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Abstract. For p ∈ (1,∞) let Pp(R3) denote the metric space of all p-integrable Borel probability
measures on R3, equipped with the Wasserstein p metric Wp. We prove that for every ε > 0, every
θ ∈ (0, 1/p] and every finite metric space (X, dX), the metric space (X, dθX) embeds into Pp(R3) with
distortion at most 1 + ε. We show that this is sharp when p ∈ (1, 2] in the sense that the exponent
1/p cannot be replaced by any larger number. In fact, for arbitrarily large n ∈ N there exists
an n-point metric space (Xn, dn) such that for every α ∈ (1/p, 1] any embedding of the metric

space (Xn, d
α
n) into Pp(R3) incurs distortion that is at least a constant multiple of (logn)α−1/p.

These statements establish that there exists an Alexandrov space of nonnegative curvature, namely
P2(R3), with respect to which there does not exist a sequence of bounded degree expander graphs.
It also follows that P2(R3) does not admit a uniform, coarse, or quasisymmetric embedding into any
Banach space of nontrivial type. Links to several longstanding open questions in metric geometry
are discussed, including the characterization of subsets of Alexandrov spaces, existence of expanders,
the universality problem for P2(Rk), and the metric cotype dichotomy problem.

1. Introduction

We shall start by quickly recalling basic notation and terminology from the theory of transporta-
tion cost metrics; all the necessary background can be found in [94]. For a complete separable
metric space (X, dX) and p ∈ (0,∞), let Pp(X) denote the space of all Borel probability measures
µ on X satisfying ˆ

X
dX(x, x0)pdµ(x) <∞

for some (hence all) x0 ∈ X. A coupling of a pair of Borel probability measures (µ, ν) on X is
a Borel probability measure π on X × X such that µ(A) = π(A × X) and ν(A) = π(X × A) for
every Borel measurable A ⊆ X. The set of couplings of (µ, ν) is denoted Π(µ, ν). The Wasserstein
p distance between µ, ν ∈ Pp(X) is defined to be

Wp(µ, ν)
def
= inf

π∈Π(µ,ν)

(¨
X×X

dX(x, y)pdπ(x, y)

) 1
p

.

Wp is a metric on Pp(x) whenever p > 1. The metric space (Pp(X),Wp) is called the Wasserstein
p space over (X, dX). Unless stated otherwise, in the ensuing discussion whenever we refer to the
metric space Pp(X) it will be understood that Pp(X) is equipped with the metric Wp.

1.1. Bi-Lipschitz Embeddings. Suppose that (X, dX) and (Y, dY ) are metric spaces and that
D ∈ [1,∞]. A mapping f : X → Y is said to have distortion at most D if there exists s ∈ (0,∞)
such that every x, y ∈ X satisfy sdX(x, y) 6 dY (f(x), f(y)) 6 DsdX(x, y). The infimum over those
D ∈ [1,∞] for which this holds true is called the distortion of f and is denoted dist(f). If there
exists a mapping f : X → Y with distortion at most D then we say that (X, dX) embeds with
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distortion D into (Y, dY ). The infimum of dist(f) over all f : X → Y is denoted c(Y,dY )(X, dX), or
cY (X) if the metrics are clear from the context.

1.2. Snowflake universality. Below, unless stated otherwise, Rn will be endowed with the stan-
dard Euclidean metric. Here we show that Pp(R3) exhibits the following universality phenomenon.

Theorem 1. If p ∈ (1,∞) then for every finite metric space (X, dX) we have

c(Pp(R3),Wp)

(
X, d

1
p

X

)
= 1.

For a metric space (X, dX) and θ ∈ (0, 1], the metric space (X, dθX) is commonly called the
θ-snowflake of (X, dX); see e.g. [21]. Thus Theorem 1 asserts that the θ-snowflake of any finite
metric space (X, dX) embeds with distortion 1 + ε into Pp(R3) for every ε ∈ (0,∞) and θ ∈ (0, 1/p]
(formally, Theorem 1 makes this assertion when θ = 1/p, but for general θ ∈ (0, 1/p] one can then

apply Theorem 1 to the metric space (X, dθpX ) to deduce the seemingly more general statement).

Theorem 2 below implies that Theorem 1 is sharp if p ∈ (1, 2], and yields a nontrivial, though
probably non-sharp, restriction on the embeddability of snowflakes into Pp(R3) also for p ∈ (2,∞).

Theorem 2. For arbitrarily large n ∈ N there exists an n-point metric space (Xn, dXn) such that
for every α ∈ (0, 1] we have

c(Pp(R3),Wp)(Xn, d
α
Xn) &

{
(log n)

α− 1
p if p ∈ (1, 2],

(log n)
α+ 1

p
−1

if p ∈ (2,∞).

Here, and in what follows, we use standard asymptotic notation, i.e., for a, b ∈ [0,∞) the
notation a & b (respectively a . b) stands for a > cb (respectively a 6 cb) for some universal
constant c ∈ (0,∞). The notation a � b stands for (a . b) ∧ (b . a). If we need to allow the
implicit constant to depend on parameters we indicate this by subscripts, thus a .p b stands for
a 6 cpb where cp is allowed to depend only on p, and similarly for the notations &p and �p.

We conjecture that when p ∈ (2,∞) the lower bound in Theorem (2) could be improved to

c(Pp(R3),Wp)(Xn, d
α
Xn) &p (log n)α−

1
2 ,

and, correspondingly, that the conclusion of Theorem 1 could be improved to state that if p ∈ (2,∞)
then c(Pp(R3),Wp)

(
X,
√
dX
)
.p 1 for every finite metric space (X, dX); see Question 23 below.

There are several motivations for our investigations that led to Theorem 1 and Theorem 2.
Notably, we are inspired by a longstanding open question of Bourgain [13], as well as fundamental
questions on the geometry of Alexandrov spaces. We shall now explain these links.

1.3. Alexandrov geometry. We need to briefly present some standard background on metric
spaces that are either nonnegatively curved or nonpositively curved in the sense of Alexandrov; the
relevant background can be found in e.g. [18, 15]. Let (X, dX) be a complete geodesic metric space.
Recall that w ∈ X is called a metric midpoint of x, y ∈ X if dX(x,w) = dX(y, w) = dX(x, y)/2.
The metric space (X, dX) is said to be an Alexandrov space of nonnegative curvature if for every
x, y, z ∈ X and every metric midpoint w of x, y,

dX(x, y)2 + 4dX(z, w)2 > 2dX(x, z)2 + 2dX(y, z)2. (1)

Correspondingly, the metric space (X, dX) is said to be an Alexandrov space of nonpositive curva-
ture, or a Hadamard space, if for every x, y, z ∈ X and every metric midpoint w of x, y,

dX(x, y)2 + 4dX(z, w)2 6 2dX(x, z)2 + 2dX(y, z)2. (2)
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If (X, dX) is a Hilbert space then, by the parallelogram identity, the inequalities (1) and (2) hold
true as equalities (with w = (x+ y)/2). So, (1) and (2) are both natural relaxations of a stringent
Hilbertian identity (both relaxations have far-reaching implications). A complete Riemannian
manifold is an Alexandrov space of nonnegative curvature if and only if its sectional curvature
is nonnegative everywhere, and a complete simply connected Riemannian manifold is a Hadamard
space if and only if its sectional curvature is nonpositive everywhere.

Following [78], it was shown in [89, Proposition 2.10] and [52, Appendix A] that P2(Rn) is
an Alexandrov space of nonnegative curvature for every n ∈ N; more generally, if (X, dX) is an
Alexandrov space of nonnegative curvature then so is P2(X). It therefore follows from Theorem 1
that there exists an Alexandrov space (Y, dY ) of nonnegative curvature that contains a bi-Lipschitz
copy of the 1/2-snowflake of every finite metric space, with distortion at most 1 + ε for every ε > 0.
When this happens, we shall say that (Y, dY ) is 1/2-snowflake universal.

1.4. Subsets of Alexandrov spaces. It is a longstanding open problem, stated by Gromov in [31,
Section 1.19+] and [32, §15(b)], as well as in, say, [25, 1, 90], to find an intrinsic characterization
of those metric spaces that admit a bi-Lipschitz, or even isometric, embedding into an Alexandrov
space of either nonnegative or nonpositive curvature.

Berg and Nikolaev [8, 9] (see also [85]) proved that a complete metric space (X, dX) is a Hadamard
space if and only if it is geodesic and every x1, x2, x3, x4 ∈ X satisfy

dX(x1, x3)2 + dX(x2, x4)2 6 dX(x1, x2)2 + dX(x2, x3)2 + dX(x3, x4)2 + dX(x4, x1)2. (3)

Inequality (3) is known in the literature under several names, including Enflo’s “roundness 2 prop-
erty” (see [23]), “the short diagonal inequality” (see [54]), or simply “the quadrilateral inequality,”
and it has a variety of important applications. Another characterization of this nature is due
to Foertsch, Lytchak and Schroeder [25], who proved that a complete metric space (X, dX) is a
Hadamard space if and only if it is geodesic, every x1, x2, x3, x4 ∈ X satisfy the inequality

dX(x1, x3) · dX(x2, x4) 6 dX(x1, x2) · dX(x3, x4) + dX(x2, x3) · dX(x1, x4), (4)

and if w is a metric midpoint of x1 and x2 and z is a metric midpoint of x3 and x4 then we have

dX(w, z) 6
dX(x1, x3) + dX(x2, x4)

2
. (5)

(4) is called the Ptolemy inequality [26], and condition (5) is called Busemann convexity [19].

Turning now to characterizations of nonnegative curvature, Lebedeva and Petrunin [47] proved
that a complete metric space (X, dX) is an Alexandrov space of nonnegative curvature if and only
if it is geodesic and every x, y, z, w ∈ X satisfy

dX(x,w)2 + dX(y, w)2 + dX(z, w)2 >
dX(x, y)2 + dX(x, z)2 + dX(y, z)2

3
.

Another (related) important characterization of Alexandrov spaces of nonnegative curvature asserts
that a metric space (X, dX) is an Alexandrov spaces of nonnegative curvature if and only if it is
geodesic and for every finitely supported X-valued random variable Z we have

E
[
dX(Z,Z ′)2

]
6 2 inf

x∈X
E
[
dX(Z, x)2

]
, (6)

where Z ′ is an independent copy of Z. The above characterization is due to Sturm [87], with the
fact that nonnegative curvature in the sense of Alexandrov implies the validity of (6) being due
to Lang and Schroeder [46]. Following e.g. [97], condition (6) (which we shall use in Section 3) is
therefore called the Lang–Schroeder–Sturm inequality.

The above statements are interesting characterizations of spaces that are isometric to Alexan-
drov spaces of either nonpositive or nonnegative curvature, but they fail to characterize subsets
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of such spaces, since they require additional convexity properties of the metric space in question,
such as being geodesic or Busemann convex. These assumptions are not intrinsic because they
stipulate the existence of auxiliary points (metric midpoints) which may fall outside the given
subset. Furthermore, these characterizations are isometric in nature, thus failing to address the
important question of understanding when, given D ∈ (1,∞), a metric space (X, dX) embeds with
distortion at most D into some Alexandrov space of either nonpositive or nonnegative curvature.
One can search for such characterizations only among families of quadratic metric inequalities, as
we shall now explain; in our context this is especially natural because the definitions (1) and (2)
are themselves quadratic.

1.4.1. Quadratic metric inequalities. For n ∈ N and n by n matrices A = (aij), B = (bij) ∈Mn(R)
with nonnegative entries, say that a metric space (X, dX) satisfies the (A,B)-quadratic metric
inequality if for every x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

aijdX(xi, xj)
2 6

n∑
i=1

n∑
j=1

bijdX(xi, xj)
2.

The property of satisfying the (A,B)-quadratic metric inequality is clearly preserved by forming
Pythagorean products, i.e., if (X, dX) and (Y, dY ) both satisfy the (A,B)-quadratic metric inequal-
ity then so does their Pythagorean product (X ⊕ Y )2. Here (X ⊕ Y )2 denotes the space X × Y ,
equipped with the metric that is defined by

∀(a, b), (α, β) ∈ X × Y, d(X⊕Y )2

(
(a, b), (α, β)

) def
=
√
dX(a, α)2 + dY (b, β)2.

The (A,B)-quadratic metric inequality is also preserved by ultraproducts (see e.g. [39, Section 2.4]
for background on ultraproducts of metric spaces), and it is a bi-Lipschitz invariant in the sense
that if (X, dX) embeds with distortion at most D ∈ [1,∞) into (Y, dY ), and (Y, dY ) satisfies the
(A,B)-quadratic metric inequality then (X, dX) satisfies the (A,D2B)-quadratic metric inequality.

The following proposition is a converse to the above discussion.

Proposition 3. Let F be a family of metric spaces that is closed under dilation and Pythagorean
products, i.e., if (U, dU ), (V, dV ) ∈ F and s ∈ (0,∞) then also (U, sdU ) ∈ F and (U ⊕ V )2 ∈ F. Fix
D ∈ [1,∞) and n ∈ N. Then an n-point metric space (X, dX) satisfies

inf
(Y,dY )∈F

cY (X) 6 D

if and only if for every two n by n matrices A,B ∈Mn(R) with nonnegative entries such that every
(Z, dZ) ∈ F satisfies the (A,B)-quadratic metric inequality, we also have that (X, dX) satisfies the
(A,D2B)-quadratic metric inequality.

The proof of Proposition 3 appears in Section 4 below and consists of a duality argument that
mimics the proof of Proposition 15.5.2 in [54], which deals with embeddings into Hilbert space.

Remark 4. It is a formal consequence of Proposition 3 that if the family of metric spaces F is
also closed under ultraproducts, as are Alexandrov spaces with upper or lower curvature bounds
(see e.g. [39, Section 2.4]), then one does not need to restrict to finite metric spaces. Namely, in
this case a metric space (X, dX) admits a bi-Lipschitz embedding into some (Y, dY ) ∈ F if and only
if there exists D ∈ [1,∞) such that (X, dX) satisfies the (A,D2B)-quadratic metric inequality for
every two n by n matrices A,B ∈ Mn(R) with nonnegative entries such that every (Z, dZ) ∈ F

satisfies the (A,B)-quadratic metric inequality.

