =
(V ′, E′, w′) of G let dH be the induced shortest path metric
with respect to H, where w′ is the restriction of w to E′. In
particular, for any edge (u, v) ∈ E and any spanning tree T
of G, dT (u, v) denotes the (unique) shortest path distance
between u and v in T .

Given a spanning tree T , let

avg stretchT (G) =
1

|E|
∑

(u,v)∈E(G)

dT (u, v)

dG(u, v)
. (1)

avg stretch(n) = maxG=(V,E,w):|V |=n infT {avg stretchT (G)}.
∗Partially funded by the Lynne and William Frankel Center
for Computer Sciences.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOCŠ12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

Figure 1 summarizes current progress on the bounds for
avg stretch(n) and the time complexity of building such
trees.

For the class of Series-Parallel graphs Emek and Peleg [14]
obtained avg stretch(n) = Θ(logn).

The main result of this paper is a new upper bound on
avg stretch(n) that is tight up to a O(log logn) factor and
can be constructed in time O(m logn log log n).

Theorem 1.

avg stretch(n) = O (logn log log n)

Moreover such a tree can be found in time O(m logn log logn).

Our result may be applied to improve the running time of
the Spielman and Teng [21] approach to solve sparse sym-
metric diagonally dominant linear systems, using the im-
proved algorithms of Koutis, Miller and Peng [16, 17].

1.1 Related Work
Embedding metric spaces and graphs into tree metrics and

spanning trees has received a lot of attention in the last two
decades. The basic motivation is that problems on simple
graphs such as trees are often much easier than on arbi-
trary graphs, and embedding the original graph into a tree
(or a distribution over trees) is a basic step in approximation
algorithms, network design, online algorithms and other set-
tings. As mentioned above, the first results were obtained
by [4] who showed a exp(O(

√
logn log log n)) bound on the

average stretch. If we drop the requirement that the tree is
spanning (that is, allow to add and not only delete edges,
while maintaining that distances in the tree are larger than
those in the graph), then [5, 6, 9, 15] in a sequence of works
showed optimal average stretch of Θ(logn). This line of
work proved very fruitful, because in many settings we can
suffer non-spanning trees. If we replace the right hand side
of (1) by averaging over all pairs, then [2] showed a uni-
versal constant bound on that quantity, called the average
distortion.

A related line of research studies a relative guarantee ap-
proximation: given a graph, can we approximate the best
possible tree. For the question of maximum stretch over all

pair distances, [8] obtained a (c logn)O(
√

log ∆) factor, where
c is the optimal maximum stretch and ∆ is the diameter.
They also showed O(1) approximation for the case where
the graph is unweighted. The constant was recently im-
proved by [10]. For embedding unweighted graphs into a
spanning tree, [13] showed O(logn) approximation for max-
imum stretch. However, for the setting of average stretch,

avg stretch(n) time

[4] Ω(logn), exp(O(
√

logn log logn)) O(m2)
[12] O((logn)2 log logn) O(m log2 n)
[3] O(logn(log log n)3) O(m log2 n)
[3] O(logn log logn(log log logn)3) O(m2)
[17] O(logn(log log n)3) O(m logn log log n)

This paper O(logn log log n) O(m logn log log n)

Figure 1: Summary of Progress on Low Stretch Spanning Tree.

essentially nothing is known (except for the trivial Õ(logn)1

absolute bound shown here and in [3]).

1.2 Techniques

1.2.1 Petal Decomposition and Radius Increase
The star-decomposition technique of Elkin et. al.[12] is a

method to iteratively build a spanning tree. In each iteration
it partitions the vertices of the current graph into clusters
that are connected in a star structure: a central cluster is
connected to every other cluster by a single edge , and all
other edges between clusters are dropped. In both previous
manifestations of star-decompositions ([12] and [3]) the first
step in each iteration is to define the central cluster as an
appropriately chosen ball around some center point. After
the central ball is defined then the remaining clusters (called
cones) are defined sequentially.

The radius of a graph is the maximal distance from a
designated center. One of the main difficulties in the span-
ning tree construction, is that the radius may increase by a
small factor at every application of the star decomposition,
which translates to increased stretch. If we drop the require-
ment that the tree is a spanning tree of the graph, and just
require a tree metric, then this difficulty does not appear,
and indeed optimal Θ(logn) bound is known on the average
stretch [15, 7]. In order to control the radius increase, [12]
had to pay an additional factor of O(logn). This was im-
proved by [3], in which a subtle change to the algorithm and
a careful analysis of the radius increase allowed the factor to
be reduced to Õ(log logn). One of the main contributions
of this work, is a new decomposition scheme which we call
petal-decomposition, that allows essentially optimal control
on the radius increase of the spanning tree; it increases by
at most a factor of 4 over all the recursion levels.

Our new petal-decomposition technique is also a method
to iteratively build a spanning tree. In each iteration it
starts by sequentially building a series of clusters which we
call petals. Once no more petals can be built, the remain-
ing central cluster is called the stigma. Then the petals and
the stigma are connected into a tree, using some of the in-
ter cluster edges, and all other edges between clusters are
dropped.

The petal-decomposition approach differs from the star-
decompositions in three main aspects. First, it is not the
case that all petals are necessarily connected to the stigma
(as would be the case in the star-partition); petals are con-
nected to each other in a tree structure whose root is the
stigma. Second, the stigma is not necessarily a ball, it is
the remaining subgraph once no more petals can be formed.

1By g(n) ≤ Õ(f(n)) we mean that there exists some con-
stant k such that g(n) ≤ O(f(n)) · logk(f(n))

Third and most important, is the definition of a petal. In a
star-decomposition each cone C(x0, x, r) is defined by three
parameters: the center of the current cluster x0, the center
of the cone x and the radius r of the cone, then the cone con-
sists of all the points v such that d(x0, x)+d(x, v)−d(x0, v) ≤
r. The radius r of the cone determines the maximum in-
crease in the radius of the graph. A petal P (x0, t, r) is also
defined by three parameters: the center of the current clus-
ter x0, the target of the petal t and the radius r of the petal.
The center of the petal (denoted by x) is the point on the
shortest path from t to x0 of distance r from t. Moreover, we
call the path from the center of the petal x to the target of
the petal t the highway of the petal. An important property
of our construction is that this highway path is guaranteed
to be a part of the final spanning tree. The petal is defined
as a union of cones of varying radii. Specifically, let pk be
the point of distance k from the target t on the shortest
path from t to x0. Then the petal P (x0, t, r) is defined as
the union of cones C(x0, pk, (r − k)/2) for all k ≤ r.

