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Abstract

We consider approximate path-reporting distance oracles, distance labeling and labeled routing with
extremely low space requirements, for general undirected graphs. For distance oracles, we show how to
break the n log n space bound of Thorup and Zwick if approximate paths rather than distances need to
be reported. For approximate distance labeling and labeled routing, we break the previously best known
space bound of O(log n) words per vertex. The cost for such space efficiency is an increased stretch.

1 Introduction

1.1 Distance oracles

Given a graph G = (V,E) with edge weights, an approximate distance oracle for G is a data structure
that can report approximate distance queries between vertex pairs efficiently. For any vertices u, v ∈ V , if
dG(u, v) denotes the shortest path distance from u to v in G and if d̃(u, v) denotes the approximate distance
output by the oracle, we require that dG(u, v) ≤ d̃(u, v) ≤ δdG(u, v), where δ ≥ 1 is the approximation
(called also the (multiplicative) stretch parameter) of the oracle. The goal is to give an approximate distance
oracle with small space, query time, stretch, and (perhaps to a lesser extent) preprocessing time.

Our focus is on undirected graphs as it can be shown that no non-trivial oracles exist for directed graphs
[TZ05]. A seminal result in this area is that of Thorup and Zwick [TZ05]. For any positive integer k and a
graph with non-negative edge weights and with m edges and n vertices, they gave an approximate distance
oracle with space O(kn1+1/k), stretch 2k − 1, query time O(k), and preprocessing time O(kmn1/k). For
constant k, the trade-off between the first three parameters is optimal, assuming a widely believed and
partially proved girth conjecture of Erdős [Erd63]. For super-constant k, small improvements exist. In
[WN13], it was shown how to improve the query time to O(log k) while keeping the same space, stretch,
and preprocessing. More recently, Chechik [Che14] further improved this to O(1) query time. Mendel and
Naor [MN07] gave an oracle with O(n1+1/k) space and O(1) query time at the cost of a constant-factor
increase in stretch.

So far, we have only discussed queries for approximate distances but it is natural to require the data
structure to also be able to report corresponding paths. We say that an oracle is path-reporting if it can
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report those paths in time proportional to their lengths (in addition to the query time needed for distances),
and we say that it is a not path-reporting oracle otherwise. The oracles of [TZ05, WN13, Che14] are path-
reporting, but this is not the case for the oracle of Mendel and Naor [MN07]. Note that a space requirement
of order kn1+1/k is Ω(n log n) for any choice of k. In this paper, we focus on path-reporting distance oracles
that use o(n log n) space, albeit at the price of increased stretch.

1.2 Distance Labeling

In a labeling scheme the goal is to assign as short labels as possible to each vertex of the input graph so that
a query for any pair (u, v) of vertices can be answered (preferably efficiently) exclusively from the labels
assigned to u and v. We are interested in a distance labeling scheme where given labels of two vertices u and
v, a distance estimate d̃(u, v) that satisfies dG(u, v) ≤ d̃(u, v) ≤ δ · dG(u, v) can be efficiently computed.

Distance labeling was introduced in a pioneering work by Peleg [Pel00b]. The distance oracles of
Thorup and Zwick [TZ05] and their refinements [WN13, Che14] can serve as distance labeling schemes
as well. (The maximum label size becomes O(n1/k · log1−1/k n) words, and other parameters stay intact.)
Mendel-Naor’s oracle [MN07] can also be viewed as a distance labeling scheme, but its label size is O(k ·
n1/k) (i.e., Ω(log n) space per label as well).

To summarize, all existing distance labeling schemes use Ω(log n) words per label in the worst case.
The labeling scheme that we devise in the current paper uses o(log n) words per label, for graphs with
polynomially bounded diameter. On the other hand, its stretch guarantee is much larger than that of [TZ05,
WN13, Che14].

1.3 Labeled Routing

In a closely related labeled routing problem we want to precompute two pieces of information for every
vertex u of the input graph. These are the label of u and the routing table of u. Given a label of another
vertex v, the vertex u should decide to which neighbor w of u to forward a message intended for v based on
its local routing table and on the label of v. Given this forwarded message with the label of v, the neighborw
selects one of its own neighbors, and forwards it the message, and so forth. The routing path is the u-v-path
which will eventually be taken by a message originated in u and intended for v. (Assuming that the routing
scheme is correct, the path will indeed end in v.) The stretch of a routing scheme is the maximum ratio
between a length of a routing u-v path and the distance dG(u, v) between u and v, taken over all (ordered)
pairs (u, v) of vertices.

Labeled routing problem was introduced in a seminal paper by Peleg and Upfal [PU88], and it was
studied in [Cow99, EGP98, AP92, ANLP90]. A labeled routing scheme was devised by Thorup and Zwick
[TZ01]. It provides stretch 4k − 5 and uses routing tables of size O(polylog(n) · n1/k) and labels of size
O(k · log2 n

log logn). The stretch was recently improved by Chechik [Che13] to (4− ε)k for some ε > 0.
The space usage by current routing schemes is at least logarithmic in n (counted in words; each word

is O(log n) bits). In many settings such space requirement is prohibitively large. In this paper we show a
labeled routing scheme in which the space requirement per vertex (both labels and routing tables) can be as
small as one wishes, for graphs with diameter at most some polynomial in n. On the other hand, similarly
to the situation with distance labeling schemes, the stretch guarantee of our scheme is much larger than that
of [TZ01].

