
Simple Deterministic Algorithms for
Fully Dynamic Maximal Matching

[Extended Abstract]

Ofer Neiman
∗

Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel

P.O. Box 653
neimano@cs.bgu.ac.il

Shay Solomon
†

Weizmann Institute of Science
Rehovot 76100, Israel

P.O. Box 26
shay.solomon@weizmann.ac.il

ABSTRACT
A maximal matching can be maintained in fully dynamic
(supporting both addition and deletion of edges) n-vertex
graphs using a trivial deterministic algorithm with a worst-
case update time of O(n). No deterministic algorithm that
outperforms the näıve O(n) one was reported up to this date.
The only progress in this direction is due to Ivković and
Lloyd [14], who in 1993 devised a deterministic algorithm

with an amortized update time of O((n+m)
√

2/2), where m
is the number of edges.

In this paper we show the first deterministic fully dy-
namic algorithm that outperforms the trivial one. Specif-
ically, we provide a deterministic worst-case update time
of O(

√
m). Moreover, our algorithm maintains a match-

ing which is in fact a 3/2-approximate maximum cardinality
matching (MCM). We remark that no fully dynamic algo-
rithm for maintaining (2− ǫ)-approximate MCM improving
upon the näıve O(n) was known prior to this work, even
allowing amortized time bounds and randomization.

For low arboricity graphs (e.g., planar graphs and graphs
excluding fixed minors), we devise another simple determin-
istic algorithm with sub-logarithmic update time. Specifi-
cally, it maintains a fully dynamic maximal matching with
amortized update time of O(log n/ log log n). This result
addresses an open question of Onak and Rubinfeld [19].

We also show a deterministic algorithm with optimal space
usage of O(n + m), that for arbitrary graphs maintains a
maximal matching with amortized update time of O(

√
m).

∗Supported by ISF grant No. (523/12) and by the European
Union’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement n◦303809.
†This work is supported by the Koshland Center for basic
Research. Part of this work was done while the author was a
graduate student at the Ben-Gurion University of the Negev,
under the support of Clore Fellowship grant No. 81265410,
BSF grant No. 2008430, and ISF grant No. 87209011.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1̋U4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms

General Terms
Algorithms, Theory

Keywords
Dynamic algorithms, maximal matching, maximum match-
ing

1. INTRODUCTION
In this paper we study deterministic algorithms for max-

imal matching in a dynamically changing graph. While
graphs have been traditionally studied as static objects, in
some of the modern applications of graph theory (e.g. com-
munication and social networks, graphics and AI) graphs are
subject to discrete changes. In the last few decades there
has been a growing interest in algorithms and data struc-
tures for such dynamically changing graphs. In particular,
several classical combinatorial problems, such as connectiv-
ity, min-cut, minimum spanning tree [11, 12, 21, 15, 5, 16,
9, 10, 4], have been considered in such a dynamic setting.

Our goal is to design a data structure that maintains a
maximal matching, or an approximate maximum cardinal-
ity matching, in a fully dynamic graph. This dynamic set-
ting allows both insertions and deletions of edges, while the
vertex set is fixed. A standard assumption is that in each
step a single edge is added to the graph or removed from it;
such a step is called an edge update (or shortly, an update).
Throughout the paper let n denote the number of vertices
in the graph, and m the (current) number of edges.

Observe that a simple greedy algorithm computes a max-
imal matching in O(m) time, so recomputing a maximal
matching from scratch would cost O(m) per update. It is
not hard to see that one can also dynamically maintain a
maximal matching with a worst-case update time of O(n)
(see Section 1.2). To the best of our knowledge there was no
deterministic algorithm known that beats this näıve O(n)
time, even allowing amortized time bounds. Ivković and
Lloyd [14] showed an algorithm with an amortized update

time of O((n + m)
√

2

2), which improves upon the O(n) time

algorithm only when m = O(n
√

2).

Our results. We show a simple deterministic algorithm
that for any dynamic graph maintains explicitly a maximal
matching in O(

√
m) worst-case update time.1 That is, if the

current graph has m edges, then the next add or delete op-
eration will be handled in O(

√
m) time. This improves upon

the amortized bound of [14] for all values of m. Moreover,
our algorithm is arguably simpler than that of [14].