Informally, the crucial property of a petal and its high-
way is the following: Assume z ∈ P (x0, t, r), and Px0z is the
shortest path from the center x0 to z. By forming the petal,
we remove all edges between P (x0, t, r) and G \ P (x0, t, r)
except for the edge from the petal center x towards the cen-
ter of the current cluster. Hence every path from x0 to z will
go through the petal center x. If the new shortest path P ′x0z
(after forming the petal) is (additively) α longer than the
length of Px0z, then P ′x0z will contain part of the highway
of length at least 2α, see Figure 2. Such a property could
allow the following wishful thinking: Suppose that in each
iteration we increase the distance of a point to the center by
at most α, but also mark 2α of the path as edges that are
guaranteed to appear in the final tree (part of a highway).
In such a case it is easy to see that the final path will have
stretch of at most O(1) (intuitively, the highway part will
quickly catch-up and the process stops when all the path is
marked as highway). Unfortunately, the shortest path from
x to z in the final tree may not use the prescribed highway of
the parent cluster so the above ”wishful thinking” argument
does not work.

The key algorithmic idea to alleviate this problem is to
decrease the weight of an edge by half when it becomes part
of a highway (we ensure that this happens at most once
for every edge). This re-weighting signals later iterations to
either use the prescribed highway or to find an alternative
path whose short length can compensate for the lack of using
the prescribed highway.

Therefore, if we generate a new highway in the path from
x0 to some z when we form P (x0, t, r), then (after re-weighting
the highway) the length of the path does not increase at all
(it increased by at most α, but length of at least 2α was

reduced by 1/2). The other case is that no new highway is
generated, which can only happen for the first cluster cre-
ated (some of the highway edges may have been re-weighted
already). In this case we turn to the idea of [3], that one may
choose a certain target point y1 and have that the shortest
path connecting x0 to y1 will appear in the tree. Here we
choose y1 as the point leading to the first cluster. This ap-
proach implies that even though we may increase the radius,
a constant fraction of the path is guaranteed not to increase
ever again. We use a subtle inductive argument to make this
intuition precise, and in fact we lose a factor of 2 for each
of these cases, so the maximal increase is by a factor of 4.
Note that one must always lose a factor of at least 2 for any
spanning tree.

Constructing Petals: An alternative way to define cones
C(x0, x, r) and petals P (x0, t, r) as a ball growing procedure
on a directed graph shows their similarities. This view is
essential for a fast algorithm to construct the petals. We
shall elaborate more on this in Section 7.

1.2.2 Sparse Graph Decompositions
A basic tool that is often used in constructing tree metrics

and spanning trees with low stretch is sparse graph decom-
position. The idea is to partition the graph into small diam-
eter pieces, such that few edges are cut. Each cluster of the
decomposition is partitioned recursively, which yields a hier-
archical decomposition. Creating a tree recursively on each
cluster of the decomposition, and connecting these in a tree
structure, will yield a spanning tree of the graph. The edges
cut by the decomposition are potentially stretched by a fac-
tor proportional to the diameter of the created tree. The
construction has to balance between these two goals: cut a
small number of edges while maintaining small diameter in
the created tree.

For a spanning tree we require both strong diameter par-
titions and control of the diameter increase. [12] build a
tree with average stretch O(log2 n log logn). A factor of
O(logn log logn) is due to the partitions based on the ap-
proach of [19, 6] and another O(logn) is required to control
the diameter of the tree. [3] have a factor of O(logn) due to
the partitions based on the approach of [7, 1] and another

Õ(log logn) is required to control the diameter of the tree.
In this work, we show a new petal decomposition that in-

curs only a constant cost to control the diameter of the tree.
We hoped that the partition cost would be based on local
growth ratio bounds (as in [15, 7, 1, 3]) and this would lead
to optimal average stretch. Known strong diameter parti-
tions ([3]) that obtain a local growth ratio bound require to
carefully choose the center of each cluster. However, our cur-
rent petal decomposition approach does not allow to choose
the centers arbitrarily and hence we could not use directly
the technique of [3]. Therefore, we turn to the partitions of
[12] which is the only reason for the extra O(log logn) fac-
tor. It remains an open question whether one can construct
an optimal strong diameter partition whose centers can be
chosen arbitrarily. Our results show that this open question
is the only barrier for obtaining an optimal low stretch tree.

1.3 Applications
One of the most important problems in algorithm design

is obtaining fast algorithms for solving linear systems. For
many applications the matrix is sparse, and while little is
known for general sparse matrices, the case of Symmetric

Diagonally Dominant (SDD) matrices has received a lot of
attention recently. In a seminal sequence of results, Spiel-
man and Teng [21] showed a near linear time solver for this
important case. This solver has proven a powerful algorith-
mic tool, and is used to calculate eigenvalues, obtain spectral
graph sparsifiers [20], approximate maximum flow [11] and
in many more applications. A basic step in solving these
systems Ax = b is combinatorial preconditioning. If one
uses the Laplacian matrix corresponding to a spanning tree
(and few extra edges) of the graph whose Laplacian ma-
trix is A, then the condition number depends on the total
stretch of the tree. This will improve the run-time of iter-
ative methods, such as Conjugate Gradient or Chebyshev
iterations. See [16, 17] for the latest progress on this direc-
tion. In this work we show that one can construct such a
spanning tree with both run-time and total stretch bounded
by O(m logn log logn).

There are more applications for low stretch spanning trees,
such as minimum cost communication spanning tree, we re-
fer the reader to [12, 3] for more details.

1.4 Structure of the Paper
In Section 3 we describe the new petal-decomposition and

prove some of its basic properties. In Section 4 we bound
the total radius increase by a factor of 4. In Section 5 we
analyze the total stretch, and provide the improved bound
of O(logn log log n) on the average stretch proving the first
statement of Theorem 1. In Section 7 we show an alternative
view of forming a petal, similar to region growing techniques
that concludes the proof of Theorem 1. In Section 6 we
discuss briefly how to extend the result to weighted graphs.

2. PRELIMINARIES
Let G = (V,E) be an unweighted undirected graph. For

any X ⊆ V , G(X) is the subgraph induced on X with edges
E(X) = {(u, v) ∈ E | u, v ∈ X}. Denote by E+(X) =
{(u, v) ∈ E : |X ∩ {u, v}| ≥ 1} the set of edges with
at least one edge point in X, and by ∂(X) = {(u, v) ∈
E : |X ∩ {u, v}| = 1} the set of edges with exactly one end
point in X. Let dX : X2 → R+ be the shortest path metric
in G(X). Let diam(X) = maxy,z∈X{dX(y, z)}. For x ∈ X
let radx(X) = maxy∈X{dX(x, y)}, we omit the subscript
when clear from context (note that diam(X)/2 ≤ rad(X) ≤
diam(X)). For any x ∈ X and r ≥ 0 let B(X,dX)(x, r) =
{y ∈ X | dX(x, y) ≤ r}.