2



1.4 Our Results

We introduce two new data structures that report paths in undirected graphs. All have query time propor-
tional to the length of the returned path. The first applies to weighted graphs with diameter polynomially
bounded in n. For any t ≥ 1, it reports paths of stretch O(

√
tn2/

√
t) using space O(tn). It may be dis-

tributed as a labeling scheme using O(t) space per vertex (or O(t log n) bits), and the preprocessing time
is O(tm). See Theorem 2 for the formal statement. 1 This data structure can also be modified to provide
labeled routing. Specifically, using tables of sizeO(t) and labels of sizeO(

√
t) our routing scheme provides

stretch O(
√
t · n2/

√
t · log n).

The second data structure is a distance oracle that applies only to unweighted graphs. In one of the
possible settings, it can provide for any parameters k ≥ 1 and ε > 0, a path-reporting distance oracle with
stretch O(kn1/k · (k + nε/k)), using space O(kn/ε) and preprocessing time O(kmn1/k). See Theorem 6,
and also Theorem 5 for more possible tradeoffs.

To our knowledge, our distance labeling and labeled routing schemes are the first that use o(log n)
words per vertex. Our distance oracles are the first path-reporting oracles for general graphs that use space
o(n log n).

We show that our techniques are useful also for the opposite part of the stretch-space tradeoff curve,
in the setting of graphs excluding a minor. Previous labeling schemes for Kr-free graphs [AG06, KKS11],
obtained arbitrarily low stretch using small space, but the query time is at least Ω(f(r) · log n), where f(r)
is an extremely fast growing function. We devise constant stretch distance oracles and labeling schemes,
which have very fast query time (independent of the excluded minor). The label size in our schemes is
polylogarithmic in n.

1.5 Overview of Techniques.

Our first oracle is based on a collection of sparse covers. Roughly speaking, a sparse cover for radius ρ
has two parameters: β is the radius blow-up, and s the overlap. The cover is a collection of clusters, each
of diameter at most βρ, such that every ball of radius ρ is fully contained in at least one cluster, and every
vertex is contained in at most s clusters (see Definition 1 below for a formal definition). Sparse covers
were introduced by [AP90b], and found numerous applications in distributed algorithms and routing (see,
e.g. [PU88, AP90a, Pel93, AP95, AGM+08]). For the application to distance oracles and labeling schemes,
the radius blow-up corresponds to stretch and the overlap to space. The standard construction of [AP90b]
for parameter k ≥ 1 has radius blow-up k and overlap O(kn1/k). This overlap is at least Ω(log n), and
translates to such space usage per vertex. Here we show that one can obtain the inverse parameters: radius
blow-up O(kn1/k) with overlap 2k (in fact we can obtain overlap (1 + ε)k for any fixed ε > 0).

Our first construction of a distance labeling scheme is very simple: it uses a collection of such sparse
covers for all distance scales, and maintains a shortest-path tree for each cluster. In order to answer a path
query, one needs to find an appropriate cluster in the right scale, and return a path from the corresponding
tree.

Our second data structure combines sparse covers with a variation on the Thorup-Zwick (TZ) distance
oracle. In order to save space, the ”bunches” of the TZ oracle are kept only for a small set of carefully
selected vertices. Furthermore, the TZ trees (from which the path is obtained) are pruned to contain only
few important vertices. Given a path query, our pruned TZ oracle can only report a ”skeleton” of the
approximate shortest path in the original graph. This skeleton contains few vertices (roughly one vertex per

1For arbitrary diameter Λ, the space and preprocessing time increase by a factor of O(logn Λ).
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p steps, for some parameter p). We then use a sparse cover to ”fill in” the gaps in the path, which induces
additional stretch.

Our results for minor-free graphs are based on a novel construction of sparse covers, whose parameters
are incomparable to previous works [AGMW10, BLT07]. Our covers are built using the recently developed
padded decompositions of [AGG+14]

1.6 Related Work

There has been a large body of work on distance oracles, labeling and routing for certain graph families
(planar, excluded-minor, etc.) and bounded doubling dimension metrics [Tho04, HPM06, AG06, KKS11].
In these settings the stretch factor is usually 1 + ε, which cannot be obtained with o(n2) space for general
graphs.

For sparse graphs, very compact distance oracles were recently devised by Agarwal et al. [AGHP11,
AGHP12]. They devise two types of distance oracles. One of them has small stretch but requires large space.
This distance oracle is indeed path-reporting, but due to their large space requirement they are irrelevant to
the current discussion. The other type of distance oracles in [AGHP11] has stretch at least 3. These latter
distance oracles are very sparse, but they are not path-reporting. 2

Following our work, [EP15] devised a distance oracle with stretch O(polylog n), space O(n log log n)
and query time O(log log n) (this oracle does not give rise to a labeling scheme nor to a routing scheme).