It is well known that a maximal matching is in particu-
lar a 2-approximation for maximum cardinality matching
(MCM). Our algorithm has the additional property that
there are no augmenting paths of length 3 at all times, which
implies that the matching we maintain is in fact a 3/2-
approximation for MCM. Remarkably, no algorithm with
update time better than O(n) was known for maintaining
(2 − ǫ)-approximate MCM (for any ǫ > 0), even allowing
amortized time bounds and randomization. Our determin-
istic data structure also maintains an approximate vertex
cover, as it is well-known that the set of vertices participat-
ing in a maximal matching is in fact a 2-approximate vertex
cover.

We also obtain improved bounds for low arboricity graphs,
which are uniformly sparse graphs (see Definition 4.1). We
show a simple deterministic algorithm that maintains a max-

imal matching in amortized O
(

log n
log((log n)/c)

+ c
)

time per

update, provided that the dynamic graph has arboricity at
most c = o(log n) at all times. When c = Ω(log n) we obtain
amortized O(c) time. It is well known that the arboricity of
any graph with m edges is at most

√
m. So this algorithm

for bounded arboricity graphs gives rise to an even simpler
O(

√
m) amortized time data structure for dynamic maximal

matching in arbitrary graphs (but not a 3/2-approximate
MCM). Moreover, we show that this algorithm can be im-
plemented using optimal space O(n + m).

At the“Open Problems” section of [19] the following ques-
tion was raised: “Is there a deterministic data structure that
achieves a constant approximation factor with polylogarith-
mic update time?” Our result gives a 2-approximation with
sub-logarithmic update time for low arboricity graphs.

1.1 Related Work
Maintaining the maximum cardinality matching dynami-

cally seems to be a difficult task. The state-of-the-art static
algorithm by Micali and Vazirani from 1980 [17] takes O(

√
n·

m) time, which suggests that obtaining a dynamic algorithm
with o(

√
n) amortized time would be considered a break-

through. Sankowski [20] showed a randomized algorithm
with O(n1.495) time per update that dynamically maintains
an MCM. In a certain randomized model, where the edge be-
ing added or deleted is chosen at random, Alberts and Hen-
zinger [2] showed that MCM can be maintained in amortized
O(n) update time.

Recently some very successful randomized algorithms were
developed for maintaining an approximate MCM dynami-
cally. Onak and Rubinfeld [19] showed a randomized O(1)-
approximate MCM whose amortized time per update is O(log2 n)
with high probability. This was improved by Baswana, Gupta
and Sen [6] to a randomized algorithm that maintains a max-
imal matching (and in particular 2-approximate MCM) in
O(log n) expected amortized update time.

Concurrently and independently of our work, Anand [3]

1We ignore additive terms that depend at most logarithmi-
cally on n.

obtained similar results for deterministic fully dynamic ap-
proximate MCM. Specifically, Anand obtained a 3/2-approximate
MCM in amortized O(

√
m) update time. (Recall that our

bound O(
√

m) is worst-case rather than amortized.)

1.2 Overview of the Algorithm
We will only show how to get a somewhat weaker bound of

O(
√

m + n) on the worst-case update time. The improve-
ment to the bound O(

√
m) is a simple yet technical issue

that we prefer to disregard for clarity purposes. Besides, it
is quite natural to assume that m = Ω(n).

Let us recall how the näıve O(n) time per update algo-
rithm works. For every update, if an edge is added to the
graph, check if it can be added to the matching. If a matched
edge {u, v} is deleted from the graph, examine all the neigh-
bors of u and v to see if some edge {u, w} or {v, w′} (or
both) can be added to the matching. It is not hard to ver-
ify that the resulting matching remains maximal. Now the
question is, can we do anything better than scanning all the
neighbors of a free vertex in order to find a new match for
it? We believe that, in general, the answer is no.

The way our algorithm overcomes this obstacle is by en-
suring that high degree vertices are never free. In particular,
we maintain the following invariant: vertices of degree larger
than

√

2(m + n) are matched at all times. Then scanning
all neighbors of a free vertex is not so expensive. Next we
briefly explain how to maintain this invariant. When a high
degree vertex u becomes free and cannot be matched (be-
cause all its neighbors are matched), we find a surrogate for
it, that is, a vertex v′ that is matched to a neighbor v of u,
such that the degree of v′ is at most

√
2m. Then we can

match u to v, and the low degree vertex v′ becomes free
instead of u. We prove that such a vertex v′ must exist, and
show how to find one in O(

√
m + n) time.