For a spanning tree T = T [X] of a subgraph X define the
total stretch of T by

TS[X] =
∑

(u,v)∈E(X)

dT (u, v) .

For X ⊆ V and vertices u, v ∈ X, let Puv = Puv(G(X))
be a fixed shortest path between u, v in X (assuming that
G(X) is connected). We shall assume that there is a unique
such path; This can be achieved, for example, by adding
an imaginary random tiny amount to every edge length.
Adding a path of length k starting at vertex v means that
we set v = u0, add new vertices u1, . . . , uk and add edges
(ui−1, ui) for all i ∈ {1, . . . , k}. By T = BFSx(G(X)) we
mean the Breadth First Search tree rooted at x (the sub-
script is dropped when the center x is clear from context).
Observe that for such a tree dT (x, y) = dX(x, y) for all
y ∈ X.

Figure 2: Definition of a petal with target tj, center xj and highway path Pxjtj . The side radius of each cone
(that determines the maximum increase in the radius) is half of the highway path.

Figure 3: Creating the first three petals with their highways. The first portal is connected by a highway to
x0 (this means that the shortest path from x0 to x1 will be included in the final tree). Note that the portal
edges do not necessarily connect the petal to the stigma, but may connect between petals. In this example,
the portal node y2 of X2, is contained in the petal X3. The algorithm guarantees that this cannot happen to
the first portal node y1 (thus y1 will be a part of the stigma X0).

Definition 1 (cone metric2). For a graph G = (V,E),
subset X ⊆ V and points x, y ∈ X, define the cone-metric
ρ = ρ(X,x, y) : X2 → R+ as ρ(u, v) = |(dX(x, u)−dX(y, u))−
(dX(x, v)− dX(y, v))|.

Observe that this definition is slightly different from the def-
inition given in [3] which is based on [12] (this one is less
general). Note that a ball B(X,ρ)(y, r) in the cone-metric
ρ = ρ(X,x, y) is the set of all points z ∈ X such that
dX(x, y) + dX(y, z)− dX(x, z) ≤ r.

3. PETAL-DECOMPOSITION

Hierarchical-petal-decomposition algorithm..
See Figure 4 for the algorithm. Let G = (V,E) be an

unweighted graph G = (V,E). Here and in all that follows
n = |V | and m = |E|. Create a spanning tree T = (V,E′)
by choosing some x0 ∈ V and calling
hierarchical-petal-decomposition(G, x0, x0).

3.1 Properties and Correctness
Fix some subset X ⊆ V , and consider running the

hierarchical-petal-decomposition algorithm on G(X),
with some x0 ∈ X and target t ∈ X. Denote by ∆ =
radx0(X). Let rj be the radius chosen by the algorithm
create-petal when it is invoked to create petal Xj . In or-
der to show that the algorithm is correct, we need to show
the following: that a tree is created, that every cluster is
connected, and that for all integers 1 ≤ j ≤ s, xj , tj ∈ Xj .
First we show that the shortest path from any z ∈ Yj to
the center x0 is fully contained in Yj . This proof essentially
appeared in [12, 3], and we give it for completeness.

Claim 1. Let 1 ≤ j ≤ s be an integer and let z ∈ Yj,
then Px0z(X) ⊆ G(Yj).

Proof. Seeking a contradiction, assume that Px0z(X) *
G(Yj), and let 1 ≤ h ≤ j be the minimal such that there
exists u ∈ Px0z(X) and u ∈ Xh. Let xh and th be the
center and target of the petal Xh, respectively. Let rh be
the radius that was chosen for creating Xh. Let pk be
the point on Pxhth of distance k from th such that u ∈
BYh−1,ρ(Yh−1,x0,pk)(pk, (rh−k)/2). By Definition 1 this means
that

dYh−1(x0, u) + (rh − k)/2 ≥ dYh−1(x0, pk) + dYh−1(pk, u) .
(2)

We claim that Px0z is fully contained in G(Yh−1): if h > 1
then it holds by the minimality of h, otherwise, this holds as
Y0 = X. Since u lies on Px0z, it follows that dYh−1(x0, z) =
dYh−1(x0, u) + dYh−1(u, z). Now

dYh−1(x0, z) + (rh − k)/2

= dYh−1(x0, u) + (rh − k)/2 + dYh−1(u, z)

(2)

≥ dYh−1(x0, pk) + dYh−1(pk, u) + dYh−1(u, z)

≥ dYh−1(x0, pk) + dYh−1(pk, z) ,

hence z ∈ BYh−1,ρ(Yh−1,x0,pk)(pk, (rh−k)/2) and thus also
in Xh, contradiction.

Corollary 2. The cluster X0 is connected.

Proof. Applying Claim 1 to Ys = X0, we conclude that
if z ∈ X0 it is connected to x0.

Observation 3. For each j ≥ 1, Pxjtj (X) ⊆ G(Xj).

Proof. As xj was chosen on the shortest path connecting
x0 to tj , and since by Claim 1 Px0tj (X) ⊆ Yj−1, we get that
by definition of cone-metric d(Yj−1,ρ(Yj−1,x0,xj))(xj , p) = 0
for all p ∈ Pxjtj . This suggests that Pxjtj (X) ⊆ G(Xj).

Corollary 4. For each integer j ≥ 1, Xj is connected.

Proof. By Observation 3, Pxjtj is fully contained inG(Xj),
and since Xj is a union of balls (in a cone metric) centered
at the points of Pxjtj , it is connected.

Observation 5. Algorithm create-petal(X,Y, t, x0, R)
chooses a radius r ∈ [R/2, R].

Proof. This follows from Claim 14.

The following two claims are similar to claims proven in
[12, 3], we provide proofs for completeness.

Claim 6. ∆/4 ≤ radx0(X0) ≤ ∆/2.

Proof. For the upper bound, note that for any j ≥ 1,
if there is a point in Yj−1 \ B(x0,∆/2) we continue creat-
ing petals, therefore Ys \ B(x0,∆/2) = ∅ and X0 = Ys ⊆
B(x0,∆/2).

To see the lower bound, observe that Claim 1 implies
that for any j ≥ 1, dYj−1(x0, tj) = r0 = ∆/2, and also
by Observation 5 we have that the radius rj chosen for each
of the petals, satisfies rj ≤ ∆/4. Consider some z ∈ X
with dX(x0, z) < ∆/4, we will show that z ∈ X0. For any
0 ≤ k ≤ rj and pk ∈ Pxjtj of distance k from tj ,

dYj−1(z, pk) + dYj−1(pk, x0) = dYj−1(z, pk) + dX(pk, x0)

≥ dX(pk, x0)

≥ ∆/2− k
≥ ∆/4 + (∆/4− k)/2

> dX(x0, z) + (rj − k)/2 .