1.7 Organization of the Paper

After some basic definitions in Section 2, we introduce sparse covers with small overlap in Section 3. Our
first data structure for weighted graphs with diameter polynomially bounded in n, is presented in Section 4,
and its adaptation for compact routing in Section 5. The second data structure with improved parameters
for unweighted graphs is given in Section 6. Finally, in Section 7 we discuss improved results for graphs
excluding a minor.

2 Preliminaries

LetG = (V,E) be an undirected weighted graph, with the usual shortest path metric dG. We always assume
the minimal distance inG is 1. For a subset U ⊆ V letG[U ] denote the induced graph on U . For a parameter
ρ > 0, and two sets of balls B,S ⊆ {B(v, ρ) | v ∈ V }, define ∂B(S) = {B ∈ B | ∃S ∈ S, B ∩ S 6= ∅} to
be the subset of balls from B that intersect with a ball from S.

Definition 1. A collection of clusters C = {C1, . . . , Ct} is called a strong diameter (β, s, ρ)-sparse cover if

• Radius blow-up: diam(G[Ci]) ≤ βρ for all i ∈ [t].

• Padding: For each v ∈ V , there exists i ∈ [t] such that B(v, ρ) ⊆ Ci.

• Overlap: For each v ∈ V , there are at most s clusters in C that contain v.

For a vertex v and a cluster Ci such that B(v, ρ) ⊆ Ci, we say that the vertex v is padded by the cluster Ci.

2The paper erroneously claims that they are [AGHP14].
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3 Sparse Covers with Small Overlap

In this section we show how to construct a sparse cover with arbitrarily low overlap. Our construction
essentially inverts the parameters in the classical tradeoff of [AP90b], which has low radius blow-up. We
use a region growing technique on the set of balls of radius ρ.

Algorithm 1 Sparse-Cover(G, ρ, k)

1: C = ∅.
2: U = {B(v, ρ) | v ∈ V (G)}.
3: while U 6= ∅ do
4: R = U .
5: whileR 6= ∅ do
6: Let B ∈ R.
7: Let S = {B}.
8: while |∂R(S)| ≥ |S| ·

(
1 + logn

k·n1/k

)
do

9: S ← ∂R(S).
10: end while
11: C ← C ∪ {

⋃
B′∈S B

′}.
12: /* A new cluster C =

⋃
B′∈S B

′ is added to C. */
13: R ← R \ ∂R(S).
14: U ← U \ S.
15: end while
16: end while

Theorem 1. For any weighted graph G on n vertices, any ρ > 0 and k ≥ 1, there exists a strong diameter
(8k · n1/k, 2k, ρ)-sparse cover.

Proof. Consider Algorithm 1 for creating a sparse cover. Observe that we only throw a ball from U when it
is contained in S and will surely be contained in a cluster. Thus when the algorithm terminates all ρ-balls
are padded.

Let ni denote the number of balls in U at the end of the i-th iteration of the outer loop. Then n0 = n,
and by the termination condition of the while loop on line 8,

ni+1 < ni ·
(

log n

k · n1/k

)
.

This implies that

n2k < n ·
(

log n

k · n1/k

)2k

=
1

n
·
(

log n

k

)2k

≤ 1 ,

where the last inequality holds because the function ((log n)/k)2k is maximal when k = (log n)/2, in which
case it is n. We conclude that the algorithm terminates after at most 2k phases. When forming a cluster
C =

⋃
B∈S B, all balls in ∂R(S) (the balls that intersect C) are removed from R and thus will not be

considered in the current phase (the loop starting at line 5), which implies that every point v ∈ V (G) can
belong to at most a single cluster per phase. So the total overlap is at most 2k.
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It remains to bound the strong diameter of any cluster. A cluster S starts as a ball of diameter at most
2ρ, and in each iteration of line 8 its size (number of balls it contains) increases by a factor of at least(

1 + logn
k·n1/k

)
. After 2k · n1/k iterations its size will be at least

(
1 +

log n

k · n1/k

)2k·n1/k

> elogn > n . (1)

For the last inequality we used that 1+x > ex/2 when 0 < x ≤ 1 (indeed (log n)/(k ·n1/k) ≤ 1). Inequality
(1) is a contradiction, so the number of iterations in line 8 is less than 2k · n1/k. In each such iteration the
diameter can increase by at most 4ρ, so the total diameter is bounded by 8k · n1/k · ρ.

Remark: A similar algorithm and calculation shows that for any 1/k ≤ ε ≤ 1, one can obtain also a
(8k · n1/k/ε, (1 + ε)k, ρ)-sparse cover, though we shall not require this generalization here.

3.1 Fast Construction of Sparse Covers

In this section we show a fast construction of sparse covers, with slightly worse constants.
For a weighted graph G = (V,E), we show a probabilistic construction of (64k · n1/k, 2k, ρ)-sparse

cover in time O(k · |E|), for any ρ > 0. The main building block are padded partitions. A partition
P = {C1, . . . , Ct} of the graph G is a collection of pairwise disjoint clusters whose union covers V . We
say that the partition is strong diameter Λ-bounded if diam(G[Ci]) ≤ Λ. For a partition P and a vertex x,
let P (x) denote the cluster of P that contains x. We use the following Lemma that appears (implicitly) in
[Bar96].