Remark 5. The Ptolemy inequality (4) is not a quadratic metric inequality, yet it holds true in
any Hadamard space. Proposition 3 implies that the Ptolemy inequality could be deduced from
quadratic metric inequalities that hold true in Hadamard spaces. This is carried out explicitly
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in Section 5 below, yielding an instructive proof (and strengthening) of the Ptolemy inequality in
Hadamard spaces that is conceptually different from its previously known proofs [25, 17].

Theorem 1 implies that all the quadratic metric inequalities that hold true in every Alexandrov
space of nonnegative curvature “trivialize” if one does not square the distances. Specifically, since
P2(R3) is an Alexandrov space of nonnegative curvature, the following statement is an immediate
consequence of Theorem 1.

Theorem 6. Suppose that A,B ∈ Mn(R) are n by n matrices with nonnegative entries such that
every Alexandrov space of nonnegative curvature satisfies the (A,B)-quadratic metric inequality.
Then for every metric space (X, dX) and every x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

aijdX(xi, xj) 6
n∑
i=1

n∑
j=1

bijdX(xi, xj). (7)

While Theorem 6 does not answer the question of characterizing those quadratic metric inequal-
ities that hold true in any Alexandrov space of nonnegative curvature, it does show that such
inequalities rely crucially on the fact that distances are being squared, i.e., if one removes the
squares then one arrives at an inequality (7) which must be nothing more than a consequence of
the triangle inequality.

Obtaining a full characterization of those quadratic metric inequalities that hold true in any
Alexandrov space of nonnegative curvature remains an important challenge. Many such inequalities
are known, including, as shown by Ohta [76], Markov type 2 (note, however, that the supremum
of the Markov type 2 constants of all Alexandrov spaces of nonnegative curvature is an unknown
universal constant [77]; we obtain the best known bound on this constant in Corollary 26 below).
Another family of nontrivial quadratic metric inequalities that hold true in any Alexandrov space
of nonnegative curvature is obtained in [3], where it is shown that all such spaces have Markov
convexity 2. By these observations combined with the nonlinear Maurey–Pisier theorem [57], we
know that there exists q <∞ such that any Alexandrov space of nonnegative curvature has metric
cotype q. It is natural to conjecture that one could take q = 2 here, but at present this remains
open. For more on the notions discussed above, i.e., Markov type, Markov convexity and metric
cotype, as well as their applications, see the survey [66] and the references therein.

The above discussion in the context of Hadamard spaces remains an important open problem.
At present we do not know of any metric space (X, dX) such that the metric space (X,

√
dX) fails

to admit a bi-Lipschitz embedding into some Hadamard space. More generally, while a variety
of nontrivial quadratic metric inequalities are known to hold true in any Hadamard space, a full
characterization of such inequalities remains elusive. In Section 5 below we formulate a systematic
way to generate such inequalities, posing the question whether the hierarchy of inequalities thus
obtained yields a characterization of those metric spaces that admit a bi-Lipschitz embedding into
some Hadamard space.

1.4.2. Uniform, coarse and quasisymmetric embeddings. A metric space (X, dX) is said to embed
uniformly into a metric space (Y, dY ) if there exists an injection f : X → Y such that both f and
f−1 are uniformly continuous. (X, dX) is said [30] to embed coarsely into (Y, dY ) if there exists
f : X → Y and nondecreasing functions α, β : [0,∞)→ [0,∞) with limt→∞ α(t) =∞ such that

∀x, y ∈ X, α(dX(x, y)) 6 dY (f(x), f(y)) 6 β(dX(x, y)). (8)

(X, dX) is said [10, 92] to admit a quasisymmetric embedding into (Y, dY ) if there exists an injection
f : X → Y and η : (0,∞)→ (0,∞) with limt→0 η(t) = 0 such that for every distinct x, y, z ∈ X,

dY (f(x), f(y))

dY (f(x), f(z))
6 η

(
dX(x, y)

dX(x, z)

)
.
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A direct combination of Theorem 1 with the results of [57, 65] shows that P2(R3) does not embed
even in the above weak senses into any Banach space of nontrivial (Rademacher) type; we refer
to the survey [55] and the references therein for more on the notion of type of Banach spaces. In
particular, P2(R3) fails to admit such embeddings into any Lp(µ) space for finite p (for the case
p = 1, use the fact that the 1/2-snowflake of an L1(µ) space embeds isometrically into a Hilbert
space; see [95]), or, say, into any uniformly convex Banach space. It remains an interesting open
question whether or not these assertions also hold true for P2(R2).

Theorem 7. If p > 1 then Pp(R3) does not admit a uniform, coarse or quasisymmetric embedding
into any Banach space of nontrivial type.

Note that a positive resolution of a key conjecture of [57], namely the first question in Section 8
of [57], would “upgrade” Theorem 7 to the (best possible) assertion that P2(R3) does not admit a
uniform, coarse or quasisymmetric embedding into any Banach space of finite cotype.

Remark 8. Very few other examples of Alexandrov spaces of nonnegative curvature with poor
embeddability properties into Banach spaces are known, all of which are not known to satisfy
properties as strong as the conclusion of Theorem 7. Specifically, in [3] it is shown that P2(R2) fails
to admit a bi-Lipschitz embedding into L1. A construction with stronger properties follows from
the earlier work [38], combined with the recent methods of [67]. Specifically, it follows from [38]
and [67] that for every n ∈ N there exists a lattice Λn ⊆ Rn of rank n such that if we consider the
following infinite Pythagorean product of flat tori

T
def
=

( ∞⊕
n=1

Rn/Λn
)

2

, (9)

then T fails to admit a uniform or coarse embedding into a certain class of Banach spaces that
includes all Banach lattices of finite cotype and all the noncommutative Lp spaces for finite p > 1.
Since for every n ∈ N the sectional curvature of Rn/Λn vanishes, it is an Alexandrov space of
nonnegative curvature, and therefore so is the Pythagorean product T. It remains an interesting
open question whether or not T admits a uniform, coarse or quasisymmetric embedding into some
Banach space of nontrivial type, and, for that matter, even whether or not T is 1/2-snowflake
universal. We speculate that the answer to the latter question is negative.

1.4.3. Expanders with respect to Alexandrov spaces. Fixing an integer k > 3, an unbounded se-
quence of k-regular finite graphs {(Vj , Ej)}∞j=1 is said to be an expander with respect to a metric

space (X, dX) if for every j ∈ N and {xu}u∈Vj ⊆ X we have

1

|Vj |2
∑

(u,v)∈Vj×Vj

dX(xu, xv)
2 �X

1

|Ej |
∑

{u,v}∈Ej

dX(xu, xv)
2. (10)

Unless X is a singleton, a sequence of expanders with respect to (X, dX) must also be a sequence of
expanders in the classical (combinatorial) sense. See [73, 61, 62, 67, 75] and the references therein
for background on expanders with respect to metric spaces and their applications.

In contrast to the case of classical expanders, the question of understanding when a metric
space X admits an expander sequence seems to be very difficult (even in the special case when
X is a Banach space), with limited availability of methods [53, 79, 42, 43, 61, 50, 67, 62, 63]
for establishing metric inequalities such as (10). Theorem 1 implies that Pp(R3) fails to admit a
sequence of expanders for every p ∈ (1,∞). The particular case p = 2 establishes for the first time
the (arguably surprising) fact that there exists an Alexandrov space of nonnegative curvature with
respect to which expanders do not exist.

Theorem 9. For p > 1 no sequence of bounded degree graphs is an expander with respect to Pp(R3).
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To deduce Theorem 9 from Theorem 1, use an argument of Gromov [33] (which is reproduced
in [61, Section 1.1]), to deduce that if {Gn = (Vn, En)}∞n=1 were a k-regular expander with respect
to Pp(R3) then, denoting the shortest-path metric that Gn induces on Vn by dn (the assumption
that Gn is an expander with respect to a non-singleton metric space implies that it is a classical
expander, hence connected), the metric spaces {(Vn, dn)}∞n=1 fail to admit a coarse embedding into
Pp(R3) with any moduli α, β : [0,∞)→ [0,∞) as in (8) that are independent of n. This contradicts
the fact that by Theorem 1 we know that for every n ∈ N the finite metric space (Vn, dn) embeds

coarsely into Pp(R3) with moduli α(t) = t1/p and, say, β(t) = 2t1/p.

The above question for Hadamard spaces remains an important open problem which goes back
at least to [33, 73]. See [62] for more on this theme, where it is shown that there exists a Hadamard
space with respect to which random regular graphs are asymptotically almost surely not expanders.
We also ask whether or not the Alexandrov space of nonnegative curvature T of Remark 8 admits
a sequence of bounded degree expanders; we speculate that it does.

1.5. The universality problem for P1(Rk). A metric space (Y, dY ) is said to be (finitely) uni-
versal if there exists K ∈ (0,∞) such that cY (X) 6 K for every finite metric space (X, dX).

In [13] Bourgain asked whether (P1(R2),W1) is not universal. He actually formulated this ques-
tion as asking whether a certain Banach space (namely, the dual of the Lipschitz functions on the
square [0, 1]2), which we denote for the sake of the present discussion by Z, has finite Rademacher
cotype, but this is equivalent to the above formulation in terms of the universality of (P1(R2),W1).
It is not necessary to be familiar with the notion of cotype in order to understand the ensuing
discussion, so readers can consider only the above formulation of Bourgain’s question. However, for
experts we shall now briefly justify this equivalence. For Banach spaces the property of not being
universal is equivalent to having finite Rademacher cotype, as follows from Ribe’s theorem [?] and
the Maurey–Pisier theorem [?]. As explained in [72], every finite subset of Z embeds into P1(R2)
with distortion arbitrarily close to 1, and, conversely, every finite subset of P1(R2) embeds into Z
with distortion arbitrarily close to 1. Hence Z is universal if and only if P1(R2) is universal. So, Z
has finite Rademacher cotype if and only if P1(R2) is not universal.

Bourgain proved in [13] that (P1(`1),W1) is universal (despite the fact that `1 is not universal),
but it remains an intriguing open question to determine whether or not (P1(Rk),W1) is universal for
any finite k ∈ N, the case k = 2 being most challenging. Here we show that Wasserstein spaces do
exhibit some universality phenomenon even when the underlying metric space is a finite dimensional
Euclidean space, but we fall short of addressing the universality problem for P1(Rk). Specifically,
Theorem 1 asserts that (Pp(R3),Wp) is universal with respect to 1/p-snowflakes of metric spaces,
and if p ∈ (1, 2] then this cannot be improved to α-snowflakes for any α > 1/p, by Theorem (2).
The 1/p-snowflake of (X, dX) becomes “closer” to (X, dX) itself as p → 1, and at the same time
(Pp(R3),Wp) becomes “closer” to (P1(R3),W1), but Theorem 1 fails to imply the universality of
(P1(R3),W1) because the embeddings that we construct in Theorem 1 degenerate as p→ 1.

Remark 10. The universality problem for P1(Rk) belongs to longstanding traditions in functional
analysis. As Bourgain explains in [13], one motivation for his question is an idea of W. B. Johnson
to “linearize” bi-Lipschitz classification problems by examining the geometry of the corresponding
Banach spaces of Lipschitz functions defined on the metric spaces in question. For this “functorial
linearization” to succeed, one needs to sufficiently understand the linear structure of the spaces of
Lipschitz functions on metric spaces, but unfortunately these are wild spaces that are poorly un-
derstood. The universality problem for P1(Rk) highlights this situation by asking a basic geometric
question (universality) about the dual of the space of Lipschitz functions on Rk. Despite these
difficulties, in recent years the above approach to bi-Lipschitz classification problems has been suc-
cessfully developed, notably by Godefroy and Kalton [28] who, among other results, deduced from
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this approach that the Bounded Approximation Property (BAP) is preserved under bi-Lipschitz
homeomorphisms of Banach spaces. In addition to being motivated by potential applications, the
universality problem for P1(Rk) relates to old questions on the structure of classical function spaces:
here the spaces in question are the Lipschitz functions on Rk, which are closely related to the spaces
C1(Rk) whose linear structure (in particular its dependence on k) remains a major mystery that
goes back to Banach’s seminal work. Understanding the universality of classical Banach spaces and
their duals has attracted many efforts over the past decades, notable examples of which include
work [80, 11] on the (non)universality of the dual of the Hardy space H∞(S1), work [93, 81, 40, 14]
on the universality of the span in C(G) of a subset of characters of a compact Abelian group G,
and work [91, 82, 16] on the universality of projective tensor products. Despite these efforts, under-
standing the universality of P1(Rk) (equivalently, whether or not the dual of the space of Lipschitz
functions on Rk has finite cotype) remains a remarkably stubborn open problem.

Our proof of Theorem 1 relies on the fact that the underlying Euclidean space is (at least) 3-
dimensional, so it remains open whether or not, say, the 1/2-snowflake of every finite metric space
embeds with O(1) distortion into (P2(R2),W2). In [3] it is proved that every finite subset of the
metric space (P1(R2),

√
W1), i.e., the 1/2-snowflake of (P1(R2),W1), embeds with O(1) distortion

into (P2(R2),W2). Thus, if (P1(R2),W1) were universal (i.e., if the universality problem for P1(R2)
had a negative answer) then it would follow that the 1/2-snowflake of every finite metric space
embeds with O(1) distortion into (P2(R2),W2).

Remark 11. Another interesting open question is whether or not P1(R3) (or P1(R2) for that
matter) is 1/2-snowflake universal. There is a perceived analogy between the spaces Pp(X) and
Lp(µ) spaces, with the spaces Pp(X) sometimes being referred to as the geometric measure theory
analogues of Lp(µ) spaces. It would be very interesting to investigate whether or not this analogy
could be put on firm footing. As an example of a concrete question along these lines, since L2 is
isometric to a subspace of Lp, we ask for a characterization of those metric spaces X for which
P2(X) admits a bi-Lipschitz embedding into Pp(X), or, less ambitiously, when does there exist
D(X) ∈ [1,∞) such that every finite subset of P2(X) embeds into Pp(X) with distortion D(X).
If this were true when X = R3 or X = R2 (it is easily seen to be true when X = R) and p = 1
then it would follow from Theorem 1 that P1(R3) (respectively P1(R2)) is 1/2-snowflake universal.
By [57], this, in turn, would imply that P1(R3) (respectively P1(R2)) fails to admit a coarse, uniform
or quasisymmetric embedding into L1, thus strengthening results of [72] via an approach that is
entirely different from that of [72]. There are many additional open questions that follow from
the analogy between Wasserstein p spaces and Lp(µ) spaces, including various questions about
the evaluation of the metric type and cotype of Pp(X); see Question 23 below for more on this
interesting research direction.