By the definition of cone metric, this implies that z /∈ Xj ,
for all j ≥ 1.

Claim 7. For each 1 ≤ j ≤ s, radxj (Xj) ≤ 7∆/8.

Proof. Fix some integer 1 ≤ j ≤ s. We already know
by Observation 3 that Pxjtj (X) ⊆ G(Xj), recall that the
petal Xj is created by union over balls (in a cone-metric)
centered at the points of Pxjtj (X). By Observation 5 the
radius of each ball is bounded by rj ≤ ∆/4, and we also
have by Claim 6 that

dX(x0, xj) ≥ ∆/4 . (3)

Let y ∈ Xj , we will show that dXj (xj , y) ≤ 7∆/8. Let
0 ≤ k ≤ rj and pk ∈ Pxjtj of distance k from tj such that
y ∈ B(Yj−1,ρ(Yj−1,x0,pk))(pk, (rj − k)/2). By definition of
cone-metric and using Claim 1

dX(x0, pk) + dYj−1(pk, y) = dYj−1(x0, pk) + dYj−1(pk, y)

≤ dYj−1(x0, y) + (rj − k)/2

= dX(x0, y) + (rj − k)/2

≤ 9∆/8 . (4)

Also note that Px0pk ⊆ Yj−1, so dYj−1(xj , pk) = dX(xj , pk),
thus we conclude that

dXj (xj , y) ≤ dYj−1(xj , pk) + dYj−1(pk, y)

(4)

≤ dX(xj , pk) + 9∆/8− dX(x0, pk)

= 9∆/8− dX(x0, xj)
(3)

≤ 9∆/8−∆/4 = 7∆/8 .

T = hierarchical-petal-decomposition(G(X), x0, t):

1. If radx0(X) ≤ 10 logn log log n return BFS(G(X)).

2. (X0, . . . , Xs, (y1, x1), . . . , (ys, xs), t0, . . . , ts) = petal-decomposition(G(X), x0, t);

3. For each j ∈ [0, . . . , s]:

(a) Set all the edges in Pxjtj to be of weight 1/2;

(b) Tj = hierarchical-petal-decomposition(G(Xj), xj , tj);

4. Let T be the tree formed by connecting T0, . . . , Ts using the edges (y1, x1), . . . , (ys, xs);

Figure 4: hierarchical-petal-decomposition algorithm

(X0, . . . , Xs, (y1, x1), . . . , (ys, xs), t0, . . . , ts) = petal-decomposition(G(X), x0, t):

1. Let ∆ = radx0(X); Let r0 = ∆/2; Y0 = X; Set j = 2;

2. Creating the first petal X1:

(a) If dX(x0, t) < r0, add to G(X) a path (u0, u1, . . . , ul) of length l = r0− dX(x0, t) starting at t = u0;
Let t′1 = t1 = ul; Otherwise, let t1 = t and let t′1 be a vertex on Px0t such that dX(x0, t

′
1) = r0;

(b) Let (X1, x1) = create-petal(X,X, t′1, x0,∆/4); Y1 = Y0 \X1;

(c) Let y1 be the neighbor of x1 on Px0t′1 that is closer to x0;

3. Creating the remaining petals X2, . . . , Xs:

(a) While Yj−1 \BX(x0, r0) 6= ∅ :

i. Let tj ∈ Yj−1 be an arbitrary point satisfying dX(x0, tj) = r0;

ii. Let (Xj , xj) = create-petal(X,Yj−1, tj , x0,∆/8); Yj = Yj−1 \Xj ;
iii. Let yj be the neighbor of xj on Px0tj that is closer to x0;

iv. Let j = j + 1;

(b) Let s = j − 1;

4. Creating the stigma X0:

(a) Let X0 = Ys; Let t0 = y1;

Figure 5: petal-decomposition algorithm

(W,x) = create-petal(X,Y, t, x0, R):

1. Let Wr =
⋃
p∈Px0t : dY (p,t)≤r B(Y,ρ(Y,x0,p))(p, (r − dY (p, t))/2);

2. Let L = dlog logne; Let 1 ≤ p ≤ L be the minimal integer satisfying |E(W(1+p/L)R/2)| ≤ 2|E(X)|
2log1−p/L m

;

Set a = (1 + (p− 1)/L) ·R/2;

3. Set r = a; Fix χ = |E(X)|
|E(Wa)| ;

4. Increase r as long as |∂(Wr)| ≥ |E(Wr)| · 8L lnχ
R

.

5. Return (Wr, pr).

Figure 6: create-petal algorithm

Corollary 8. y1 ∈ X0.

Proof. Using Observation 5 we have that the radius of
X1 is at least ∆/8, while the radius of any Xj with j > 1 is
at most ∆/8. Similarly to the proof of Claim 6 we have that
all the tj are of distance ∆/2 from x0. This suggests that
dX(x0, y1) < 3∆/8 and for j > 1 any point u ∈ Xj satisfy
dX(x0, u) ≥ 3∆/8, so none of the Xj will contain y1, thus
y1 ∈ X0.

Claim 9. Px0t(X) ⊆ G(X0 ∪X1).

Proof. If t ∈ X0 then by Claim 1, Px0t(G(X)) ⊆ G(X0).
Otherwise, the choice of t1 guarantees that Px0t ⊆ Px0t1 .
Observe that the edge (y1, x1) lies on this path, which is
decomposed into Px0y1 and Px1t1 . By Corollary 8 y1 ∈ X0,
so by Claim 1, Px0y1 ⊆ G(X0), and also by Observation 3
Px1t1 ⊆ G(X1).

Claim 10. When invoking the algorithm
hierarchical-petal-decomposition(G(X), x0, t), the only
edges of G(X) that are set to 1/2 are those on Px0t(G(X)).

Proof. We will prove by induction on the depth of the re-
cursion of hierarchical-petal-decomposition. The base
case is trivial as V has x0 as target. Assume by induction
that X with center x0 has a target t and only edges on Px0t
are set to 1/2. We partition X into X0, X1, . . . , Xs, and we
prove for these clusters.

For X0 with x0 as center and target y1, which was chosen
on Px0t1 . As t ∈ Px0t1 as well, and all the edges after y1 are
no longer in X0, it must be that the edges set by X to 1/2
are all on Px0y1 .

For X1 with center x1 and target t1, which was chosen
either as t or on a new path (t = u0, . . . , ul = t1). As x1 is
on Px0t1 all the edges set by X to 1/2 that are in X1 are
those on Px1t. These edge are a subset of the edges X1 is
setting to 1/2.

For integer j ≥ 2 and Xj , by Claim 9 all the edges set
to 1/2 by X lie in G(X0 ∪X1), so Xj will contain only the
edges that itself sets to 1/2, which are on Pxjtj .