Lemma 1. For any weighted graph on n vertices there exists a distribution P over strong diameter Λ-
bounded partitions, such that for all v ∈ V and 0 ≤ β ≤ 1/8,

Pr
P∼P

[B(x, βΛ) ⊆ P (x)] ≥ n−16β .

Furthermore, one can sample from this distribution in linear time.

In order to construct a cover, just sample a partition according to the distribution of Lemma 1 for 2k
times, with parameters Λ = 64k · n1/k · ρ and β = ρ/Λ, and return the collection of clusters obtained. The
radius bound on each cluster is Λ, and since each partition consists of disjoint clusters, each point will be
covered exactly 2k times. The probability that a certain ball of radius ρ = βΛ is not contained in any of the
2k partitions is at most

(
1− n−16β

)2k
=
(

1− e−16 lnn/(64kn1/k)
)2k
≤
(

log n

2kn1/k

)2k

< 1/n3/2 ,

which holds since (log n/(2k))2k ≤ n1/2. Using a union bound over all n balls, there is high probability
that each of them will be contained in some cluster. As each partition is created in linear time, the total
running time is O(|E| · k).
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4 Small Space Distance Labeling Scheme

In this section we provide a distance labeling scheme, that can also serve as a path-reporting distance oracle,
which is built from a collection of sparse covers. Its parameters are somewhat inferior to the parameters of
the distance oracle from Section 6. On the other hand, the latter construction applies only to unweighted
graphs, while the construction is this section applies to weighted graphs. Also, it is not clear to us if the
construction of Section 6 can be converted into a distance labeling scheme.

Theorem 2. For any weighted graph G = (V,E) on n vertices with diameter Λ, and any t ≥ 1, there exists
a distance labeling scheme with stretch O(

√
t · n2/

√
t) using O(t · logn Λ) space (or O(t · log Λ) bits) per

vertex, that can be constructed in O(t|E| · logn Λ) time. Furthermore, this data structure can also serve as
a path-reporting distance oracle, whose query time is proportional to the length of the returned path, plus
O(log(t · logn Λ)).

Remark: Observe that when the diameter Λ is at most polynomial in n, the required space is O(t)
words per vertex.

Proof. Fix a parameter 1 ≤ k, and let Λ = diam(G), γ = 8kn1/k, q = dlogn1/k Λe = dk logn Λe. For
each i ∈ {0, 1, . . . , q} create a (γ, 2k, ni/k)-sparse cover Ci. For each cluster C ∈ Ci choose an arbitrary
shortest path tree (SPT) spanning G[C]. Every vertex stores a hash table containing the names of the SPTs
it is contained in, and for each such tree the vertex only needs to store a pointer to its parent in the tree and
the distance to the root of the tree. Since every vertex is contained in at most 2k clusters per level, the total
space used is O(k · q) per vertex. Observe that if Λ = poly(n) then q = O(k). In addition, for every vertex
u ∈ V and i ∈ [q], store a pointer to the SPT of a cluster Ci(u) ∈ Ci such that B(u, ni/k) ⊆ Ci(u).

Next we describe an algorithm for answering a path query between u, v ∈ V . Let i ∈ [q] be such that
n(i−1)/k ≤ dG(u, v) < ni/k. Let J = {j ∈ [0, q] : v ∈ Cj(u)} be the set of indices j such that v ∈ Cj(u).
By the padding property of the sparse cover, v ∈ B(u, nj/k) ⊆ Cj(u), for every j ≥ i. Hence every index
j ≥ i belongs to J . We will conduct a binary search on [0, q] to find an index j such that j ∈ J and
j − 1 6∈ J . (Alternatively, we will discover that 0 ∈ J .) By the above considerations the index j that we
will find satisfies j ≤ i. As u holds a pointer to Cj(u) for every j ∈ {0, 1, . . . , q} and v stores the names
of clusters containing it in a hash table, deciding if j ∈ J requires O(1) time. Next, both u, v follow the
path to the root in the SPT created for Cj(u). By taking a step towards the root in the path with the longer
remaining distance, we can guarantee that the paths will meet at the least common ancestor of u, v.

The query time is bounded by length of the returned path, which is O(diam(Ci(u)) = O(γni/k) =
O(γn1/k·dG(u, v)), so the stretch isO(γn1/k) = O(kn2/k). In addition we spendO(log q) = O(log(k logn Λ))
time for the binary search. If one is willing to settle for γ = 64kn1/k (rather than 8kn1/k), then the pre-
processing expected time is O(qk · |E|), using the construction of Section 3.1.

Finally, note that for the labeling scheme, we can find the appropriate j ∈ J and return the sum of
distances from u, v to the root of the SPT of Cj(u), just by inspecting the labels of u, v.