1.5.1. Towards the metric cotype dichotomy problem. The following theorem was proved in [57];
see [56, 59, 60] for more information on metric dichotomies of this type.

Theorem 12 (Metric cotype dichotomy [57]). Let (X, dX) be a metric space that isn’t universal.
There exists α(X) ∈ (0,∞) and finite metric spaces {(Mn, dMn)}∞n=1 with limn→∞ |Mn| =∞ and

∀n ∈ N, cX(Mn) > (log |Mn|)α(X).

A central question that was left open in [57], called the metric cotype dichotomy problem, is
whether the exponent α(X) ∈ (0,∞) of Theorem 12 can be taken to be a universal constant, i.e.,

Question 13 (Metric cotype dichotomy problem [57]). Does there exist α ∈ (0, 1] such that
every non-universal metric space X admits a sequence of finite metric spaces {(Mn, dMn)}∞n=1 with
limn→∞ |Mn| =∞ that satisfies cX(Mn) > (log |Mn|)α?
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It is even unknown whether or not in Question 13 one could take α = 1 (by Bourgain’s embedding
theorem [12], the best one could hope for here is α = 1). A positive answer to the following question
would resolve the metric cotype dichotomy problem negatively; this question corresponds to asking
if Theorem 2 is sharp when p ∈ (1, 2] and α = 1 (the same question when α ∈ (1/p, 1) is also open).

Question 14. Is it true that for p ∈ (1, 2] and n ∈ N every n-point metric space (X, dX) satisfies

cPp(R3)(X) .p (log n)
1− 1

p ?

A positive answer to Question (14) would imply that α(Pp(R3)) 6 1− 1/p, using the notation of
Theorem 12. Taking p→ 1+, it would therefore follow that there is no α > 0 as in Question 13.

We believe that Question 14 is an especially intriguing challenge in embedding theory (for a con-
crete and natural target space) because a positive answer, in addition to resolving the metric cotype
dichotomy problem, would require an interesting new construction, and a negative answer would
require devising a new bi-Lipschitz invariant that would serve as an obstruction for embeddings
into Wasserstein spaces.

Focusing for concreteness on the case p = 2, Question 14 asks whether cP2(R3)(X) .
√

log n for

every n-point metric space (X, dX). Note that Theorem 1 implies that (X, dX) embeds into P2(R3)
with distortion at most the square root of the aspect ratio of (X, dX), i.e.,

c(P2(R3),W2)(X, dX) 6

√√√√ diam(X, dX)

minx,y∈X
x 6=y

dX(x, y)
, (11)

but we are asking here for the largest possible growth rate of the distortion of X into P2(R3) in
terms of the cardinality of X. While for certain embedding results there are standard methods
(see e.g. [6, 34, 58]) for replacing the dependence on the aspect ratio of a finite metric space by a
dependence on its cardinality, these methods do not seem to apply to our embedding in (11). See
Section 6 below for further discussion.

Acknowledgments. A. A. was supported in part by the NSF and the Simons Foundation. A. N.
was supported in part by the BSF, the Packard Foundation and the Simons Foundation. O. N. was
supported in part by the ISF and the European Union’s Seventh Framework Programme. Some of
the results of the present article were announced in the extended abstract [2] that was presented in
the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). We
refer to [2] for algorithmic context and applications of our results to theoretical computer science.

2. Proof of Theorem 1

In what follows fix n ∈ N and an n-point metric space (X, dX). Write X = {x1, . . . , xn} and fix
φ : {1, . . . , n}×{1, . . . , n} → {1, . . . , n2} to be an arbitrary bijection between {1, . . . , n}×{1, . . . , n}
and {1, . . . , n2}. Below it will be convenient to use the following notation.

m
def
= min

x,y∈X
x 6=y

dX(x, y)
1
p and M

def
= max

x,y∈X
dX(x, y)

1
p . (12)

Fix K ∈ N. Denoting the standard basis of R3 by e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), for
every i, j ∈ {1, . . . , n} with i < j define five families of points in R3 by setting for s ∈ {0, . . . ,K},

Q1
s(i, j)

def
=

Mi

m
e1 +

Mφ(i, j)s

mK
e2, (13)

Q2
s(i, j)

def
=

Mi

m
e1 +

Mφ(i, j)

m
e2 +

Ms

mK
e3, (14)

9



Q3
s(i, j)

def
=

M(s(j − i) +Ki) + (K − s)dX(xi, xj)
1
p

mK
e1 +

Mφ(i, j)

m
e2 +

M

m
e3, (15)

Q4
s(i, j)

def
=

Mj

m
e1 +

Mφ(i, j)

m
e2 +

M(K − s)
mK

e3, (16)

Q5
s(i, j)

def
=

Mj

m
e1 +

M(K − s)φ(i, j)

mK
e2. (17)

Then Q1
K(i, j) = Q2

0(i, j), Q3
K(i, j) = Q4

0(i, j) and Q4
K(i, j) = Q5

0(i, j), so the total number of points
thus obtained equals 5(K + 1)− 3 = 5K + 2.

Define B ⊆ R3 by setting

B
def
=

⋃
i,j∈{1,...,n}

i<j

Bij , (18)

where for every i, j ∈ {1, . . . , n} with i < j we write

Bij
def
=

K⋃
s=0

{
Q1
s(i, j), Q

2
s(i, j), Q

3
s(i, j), Q

4
s(i, j), Q

5
s(i, j)

}
. (19)

Hence |Bij | = 5K + 2. We also define C ⊆ R3 by

C
def
= Br

{
Mi

m
e1 : i ∈ {1, . . . , n}

}
. (20)

Note that by (13) we have (Mi/m)e1 = Q1
0(i, j) if i, j ∈ {1, . . . , n} satisfy i < j, and by (17) we

have (Mi/m)e1 = Q5
K(`, i) if `, i ∈ {1, . . . , n} satisfy ` < i. Thus C corresponds to removing from

B those points that lie on the x-axis. In what follows, we denote N = |C| + 1. Finally, for every
i ∈ {1, . . . , n} we define Ci ⊆ R3 by

Ci
def
= C ∪

{
Mi

m
e1

}
. (21)

Hence |Ci| = N . Our embedding f : X → Pp(R3) will be given by

∀ j ∈ {1, . . . , n}, f(xj)
def
=

1

N

∑
u∈Cj

δu, (22)

where, as usual, δu is the point mass at u. Thus f(xj) is the uniform probability measure over Cj .
A schematic depiction of the above construction appears in Figure 1 below.

Lemma 15 below estimates the distortion of f , proving Theorem 1.

Lemma 15. Fix ε ∈ (0, 1) and p ∈ (1,∞). Let f : X → Pp(R3) be the mapping appearing

in (22), considered as a mapping from the snowflaked metric space (X, d
1/p
X ) to the metric space

(Pp(R3),Wp). Then, recalling the definitions of m and M in (12), we have

K >

(
5Mpn2p

pmpε

) 1
p−1

=⇒ dist(f) 6 1 + ε. (23)

Proof. We shall show that under the assumption on K that appears in (23) we have

∀ i, j ∈ {1, . . . , n},
(
dX(xi, xj)

mpN

) 1
p

6Wp(f(xi), f(xj)) 6 (1 + ε)

(
dX(xi, xj)

mpN

) 1
p

, (24)

where we recall that we defined N to be equal to |C| + 1 for C given in (20). Clearly (24) implies
that dist(f) 6 1 + ε, as required.
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Figure 1. A schematic depiction of the embedding f : X → Pp(R3) for a
four-point metric space (X, dX) = ({x1, x2, x3, x4}, dX). Here the x-axis is the
horizontal direction, the z-axis is the vertical direction and the y-axis is perpen-
dicular to the page plane. Recall that m and M are defined in (12).

To prove the right hand inequality in (24), suppose that i, j ∈ {1, . . . , n} satisfy i < j and
consider the coupling π ∈ Π(f(xi), f(xj)) given by

π
def
=

1

N

( 5∑
t=1

K−1∑
s=0

δ(Qts(i,j),Qts+1(i,j)) + δ(Q2
K(i,j),Q3

0(i,j)) +
∑

u∈CrBij

δ(u,u)

)
, (25)

where for (25) recall (19) and (20). The meaning of (25) is simple: the supports of f(xi) and
f(xj) equal Ci and Cj , respectively, where we recall (21). Note that Ci r Cj = {Q1

0(i, j)} and
Cj r Ci = {Q5

K(i, j)}, where we recall (13) and (17). So, the coupling π in (25) corresponds to
shifting the points in Bij from the support of f(xi) to the support of f(xj) while keeping the points
in CrBij unchanged.

Now, recalling the definitions (13), (14), (15), (16) and (17),

Wp(f(xi), f(xj))
p 6
¨

R3×R3

‖x− y‖p2dπ(x, y)

=
1

N

5∑
t=1

K−1∑
s=0

∥∥Qts(i, j)−Qts+1(i, j)
∥∥p

2
+
‖Q2

K(i, j)−Q3
0(i, j)‖p2

N
. (26)

Note that if s ∈ {0, . . . ,K − 1} then by (13), (14), (16), (17) we have

t ∈ {1, 5} =⇒
∥∥Qts(i, j)−Qts+1(i, j)

∥∥
2

=
Mφ(i, j)

mK
6
Mn2

mK
,

t ∈ {2, 4} =⇒
∥∥Qts(i, j)−Qts+1(i, j)

∥∥
2

=
M

mK
.

(27)

Also, by (14) and (15) we have

∥∥Q2
K(i, j)−Q3

0(i, j)
∥∥

2
=
dX(xi, xj)

1
p

m
. (28)
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Finally, by (15) for every s ∈ {0, . . . ,K − 1} we have∥∥Q3
s(i, j)−Q3

s+1(i, j)
∥∥

2
=
M(j − i)
mK

− dX(xi, xj)
1
p

mK
6
Mn

mK
, (29)

where in the first step of (29) we used the fact that M(j − i)− dX(xi, xj)
1/p > 0, which holds true

by the definition of M in (12) because j − i > 1. A substitution of (27), (28) and (29) into (26)
yields the estimate

Wp(f(xi), f(xj))
p 6

dX(xi, xj)

mpN
+

5K

N

(
Mn2

mK

)p
=

(
1 +

5Mpn2p

Kp−1dX(xi, xj)

)
dX(xi, xj)

mpN
6 (1 + pε)

dX(xi, xj)

mpN
,

where we used the fact that by the definition of m in (12) we have mp 6 dX(xi, xj), and the
lower bound on K that is assumed in (23). This implies the right hand inequality in (24) because
1 + pε 6 (1 + ε)p.

Passing now to the proof of the left hand inequality in (24), we need to prove that for every
i, j ∈ {1, . . . , n} with i < j we have

∀π ∈ Π(f(xi), f(xj)),

¨
R3×R3

‖x− y‖p2dπ(x, y) >
dX(xi, xj)

mpN
. (30)

Note that we still did not use the triangle inequality for dX , but this will be used in the proof
of (30). Also, the reason why we are dealing with Pp(R3) rather than Pp(R2) will become clear in
the ensuing argument.

Recall that the measures f(xi) and f(xj) are uniformly distributed over sets of the same size, and
their supports Ci and Cj (respectively) satisfy Ci4Cj = {(Mi/m)e1, (Mj/m)e1}. Since the set of all
doubly stochastic matrices is the convex hull of the permutation matrices, and every permutation
is a product of disjoint cycles, it follows that it suffices to establish the validity of (30) when

π = 1
N

∑L
`=1 δ(u`−1,u`) for some L ∈ {1, . . . , N} and u1, . . . uL−1 ∈ C, where we set u0 = (Mi/m)e1

and uL = (Mj/m)e1. With this notation, our goal is to show that

1

N

L∑
`=1

‖u` − u`−1‖p2 >
dX(xi, xj)

mpN
. (31)

For every a ∈ {1, . . . , n} define Sa ⊆ R3 by Sa
def
= S1

a ∪ S2
a, where

S1
a

def
=

n⋃
b=a+1

K⋃
s=0

{
Q1
s(a, b), Q

2
s(a, b)

}
, (32)

and

S2
a

def
=

a−1⋃
c=1

K⋃
s=0

{
Q3
s(c, a), Q4

s(c, a), Q5
s(c, a)

}
. (33)

Thus, recalling (18), the sets S1, . . . , Sn form a partition of B and a ∈ Sa for every a ∈ {1, . . . , n}.
For every ` ∈ {0, . . . , L} let a(`) be the unique element of {1, . . . , n} for which u` ∈ Sa(`). Then
a(0) = i and a(L) = j. The left hand side of (31) can be bounded from below as follows

1

N

L∑
`=1

‖u` − u`−1‖p2 >
1

N

L∑
`=1

min
u∈Sa(`−1)

v∈Sa(`)

‖u− v‖p2. (34)
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We shall show that

∀ a, b ∈ {1, . . . , n}, ∀(u, v) ∈ Sa × Sb, ‖u− v‖p2 >
dX(xa, xb)

mp
. (35)

The validity of (35) implies the required estimate (31) because, by (34), it follows from (35) and
the triangle inequality for dX that

1

N

L∑
`=1

‖u` − u`−1‖p2 >
1

N

L∑
`=1

dX
(
xa(`−1), xa(`)

)
mp

>
dX(xi, xj)

mpN
.

It remains to justify (35). Suppose that a, b ∈ {1, . . . , n} satisfy a < b and (u, v) ∈ Sa×Sb. Write
u = Qts(c, d) and v = Qτσ(γ, δ) for some s, σ ∈ {0, . . . ,K}, t, τ ∈ {1, . . . , 5} and c, d,γ, δ ∈ {1, . . . , n}.

We shall check below, via a direct case analysis, that the absolute value of one of the three
coordinates of u− v is either at least M/m or at least dX(xa, xb)

1/p/m. Since by the definition of

M in (12) we have M > dX(xa, xb)
1/p, this assertion will imply (35).