Claim 11. The algorithm returns a tree.

Proof. Assume by induction on the size of G(X) that
running hierarchical-petal-decomposition on G(X) re-
turns a tree. The base case is trivial for |X| = 1. Let X ⊆ V
be a cluster that is partitioned by petal-decomposition al-
gorithm into X0, X1, . . . , Xs. By the induction hypothesis,
running the algorithm on every subgraph G(Xj) returns a
tree Tj . Since every Tj contains |Xj | − 1 edges and we add
s edges to create T , the total number of edges in the tree T
created from X is |X|−1. It remains to show that there are
no cycles. Seeking a contradiction, assume that there is a
cycle. Since the edges (x1, y1), . . . , (xs, ys) are not inside any
cluster Xj , it must be that the cycle is not fully contained
in a single Xj . Let h ≥ 1 be the minimal integer such that
the cycle contains vertices from Xh, thus there are at least
2 cycle edges leaving Xh. Observe that every edge (xj , yj)
we added satisfies yj ∈ Yj , so yj ∈ Xk ∪X0 for some k > j.
This means that only (xh, yh) can connect Xh to the other
clusters in the cycle. All the other edges are either fully
contained in some Xj , the (xj , yj) edges for j > h cannot
touch Xh, and for j < h, the minimality of h implies that
there is no cycle edge touching Xj .

4. RADIUS BOUND
Let T be the tree created by calling hierarchical-petal-

decomposition on G with center and target x0, and let dT
be the shortest path metric in T , with respect to the orig-
inal edge weights. Denote by G(0) = {V }, and for inte-

ger i ≥ 1, G(i) is the collection of clusters created from
G(i−1) by performing petal-decomposition on every clus-
ter of G(i−1), and applying the new edge weight of 1/2 on
the appropriate edges as defined in hierarchical-petal-

decomposition. For any cluster X ∈ G(i) let di = di(X)
be the shortest path metric induced on G(X). Since the

clusters in G(i) are pairwise disjoint, we abuse notation and
write only di (the cluster is inferred from context). We be-
gin by showing that the shortest path from a center to its
target and to the first petal always exists in the tree T .

Claim 12. Fix some integer i ≥ 0. Let X ∈ G(i) be a
cluster with center x0 and target t, then the following holds

dT (x0, y1) ≤ 2di(x0, y1) . (5)

Proof. We prove by induction on i that

• dT (x0, y1) ≤ 2di(x0, y1),

• dT (x0, t) = 2di(x0, t) .

First we prove the second bullet: by the induction hypoth-
esis on X0 ∈ G(i+1) with center x0 and target which is by
construction y1, dT (x0, y1) = 2di+1(x0, y1) ≤ 2di(x0, y1),
where the last inequality holds because Px0y1(X) ⊆ G(X0)
(using Corollary 8 to see that y1 ∈ X0 then by Claim 1),
and in di+1 we may set additional edges on this path to 1/2.

Next we prove the second bullet. If it is the case that
t ∈ X0, then by Claim 1 also Px0t(X) ⊆ G(X0). When
forming X1 we added a new path P = (t = u0, . . . , ul), and
since t ∈ X0 it must be that (y1, x1) ∈ P , so t ∈ Px0y1 . By
induction on X0 with center x0 and target y1, we get that
dT (x0, y1) = 2di+1(x0, y1). Since t lies on this shortest path,
also

dT (x0, t) = 2di+1(x0, t) = 2di(x0, t) ,

where the last equality holds because edges on Px0t are al-
ready set to 1/2 in di. By Claim 9 the only other case is
that t ∈ X1, in which case we have as above that Px0y1(X) ⊆
G(X0) and by Observation 3 also Px1t(X) ⊆ G(X1). By ap-
plying induction on X0 (with center x0 and target y1) and
on X1 (with center x1 and target t1, where t ∈ Px1t1), and
noting that (y1, x1) ∈ Px0t was added to T , we get that

dT (x0, t) = dT (x0, y1) + dT (y1, x1) + dT (x1, t)

= 2di+1(x0, y1) + 2di(y1, x1) + 2di+1(x1, t)

= 2di(x0, t) .

Lemma 13. For any i ≥ 1 and any cluster X ∈ G(i),

rad(T [X]) ≤ 4rad(X) .

Proof. It suffices to prove by induction on i that for any
cluster X ∈ G(i) with center x0 and target t, and for any
y ∈ X

dT (x0, y) ≤ 4di(x0, y) . (6)

Assume X is partitioned into clusters X0, X1, . . . , Xs. There
are three cases to consider: y ∈ X0, y ∈ X1 and y ∈ Xj with

j > 1. Before showing the formal proof, the following is a
high level description of these cases. Case 1 follows trivially
by induction. Case 2 requires us to exploit the highway
leading to the first portal, thus the path from x0 to the
first portal will surely appear in the tree Claim 12. The
third case crucially uses the definition of petals and the re-
weighting of the highways. For every point y in a petal, the
re-weighting of the petal highway leading to y compensates
for the increased distance incurred by its location in the
petal.

Case 1.
y ∈ X0. By Claim 1 Px0y(X) ⊆ X0. Applying the induc-

tion hypothesis on X0 with the metric di+1 = di+1(X0) we
obtain that dT (x0, y) ≤ 4di+1(x0, y) ≤ 4di(x0, y). The last
inequality holds since the shortest path Px0y(X0) can be the
same as Px0y(X), and we might have made some edges even
shorter. This concludes the first case.

In the other two cases y ∈ Xj for some j ≥ 1. We now
introduce some notation and show properties that hold in
these two cases. Let rj be the radius chosen by create-

petal for creating Xj . Fix some j ≥ 1. For every 0 ≤
` ≤ rj define p` = p

(j)
` ∈ Pxjtj be the point of distance

` from tj . From here on fix any 0 ≤ k ≤ rj such that
y ∈ B(Yj−1,ρ(Yj−1,x0,pk))(pk, (rj − k)/2) (note that k is not
unique). By definition of a ball in a cone-metric

di(x0, pk) + dYj−1(pk, y) ≤ di(x0, y) + (rj − k)/2 , (7)

we may write di instead of dYj−1 because by Claim 1 we
have that di(x0, z) = dYj−1(x0, z) for all z ∈ Yj−1. We shall
use the following observations:

di+1(pk, y) ≤ dYj−1(pk, y) (8)

di(x0, xj) + di(xj , pk) = di(x0, pk) . (9)

To see (8), note that when taking a cone in the metric
Yj−1 centered at pk that contains y, it must also contain
the entire shortest path from pk to y, Ppky(Yj−1). The in-
equality follows because distances in Xj can only be made
shorter due to re-weighting. For (9), this is simply because
xj is prj , and all pk are on the shortest path from tj to x0.