5 Routing

We consider a compact routing framework, in which every vertex in the graph has a short label (word size),
and stores a routing table. Given a vertex u and a label of v, using the routing tables starting at u and given
only the label of v, we should route from u to v quickly. Specifically, we show the following result.
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Theorem 3. Fix any parameter k. Any weighted graph G = (V,E) on n vertices with diameter Λ admits
a compact routing scheme, in which the labels are of size O(k logn Λ) and the routing tables are of size
O(k2 logn Λ). For any two vertices u, v ∈ V , the scheme produces routing paths from u to v of length at
most O(kn2/k log n · dG(u, v)).

We shall use Interval Tree Routing described in [Pel00a], lemma 26.1.2.

Theorem 4. Let T be a tree on n vertices with depth d, then there exists a compact routing scheme that uses
a single word (O(log n) bits) as a label and produces paths of length O(d log n).

Using the same framework as Section 4, one can extend the distance labels described there to a compact
routing scheme with almost the same parameters: we only lose a factor of O(log n) in the routing time.
Each vertex u will have a routing table of size O(k · q). Specifically, for each level i ∈ [q] and each SPT
containing u in this level, the vertex will store the relevant information required for interval-tree routing (see
Theorem 4). The label of u will be much shorter, of size O(q): for every i ∈ [q] store the information only
for the SPT created from Ci(u), i.e., the cluster in which u is padded. In order to route from u to v, we
find an index i such that v ∈ Ci(u) but v /∈ Ci−1(u) (this can be done since we have all the information
for u) and route in the corresponding SPT using interval-tree routing (Theorem 4). Recall that v /∈ Ci−1(u)
implies that dG(u, v) ≥ n(i−1)/k.

The depth of the SPT is bounded by the diameter of the cluster Ci(v), and diam(Ci(v)) ≤ γ · ni/k =
O(γn1/k · dG(u, v)). (Recall that γ = 8kn1/k.) So the the length of the routing path in the tree is
O(γn1/k log n · dG(u, v)) = O(kn2/k log n · dG(u, v)).

6 Small Space Path-Reporting Distance Oracles

In this section we show a path-reporting distance oracle with improved stretch, at the price of being appli-
cable only for unweighted graphs. Also we do not know if it is possible to distribute the information among
vertices, i.e., to convert this oracle into a labeling scheme. The distance oracle in this section has both addi-
tive and multiplicative stretch. For α ≥ 1 and β ≥ 0, we say that a distance estimate d̃ has (α, β)-stretch if
for all u, v ∈ V , dG(u, v) ≤ d̃(u, v) ≤ α · dG(u, v) + β.

Theorem 5. For any unweighted graph G = (V,E) on n vertices, any integers k, p, t ≥ 1, there exists a
path-reporting distance oracle with

(
O(t · kn1/k), O(p · kn1/k)

)
-stretch, using O(kn + tn1+1/t/p) space.

Furthermore, the query time is proportional to the length of the returned path. The oracle can be constructed
in O(tmn1/t) time.

Proof Overview: Fix a parameter p, we partition the distances to those smaller than p and those larger.
In order to be space efficient, we ”prune out” most of the vertices in the distance oracle of Thorup-Zwick.
We will choose a subsetN ⊆ V , of size n/p, that touches the (approximately) p-neighborhood of any vertex
of V . The TZ-oracle will be responsible for the large distances between any two vertices in N : it should be
able to report a sufficiently dense ”skeleton” of an approximate shortest path. All consecutive distances on
the path are roughly p. We show that one can significantly reduce the size of each of the TZ trees, while still
maintaining this usability. We augment our data structure with a sparse cover that will handle all the small
distances: specifically we need to ”fill in” the paths between consecutive vertices in the skeleton, and the
paths between each vertex to its representative in N .
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6.1 Construction

We shall use the following Lemmata. The first one is folklore.

Lemma 2. For every unweighted graph on n vertices and parameter r, there is a set of at most 2n/r vertices
that intersects every ball of radius r.

The next lemma can be found, e.g., in [NS07], Lemma 12.1.5.

Lemma 3. For every tree T on n vertices and parameter r, there is a set of at most 2n/r vertices whose
removal separates T into components of size at most r each.

One of the building blocks of our oracle is a variation of the Thorup-Zwick oracle [TZ05]. We briefly
recall the TZ construction with stretch parameter t: Define A0 = V and for each i ≥ 1 sample Ai from
Ai−1 by including every element of Ai−1 independently with probability n−1/t. Finally, set At = ∅. For
u ∈ V define the bunch of u as B(u) = {w ∈ Ai−1 | dG(u,w) < dG(u,Ai), i ≥ 1}. For each w ∈ V , if i
is such that w ∈ Ai−1 \ Ai, define C(w) = {u ∈ V | dG(w, u) < dG(u,Ai)}. (Note that the cluster C(w)
contains all vertices u such that w ∈ B(u)). It can be shown that for every u ∈ C(w), all vertices on the
shortest path between u and w also belong to C(w) as well. As a result, an SPT for C(w) is a subtree of an
SPT rooted at w for the entire graph G. During the preprocessing such a tree spanning C(w) is created for
each w ∈ V . We denote it by Tw.