One has to be careful when defining the invariant with re-
spect to the number of edges, as this number changes with
time. It is even possible that at some point many vertices
violate the invariant simultaneously. The first attempt is to
find a low degree surrogate for each of these vertices. Find-
ing a surrogate, however, takes O(

√
m + n) time, and so we

cannot handle many vertices at once. Instead, at each edge
update we handle O(1) “problematic” vertices, those that
are getting close to violating the invariant. By handling the
problematic vertices in decreasing order of degree (one at
each edge update), we demonstrate that each problematic
vertex will be handled long before it can violate the invari-
ant.

In order to obtain a 3/2-approximate MCM, this approach
does not suffice. When a vertex u becomes free but has no
free neighbors, we may be forced to search every one of its√

2m neighbors v, who are matched to v′, for a free neighbor
of v′. To this end we use another idea: instead of searching
for a free neighbor, we maintain a certain data structure for
every vertex that holds information about all its free neigh-
bors. This data structure will enable us to determine the
existence of a free neighbor in O(1) time, update a single
neighbor (a free neighbor that becomes matched, and vice
versa) in O(1) time, and find a free neighbor in O(

√
n) time.

Observe that whenever a vertex changes its status (free or
matched) it must inform all of its neighbors in order to up-
date their free neighbors data structure. However, since we
guarantee that high degree vertices never change their sta-
tus (they are always matched), updating this data structure

will only cost O(
√

m + n) time per update.

Low arboricity graphs. For graphs with bounded arboric-
ity we use a result of Brodal and Fagerberg [7], who devised
a fully dynamic algorithm for maintaining a bounded edge
orientation. That is, assign a direction for each edge in the
graph such that the out-degree of every vertex is bounded.
Although the näıve O(n) time algorithm mentioned above
is in fact very efficient for bounded degree graphs (it runs
in O(d) time if d is the maximum degree), in bounded ar-
boricity graphs the in-degree can be arbitrarily high. Our
algorithm does the following: vertices have only partial in-
formation about their free neighbors. In particular, each
vertex will send information about its status only along the
out-going edges of the orientation. This greedy approach
guarantees that each vertex will hold authentic informa-
tion about all its (possibly many) in-coming neighbors at
all times. Information about the few out-going neighbors
will not be authentic, but can be verified on demand by
scanning all of them.

2. PRELIMINARIES
Let G = (V, E) be an arbitrary graph. Any set M ⊆ E

of vertex-disjoint edges is called a matching. A matching of
maximum cardinality in G is called a maximum (cardinal-
ity) matching (or shortly, MCM), and a matching that is
maximal under inclusion is called a maximal matching. For
any parameter t ≥ 1, a matching that contains at least 1/t
fraction of the edges in an MCM is called a t-approximate
MCM. It is easy to see that any maximal matching is a 2-
approximate MCM.

A vertex is called matched if it is incident on some edge
of M . Otherwise it is free. For any edge {u, v} ∈ M , we
say that u (respectively, v) is the mate of v (resp., u). An
alternating path is a path whose edges alternate between
M and E \ M . An augmenting path is an alternating path
that starts and ends at different free vertices. It is well-
known [13] that any matching without augmenting paths of
length at most 2k − 3 is a (k/(k − 1))-approximate MCM.
In particular, if there are no augmenting paths of length at
most 3, we get 3/2-approximate MCM.

3. GENERAL GRAPHS
In this section we present a fully dynamic algorithm for

maintaining a maximal matching that is also a 3/2-approximate
MCM. Our data structure is deterministic and requires a
worst-case update time of O(

√
n + m), for general n-vertex

graphs with m edges. Denote the (static) vertex set of the
graph by V = {1, 2 . . . , n}, and assume for simplicity that√

n is an integer. Let G = (G0, G1, . . .) be the given sequence
of graphs, we assume that the initial graph G0 is empty, and
each graph Gi is obtained from the previous graph Gi−1 by
either adding or deleting a single edge. For each time step
i, write Gi = (V, Ei), mi = |Ei|. We maintain the number
of edges in the current graph G = (V, E) in the variable m.

3.1 Data Structures
The algorithm will maintain the following data structures.

• The current matching M is stored in an AVL tree. It
supports insert and delete in O(log n) time. Every
vertex v ∈ V holds a mate(v) that returns its current
mate in the matching (or ⊥ if v is free).

• For each vertex v ∈ V an AVL tree N(v) that stores
its current neighbors, and a variable deg(v) for its de-
gree. It supports insert and delete in O(log n) time,
and extracting arbitrary r neighbors in O(r) time (by
traversing the tree).