Suppose first that t, τ ∈ {1, 2, 4, 5}. By comparing (32), (33) with (13), (14), (16), (17) we see
that 〈u, e1〉 = Ma/m and 〈v, e1〉 = Mb/m. Since b − a > 1, this implies that 〈u − v, e1〉 > M/m,
as required.

If t = τ = 3 then by (33) we necessarily have d = a and δ = b. Hence (c, d) 6= (γ, δ) and therefore
|φ(c, d)−φ(γ, δ)| > 1, since φ is a bijection between {1, . . . , n}×{1, . . . , n} and {1, . . . , n2}. By (15)
we therefore have |〈u− v, e2〉| >M/m, as required.

It remains to treat the case t 6= τ and 3 ∈ {t, τ}. If {t, τ} ⊆ {1, 3, 5} then by contrasting (15)
with (13) and (17) we see that the third coordinate of one of the vectors u, v vanishes while the
third coordinate of the other vector equals M/m. Therefore |〈u− v, e3〉| >M/m, as required. The
only remaining case is {t, τ} ⊆ {2, 3, 4}. In this case |〈u− v, e2〉| = M |φ(c, d)−φ(γ, δ)|/m, by (15),
(14), (16). So, if (c, d) 6= (γ, δ) then |φ(c, d) − φ(γ, δ)| > 1, and we are done. We may therefore
assume that c = γ and d = δ. Observe that by (33) if {t, τ} = {3, 4} then {d, δ} = {a, b}, which
contradicts d = δ. So, we also necessarily have {t, τ} = {2, 3}, in which case, since a < b, by (32)
and (33) we see that c = γ = a and d = δ = b. By interchanging the labels s and σ if necessary, we
may assume that u = Q2

σ(a, b) and v = Q3
s(a, b). By (14) and (15) we therefore have

〈v − u, e1〉 =
M(s(b− a) +Ka)

mK
+

(K − s)dX(xa, xb)
1
p

mK
− Ma

m

=
dX(xa, xb)

1
p

m
+
sM(b− a)− sdX(xa, xb)

1
p

mK
>
dX(xa, xb)

1
p

m
,

where we used the fact that by (12) we have M > dX(xa, xb)
1/p, and that b−a > 1. This concludes

the verification of the remaining case of (35), and hence the proof of Lemma 15 is complete. �

3. Sharpness of Theorem 1

The results of this section rely crucially on K. Ball’s notion [5] of Markov type. We shall start
by briefly recalling the relevant background on this important invariant of metric spaces, including
variants and notation from [67] that will be used below. Let {Zt}∞t=0 be a Markov chain on the state
space {1, . . . , n} with transition probabilities aij = Pr [Zt+1 = j|Zt = i] for every i, j ∈ {1, . . . , n}.
{Zt}∞t=0 is said to be stationary if πi = Pr [Zt = i] does not depend on t ∈ {1, . . . , n} and it is said
to be reversible if πiaij = πjaji for every i, j ∈ {1, . . . , n}.

Let {Z ′t}∞t=0 be the Markov chain that starts at Z0 and then evolves independently of {Zt}∞t=0

with the same transition probabilities. Thus Z ′0 = Z0 and conditioned on Z0 the random variables
Zt and Z ′t are independent and identically distributed. We note for future use that if {Zt}∞t=0 as
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above is stationary and reversible then for every symmetric function ψ : {1, . . . , n}×{1, . . . , n} → R
and every t ∈ N we have

E
[
ψ(Zt, Z

′
t)
]

= E
[
ψ(Z2t, Z0)

]
. (36)

This is a consequence of the observation that, by stationarity and reversibility, conditioned on the
random variable Zt the random variables Z0 and Z2t are independent and identically distributed.
Denoting A = (aij) ∈Mn(R), the validity of (36) can be alternatively checked directly as follows.

E
[
ψ(Zt, Z

′
t)
]

= E
[
E
[
ψ(Zt, Z

′
t)|Z0

] ]
=

n∑
i=1

n∑
j=1

n∑
k=1

πiA
t
ijA

t
ikψ(j, k)

(?)
=

n∑
j=1

n∑
k=1

πj

( n∑
i=1

AtjiA
t
ik

)
ψ(j, k) =

n∑
j=1

n∑
k=1

πjA
2t
jkψ(j, k), (37)

where (?) uses the reversibility of the Markov chain {Zt}∞t=0 through the validity of πiA
t
ij = πjA

t
ji

for every i, j ∈ {1, . . . , n}. The final term in (37) equals the right hand side of (36), as required.

Given p ∈ [1,∞), a metric space (X, dX) and m ∈ N, the Markov type p constant of (X, dX)
at time m, denoted Mp(X, dX ;m) (or simply Mp(X;m) if the metric is clear from the context)
is defined to be the infimum over those M ∈ (0,∞) such that for every n ∈ N, every stationary
reversible Markov chain {Zt}∞t=0 with state space {1, . . . , n}, and every f : {1, . . . , n} → X we have

E
[
dX(f(Zm), f(Z0))p

]
6MpmE

[
dX(f(Z1), f(Z0))p

]
.

Observe that by the triangle inequality we always have

Mp(X;m) 6 m1− 1
p .

As we shall explain below, any estimate of the form Mp(X;m) .X mθ for θ < 1−1/p is a nontrivial
obstruction to the embeddability of certain metric spaces into X, but it is especially important (e.g.
for Lipschitz extension theory [5]) to single out the case when Mp(X;m) .X 1. Specifically, (X, dX)
is said to have Markov type p if

Mp(X, dX)
def
= sup

m∈N
Mp(X, dX ;m) <∞.

Mp(X, dX) is called the Markov type p constant of (X, dX), and it is often denoted simply Mp(X)
if the metric is clear from the context.

The Markov type of many important classes of metric spaces is satisfactorily understood, though
some fundamental questions remain open; see Section 4 of the survey [66] and the references therein,
as well as more recent progress in e.g. [22]. Here we study this notion in the context of Wasserstein
spaces. The link of Markov type to the nonembeddability of snowflakes is simple, originating in an
idea of [51]. This is the content of the following lemma.

Lemma 16. Fix a metric space (Y, dY ), m ∈ N, K, p ∈ [1,∞) and θ ∈ [0, 1]. Suppose that

Mp(Y ;m) 6 Km
θ(p−1)
p . (38)

Denote n = 24m. Then there exists an n-point metric space (X, dX) such that

α ∈
[

1 + θ(p− 1)

p
, 1

]
=⇒ cY (X, dαX) &

1

K
(log n)

α− 1+θ(p−1)
p .

Proof. Take (X, dX) = ({0, 1}4m, ‖ ·‖1), i.e., X is the 4m-dimensional discrete hypercube, equipped
with the Hamming metric. Thus |X| = n. Let {Zt}∞t=0 be the standard random walk on X, with
Z0 distributed uniformly over X. Suppose that f : X → Y satisfies

∀x, y ∈ X, s‖x− y‖α1 6 dY (f(x), f(y)) 6 Ds‖x− y‖α1 (39)
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for some s,D ∈ (0,∞). Our goal is to bound D from below. By the definition of Mp(Y ;m),

E
[
dY (f(Zm), f(Z0))p

] (38)

6 Kpm1+θ(p−1)E
[
dY (f(Z1), f(Z0))p

]
. (40)

By the right hand inequality in (39) we have

E
[
dY (f(Z1), f(Z0))p

]
6 DpspE

[
‖Z1 − Z0‖αp1

]
= Dpsp. (41)

At the same time, it is simple to see (and explained explicitly in e.g. [71] or [66, Section 9.4]) that
E
[
‖Zm − Z0‖αp1

]
> (ηm)αp for some universal constant η ∈ (0, 1). Hence,

E
[
dY (f(Zm), f(Z0))p

] (39)

> spE
[
‖Zm − Z0‖αp1

]
& sp(ηm)αp. (42)

The only way for (41) and (42) to be compatible with (40) is if

D &
1

K
m
α− 1+θ(p−1)

p � 1

K
(log n)

α− 1+θ(p−1)
p . �

Remark 17. In Lemma 16 we took the metric space X to be a discrete hypercube, but similar
conclusions apply to snowflakes of expander graphs and graphs with large girth [51], as well as their
subsets [7] and certain discrete groups [4, 68, 69] (see also [66, Section 9.4]). We shall not attempt
to state here the wider implications of the assumption (38) to the nonembeddability of snowflakes,
since the various additional conclusions follow mutatis mutandis from the same argument as above,
and Lemma 16 as currently stated suffices for the proof of Theorem 2.

Remark 18. Since the proof of Lemma 16 applied the Markov type p assumption (38) to the
discrete hypercube, it would have sufficed to work here with a classical weaker bi-Lipschitz invariant
due to Enflo [24], called Enflo type. Such an obstruction played a role in ruling out certain snowflake
embeddings in [26] (in a different context), though the fact that the argument of [26] could be cast
in the context of Enflo type was proved only later [76, Proposition 5.3]. Here we work with Markov
type rather than Enflo type because the proof below for Wasserstein spaces yields this stronger
conclusion without any additional effort.

The following lemma is a variant of [76, Lemma 4.1].

Lemma 19. Fix p ∈ [1,∞) and θ ∈ [1/p, 1]. Suppose that (X, dX) is a metric space such that
for every two X-valued independent and identically distributed finitely supported random variables
Z,Z ′ and every x ∈ X we have

E
[
dX(Z,Z ′)p

]
6 2θpE

[
dX(Z, x)p

]
. (43)

Then for every k ∈ N we have

Mp(X; 2k) 6 2
k
(
θ− 1

p

)
. (44)

Proof. Fix n ∈ N, a stationary reversible Markov chain {Zt}∞t=0 with state space {1, . . . , n}, and
f : {1, . . . , n} → X. Recalling (36) with ψ(i, j) = dX(f(i), f(j))p, for every t ∈ N we have

E
[
dX(Z2t, Z0)p

] (36)
= E

[
dX(Zt, Z

′
t)
p
] (43)

6 2θpE
[
dX(Zt, Z0)p

]
6 2θp−1Mp(X; t)p · 2tE

[
dX(Z1, Z0)p

]
, (45)

where the last step of (45) uses the definition of Mp(X; t). By the definition of Mp(X; 2t), we have
thus proved that

Mp(X; 2t) 6 2
θ− 1

pMp(X; t),

so (44) follows by induction on k. �
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Corollary 20 below follows from Lemma 16 and Lemma 19. Specifically, under the assumptions
and notation of Lemma 19, use Lemma 16 with m replaced by 2k and θ replaced by (θp−1)/(p−1).

Corollary 20. Fix p ∈ [1,∞) and θ ∈ [1/p, 1]. Suppose that (X, dX) is a metric space that satisfies
the assumptions of Lemma 19. Then for arbitrarily large n ∈ N there exists an n-point metric space
(Y, dY ) such that for every α ∈ [θ, 1] we have

cX (Y, dαY ) & (log n)α−θ.

The link between the above discussion and embeddings of snowflakes of metrics into Wasserstein
spaces is explained in the following lemma, which is a variant of [89, Proposition 2.10].

Lemma 21. Fix p ∈ [1,∞) and θ ∈ [1/p, 1]. Suppose that (X, dX) is a metric space that satisfies
the assumptions of Lemma 19, i.e., inequality (43) holds true for X-valued random variables. Then
the same inequality holds true in the metric space (Pp(X),Wp) as well, i.e., for every two Pp(X)-
valued and identically distributed finitely supported random variables M,M′ and every µ ∈ Pp(X),

E
[
Wp(M,M′)p

]
6 2θpE

[
Wp(M, µ)p

]
.

Proof. Suppose that the distribution of M equals
∑n

i=1 qiδµi for some µ1, . . . , µn ∈ Pp(X) and
q1, . . . , qn ∈ [0, 1] with

∑n
i=1 qi = 1. Our goal is to show that

n∑
i=1

n∑
j=1

qiqjWp(µi, µj)
p 6 2θp

n∑
i=1

qiWp(µi, µ)p. (46)

The finitely supported probability measures are dense in (Pp(X),Wp) (see [83, 94]), so it suffices to
prove (46) when there exists N ∈ N and points xik, xk ∈ X for every (i, k) ∈ {1, . . . , n}×{1, . . . , N}
such that we have µ = 1

N

∑N
k=1 δxk and µi = 1

N

∑N
k=1 δxik for every i ∈ {1, . . . , n}. Let {σi}ni=1 ⊆ SN

be permutations of {1, . . . , N} that induce optimal couplings of the pairs (µ, µi), i.e.,

∀ i ∈ {1, . . . , n}, Wp(µi, µ)p =
1

N

N∑
k=1

dX(xiσi(k), xk)
p. (47)

Since the measure 1
N

∑N
k=1 δ(xiσi(k),xjσj(k))

is a coupling of (µi, µj),

∀ i, j ∈ {1, . . . , n}, Wp(µi, µj)
p 6

1

N

N∑
k=1

dX(xiσi(k), xjσj(k))
p. (48)

Consequently,

n∑
i=1

n∑
j=1

qiqjWp(µi, µj)
p

(48)

6
1

N

N∑
k=1

n∑
i=1

n∑
j=1

qiqjdX(xiσi(k), xjσj(k))
p

(43)

6
2θp

N

N∑
k=1

n∑
i=1

n∑
j=1

qiqjdX(xiσi(k), xk)
p (47)

= 2θp
n∑
i=1

qiWp(µi, µ)p. �

Proof of Theorem 2. Let (Ω, µ) be a probability space. For p ∈ [1,∞] define T : Lp(µ)→ Lp(µ×µ)
by Tf(x, y) = f(x)− f(y). Then clearly ‖T‖Lp(µ)→Lp(µ×µ) 6 2 for p ∈ {1,∞} and

∀ f ∈ L2(µ), ‖Tf‖2L2(µ×µ) = 2‖f‖2L2(µ) − 2
(ˆ

Ω
fdµ

)2
6 2‖f‖2L2(µ).