In the original data structure, each vertex u ∈ V stored the vertices in B(u) and their distances from u
in G. For each i = 0, . . . , t − 1, it also stored the special vertex pi(u) ∈ Ai, which is the closest vertex
to u in Ai. The query algorithm on u, v uses only the information stored by the query vertices to produce
some w ∈ B(u) ∩ B(v) such that dG(u, v) ≤ dG(u,w) + dG(w, v) ≤ (2k − 1)dG(u, v), and the actual
path could be obtained from Tw. It is also shown in [TZ05] that for each v ∈ V , the expected size of B(v)
is O(kn1/k).

As we aim to save space, we will only store the bunches B(u) for a few vertices. Fix a parameter p,
and let N be a set of size n/p that hits every ball of radius 2p. (See Lemma 2, r = 2p.) Only the vertices
v ∈ N will store the bunches B(v) and special vertices pi(v) of the TZ-oracle. Since the total size of the
trees {Tw}w∈V is equal to the total size of the bunches, we also need to prune these trees. For each w ∈ V ,
let Rw be the set given by Lemma 3 applied on the tree Tw with r = p, of size at most 2|Tw|/p, and let
R = ∪w∈VRw. Let T̄w be the pruned tree that contains only the vertices of Tw that are in Rw ∪N ∪ {w}.
Specifically, each vertex in the pruned tree T̄w will store a pointer to its nearest ancestor which is also in T̄w,
the distance to it, and the distance to the root.

We shall also require a sparse cover (as constructed in Section 3). For a parameter k ≥ 1, let C be a
(8kn1/k, 2k, 3p)-sparse cover, and for each cluster D ∈ C create an SPT spanning G[D]. As before, in each
tree a vertex stores a pointer to its parent and the distance to the root. Additionally, every vertex u ∈ V
stores a hash table of trees containing it, a pointer to D(u), a cluster in which it is padded, and a pointer to
some u′ ∈ N such that dG(u, u′) ≤ 2p. Note that u′ ∈ D(u).

Remark: Observe that we build the data structure on all of V and then prune the obtained TZ trees,
rather than applying the TZ structure restricted to the vertices of N (which would seem an obvious sim-
plification). This is because the TZ trees that will be produced from the metric induced on N may have
arbitrarily large weights on the edges. One then would need a different mechanism for replacing these edges
by paths of the original graph. This is because the cover C can only help filling in gaps of length up to 3p.

Bounding the Size of the Oracle: Next we show that the space used by our oracle isO(kn+tn1+1/t/p).
To see this, note that since the cover overlap is 2k, to store the SPTs of the cover and the relevant pointers
for each u ∈ V requires only O(kn) space. Next, we bound the size of the stored bunches. The number
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of vertices in N is at most n/p, and since the expected bunch size for each vertex is O(tn1/t), the total
(expected) size of the bunches we store is O(tn1+1/t/p). It remains to bound the size of the pruned trees.
Since every vertex u ∈ N is expected to appear inO(tn1/t) trees (the number of trees equals its bunch size),
the contribution of vertices in N to the size of the trees {T̄w}w∈V is again O(tn1+1/t/p). Finally, recall that
the (expected) size of all the trees {Tw}w∈V is O(tn1+1/t). Lemma 3 implies that in each tree only fraction
of 2/p of the vertices are in R (rounded up), thus the contribution of vertices in R to the pruned trees is
O(n+ tn1+1/t/p). The roots of the pruned trees contribute only O(n) to the size.

Construction Time: The bottleneck in our construction time is to find the clusters C(w). With the
construction of Thorup and Zwick, we get a bound of O(tmn1/t).

6.2 Answering Path Queries

In order to answer a path query on u, v ∈ V , we first check if v ∈ D(u). If so, taking the paths to the
root in the SPT created from D(u) from both u and v, as done in Section 4, will give a path of length
O(diam(D(u)) = O(kn1/k · p), which induces such additive stretch.

Note that if dG(u, v) ≤ 2p it must be that v ∈ D(u), so the complementary case is when dG(u, v) > 2p.
We shall use the pruned TZ data structure in the following way. First use the pointers stored at u, v to find
u′ ∈ D(u) ∩ N and v′ ∈ D(v) ∩ N . Using the TZ algorithm, which only requires the information stored
by u′ and v′, we find w ∈ B(u′) ∩ B(v′) with dG(u′, w) + dG(v′, w) ≤ (2t − 1) · dG(u′, v′). Since w is
contained in both bunches, and u′, v′ ∈ N , we get that u′, v′ ∈ T̄w. Since T̄w is also a shortest path tree
from w,

dT̄w(u′, v′) ≤ dG(u′, w) + dG(v′, w) ≤ (2t− 1)dG(u′, v′) .