• For each vertex v ∈ V a data structure F (v) that holds
its free neighbors, and supports the following opera-
tions: insert and delete in O(1) time, has-free(v)
that returns TRUE if v has a free neighbor in O(1)
time, and get-free(v) that returns an arbitrary free
neighbor of v in O(

√
n) time.

In order to implement F (v) for each vertex v ∈ V , we
use a boolean array of size n indicating the current
free neighbors, a counter array of size

√
n that has in

position j the number of free neighbors in the range
[
√

n · j + 1,
√

n(j + 1)], and a variable for the total
number of free neighbors. Now insert, delete and
has-free(v) are clearly O(1) operations, and in order
to implement get-free(v), we can scan in

√
n time

the counter array for a positive entry, and check the
appropriate range in the boolean array.

• A maximum heap Fmax of all free vertices indexed by
their degree. It supports insert, delete, update-key,
and find-max in O(log n) time.

handle-addition({u, v}):

1. Update N(u), N(v), deg(u), deg(v) and Fmax;

2. If both u, v are free, match(u, v);

3. If only u is free:

(a) Set v′ = mate(v);

(b) Remove u from F (v′);

(c) If has-free(v′):

i. Call match(u, v); match(v′, get-free(v′));

ii. Remove {v, v′} from M ;

(d) Else, for all w ∈ N(u), add u to F (w);

4. If only v is free, return to 3 with roles of u, v switched;

Figure 1: Handle an edge addition.

match(u, v):

1. Add {u, v} to M ;

2. Remove u, v from Fmax;

3. For w ∈ {u, v}:

(a) If mate(w) = ⊥, remove w from F (x)
for all x ∈ N(w);

4. Set mate(u) = v; mate(v) = u;

Figure 2: Add an edge to the matching.

aug-path(u):

1. For all w ∈ N(u):

(a) Let w′ = mate(w);

(b) If has-free(w′):

i. Let x = get-free(w′);

ii. break;

2. If a free x was found:

(a) Call match(u, w); match(w′, x);

(b) Remove {w, w′} from M ;

3. Else, if no augmenting path was found:

(a) For all w ∈ N(u) add u to F (w);

(b) Add u to Fmax; Set mate(u) = ⊥;

Figure 3: Finding a length 3 augmenting path start-

ing at u and adding it to the matching. It is assumed

that deg(u) ≤
√

2n + 2m and that u has no free neigh-

bor.

surrogate(u):

1. For all w ∈ N(u):

(a) Let w′ = mate(w);

(b) If deg(w′) ≤
√

2m, break;

2. Remove {w, w′} from M ;

3. Call match(u, w);

4. Return w′;

Figure 4: Finding a surrogate low degree vertex for

the vertex u. It is assumed that deg(u) >
√

2m and

that u has no free neighbor.

handle-deletion({u, v}):

1. Update N(u), N(v), deg(u), deg(v) and Fmax;

2. If {u, v} /∈ M :

(a) If u is free, remove it from F (v); If v is free,
remove it from F (u);

3. Else, if {u, v} ∈ M :

(a) Remove {u, v} from M ;

(b) For z ∈ {u, v}:
i. If has-free(z), call match(get-free(z), z);

ii. Else, if there is no free neighbor for z:

A. If deg(z) >
√

2m, let z = surrogate(z);
Return to 3(b)i.

B. Else, call aug-path(z);

Figure 5: Handle an edge deletion.

3.2 Algorithm
At the outset the graph is empty, and we perform an ini-

tialization phase for our data structures. Next, the algo-
rithm is carried out in rounds: In each round i = 1, 2, . . .,
a single edge ei is either added to the graph or deleted
from it, and the algorithm will update the data structure
in O(

√
n + m) time to preserve the following invariants at

the end of each step i.

Invariant 3.1. All free vertices have degree at most
√

2n + 2m.

Invariant 3.2. All vertices that became free in round i
have degree at most

√
2m.

Invariant 3.3. The matching M maintained by the algo-
rithm is maximal. Moreover, there are no augmenting paths
of length 3 (with respect to M).

The invariants clearly hold before the first round starts
and the edge e1 is handled. Fix a time step i. We will now
describe a single round of the algorithm, which handles an
edge ei that is added to the graph or deleted from it.