Or ‖T‖L2(µ)→L2(µ×µ) 6
√

2. So, by the Riesz–Thorin theorem (e.g. [27]),

p ∈ [1, 2] =⇒ ‖T‖Lp(µ)→Lp(µ×µ) 6 2
1
p , (49)
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and

p ∈ [2,∞] =⇒ ‖T‖Lp(µ)→Lp(µ×µ) 6 2
1− 1

p . (50)

Switching to probabilistic terminology, the estimates (49) and (50) say that if Z,Z ′ are i.i.d. random
variables then E

[
|Z − Z ′|p

]
6 2E

[
|Z|p

]
when p ∈ [1, 2] and E

[
|Z − Z ′|p

]
6 2p−1E

[
|Z|p

]
when

p ∈ [2,∞). By applying this to the random variables Z − a, Z ′− a for every a ∈ R, we deduce that
the real line (with its usual metric) satisfies (43) with

θ = θp
def
= max

{
1

p
, 1− 1

p

}
. (51)

Invoking this statement coordinate-wise shows that `3p = (R3, ‖ · ‖p) satisfies (43) with θ = θp.

Lemma 21 therefore implies that (Pp(`
3
p),Wp) also satisfies (43) with θ = θp. Hence, by Corollary 20

for arbitrarily large n ∈ N there exists an n-point metric space (Y, dY ) such that for every α ∈ (θp, 1],

c(Pp(`3p),Wp)(Y, d
α
Y ) & (log n)α−θp =

{
(log n)

α− 1
p if p ∈ (1, 2],

(log n)
α+ 1

p
−1

if p ∈ (2,∞).

Since the `p norm on R3 is
√

3-equivalent to the `2 norm on R3,

c(Pp(`3p),Wp)(Y, d
α
Y ) � c(Pp(`32),Wp)(Y, d

α
Y ),

thus completing the proof of Theorem 2. �

Remark 22. In the proof of Theorem 2 we chose to check the validity of (43) with θ = θp given
in (51) using an interpolation argument since it is very short. But, there are different proofs of this
fact: when p ∈ [1, 2) one could start from the trivial case p = 2, and then pass to general p ∈ [1, 2)

by invoking the classical fact [86] that the metric space (R, |x−y|p/2) admits an isometric embedding
into Hilbert space. Alternatively, in [64, Lemma 3] this is proved via a direct computation.

Question 23. As discussed in the Introduction, it seems plausible that Theorem 1 and Theorem 2
are not sharp when p ∈ (2,∞). Specifically, we conjecture that there exist Dp ∈ [1,∞) such that
for every finite metric space (X, dX) we have

cPp(R3)

(
X,
√
dX

)
6 Dp. (52)

Perhaps (52) even holds true with Dp = 1. As discussed in Remark 11, since L2 admits an
isometric embedding into Lp (see e.g. [96]), the perceived analogy between Wasserstein p spaces
and Lp spaces makes it natural to ask whether or not (P2(R3),W2) admits a bi-Lipschitz embedding
into (Pp(R3),Wp). If the answer to this question were positive then (52) would hold true by virtue
of the case p = 2 of Theorem 1. We also conjecture that the lower bound of Theorem 2 could be
improved when p > 2 to state that for arbitrarily large n ∈ N there exists an n-point metric space
(Y, dY ) such that for every α ∈ (1/2, 1],

c(Pp(R3),Wp)(Y, d
α
Y ) &p (log n)α−

1
2 . (53)

It was shown in [70] that Lp has Markov type 2 for every p ∈ (2,∞). We therefore ask whether or
not (Pp(R3),Wp) has Markov type 2 for every p ∈ (2,∞). A positive answer to this question would
imply that the lower bound (53) is indeed achievable. For this purpose it would also suffice to show
that for every p ∈ (2,∞) and k ∈ N we have

Mp((Pp(R3),Wp); 2k) .p 2
k
(

1
2
− 1
p

)
. (54)

Proving (54) may be easier than proving that M2(Pp(R3),Wp) < ∞, since the former involves
arguing about the pth powers of Wasserstein p distances while the latter involves arguing about

17



Wasserstein p distances squared. Note that Mp(Lp;m) .
√
pm1/2−1/p by [70] (see also [67, Theo-

rem 4.3]), so the Lp-version of (54) is indeed valid.

We end this section by showing how Lemma 19 implies bounds on the Markov type p constant
Mp(X; t) for any time t ∈ N, and not only when t = 2k for some k ∈ N as in (44). For the
purpose of proving Theorem 1, Lemma 19 suffices as stated, so the ensuing discussion is included
for completeness, and could be skipped by those who are interested only in the proof of Theorem 2.

The case p = 2 and θ = 1/2 of Lemma 19 corresponds to proving that metric spaces that are
nonnegatively curved in the sense of Alexandrov have Markov type 2: this was established by Ohta
in [76], whose work inspired the arguments that were presented above. Specifically, Ohta showed
in [76] how to pass from (44) with p = 2 and θ = 1/2 (i.e., M2(X, 2k) 6 1 for every k ∈ N) to
M2(X) 6

√
6 = 2.449..., and he also included in [76] an argument of Naor and Peres that improves

this to M2(X) 6 1 +
√

2 = 2.414... Below we further refine the latter argument, yielding the best
known estimate on the Markov type 2 constant of Alexandrov spaces of nonnegative curvature;
see (57) below. This constant is of interest since it was shown in [77] that if (X, dX) is a geodesic
metric space with M2(X) = 1 then X is nonnegatively curved in the sense of Alexandrov. It is
plausible that, conversely, M2(X) = 1 if X is nonnegatively curved in the sense of Alexandrov, but,
as noted in [77], this seems to be unknown even for the circle X = S1.

For every θ ∈ (0, 1] define φθ : [0, 1]→ R by

∀ s ∈ [0, 1], φθ(s)
def
= sθ − (1− s)θ. (55)

Then φθ([0, 1]) = [−1, 1] and since φ′θ(s) = θsθ−1 + θ(1− s)θ−1 > 0, the inverse φ−1
θ is well-defined

and increasing on [−1, 1]. The following elementary numerical lemma will be used later.

Lemma 24. For all θ ∈ (0, 1] there is a unique c(θ) ∈ (1,∞) satisfying

c(θ) =
c(θ)φ−1

θ

(
2θ−1
c(θ)

)θ
+ 1(

φ−1
θ

(
2θ−1
c(θ)

)
+ 1
)θ . (56)

Proof. The identity (56) is equivalent to hθ(c(θ)) = 1, where for every s > 0 and c ∈ [1,∞) we set

ψθ(s)
def
= (s+ 1)θ − sθ and hθ(c)

def
= cψθ

(
φ−1
θ

(
2θ − 1

c

))
.

Observe that because θ ∈ (0, 1] we have ψθ(s) < 1 for every s > 0. Hence hθ(c) < c for every
c ∈ (0,∞), and in particular hθ(1) < 1. Moreover, φ−1

θ (0) = 1/2, so that

lim
c→∞

ψθ

(
φ−1
θ

(
2θ − 1

c

))
= ψθ

(
1

2

)
=

3θ

2θ
− 1

2θ
> 0.

Hence limc→∞ hθ(c) =∞. It follows by continuity that there exists c ∈ (0,∞) such that hθ(c) = 1.
To prove the uniqueness of such c > 1, it suffice to show that hθ is increasing on (0,∞). Now,

h′θ(c) = ψθ

(
φ−1
θ

(
2θ − 1

c

))
− 2θ − 1

c
·
ψ′θ

(
φ−1
θ

(
2θ−1
c

))
φ′θ

(
φ−1
θ

(
2θ−1
c

)) =
φ′θ(y)ψθ(y)− φθ(y)ψ′θ(y)

φ′θ(y)
,

where we write y = φ−1
θ ((2θ − 1)/c). Since φθ is increasing, it therefore suffices to show that

φ′θ(y)ψθ(y)− φθ(y)ψ′θ(y) > 0 for all y ∈ (0, 1). One directly computes that

φ′θ(y)ψθ(y)− φθ(y)ψ′θ(y) = θ · 2y1−θ + (1− y)1−θ − (1 + y)1−θ

y1−θ(1− y2)1−θ .
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It remains to note that by the subadditivity of t 7→ t1−θ we have

(1 + y)1−θ 6 (1− y)1−θ + (2y)1−θ 6 (1− y)1−θ + 2y1−θ. �

Lemma 25. Fix p ∈ [1,∞) and θ ∈ [1/p, 1]. Suppose that (X, dX) is a metric space that satisfies
the assumptions of Lemma 19, i.e., inequality (43) holds true for X-valued random variables. Then

∀ t ∈ N, Mp(X; t) 6 c(θ)tθ−
1
p ,

where c(θ) is from Lemma 24. Thus, if θ = 1/p then X has Markov type p with Mp(X) 6 c(1/p).

Because, by the Lang–Schroeder–Sturm inequality (6), Alexandrov spaces of nonnegative curva-
ture satisfy the assumption of Lemma 19 with p = 2 and θ = 1/2, we have the following corollary.
Note that c(1/2) can be computed explicitly by solving the equation (56).

Corollary 26. Suppose that (X, dX) is nonnegatively curved in the sense of Alexandrov. Then the
Markov type 2 constant of X satisfies

M2(X) 6 c

(
1

2

)
=

√
1 +
√

2 +

√
4
√

2− 1 = 2.08... (57)

Proof of Lemma 25. We claim that the number c(θ) of Lemma 24 satisfies

sup
s∈[0,1]

min
{

1 + c(θ)sθ, 2θ + c(θ)(1− s)θ
}

(1 + s)θ
= c(θ). (58)

Indeed, observe that the function s 7→ (1 + c(θ)sθ)/(1 + s)θ is increasing on [0, 1] because one
directly computes that its derivative equals θ(c(θ)− s1−θ)/(s1−θ(1 + s)1+θ), and by Lemma 24 we
have c(θ) > 1 (recall also that 0 < θ 6 1). Since the function s 7→ (2θ + c(θ)(1 − s)θ)/(1 + s)θ

is decreasing on [0, 1], it follows that the supremum that appears in the left hand side of (58) is
attained when 1 + c(θ)sθ = 2θ + c(θ)(1− s)θ, or equivalently when φθ(s) = (2θ − 1)/c(θ), where we
recall (55). Thus s = φ−1

θ ((2θ − 1)/c(θ)) and therefore (58) is equivalent to (56).

Fix n ∈ N, a stationary reversible Markov chain {Zt}∞t=0 on {1, . . . , n}, and f : {1, . . . , n} → X.
For simplicity of notation write Ut = f(Zt). We shall prove by induction on t ∈ N that

E
[
dX(Ut, U0)p

]
6 c(θ)ptθpE

[
dX(U1, U0)p

]
. (59)

Lemma 19 shows that (59) holds true if t = 2k for some k ∈ N∪{0} (since c(θ) > 1). So, suppose
that t = (1 + s)2k for some s ∈ (0, 1) and k ∈ N ∪ {0}. The triangle inequality in Lp, combined
with the stationarity of the Markov chain, implies that(

E
[
dX(Ut, U0)p

]) 1
p 6

(
E
[
dX(Ut, U2k)p

]) 1
p +

(
E
[
dX(U2k , U0)p

]) 1
p

=
(
E
[
dX(Us2k , U0)p

]) 1
p +

(
E
[
dX(U2k , U0)p

]) 1
p , (60)

and (
E
[
dX(Ut, U0)p

]) 1
p 6

(
E
[
dX(Ut, U2k+1)p

]) 1
p +

(
E
[
dX(U2k+1 , U0)p

]) 1
p

=
(
E
[
dX(U(1−s)2k , U0)p

]) 1
p

+
(
E
[
dX(U2k+1 , U0)p

]) 1
p . (61)

By combining (60) and (61) with Lemma 19 and the inductive hypothesis (59), we see that(
E
[
dX(Ut, U0)p

]) 1
p(

E
[
dX(U1, U0)p

]) 1
p

6 2kθ min
{
c(θ)sθ + 1, c(θ)(1− s)θ + 2θ

} (58)

6 2kθc(θ)(1 + s)θ = c(θ)tθ. �
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4. Proof of Proposition 3

Here we justify the validity of Proposition 3 that was stated in the Introduction, thus explaining
why we are focusing on quadratic inequalities in the context of the quest for intrinsic characteriza-
tions of those metric spaces that admit a bi-Lipschitz embedding into some Alexandrov space that
is either nonnegatively or nonpositively curved. The argument below is inspired by the proof of
Proposition 15.5.2 in [54].

Proof of Proposition 3. If cY (X) 6 D for some (Y, dY ) ∈ F then it follows immediately that if
A,B ∈Mn(R) have nonnegative entries and (Y, dY ) satisfies the (A,B)-quadratic metric inequality
then (X, dX) satisfies the (A,D2B)-quadratic metric inequality. The nontrivial direction here is the
converse, i.e., suppose that (X, dX) satisfies the (A,D2B)-quadratic metric inequality for every two
n by n matrices A,B ∈ Mn(R) with nonnegative entries such that every (Z, dZ) ∈ F satisfies the
(A,B)-quadratic metric inequality. The goal is to deduce from this that there exists (Y, dY ) ∈ F

for which cY (X) 6 D.

Let K ⊆ Mn(R) be the set of all n by n matrices C = (cij) for which there exists (Z, dZ) ∈ F

and z1, . . . , zn ∈ Z such that cij = dZ(zi, zj)
2 for every i, j ∈ {1, . . . , n}. Since F is closed under

dilation, we have [0,∞)K ⊆ K. Since F is closed under Pythagorean sums, we have K + K ⊆ K.
Thus K is a convex cone.