The ”skeleton path” u′ = u0, u1, . . . ul′ = v′ induced by the (pruned) tree T̄w from u′ to v′ has stretch
2t− 1. It can be obtained efficiently by following paths towards the root w from u′, v′, as done above. Our
goal now is to show that there is a subpath, in which all consecutive distances are in the range [p, 3p], these
”gaps” will be covered by the sparse cover. Since removing Rw partitions Tw into subtrees of size at most
p, it cannot be the case that there is a path in Tw of length p that does not intersect Rw (such a path induced
a subtree with p + 1 vertices). We conclude that for each j ∈ [l′], dG(uj−1, uj) ≤ p. We further prune
this skeleton path, to get a sub-path in which all consecutive distances are in the range [p, 3p]. This can be
achieved by greedily deleting excessive points (those closer than p to the last point we kept) while traversing
the path, and making sure to keep both u′, v′. It is not hard to verify that the maximum distance between
consecutive points will be at most 3p. Let u′ = v0, v1, . . . , vl = v′ be the resulting skeleton path.

For each j ∈ [l] find a path in G from vj−1 to vj using the sparse cover. Since dG(vj−1, vj) ≤ 3p we get
that vj ∈ D(vj−1). So we can obtain a path in G from vj−1 to vj of length at most O(p ·kn1/k), in the same
manner we handled the base case above (where v ∈ D(u)). Note that this induces a O(kn1/k) stretch for
each j (because dG(vj−1, vj) ≥ p), so the final multiplicative stretch is O(t · kn1/k). In a similar manner,
since both dG(u, u′), dG(v, v′) ≤ 2p, we obtain from the sparse cover paths from u to u′ and from v′ to v of
distance at most O(p · kn1/k). The latter contributes to the additive stretch.

The running time of the query is proportional to the length of the path returned, since after finding the
tree T̄w, we just follow pointers to the roots in both the pruned TZ-trees and in the SPT of the cover, in
constant time per step. Note that the O(t) time to find Tw is dominated by the stretch factor which we can
assume is bounded by the length of the path. This proves Theorem 5.
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6.3 Improved Multiplicative Stretch using Several Covers

Choosing t = k and p = n1/k in the parameters of Theorem 5 yields stretch of (O(k2n1/k), O(kn2/k)). In
terms of purely multiplicative stretch it is O(kn1/k · (k + n1/k)). Next we show how to improve one of the
factor of n1/k at the cost of increased space. Instead of a single cover, we use a collection of s sparse covers,
and obtain the following theorem.

Theorem 6. For any unweighted n-vertex graph G = (V,E), any positive integer parameter k, and any
parameter ε > 0, there exists a path-reporting distance oracle with space O(kn/ε) and stretch O(kn1/k ·
(k + nε/k)). Furthermore, the query time is proportional to the length of the returned path.

Proof. For each i ∈ [s] let Ci be a (8kn1/k, 2k, (3p)i/s)-sparse cover, and for each cover store the same
information per vertex as above. For i ∈ [s], denote by Di(u) the cluster in Ci in which u is padded. Recall
that the (additive) factor of O(p · kn1/k) in the stretch was inflicted in the base case when dG(u, v) ≤ 2p,
and also from completing the path from u to u′ and from v to v′.

Given some u, v ∈ V with the guarantee that dG(u, v) ≤ 3p, we can find an index i such that v ∈ Di(u)
and v /∈ Di−1(u) (or that v ∈ D1(u)) by binary search. The path between u, v in the SPT induced from
Di(u) is of length at most O(pi/s · kn1/k), and can be found in the same way as was described above. Since
v /∈ Di−1(u), dG(u, v) ≥ (3p)(i−1)/s, and thus the stretch factor is only O(p1/s · kn1/k). Combining this
with the stretch factor of O(t · kn1/k) on the path from u′ to v′, we get total stretch O((t + p1/s) · kn1/k).
Note that we only use the collection of s covers twice per query. Specifically, all the skeleton missing paths
will be filled in using the cover Cs as before. (The cover Cs has exactly the same parameters as the cover
C from Section 6.1.) So the additive O(log s) term for the query time is surely dominated by the stretch.
Choosing t = k, p = n1/k and s = d1/εe completes the proof.

7 Excluded Minor Graphs

In this section we show labeling scheme and path-reporting distance oracles for graphs that exclude a minor.
Recall that a graphG excludesH as a minor, if no sequence of edge contractions and edge or vertex deletions
onG can produceH . We focus on the family ofKr excluded graphs, as this is the richest family for a minor
of size r. Our construction is based on sparse covers, similarly to Section 3, and yields the following result.

Theorem 7. Let G be a graph on n vertices and diameter Λ which excludes Kr as a minor, then the
following structures exist:

• A labeling scheme with stretchO(1), spaceO(log n log Λ·eO(r)) per vertex and query timeO(log log Λ).

• A path-reporting distance oracle that can be distributed as a labeling scheme, with stretch O(r2),
space O(log Λ · log n) per vertex and query time proportional to the returned path length plus
O(log log Λ).

Previous work on labeling schemes for minor free graphs are essentially based on the path separators of
[AG06], which extend the path separator for planar graphs due to [Tho04] (based on the classic separators
of [LT79]). The main drawback of relying on these path separators, is that the dependency on the size of
the excluded minor is quite bad. In [AG06], a distance labeling scheme for Kr-free graphs is shown with
1 + ε stretch, f(r) · log n/ε words per vertex, and query time f(r) · log n/ε, for any ε > 0, where f(r) is an
extremely fast-growing function of r. In [KKS11] it was shown how to obtain a distance oracle with O(n)
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space, at the price of increasing the query time to f(r) · (log n/ε)2. (Also, it is not known if their oracle can
be converted into a distance labeling scheme.)