Case 2.
y ∈ X1. In this case we have the following

di+1(x1, pk) ≤ di(x1, pk) , (10)

because x1 ∈ Px0pk (X), by Observation 3 we have that
Px1pk (X) is fully contained in X1. The inequality follows
because distances in X1 can only be made shorter due to
re-weighting.

By Claim 6 it follows that

2di(x0, x1) ≥ ∆/2 (11)

By Observation 5 we have that

2(r1 − k) ≤ 2r1 ≤ ∆/2 . (12)

Recall that Yj−1 = Y0 = X, hence dYj−1 = di. By the

induction hypothesis on X1,

dT (x0, y)

≤ dT (x0, y1) + dT (y1, x1) + dT (x1, y)

(5)∧(6)

≤ 2di(x0, y1) + 2di(y1, x1) + 4di+1(x1, y)

≤ 2di(x0, x1) + 4di+1(x1, pk) + 4di+1(pk, y)

(8)∧(10)

≤ 4(di(x0, x1) + di(x1, pk) + di(pk, y))− 2di(x0, x1)

(9)
= 4(di(x0, pk) + di(pk, y))− 2di(x0, x1)

(7)

≤ 4(di(x0, y) + (r1 − k)/2)− 2di(x0, x1)

(11)∧(12)

≤ 4di(x0, y) .

This concludes the proof for the second case.

Case 3.
Let us introduce some more notation. The petal-tree of

a petal-decomposition on a subgraph G(X) is a graph H =
(W,F), where W = {X0, X1, . . . , Xs} and (Xh, Xh′) ∈ F iff
yh ∈ Xh′ or yh′ ∈ Xh (that is, if the clusters are connected
by one of the portal edges). Claim 11 suggests that W is a
tree. Let X0 be the root of the tree, and let rank(Xh) denote
the depth of Xh in W . Observe that in the case j ≥ 2, we
have the following

di(xj , pk) = 2di+1(xj , pk) , (13)

this holds because when j > 1, Claim 9 and Claim 10 sug-
gests that the edges along Pxjtj were not set to 1/2 in di, so
by Observation 3 the shortest path Pxjtj ⊆ Xj , and when
these edges are set to 1/2 in di+1, we reduce the shortest
path distance by a factor of 2.

We will prove (6) in the case y ∈ Xj , j ≥ 2, by induction
on rank(Xj). The base case is when the rank is 1 and then
it must be that yj ∈ X0. In this case by Claim 1 Px0yj ⊆
G(X0), so

di+1(x0, yj) ≤ di(x0, yj) . (14)

By the induction hypothesis of (6) on both X0 and Xj ,

dT (x0, y)

≤ dT (x0, yj) + dT (yj , xj) + dT (xj , y)

(6)

≤ 4di+1(x0, yj) + 2di(yj , xj) + 4di+1(xj , y)

(14)

≤ 4(di(x0, yj)+di(yj , xj)+di+1(xj , pk)+di+1(pk, y))

(13)∧(8)

≤ 4di(x0, xj) + 2di(xj , pk) + 4dYj−1(pk, y)

(9)
= 4(di(x0, pk) + dYj−1(pk, y))− 2di(xj , pk)

(7)

≤ 4(di(x0, y) + (rj − k)/2)− 2(rj − k)

= 4di(x0, y) .

Now to prove for the case rank(Xj) > 1. Let h ∈ [s]
be such that (Xj , Xh) ∈ F and rank(Xh) = rank(Xj) − 1.
Observe that h is unique since H is a tree, and by definition
of tank yj ∈ Xh. By the induction on the rank,

dT (x0, yj) ≤ 4di(x0, yj) . (15)

And finally

dT (x0, y)

≤ dT (x0, yj) + dT (yj , xj) + dT (xj , y)

(6)∧(15)

≤ 4di(x0, yj) + 2di(yj , xj) + 4di+1(xj , y)

≤ 4(di(x0, yj)+di(yj , xj)+di+1(xj , pk)+di+1(pk, y))

(13)∧(8)

≤ 4di(x0, xj) + 2di(xj , pk) + 4dYj−1(pk, y)

(9)
= 4(di(x0, pk) + dYj−1(pk, y))− 2di(xj , pk)

(7)

≤ 4(di(x0, y) + (rj − k)/2)− 2(rj − k)

= 4di(x0, y) .

This concludes the inductive proof.

5. ANALYSIS OF TOTAL STRETCH
Recall that we apply hierarchical-petal-decomposition

on the graph G = (V,E) with center and target x0. We
prove that the total stretch is bounded byO(m logn log log n).
The proof is very similar to the proof of [12], and we give the
details for completeness. Consider a single run of the algo-
rithm create-petal on input (X,Y, t, x0, R). Let 1 ≤ p ≤ L
be as in the algorithm, and let a = (1 + (p− 1)/L) ·R/2 and
b = (1 + p/L) ·R/2.

Claim 14. The algorithm create-petal finds r ∈ [a, b]
satisfying

|∂(Wr)| < |E(Wr)| ·
8L lnχ

R
. (16)

Proof. Assume w.l.o.g that R/2 is even. First let us
observe a basic property of our partition scheme, that if for
some edge (u, v) ∈ E, u ∈ Wr, then v ∈ Wr+2. This holds
simply because increasing r by 2 increases the radius of each
cone in the petal by 1, and since cones are concentric system
(see [12]), and u belongs to some cone, we have that v will
be included in that cone as well. This property enables us
to claim that |E(Wr+2)| ≥ |E(Wr)|+ |∂(Wr)|.

Assume by contradiction that there is no such r ∈ [a, b],
then for all r ∈ [a, b− 2],

|E(Wr+2)| ≥ |E(Wr)|+ |∂(Wr)| ≥ |E(Wr)|
(

1 +
8L lnχ

R

)
,

Recall that χ = |E(X)|
|E(Wa)| , and note that since R ≥ 10L logn,

(8L lnχ)/R ≤ 1 and thus
(
1 + 8L lnχ

R

)
≥ e(4L lnχ)/R = χ4L/R.

Now

|E(Wb)| ≥ |E(Wb−2)|
(

1 +
8 lnχ

R

)
≥ |E(Wb−4)|

(
1 +

8 lnχ

R

)2

≥ · · · ≥ |E(Wa)|
(

1 +
8 lnχ

R

)(b−a)/2

≥ |E(Wa)| · χ4L/R·(b−a)/2

= |E(X)| ,

but this is a contradiction.