Write X = {x1, . . . , xn}. Fix ε ∈ (0, 1) and suppose for the sake of obtaining a contradiction that
there does not exist an embedding of X into any member of F with distortion less than D+ ε. Let
L ⊆Mn(R) be the set of all n by n symmetric matrices C = (cij) for which there exists s ∈ (0,∞)
such that sdX(i, j)2 6 cij 6 (D + ε)2sdX(i, j)2 for every i, j ∈ {1, . . . , n}. Our contrapositive
assumption means that K ∩ L = ∅. Since K and L ∪ {0} are both cones, the separation theorem
now implies that there exists a symmetric matrix H = (hij) ∈Mn(R), not all of whose off-diagonal
entries vanish, such that

inf
C∈L

n∑
i=1

n∑
j=1

hijcij > 0 > sup
C∈K

n∑
i=1

n∑
j=1

hijcij . (62)

Define A,B ∈Mn(R) by setting for every i, j ∈ {1, . . . , n},

aij
def
=

{
hij if hij > 0,
0 if hij < 0,

and bij
def
=

{
|hij | if hij < 0,
0 if hij > 0,

The right hand inequality in (62), combined with the definition of K, implies that every (Y, dY ) ∈ F

satisfies the (A,B)-quadratic metric inequality. By our assumption on X, this implies that

n∑
i=1

n∑
j=1

aijdX(xi, xj)
2 6 D2

n∑
i=1

n∑
j=1

bijdX(xi, xj)
2 < (D + ε)2

n∑
i=1

n∑
j=1

bijdX(xi, xj)
2, (63)

where we used the fact that not all the off-diagonal entries of H vanish, so all the sums appear-
ing (63) are positive. Consequently, if we set

∀ i, j ∈ {1, . . . , n}, cij
def
=

{
(D + ε)2dX(xi, xj)

2 if hij < 0
dX(xi, xj)

2 if hij > 0,

then C = (cij) ∈ L and by (63) we have
∑n

i=1

∑n
j=1 hijcij < 0. This contradicts the left hand

inequality in (62). �
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5. Subsets of Hadamard spaces

As we discussed in the introduction, it is a major open problem to characterize those finite metric
spaces that admit a bi-Lipschitz (or even isometric) embedding into some Hadamard space. By
Proposition 3, this amounts to understanding those quadratic metric inequalities that hold true in
any Hadamard space. In this section we shall derive potential families of such inequalities.

An equivalent characterization of when a metric space (X, dX) is a Hadamard space is the
requirement that there exists a mapping B that assigns a point B(µ) ∈ X to every finitely supported
probability measure µ on X with the property that B(δx) = x for every x ∈ X (i.e., B is a
barycenter map) and every finitely supported probability measure µ on X satisfies the following
inequality for every x ∈ X.

dX(x,B(µ))2 +

ˆ
X
dX(B(µ), y)2dµ(y) 6

ˆ
X
dX(x, y)2dµ(y). (64)

For the proof that (X, dX) is a Hadamard space if and only if it satisfies (64), see e.g. Lemma 4.4.
and Theorem 4.9 in [88]. One could extend the validity of (64) to probability measures that are
not necessarily finitely supported, but this will be irrelevant for our purposes.

Lemma 27 below yields a general recipe for producing quadratic metric inequalities that hold
true in any Hadamard space.

Lemma 27. Fix n ∈ N and p1, . . . , pn, q1, . . . , qn ∈ (0, 1) such that
∑n

i=1 pi =
∑n

j=1 qj = 1. Suppose

that A = (aij), B = (bij) ∈Mn(R) are n by n matrices with nonnegative entries that satisfy

∀ i, j ∈ {1, . . . , n},
n∑
k=1

aik +
n∑
k=1

bkj = pi + qj . (65)

If (X, dX) is a Hadamard space then for every x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

aijbij
aij + bij

dX(xi, xj)
2 6

n∑
i=1

n∑
j=1

piqjdX(xi, xj)
2. (66)

Proof. Writing z = B
(∑n

i=1 piδxi

)
, by (64) for every j ∈ {1, . . . , n} we have

dX(xj , z)
2 +

n∑
i=1

pidX(xi, z)
2 6

n∑
i=1

pidX(xi, xj)
2. (67)

By multiplying (67) by qj and summing over j ∈ {1, . . . , n} we get

n∑
j=1

qjdX(xj , z)
2 +

n∑
i=1

pidX(xi, z)
2 6

n∑
i=1

n∑
j=1

piqjdX(xi, xj)
2. (68)

Hence,

n∑
j=1

qjdX(xj , z)
2 +

n∑
i=1

pidX(xi, z)
2 =

n∑
i=1

n∑
j=1

(
aijdX(xi, z)

2 + bijdX(xj , z)
2
)

(69)

>
n∑
i=1

n∑
j=1

aijbij
aij + bij

dX(xi, xj)
2, (70)
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where in (69) we used (65), and (70) holds true because dX(xi, z)+dX(xj , z) > dX(xi, xj) for every
i, j ∈ {1, . . . , n}, and for every s, t,γ ∈ [0,∞) we have (by e.g. Cauchy-Schwarz),

min
α,β∈[0,∞)
α+β>γ

(
sα2 + tβ2

)
=
stγ2

s+ t
. (71)

The desired estimate (66) is a combination of (68) and (70). �

The proof of Lemma 27 is a systematic way to exploit the existence of barycenters in order to
deduce quadratic metric inequalities, under the crucial constraint that the final inequality is allowed
to involve only distances within the subset {x1, . . . , xn} ⊆ X. The barycentric inequality (64) is
used in (67), but one must then remove all reference to the auxiliary point z since it need not be
part of the given subset {x1, . . . , xn}. It is natural to do so by incorporating the triangle inequality
dX(xi, z) + dX(xj , z) > dX(xi, xj) for some i, j ∈ {1, . . . , n}. This inequality is distributed among
the possible pairs i, j ∈ {1, . . . , n} through a general choice of re-weighting matrices A,B, with
the final step in (70) being sharp due to (71). A more general scheme along these lines will
be described in Section 5.2 below, but (an iterative applications of) the above simple scheme is
already powerful, and in fact we do not know whether or not it yields a characterization of subsets
of Hadamard spaces; see Question 31 below.

A notable special case of Lemma 27 is when (p1, . . . , pn) = (q1, . . . , qn) and there exists a per-
mutation π ∈ Sn such that aiπ(i) = bπ−1(i)i = pi for every i ∈ {1, . . . , n}, while all the other entries
of the matrices A and B vanish. In this case one arrives at the following useful inequality.

Corollary 28. Suppose that (X, dX) is a Hadamard space. Then for every n ∈ N, every x1, . . . , xn,
every p1, . . . , pn ∈ [0, 1] with

∑n
j=1 pj = 1 and every permutation π ∈ Sn we have

n∑
i=1

pipπ(i)

pi + pπ(i)
dX(xi, xπ(i))

2 6
n∑
i=1

n∑
j=1

pipjdX(xi, xj)
2. (72)

When n = 4 and π = (1, 3)(2, 4), Corollary 28 becomes

Corollary 29. Suppose that (X, dX) be a Hadamard space and fix x1, x2, x3, x4 ∈ X. Then for
every p1, p2, p3, p4 ∈ [0,∞) we have

p1p2dX(x1, x2)2 + p2p3dX(x2, x3)2 + p3p4dX(x3, x4)2 + p4p1dX(x4, x1)2

>
p1p3(p2 + p4)

p1 + p3
dX(x1, x3)2 +

p2p4(p1 + p3)

p2 + p4
dX(x2, x4)2. (73)

To pass from (72) to (73) note that (73) is homogeneous of order 2 in (p1, p2, p3, p4), so we may
assume that p1 + p2 + p3 + p4 = 1. Now (73) is a direct application of (72) with the above specific
choice of permutation π, while subtracting from both sides of (72) those multiples of dX(x1, x3)2

and dX(x2, x4)2 that appear in the right hand side of (72).

When p1 + p3 = p2 + p4 = 1, Corollary 29 becomes Sturm’s weighted quadruple inequality [88],
which asserts that for every Hadamard space (X, dX), every x1, x2, x3, x4 ∈ X, and every s, t ∈ [0, 1],

s(1− s)dX(x1, x3)2 + t(1− t)dX(x2, x4)2

6 stdX(x1, x2)2 + (1− s)tdX(x2, x3)2 + (1− s)(1− t)dX(x3, x4)2 + s(1− t)dX(x4, x1)2. (74)

As explained in [88, Proposition 2.4], by choosing the parameters s, t appropriately in (74) one
obtains an important quadruple comparison inequality of Reshetnyak [84] (see also [36] or [44,
Lemma 2.1]), asserting that for every Hadamard space (X, dX) and every x1, x2, x3, x4 ∈ X,

dX(x1, x3)2 + dX(x2, x4)2 6 dX(x1, x2)2 + dX(x2, x3)2 + 2dX(x3, x4)dX(x4, x1). (75)
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The coefficients in (73) have 3 degrees of freedom while in (74) they have 2 degrees of freedom.
This additional flexibility yields a proof of the validity of the Ptolemy inequality (4) in Hadamard
spaces. The fact that the Ptolemy inequality holds true in Hadamard spaces was proved in [37, 25],
and an alternative proof was given in [17]. Both of these proofs rely on comparisons with ideal
configurations in the Euclidean plane (see [15, §II.1]), combined with the classical Ptolemy theorem
in Euclidean geometry. Corollary 30 below shows how the Ptolemy inequality is a direct consequence
of (73), thus yielding an intrinsic proof that does not proceed through an embedding argument.

Corollary 30. Let (X, dX) be a Hadamard space and x1, x2, x3, x4 ∈ X. Write dij = dX(xi, xj)
for every i, j ∈ {1, . . . , n}. Then

d12d34 + d23d41 − d13d24 >

(
(d12d23 + d34d41) d13 − (d12d41 + d23d34) d24

)2
2 (d12d41 + d23d34) (d12d23 + d34d41)

> 0. (76)

Proof. The proof of (76) is nothing more than an application of Corollary 29 with the following
specific choices of p1, p2, p3, p4 ∈ [0,∞).

p1
def
=

d34

d41
· d23 + d41

d12 + d34
, p2

def
=

d41

d12
· d12 + d34

d23 + d41
, p3

def
=

d12

d23
· d23 + d41

d12 + d34
, p4

def
=

d23

d34
· d12 + d34

d23 + d41
.

A substitution of these values into (73) yields

2d12d34 + 2d23d41 >
d12d23 + d34d41

d12d41 + d23d34
d2

13 +
d12d41 + d23d34

d12d23 + d34d41
d2

24

= 2d13d24 +
((d12d23 + d34d41) d13 − (d12d41 + d23d34) d24)2

(d12d41 + d23d34) (d12d23 + d34d41)
. �

5.1. Iterative applications of Lemma 27. The case s = t = 1/2 of (73) becomes the roundness
2 inequality (3), i.e., for every Hadamard space (X, dX) and every x1, x2, x3, x4 ∈ X we have

dX(x1, x3)2 + dX(x2, x4)2 6 dX(x1, x2)2 + dX(x2, x3)2 + dX(x3, x4)2 + dX(x4, x1)2. (77)

In [24], Enflo iterated (77) (while exploiting cancellations) so as to yield the following inequality,
which holds for every Hadamard space (X, dX), every n ∈ N and every f : {−1, 1}n → X.∑

x∈{−1,1}n
dX (f(x), f(−x))2 6

n∑
i=1

∑
x∈{−1,1}n

dX (f(x), f(x1, . . . , xi−1,−xi, xi+1, . . . , xn))2 . (78)

In today’s terminology (78) says that every Hadamard space has Enflo type 2 with constant 1 (see
also [77]). The argument in [49] yields a different iterative application of (77) (again, exploiting
cancellations via a telescoping argument), showing that mappings from the iterated diamond graph
(see [74]) into any Hadamard space satisfy a certain quadratic metric inequality. Similar reason-
ing (as in [48]) yields a quadratic metric inequality for Hadamard space-valued mappings on the
Laakso graphs (see [41, 45]). The value of the above iterative applications of (77) is that they
yield inequalities on metric spaces of unbounded cardinality (hypercubes, diamond graphs, Laakso
graphs) that serve as obstructions to bi-Lipschitz embeddings of these spaces into any Hadamard
space: these inequalities imply that any such embedding must incur distortion that tends to ∞ as
the size of the underlying space tends to ∞ (in fact, these inequalities yield sharp bounds).

We therefore see that by applying Lemma 27 multiple times one could obtain quadratic metric
inequalities that yield severe restrictions on those metric spaces that admit a bi-Lipschits embedding
into some Hadamard space. Specifically, one could apply Lemma 27 to several configurations of
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points and several choices of weights, and consider a weighted average of the resulting inequalities.
This yields the estimate

n∑
i=1

n∑
j=1

m∑
k=1

cka
k
ijb

k
ij

akij + bkij
dX(xi, xj)

2 6
n∑
i=1

n∑
j=1

m∑
k=1

ckp
k
i q
k
j dX(xi, xj)

2, (79)

which is valid for every Hadamard space (X, dX), every m,n ∈ N, every x1, . . . , xn ∈ X, every
{ck}mk=1 ⊆ (0,∞), every

{
pki , q

k
i : i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}

}
⊆ (0,∞) with

n∑
i=1

pki =

n∑
j=1

qkj = 1, (80)

and every choice of n by n matrices {Ak = (akij)}mk=1, {Bk = (bkij)}mk=1 ⊆ Mn(R) with nonnegative

entries, such that for every i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,m},
n∑
s=1

akis +
n∑
s=1

bksj = pki + qkj . (81)

By collecting terms in (79) so that for every i, j ∈ {1, . . . , n} no multiple of dX(xi, xj)
2 appears

in both sides of the inequality, as was done in e.g. (78), one arrives at the following estimate.∑
i,j∈{1,...,n}∑m

k=1 ck

( akijb
k
ij

ak
ij

+bk
ij

−pki qkj
)
>0

m∑
k=1

ck

(
akijb

k
ij

akij + bkij
− pki qkj

)
dX(xi, xj)

2

6
∑

i,j∈{1,...,n}∑m
k=1 ck

( akijb
k
ij

ak
ij

+bk
ij

−pki qkj
)
<0

m∑
k=1

ck

(
pki q

k
j −

akijb
k
ij

akij + bkij

)
dX(xi, xj)

2. (82)

To the best of our knowledge, all of the previously used quadratic metric inequalities on general
Hadamard spaces are of the form (82). We therefore ask whether the inequalities of the form (82)
capture the totality of those quadratic metric inequalities that are valid in Hadamard spaces.