While both stretch and space of our construction are worse than previous work, the point is that the
query time is onlyO(log log Λ), and does not have the bad dependency on r. Also our space usage compares
favorably with [AG06] for large values of r.

7.1 Covers for Minor-Free Graphs

In what follows we assume that the graph G excludes Kr as a minor. The seminal work of [KPR93],
and its improvement by [FT03], can provide for any γ > 0, a weak-diameter (O(r), 2r, γ)-sparse cover
for G. If one desires a strong diameter, [AGMW10] showed a (O(r2), 2r(r + 1)!, γ)-sparse cover, and
concurrently [BLT07] showed a (4, f(r) · log n, γ)-sparse cover, where f(r) is an extremely fast-growing
function (coming from the Robertson-Seymour structure theorem).

We now use the latest padded partitions for minor free graphs to obtain a sparse cover. Our cover
improves upon [AGMW10] when r ≥ log log n. While the cover of [BLT07] has constant radius blow-up,
the overlap of our cover is far better in terms of dependency on r.

Theorem 8. For any graph G on n vertices which excludes Kr as a minor, the following covers exist for
any γ:

• A weak diameter (O(1), eO(r) · log n, γ)-sparse cover.

• A strong diameter (O(r2), log n, γ)-sparse cover.

The following lemma is in [AGG+14].

Lemma 4. LetG be aKr-free graph, and let ∆ be a parameter. Then there exists a universal constant c > 0
and a distribution over strong diameter ∆-bounded partitions, so that for all v ∈ V and 0 ≤ β ≤ c/r2,

Pr
P∼P

[B(x, β∆) ⊆ P (x)] ≥ e−O(βr2) .

Also, there is exists a distribution of weak diameter ∆-bounded partitions, so that for all v ∈ V and
0 ≤ β ≤ c,

Pr
P∼P

[B(x, β∆) ⊆ P (x)] ≥ e−O(βr) .

Proof of Theorem 8. We start with the strong diameter partition. Using the same argument as in Section 3.1,
one can construct a (Cr2n1/k, k, ρ)-sparse cover for sufficiently large constant C and any ρ > 0, by sam-
pling a strong diameter partition k times from Lemma 4, with parameters ∆ = Cr2n1/k · ρ and β = ρ/∆
(which satisfy the condition on β when C is sufficiently large). The bounds on the radius and overlap are
the same as in Section 3.1. We compute the probability that all ρ-balls are padded. The probability that a
certain ball of radius ρ = β∆ is not padded by any of the k strong-diameter partitions is at most(

1− e−O(βr2)
)k

=
(

1− e−O(r2)/(Cr2n1/k)
)k
≤
(

1

2n1/k

)k
< 1/(2n) ,

where the inequality holds when C is sufficiently large. Using a union bound there is constant probability
that all the balls are padded. In particular, setting k = log n we obtain a strong diameter (O(r2), log n, γ)-
sparse cover. (More generally, fixing some parameter t ≥ r2/c, and setting k = logt/r2 n, yields a
(O(t), logt/r2 n, γ)-sparse cover.)

A similar calculation for weak diameter, using the second part of Lemma 4, yields a weak diameter
(O(1), eO(r) · log n, γ)-sparse cover.

12



7.2 Labeling Schemes and Path-Reporting Oracles for Minor Free Graphs

We now sketch the proof of Theorem 7. For the labeling scheme, we use the weak diameter (O(1), eO(r) ·
log n, γ)-sparse cover of Theorem 8. Plugging this into the construction of Section 4 on a Kr-free graph
with diameter Λ, yields a distance labeling scheme with stretch O(1) and space log n log Λ · eO(r) words
per vertex. Note that in order to answer a query on u, v, we do a binary search on the log Λ levels to find an
appropriate cluster Cj(u), which takes only O(log log Λ) time.

For the path-reporting distance oracle, we use the strong-diameter (O(r2), log n, γ)-sparse cover in a
similar manner. Observe that the strong diameter is only required when we need to report paths, rather than
just distances.

8 Conclusions

We gave space-efficient approximate distance oracles, distance labeling, and labeled routing for undirected
graphs. Our distance oracles break the n log n space bound of Thorup and Zwick and can report approximate
shortest paths in time proportional to their length. The cost is an increase in (multiplicative and/or additive)
stretch. For distance labeling and routing, we break the previously best known space bound of order log n
words at the cost of larger stretch.

It might be possible to improve preprocessing of our distance oracles, e.g., by using techniques from [WN12]
for graphs that are not too sparse. Note that the oracle of Mendel and Naor achieves linear space and log-
arithmic stretch but it can only report approximate distances, not paths. We state it as an open problem
whether a path-reporting oracle with linear space and polylogarithmic stretch exists which reports a path in
time proportional to its length.
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