Consider now the algorithm petal-decomposition invoked
on G(X) with center x0 and target t. It decomposes X into
X0, X1, . . . , Xs (for some integer s ≥ 1). For j ∈ [s], let
χj be the value defined at line 4. of choose-radius when
creating the petal Xj , and denote by the index(Xj) the
value of p chosen in line 3. By minimality of p, |E(Wa)| ≥

2|E(X)|
2log1−(p−1)/L m

, so that

lnχj ≤ 2 log1−(p−1)/Lm ≤ 5 log1−p/Lm , (17)

(the last inequality is because log1/Lm = 2log logm/ log logn ≤
5/2). Also observe that if some edge (u, v) ∈ E is separated
while decomposing the cluster X with radius ∆, then by
Lemma 13

dT (u, v) ≤ 2rad(T [X]) ≤ 8∆ . (18)

Let avg stretch(BFS) denote the total stretch over all clus-
ters whose radius was smaller than 10 logn log logn and thus
we created a BFS tree. Observe that avg stretch(BFS) =
O(m logn log log n), so this will add at most an additive fac-
tor to the total stretch, and we may ignore it. We now start
to calculate the total stretch:

TS[X]

(18)

≤
s∑
j=1

(TS[Xj] + |∂(Xj)| · 8∆) (19)

(16)

≤
s∑
j=1

(
TS[Xj] + 83L|E(Xj)| · lnχj

)
(17)

≤
s∑
j=1

TS[Xj] +O(L)

L∑
p=1

∑
j:index(Xj)=p

|E(Xj)| · log1−p/Lm

Let us fix some edge e ∈ E, and analyze its contribution
to (19). For every recursive level i in which e ∈ E(Xj) with

p = index(Xj) it contributed O(L) · log1−p/Lm. However by
the choice of p, and by Claim 14 the radius r chosen for creat-

ing Xj satisfies r ≤ b, so |E(Xj)| ≤ |E(Wb)| ≤ 2|E(X)|
2log1−p/L m

.

Intuitively, if p is small and thus the contribution is rather
large, the size of the next cluster that contains e becomes
much smaller, so e will participate in few more levels. In
particular, if the contribution to the total stretch of e in
some level is O(L · i), then the number of edges in the clus-
ter containing e is reduced by a factor of Ω(2i). Since the
number of times the number of edges can halve is at most
O(logm), we get that the total contribution of each edge is
at most O(L · logm) = O(log log logn).

Formally, let `p(e) denote the number of recursive levels i
in which e was in a cluster of index p. Then the number of
edges in the clusters containing e decreased by a factor of at

least 2log1−p/Lm−1, for every one of the `p(e) levels, so the
total decrease is

L∏
p=1

2`p(e)·(log1−p/Lm−1) ≤ m ,

because we started with m edges. This suggest that

L∑
p=1

`p(e)(log1−p/Lm) ≤ 2 logm ,

where we used that
∑L
p=1 `p(e) ≤ logn ≤ logm. Finally,

TS[V] ≤ O(L)
∑
e∈E

L∑
p=1

`p(e) log1−p/Lm

= O(Lm logm)

= O(m logn log logn) .

6. EXTENSION TO WEIGHTED GRAPHS
Both papers [12, 3] already showed how to deal with arbi-

trary weights on the edges. There are two ideas: the first is
to contract edges shorter than rad(X)/n2, so that each edge
participates in a logarithmic number of scales. The second
is to add imaginary portal points when constructing cones,
so that the algorithm is well defined. In our algorithm, in
line 3.a of hierarchical-petal-decomposition we simply
set the weight of edges to be 1/2 of their original length,
and observe that the analysis did not use the fact that edges
have unit length.

For the analysis of stretch, the only real change is the proof
of Claim 14, which still holds for weighted graphs, replacing
E(Wr) with E+(Wr) on the right hand side, see [12] for a
proof. This does not affect the total stretch by more than a
factor of 2 because by (16), 2|E(Wr)| ≥ |E+(Wr)|.

7. FAST PETAL CONSTRUCTION
In order to bound the running time of our algorithm, we

need to argue that the petal construction can be performed
efficiently. It is shown in [17] how to construct a star-
decomposition on G(X) = (V,E) in time O(|E|+ |V | log k),
where k is the number of distinct edge weights. This fac-
tor essentially comes from running an improved version of
Dijkstra’s algorithm for computing shortest path from the
center of the cluster, introduced by [18]. By rounding down
weights to the nearest power of 2, we change distances by a
factor of 2, and in every level there will be at most O(logn)
different edge weights. As there are O(logn) scales in which
any edge is active, we conclude that the total running time
will be O((m + n log logn) · logn). It remains to see that
both cones and petals may be constructed efficiently, by a
region growing scheme.

Given a weighted undirected graph G = (V,E,w), let pk
be the point of distance k from t on the shortest path Ptx
from t to x, and all distances d are with respect to G. Let
G̃ = (V,A,w′) be the weighted directed graph induced by
adding the two edges (u→ v), (v → u) ∈ A for each (u, v) ∈
E, and setting w′(u → v) = d(u, v) − (d(v, x) − d(u, x)).
The cone C(x, t, r) is simply the ball around t of radius r

in G̃. The Petal P (x, t, r) is the ball around t of radius r/2

in G̃ with one change: the weight of each edge (pi → pi+1)
is changed to w(pi, pi+1)/2 for all i < r. Recall that the
petal with center x, target t and radius r was defined in the
algorithm as
Wr =

⋃
p∈Pxt : d(p,t)≤r B(V,ρ(V,x,p))(p, (r − d(p, t))/2).

Claim 15. P (x, t, r) = Wr.

Proof. First we prove that for any r ≥ 0, Wr ⊆ P (x, t, r).
Fix some v ∈ Wr, and let 0 ≤ k ≤ r be such that v ∈
B(V,ρ(V,x,pk))(pk, (r−k)/2). Observe that by the re-weighting
of the edges from t to pk we have that the length of the di-
rected path Ptpk in G̃ is k/2. It remains to show that there

is a path in G̃ from pk to v of length at most (r − k)/2. By

definition of cone metric we have that d(v, pk) + d(pk, x) ≤
d(v, x) + (r−k)/2. Let pk = u0, u1, . . . , ul = v be the short-
est path in G from pk to v, then by definition of w′ it follows
that

l∑
j=1

w′(uj−1 → uj) =

l∑
j=1

d(uj−1, uj)−d(uj , x)+d(uj−1, x)

= d(pk, v)− d(v, x) + d(pk, x)

≤ (r − k)/2 ,

as required.
Let 0 = r1 < r2 < · · · < rk be all the possible radii

for which the size of P (x, t, r) changes. We prove that
P (x, t, r) ⊆ Wr by induction on the radius. The base case
for r1 = 0, then W0 = {y : d(y, x) = d(y, t) + d(t, x)},
and P (x, t, 0) will contain all points reachable with 0 weight
edges, by definition these edges (u → v) are the ones that
satisfy d(v, x) − d(u, x) = d(u, v), so any path leaving t us-
ing these edges will lead to a point y for which d(y, x) =
d(y, t) + d(t, x).