Question 31. Is it true that for every D ∈ [1,∞) there exists some c(D) ∈ [1,∞) such that a
metric space (X, dX) embeds with distortion at most c(D) into some Hadamard space provided∑

i,j∈{1,...,n}∑m
k=1 ck

( akijb
k
ij

ak
ij

+bk
ij

−pki qkj
)
>0

m∑
k=1

ck

(
akijb

k
ij

akij + bkij
− pki qkj

)
dX(xi, xj)

2

6 D2 ·
∑

i,j∈{1,...,n}∑m
k=1 ck

( akijb
k
ij

ak
ij

+bk
ij

−pki qkj
)
<0

m∑
k=1

ck

(
pki q

k
j −

akijb
k
ij

akij + bkij

)
dX(xi, xj)

2,

for all m,n ∈ N, all ck, p
k
i , q

k
i , a

k
ij , b

k
ij ∈ [0,∞) satisfying (80) and (81), and all x1, . . . , xn ∈ X?

Recall that there are useful metric inequalities, which are not quadratic metric inequalities,
that hold true in any Hadamard space, such as Reshetnyak’s inequality (75) or the Ptolemy in-
equality (4). However, we already know through Proposition 3 that quadratic metric inequalities
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fully characterize subsets of Hadamard spaces. And, in the case of Reshetnyak’s inequality or the
Ptolemy inequality, we have seen above how to deduce them explicitly from a quadratic metric
inequality (the key point to note here is that the various coefficients that appear in (82) can be
optimized so as to depend on the distances {dX(xi, xj)}i,j∈{1,...,n}).

A negative answer to Question 31 would be very interesting, as it would yield a new family of
metric spaces that fail to admit a bi-Lipschitz embedding into any Hadamard space, and corre-
spondingly a new family of quadratic metric inequalities which hold true in any Hadamard space
yet do not follow from the above procedure for obtaining such inequalities.

As discussed in the Introduction, it is not known whether or not for every metric space (X, dX)
there exists a Hadamard space (Y, dY ) with cY (X,

√
dX) < ∞. If this were true then Question 32

below would have a positive answer. Conversely, a positive answer to both Question 31 and Ques-
tion 32 would imply that the 1/2-snowflake of any metric space admits a bi-Lipschitz embedding
into some Hadamard space.

Question 32. Is it true that every metric space (X, dX) satisfies

∑
i,j∈{1,...,n}∑m

k=1 ck

( akijb
k
ij

ak
ij

+bk
ij

−pki qkj
)
>0

m∑
k=1

ck

(
akijb

k
ij

akij + bkij
− pki qkj

)
dX(xi, xj)

.
∑

i,j∈{1,...,n}∑m
k=1 ck

( akijb
k
ij

ak
ij

+bk
ij

−pki qkj
)
<0

m∑
k=1

ck

(
pki q

k
j −

akijb
k
ij

akij + bkij

)
dX(xi, xj),

for all m,n ∈ N, all ck, p
k
i , q

k
i , a

k
ij , b

k
ij ∈ [0,∞) satisfying (80) and (81), and all x1, . . . , xn ∈ X?

Question 32 seems tractable, but at present we do not know whether or not its answer is positive.
A negative answer to Question 32 would yield for the first time a metric space (X, dX) such that
(X,
√
dX) fails to admit a bi-Lipschitz embedding into any Hadamard space, in sharp contrast to the

case of embeddings into Alexandrov spaces of nonnegative curvature. In the same vein, a proof that
every Hadamard space admits a sequence of bounded degree expanders would resolve Question 32
negatively. It is true that inequality (73) is not an obstruction to the validity of Question 32, i.e.,
for every metric space (X, dX), every p1, p2, p3, p4 ∈ [0,∞) and every x1, x2, x3, x4 ∈ X we have

p1p2dX(x1, x2) + p2p3dX(x2, x3) + p3p4dX(x3, x4) + p4p1dX(x4, x1)

>
p1p3(p2 + p4)

p1 + p3
dX(x1, x3) +

p2p4(p1 + p3)

p2 + p4
dX(x2, x4). (83)

Also (actually, as a consequence of (83)), Reshetnyak’s inequality and the Ptolemy inequality hold
true in any square root of a metric space, i.e., for every metric space (X, dX) and x1, x2, x3, x4 ∈ X,

dX(x1, x3) + dX(x2, x4) 6 dX(x1, x2) + dX(x2, x3) + 2
√
dX(x3, x4)dX(x4, x1),

and √
dX(x1, x3)dX(x2, x4) 6

√
dX(x1, x2)dX(x3, x4) +

√
dX(x2, x3)dX(x4, x1).

It is possible (and instructive) to prove these inequalities while using only the triangle inequality,
but this seems to require a somewhat tedious case analysis. Alternatively, one could verify (83) by
using the fact that the square root of any four-point metric space admits an isometric embedding
into a Hilbert space; see e.g. [20, Proposition 2.6.2].
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Lemma 33 below asserts that the conclusion of Lemma 27 holds true in any square-root of a
metric space, with a loss of a constant factor. This is a special case of Question 32 that falls sort
of a positive answer in general due to the fact that we want to iterate the resulting inequality, in
which case the constant factor loss could accumulate.

Lemma 33. Fix n ∈ N and p1, . . . , pn, q1, . . . , qn ∈ (0, 1) such that
∑n

i=1 pi =
∑n

j=1 qj = 1. Suppose

that A = (aij), B = (bij) ∈ Mn(R) are n by n matrices with nonnegative entries that satisfy (65).
Then for every metric space (X, dX) and every x1, . . . , xn ∈ X we have

n∑
i=1

n∑
j=1

aijbij
aij + bij

dX(xi, xj) 6 3
n∑
i=1

n∑
j=1

piqjdX(xi, xj).

Proof. Let F : {x1, . . . , xn} → `∞ be any isometric embedding of the metric space ({x1, . . . , xn}, dX)
into `∞. By convexity we have

n∑
i=1

pi

∥∥∥F (xi)−
n∑
j=1

qjF (xj)
∥∥∥
∞

=

n∑
i=1

pi

∥∥∥ n∑
j=1

qj(F (xi)− F (xj))
∥∥∥
∞

6
n∑
i=1

n∑
j=1

piqj‖F (xi)− F (xj)‖∞ =

n∑
i=1

n∑
j=1

piqjdX(xi, xj),

and similarly,

n∑
i=1

qi

∥∥∥F (xi)−
n∑
j=1

qjF (xj)
∥∥∥
∞
6

n∑
i=1

qi

∥∥∥F (xi)−
n∑
j=1

pjF (xj)
∥∥∥
∞

+
∥∥∥ n∑
i=1

n∑
j=1

piqj(F (xi)−F (xj))
∥∥∥
∞

6 2

n∑
i=1

n∑
j=1

piqj‖F (xi)− F (xj)‖∞ = 2

n∑
i=1

n∑
j=1

piqjdX(xi, xj).

So, if we denote z
def
=
∑n

k=1 qkF (xk) then

3
n∑
i=1

n∑
j=1

piqjdX(xi, xj) >
n∑
i=1

pi‖F (xi)− z‖∞ +
n∑
j=1

qj‖F (xj)− z‖∞

(65)
=

n∑
i=1

n∑
j=1

(aij‖F (xi)− z‖∞ + bij‖F (xj)− z‖∞)

>
n∑
i=1

n∑
j=1

min{aij , bij} (‖F (xi)− z‖∞ + ‖F (xj)− z‖∞)

>
n∑
i=1

n∑
j=1

aijbij
aij + bij

‖F (xi)− F (xj)‖∞

=
n∑
i=1

n∑
j=1

aijbij
aij + bij

dX(xi, xj). �

5.2. A hierarchy of quadratic metric inequalities. The quadratic metric inequalities of Sec-
tion 5.1 are part of a first level of a hierarchy of quadratic metric inequalities that hold true in any
Hadamard space. We shall now describe these inequalities, which quickly become quite complicated
and unwieldy. We conjecture that the entire hierarchy of inequalities thus obtained characterizes
subsets of Hadamard spaces; see Question 34 below. Due to the generality of these inequalities,
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this conjecture could be quite tractable. But, even if it has a positive answer then it would yield a
complicated, and therefore perhaps less useful, characterization of subsets of Hadamard spaces, and
it would still be very interesting to find a smaller family of inequalities that characterizes subsets
of Hadamard spaces, in the spirit of Question 31.

Let (X, dX) be a Hadamard space. The barycentric inequality (64) has the following counterpart
as a formal consequence, which is an inequality that allows one to control the distance between
barycenters of two probability measures. Let µ, ν be finitely supported probability measures on X.
By applying (64) twice we see that

dX(B(ν),B(µ))2 +

ˆ
X
dX(B(µ), x)2dµ(x) 6

ˆ
X
dX(B(ν), x)2dµ(x)

6
ˆ
X

(ˆ
X
dX(x, y)2dν(y)−

ˆ
X
dX(B(ν), y)2dν(y)

)
dµ(x).

Thus

dX(B(ν),B(µ))2 +

ˆ
X
dX(B(µ), x)2dµ(x) +

ˆ
X
dX(B(ν), y)2dν(y)

6
¨
X×X

dX(x, y)2dµ(x)dν(y). (84)

Both (64) and (84) will be used repeatedly in what follows.

5.2.1. An inductive construction. Fix n ∈ N and x1, . . . , xn ∈ X. Fix also a sequence of integers

{ms}∞s=0 ⊆ N with m0 = n. Suppose that we are given µk+1,b
s,a ∈ [0,∞) for every k ∈ N ∪ {0},

s ∈ {0, . . . , k}, a ∈ {1, . . . ,ms} and b ∈ {1, . . . ,mk+1}, such that

∀ b ∈ {1, . . . ,mk+1},
k∑
s=0

ms∑
a=1

µk+1,b
s,a = 1.

We shall now proceed to define by induction on k ∈ N ∪ {0} auxiliary points xsa ∈ X for every
s ∈ {0, . . . , k} and a ∈ {1, . . . ,ms}. Our construction will also yield for every i, j ∈ {1, . . . , n},
s, t, σ, τ ∈ {0, . . . , k}, a ∈ {1, . . . ,ms}, α ∈ {1, . . . ,mσ}, b ∈ {1, . . . ,mt} and β ∈ {1, . . . ,mτ}
nonnegative weights U s,t,a,bσ,τ,α,β , V

s,t,a,b
i,j ∈ [0,∞) that satisfy the inequality

dX(xsa, x
t
b)

2 +

k∑
σ=0

k∑
τ=0

mσ∑
α=1

mτ∑
β=1

U s,t,a,bσ,τ,α,βdX(xσα, x
τ
β)2 6

n∑
i=1

n∑
j=1

V s,t,a,b
i,j dX(xi, xj)

2. (85)

The induction starts by setting x0
a = xa for a ∈ {1, . . . , n}. Also, for every a, b, α, β ∈ {1, . . . , n}

set U0,0,a,b
0,0,α,β = 0 and V 0,0,a,b

α,β = 1{(α,β)=(a,b)}, thus satisfying (85) vacuously.

Suppose now that we have defined xsa ∈ X for every s ∈ {0, . . . , k} and a ∈ {1, . . . ,ms}. Consider
the probability measures

∀ b ∈ {1, . . . ,mk+1}, µk+1,b def
=

k∑
s=0

ms∑
a=1

µk+1,b
s,a δxsa ,

and define

∀ b ∈ {1, . . . ,mk+1}, xk+1
b

def
= B

(
µk+1,b

)
.
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Suppose that s ∈ {0, . . . , k}, a ∈ {1, . . . ,ms} and b ∈ {1, . . . ,mk+1}. Then by (64) we have

dX(xsa, x
k+1
b )2 +

k∑
τ=0

mτ∑
β=1

µk+1,b
τ,β dX(xk+1

b , xτβ)2 6
k∑
t=0

mt∑
c=1

µk+1,b
t,c dX(xsa, x

t
c)

2.

In combination with the inductive hypothesis (85), this implies that the desired estimate (85) would
also hold true when |{s, t} ∩ {k + 1}| = 1 once we introduce the following inductive definitions.

Uk+1,s,b,a
σ,τ,β,α = U s,k+1,a,b

σ,τ,α,β

def
= 1{(σ,α,τ)∈{k+1}×{b}×{0,...,k}}µ

k+1,b
τ,β + 1{{σ,τ}⊆{0,...,k}}

k∑
t=0

mt∑
c=1

µk+1,b
t,c U s,t,a,cσ,τ,α,β ,

and

V s,k+1,a,b
i,j

def
=

k∑
t=0

mt∑
c=1

µk+1,b
t,c V s,t,a,c

i,j .

It remains to ensure the validity of (85) when s = t = k + 1. So, fix a, b ∈ {1, . . . , k + 1} and
apply (84) so as to obtain the estimate

dX(xk+1
a , xk+1

b )2 +

k∑
τ=0

mτ∑
β=1

µk+1,a
τ,β dX(xk+1

a , xτβ)2 +

k∑
τ=0

mτ∑
β=1

µk+1,b
τ,β dX(xk+1

b , xτβ)2

6
k∑
t=0

k∑
θ=0

mt∑
p=1

mθ∑
q=1

µk+1,a
t,p µk+1,b

θ,q dX(xtp, x
θ
q)

2.

In combination with the inductive hypothesis (85), this implies that the desired estimate (85) would
also hold true when s = t = k + 1 once we introduce the following inductive definitions.

Uk+1,k+1,a,b
σ,τ,α,β

def
= 1{(σ,α,τ)∈{k+1}×{a,b}×{0,...,k}}µ

k+1,α
τ,β + 1{{σ,τ}⊆{0,...,k}}

k∑
t=0

k∑
θ=0

mt∑
p=1

mθ∑
q=1

µk+1,a
t,p µk+1,b

θ,q U t,θ,p,qσ,τ,α,β ,

and

V k+1,k+1,a,b
i,j =

k∑
t=0

k∑
θ=0

mt∑
p=1

mθ∑
q=1

µk+1,a
t,p µk+1,b

θ,q V t,θ,p,q
i,j .

This concludes our inductive construction of auxiliary points, which satisfy the inequality (85).
We shall now show how to remove the auxiliary points so as to obtain bona fide quadratic metric
inequalities that involve only points from the subset {x1, . . . , xn} ⊆ X.

5.2.2. Deriving quadratic metric inequalities. Suppose that for every s, t ∈ {0, . . . , k}, a ∈ {0, . . . ,ms}
and b ∈ {0, . . . ,mt} we are given a nonnegative weight Γs,ta,b ∈ [0,∞). By multiplying (85) by Γs,ta,b
and summing the resulting inequalities, we obtain the estimate

k∑
s=0

k∑
t=0

ms∑
a=1

mt∑
b=1

Es,ta,bdX(xsa, x
t
b)

2 6
n∑
i=1

n∑
j=1

Fi,jdX(xi, xj)
2, (86)

where

Es,ta,b
def
= Γs,ta,b +

k∑
σ=0

k∑
τ=0

mσ∑
α=1

mτ∑
β=1

Γσ,τα,βU
σ,τ,α,β
s,t,a,b ,
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and

Fi,j
def
=

k∑
s=0

k∑
t=0

ms∑
a=1

mt∑
b=1

Γs,ta,bV
s,t,a,b
ij .

Denote

Sk
def
=
{
xsa : s ∈ {0, . . . , k} and a ∈ {1, . . . ,ms}

}
⊆ X.

Any ζ ∈
⋃∞
`=1 S

`
k will be called below a path in Sk. If ζ = (ζ0, . . . , ζ`) for some ` ∈ N then we

write `(ζ) = `. The points ζ0, ζ`(ζ) are called the endpoints of the path ζ. The path ζ is called
non-repetitive if the points ζ0, . . . , ζ`(ζ) are distinct. The finite set of all non-repetitive paths ζ in
Sk whose endpoints satisfy {ζ0, ζ`(ζ)} ⊆ {x1, . . . , xn} will be denoted below by Pk. Suppose that
for every path ζ ∈ Pk we are given c1(ζ), . . . , c`(ζ)(ζ) ∈ (0,∞) such that for every s, t ∈ {0, . . . , k},
a ∈ {1, . . . ,ms} and b ∈ {1, . . . ,mt} we have∑

ζ∈Pk

`(ζ)∑
r=1

cr(ζ)1{(ζr−1,ζr)=(xsa,x
t
b)}

= Es,ta,b.

Then the inequality (86) can be rewritten as follows.∑
ζ∈Pk

`(ζ)∑
r=1

cr(ζ)dX(ζr−1, ζr)
2 6

n∑
i=1

n∑
j=1

Fi,jdX(xi, xj)
2. (87)

By the triangle inequality and Cauchy-Schwarz, every ζ ∈ Pk satisfies

dX(ζ0, ζ`(ζ))
2 6

( `(ζ)∑
r=1

1√
cr(ζ)

·
√
cr(ζ)dX(ζr−1, ζr)

)2

6

( `(ζ)∑
r=1

1

cr(ζ)

) `(ζ)∑
r=1

cr(ζ)dX(ζr−1, ζr)
2. (88)

By combining (87) and (88) we therefore see that∑
ζ∈Pk

dX(ζ0, ζ`(ζ))
2∑`(ζ)

r=1
1

cr(ζ)

6
n∑
i=1

n∑
j=1

Fi,jdX(xi, xj)
2. (89)

Recall that by the definition of Pk, the endpoints ζ0, ζ`(ζ) of any path ζ ∈ Pk are in {x1, . . . , xn}. It
therefore follows from (89) that if we define for every i, j ∈ {1, . . . , n}

Gi,j
def
=

∑
ζ∈Pk

(ζ0,ζ`(ζ))=(xi,xj)

1∑`(ζ)
r=1

1
cr(ζ)

, (90)

then the following quadratic metric inequality, which generalizes (82), holds true in every Hadamard
space (X, dX). ∑

i,j∈{1,...,n}
Gi,j>Fi,j

(Gi,j − Fi,j)dX(xi, xj)
2 6

∑
i,j∈{1,...,n}
Fi,j>Gi,j

(Fi,j −Gi,j)dX(xi, xj)
2.

Question 34. Is it true that for every D ∈ [1,∞) there exists some C(D) ∈ [1,∞) such that a
metric space (X, dX) embeds with distortion at most C(D) into some Hadamard space provided∑

i,j∈{1,...,n}
Gi,j>Fi,j

(Gi,j − Fi,j)dX(xi, xj)
2 6 D2

∑
i,j∈{1,...,n}
Fi,j>Gi,j

(Fi,j −Gi,j)dX(xi, xj)
2,

for every n ∈ N, every x1, . . . , xn ∈ X and every {Fi,j , Gi,j}i,j∈{1,...,n} as in (90)? Here we are con-
sidering all those {Fi,j , Gi,j}i,j∈{1,...,n} that are obtained from the construction that is described in

29



Section 5.2.1 and Section 5.2.2, i.e., ranging over all the possible choices of weights µk+1,b
s,a ,Γs,ta,b, cr(ζ)

that were introduced in the course of this construction.

We conjecture that the answer to Question 34 is positive. It may even be the case that one could
take C(D) = D in Question 34. A negative answer here would be of great interest, since it would
require finding a family of quadratic metric inequalities that does not follow (even up to a constant
factor) from the above hierarchy of inequalities.

6. Remarks on Question 14

Focusing for concreteness on the case p = 2 of Question 14, recall that we are asking whether
every n-point metric space (X, dX) satisfies

cP2(R3)(X) .
√

log n. (91)

The conclusion of Theorem 1, i.e., the fact that the 1/2-snowflake of every finite metric space
embeds with O(1) distortion into P2(R3), does not on its own imply (91). Indeed, let

√
`∞ denote

the 1/2-snowflake of `∞. Then the 1/2-snowflake of every finite metric space embeds isometrically
into
√
`∞. However, it is standard to check that if for n ∈ N we let Pn denote the set {1, . . . , n} ⊆ R,

equipped with the metric inherited from R, then c√`∞(Pn) &
√
n. Thus, despite the fact that

√
`∞

is 1/2-snowflake universal, the distortion of n-point metric spaces in
√
`∞ can grow much faster than

the rate of
√

log n that we desire in (91). Nevertheless,
√
`∞ is not an especially convincing example

in our context, since it does not contain rectifiable curves (which is essentially the reason for the
lower bound c√`∞(Pn) &

√
n), while P2(R3) is an Alexandrov space of nonnegative curvature.

Note that cP2(R3)(X) . log n for every n-point metric space (X, dX), so P2(R3) certainly does

not exhibit the bad behavior that we described above for embeddings into
√
`∞. This logarithmic

upper bound follows from the fact that cP2([0,1])(X) . log n, so in fact cPp(Y )(X) . log n for every
metric space (Y, dY ) that contains a geodesic segment and every n-point metric space (X, dX). The
bound cP2([0,1])(X) . log n is a consequence of Bourgain’s embedding theorem [12] combined with
the easy fact that every finite subset of `2 embeds with distortion 1 into P2([0, 1]). To check the
latter assertion, take any X ⊆ `2 of cardinality n. We may assume without loss of generality that
X ⊆ Rn. Denoting

M
def
= 1 + max

x∈X
max

j∈{1,...,n−1}
|xj+1 − xj |,

define f : X → P2(R) by f(x)
def
=
∑n

j=1 δxj+Mj . The choice of M ensures that the sequence

{xj + Mj}nj=1 is strictly increasing, so for x, y ∈ X the optimal transportation between f(x) and

f(y) assigns the point mass at xj + Mj to the point mass at yj + Mj for every j ∈ {1, . . . , n}.
This shows that W2(f(x), f(y)) = ‖x− y‖2. Since all the measures {f(x)}x∈X are supported on a
bounded interval, by rescaling we obtain a distortion 1 embedding of X into P2([0, 1]).

An example that is more interesting in our context than
√
`∞, though still somewhat artificial,

is the space (`2⊕
√
`∞)2. This space is 1/2-snowflake universal (since it contains an isometric copy

of
√
`∞) and also every n-point metric space (X, dX) satisfies c(`2⊕

√
`∞)2

(X) . log n (by Bourgain’s

theorem [12], since (`2 ⊕
√
`∞)2 contains an isometric copy of `2). However, we shall prove below

the following lemma which shows that the conclusion of Question 14 fails for (`2 ⊕
√
`∞)2.

Lemma 35. For arbitrarily large n ∈ N there exists an n-point metric space (Xn, dXn) that satisfies

c(`2⊕
√
`∞)2

(Xn) & log n.
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Of course, (`2 ⊕
√
`∞)2 is still more pathological than P2(R3) (in particular, not every pair of

points in (`2 ⊕
√
`∞)2 can be joined by a rectifiable curve), and we lowered here the asymptotic

growth rate of the largest possible distortion of an n-point metric space from the O(
√
n) of

√
`∞

to the O(log n) of (`2 ⊕
√
`∞)2 by artificially inserting a copy of `2. Nevertheless, the proof of

Lemma 35 below illuminates the fact that in order to prove that Question 14 has a positive answer
one would need to use properties of the Alexandrov space P2(R3) that go beyond those that we
isolated so far, and in particular it provides a concrete sequence of finite metric spaces for which
the conclusion of Question 14 is at present unknown; see Question 36 below.

Before proving Lemma 35, we set some notation. For a finite connected graph G = (VG, EG),
the shortest-path metric that G induces on VG is denoted by dG. For k ∈ N, denote the k-fold
subdivision of G by Σk(G) = (VΣk(G), EΣk(G)), i.e., Σk(G) is obtained from G by replacing each
edge e ∈ EG by a path consisting of k edges joining the endpoints of e (the interiors of these paths
are disjoint for distinct e, e′ ∈ EG). Thus |VΣk(G)| = |VG| + (k − 1)|EG|. Note that the metric
induced on VG ⊆ VΣk(G) by the shortest-path metric dΣk(G) of Σk(G) is a rescaling of dG by a
factor of k, i.e.,

∀x, y ∈ VG ⊆ VΣk(G), dΣk(G)(x, y) = kdG(x, y). (92)

Suppose that G is d-regular for some d ∈ N. The normalized adjacency matrix of G, i.e., the VG×VG
matrix whose entry at u, v ∈ VG equals 1/d if {u, v} ∈ EG and equals 0 otherwise, is denoted AG.
The largest eigenvalue of the symmetric stochastic matrix AG equals 1, and the second largest
eigenvalue of AG is denoted λ2(G).

Proof of Lemma 35. Fix d, n ∈ N. We shall show that if G = (VG, EG) is an n-vertex d-regular
graph then

c(`2⊕
√
`∞)2

(Σk(G)) & min

{√
k log n

log d
,
√

1− λ2(G) · log n

log d

}
. (93)

In particular, for, say, d = 3 and λ2(G) 6 99/100, if k � log n then

c(`2⊕
√
`∞)2

(Σk(G)) � log n � log |VΣk(G)|.

This implies the validity of Lemma 35 because arbitrarily large graphs with the above requirements
are well-known to exist (see e.g. [35]).

To prove (93), take f : VΣk(G) → (`2 ⊕
√
`∞)2 and suppose that there exist s,D ∈ (0,∞) such

that for every x, y ∈ VΣk(G) we have

sdΣk(G)(x, y) 6 d(`2⊕
√
`∞)2

(f(x), f(y)) 6 DsdΣk(G)(x, y).

Our goal is to bound D from below. Writing f(x) = (g(x), h(x)) for every x ∈ VΣk(G), our
assumption is that for every distinct x, y ∈ VΣk(G),

1 6
‖g(x)− g(y)‖22 + ‖h(x)− h(y)‖∞

s2dΣk(G)(x, y)2
6 D2. (94)

For x, y ∈ VΣk(G) with {x, y} ∈ EΣk(G) by (94) we have ‖h(x)−h(y)‖∞ 6 s2D2 = s2D2dΣk(G)(x, y).

Thus h : VΣk(G) → `∞ is s2D2-Lipschitz, and therefore

1

n2

∑
x,y∈VG

‖h(x)− h(y)‖∞ 6
s2D2

n2

∑
x,y∈VG

dΣk(G)(x, y)

(92)
=

ks2D2

n2

∑
x,y∈VG

dG(x, y) 6 ks2D2

(
1

n2

∑
x,y∈VG

dG(x, y)2

) 1
2

. (95)
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Consequently, by (94) once more we have

1

n2

∑
x,y∈VG

‖g(x)− g(y)‖22
(94)

>
s2

n2

∑
x,y∈VG

dΣk(G)(x, y)2 − 1

n2

∑
x,y∈VG

‖h(x)− h(y)‖∞

(95)

>
k2s2

n2

∑
x,y∈VG

dG(x, y)2 − ks2D2

(
1

n2

∑
x,y∈VG

dG(x, y)2

) 1
2

. (96)

At the same time, by the equivalent formulation of spectral gap in terms of a Poincaré inequality
(see e.g. [29, Section 9.1] or [53, 61]),

1

n2

∑
x,y∈VG

‖g(x)− g(y)‖22 6
1

1− λ2(G)
· 2

|EG|
∑

x,y∈VG
{x,y}∈EG

‖g(x)− g(y)‖22

(94)

6
s2D2

1− λ2(G)
· 2

|EG|
∑

x,y∈VG
{x,y}∈EG

dΣk(G)(x, y)2 (92)
=

2s2k2D2

1− λ2(G)
. (97)

By contrasting (96) with (97) we deduce that

D & min


(

1− λ2(G)

n2

∑
x,y∈VG

dG(x, y)2

) 1
2

,

(
k2

n2

∑
x,y∈VG

dG(x, y)2

) 1
4

 .

This lower bound on D implies the desired estimate (93) since by a standard (and simple) counting
argument (see e.g. [53, page 193]) the fact that G has n vertices and is d-regular implies that(

1

n2

∑
x,y∈VG

dG(x, y)2

) 1
2

&
log n

log d
. �

Question 36. Suppose that G is an n-vertex 3-regular graph with λ2(G) 6 99/100. What is the
asymptotic growth rate of

cP2(R3)

(
Σdlogne(G)

)
?

At present, the best known upper bound on this quantity is O(log n), while Question 14 predicts
that it is O(

√
log n). Obtaining any o(log n) upper bound would be interesting here.
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matics. Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)],
With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.

[32] M. Gromov. CAT(κ)-spaces: construction and concentration. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklov. (POMI), 280(Geom. i Topol. 7):100–140, 299–300, 2001.

[33] M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1):73–146, 2003.
[34] S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM

J. Comput., 35(5):1148–1184 (electronic), 2006.
[35] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.),

43(4):439–561 (electronic), 2006.
[36] J. Jost. Nonpositive curvature: geometric and analytic aspects. Lectures in Mathematics ETH Zürich. Birkhäuser
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