For the inductive step, assume P (x, t, ri−1) ⊆Wri−1 , and
prove for ri. Let δ = ri − ri−1. Let v ∈ P (x, t, ri) \
P (x, t, ri−1), and assume u ∈ P (x, t, ri−1) is such that (u→
v) ∈ A with w′(u → v) ≤ δ/2. Then by definition of w′

we have that d(u, v) ≤ δ + d(v, x) − d(u, x). By the induc-
tion hypothesis we have that u ∈ Wri−1 , so let k be such
that u ∈ B(V,ρ(V,x,pk))(pk, (ri−1−k)/2), by definition of cone
metric d(u, pk) +d(pk, x) ≤ d(u, x) + (ri−1−k)/2. It follows
that

d(v, pk) + d(pk, x)

≤ d(v, u) + d(u, pk) + d(pk, x)

≤ δ + d(v, x)− d(u, x) + d(u, x) + (ri−1 − k)/2

= d(v, x) + (ri − k)/2 ,

meaning that v ∈Wri .

Acknowledgments
We would like to thank Yair Bartal, Kunal Talwar and
Michael Elkin for helpful discussions.

8. REFERENCES
[1] Ittai Abraham, Yair Bartal, and Ofer Neiman.

Advances in metric embedding theory. In Proceedings
of the thirty-eighth annual ACM symposium on
Theory of computing, STOC ’06, pages 271–286, New
York, NY, USA, 2006. ACM.

[2] Ittai Abraham, Yair Bartal, and Ofer Neiman.
Embedding metrics into ultrametrics and graphs into
spanning trees with constant average distortion. In
Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’07, pages
502–511, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics.

[3] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly
tight low stretch spanning trees. In FOCS ’08:
Proceedings of the 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, pages 781–790,
Washington, DC, USA, 2008. IEEE Computer Society.

[4] Noga Alon, Richard M. Karp, David Peleg, and
Douglas West. A graph-theoretic game and its
application to the k-server problem. SIAM J.
Comput., 24(1):78–100, 1995.

[5] Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. In Proceedings
of the 37th Annual Symposium on Foundations of
Computer Science, pages 184–, Washington, DC,
USA, 1996. IEEE Computer Society.

[6] Yair Bartal. On approximating arbitrary metrices by
tree metrics. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, STOC ’98,
pages 161–168, New York, NY, USA, 1998. ACM.

[7] Yair Bartal. Graph decomposition lemmas and their
role in metric embedding methods. In Susanne Albers
and Tomasz Radzik, editors, ESA, volume 3221 of
Lecture Notes in Computer Science, pages 89–97.
Springer, 2004.

[8] Mihai Bǎdoiu, Piotr Indyk, and Anastasios
Sidiropoulos. Approximation algorithms for
embedding general metrics into trees. In Proceedings
of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’07, pages 512–521,
Philadelphia, PA, USA, 2007. Society for Industrial
and Applied Mathematics.

[9] Moses Charikar, Chandra Chekuri, Ashish Goel, and
Sudipto Guha. Rounding via trees: deterministic
approximation algorithms for group steiner trees and
k-median. In STOC ’98: Proceedings of the thirtieth
annual ACM symposium on Theory of computing,
pages 114–123, New York, NY, USA, 1998. ACM
Press.

[10] Victor Chepoi, Feodor F. Dragan, Ilan Newman, Yuri
Rabinovich, and Yann Vaxès. Constant approximation
algorithms for embedding graph metrics into trees and
outerplanar graphs. In Proceedings of the 13th
international conference on Approximation, and 14 the
International conference on Randomization, and
combinatorial optimization: algorithms and techniques,
APPROX/RANDOM’10, pages 95–109, Berlin,
Heidelberg, 2010. Springer-Verlag.

[11] Paul Christiano, Jonathan A. Kelner, Aleksander
Madry, Daniel A. Spielman, and Shang-Hua Teng.
Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs.
In Proceedings of the 43rd annual ACM symposium on
Theory of computing, STOC ’11, pages 273–282, New
York, NY, USA, 2011. ACM.

[12] Michael Elkin, Yuval Emek, Daniel A. Spielman, and
Shang-Hua Teng. Lower-stretch spanning trees. In
STOC ’05: Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages
494–503, New York, NY, USA, 2005. ACM Press.

[13] Yuval Emek and David Peleg. Approximating
minimum max-stretch spanning trees on unweighted
graphs. In Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 261–270, Philadelphia, PA, USA,
2004. Society for Industrial and Applied Mathematics.

[14] Yuval Emek and David Peleg. A tight upper bound on
the probabilistic embedding of series-parallel graphs.
In Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, SODA ’06, pages
1045–1053, New York, NY, USA, 2006. ACM.

[15] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar.
A tight bound on approximating arbitrary metrics by

tree metrics. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, STOC ’03,
pages 448–455, New York, NY, USA, 2003. ACM.

[16] Ioannis Koutis, Gary L. Miller, and Richard Peng.
Approaching optimality for solving sdd linear systems.
In 51th Annual IEEE Symposium on Foundations of
Computer Science, October 23-26, 2010, pages
235–244, Las Vegas, Nevada, USA.

[17] Ioannis Koutis, Gary L. Miller, and Richard Peng. A
nearly O(m logn) time solver for SDD linear systems.
In 52th Annual IEEE Symposium on Foundations of
Computer Science, 2011.

[18] James B. Orlin, Kamesh Madduri, K. Subramani, and
M. Williamson. A faster algorithm for the single
source shortest path problem with few distinct
positive lengths. J. of Discrete Algorithms, 8:189–198,
June 2010.

[19] P. D. Seymour. Packing directed circuits fractionally.
Combinatorica, 15(2):281–288, June 1995.

[20] Daniel A. Spielman and Nikhil Srivastava. Graph
sparsification by effective resistances. In Proceedings of
the 40th annual ACM symposium on Theory of
computing, STOC ’08, pages 563–568, New York, NY,
USA, 2008. ACM.

[21] Daniel A. Spielman and Shang-Hua Teng.
Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In
Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing, STOC ’04, pages 81–90, New
York, NY, USA, 2004. ACM.

	Introduction
	Related Work
	Techniques
	Petal Decomposition and Radius Increase
	Sparse Graph Decompositions

	Applications
	Structure of the Paper

	Preliminaries
	Petal-decomposition
	Properties and Correctness

	Radius Bound
	Analysis of Total Stretch
	Extension to Weighted Graphs
	Fast Petal Construction
	References