3.2.1 Edge Addition
We start with the case where the edge ei = {u, v} is added

to the graph, see Figure 1. First update the relevant data
structures: N(u), N(v), deg(u), deg(v) and the keys of u, v
in Fmax (if needed), which takes O(log n) time. Next, we
distinguish between four cases.
Case 1: Both u and v are matched. In this case there is
nothing to do.
Case 2: Both u and v are free. In this case we match u with
v, see Figure 2. This involves updating the data structures
M , Fmax and removing u, v from the free neighbor data
structures F (x) for all neighbors x of u, v. By Invariant 3.1
both deg(u) and deg(v) are at most

√
2n + 2m + 1, so this

takes O(
√

n + m) time. Observe that adding the edge {u, v}
to M does not create any new augmenting paths of length
at most 3, because by maximality of M , both u, v could not
have had a free neighbor, and so Invariant 3.3 is preserved.
Case 3: u is free and v is matched. In this case, adding the
edge {u, v} to the graph may give rise to new augmenting
paths of length 3 that include {u, v}. Specifically, such a
path may exist iff v′ = mate(v) has a free neighbor w 6= u.
We determine if v′ has a free neighbor w 6= u or not in
the following way: First, we remove u from F (v′) (we will
“undo” this before the round is over). Next, we check if
v′ = mate(v) has a free neighbor w (note that w 6= u). If
we can find one, then we add {u, v} and {v′, w} to M , and
remove {v, v′} from M . Observe that when adding the edges
we update F (x) only for the vertices x that are neighbors
of u and w (v and v′ were already matched), by Invariant
3.1 both deg(u) and deg(w) are at most

√
2n + 2m + 1, so

this takes O(
√

n + m) time. If we cannot find such a free
neighbor w, then u will remain free, and is added to the free
neighbor data structures of all its neighbors (in particular
to F (v) and if needed to F (v′) as well).
Case 4: u is matched and v is free. This case is symmetric
to case 3.

It is easy to see that handling the addition of {u, v} in
each of the four cases above: (1) requires an overall update
time of O(

√
n + m), and (2) preserves both Invariants 3.2

and 3.3. Invariant 3.1 will be handled separately.

3.2.2 Edge Deletion
We proceed to the case where the edge ei = {u, v} is

deleted from the graph, see Figure 5. First update the rel-
evant data structures: N(u), N(v), deg(u), deg(v) and Fmax

(if needed), which takes O(log n) time. There are two cases
to consider.
Case 1: {u, v} /∈ M . In this case, the only remaining thing
to do is to remove u from F (v) if u is free, and remove v
from F (u) if v is free.
Case 2: {u, v} ∈ M . Here we delete the edge {u, v} from M
(we do not update the status of u and v from matched to free
yet for technical reasons that will become clear soon, but we
will make sure to update u and v with their correct status
before the end of this round). Deleting {u, v} from M may
give rise to new augmenting paths of length at most 3 that
start at one of the endpoints of this edge. Next, we show
how to handle u. The other endpoint v should be handled
in the same way.

If u has a free neighbor w, we add {u, w} to M by call-
ing match(u, w). Observe that we do not update F (x) for
the neighbors x ∈ N(u) (as mate(u) = v before match

is called). Since w was free, Invariant 3.1 suggests that

deg(w) ≤
√

2n + 2(m + 1), so this will take only O(
√

n + m)
time. We henceforth assume that u has no free neighbor, and
consider two cases.
Case 2.a: deg(u) ≤

√
2m. In this case we can allow u to

become free, but still must search for an augmenting path
of length 3 starting at u by calling aug-path(u) (see Fig-
ure 3). An augmenting path exists iff some neighbor w of
u is matched to w′ and w′ has a free neighbor x 6= u. For
each such neighbor w ∈ N(u) we can in O(1) time detect
if its mate w′ (recall that w must be matched) has a free
neighbor. Only if we find such a w′ we do the O(

√
n) op-

eration of actually extracting this free neighbor x, and then
stop the search (we are guaranteed that x 6= u, because we
have not changed the status of u to free just yet). If such
an x was found, we change M by adding {u, w} and {w′, x}
instead of {w, w′}. Observe that we update F (y) only for
neighbors of x (as u, w, w′ are recorded as matched), which
takes O(

√
n + m) time by Invariant 3.1. If no augmenting

path was found, we declare u as a new free vertex (which
complies with Invariant 3.2), and update F (w) for all its
neighbors w. A delicate matter that needs attention is the
following: if u is the first among {u, v} that is handled, v is
still recorded as matched, so we will not be able to find an
augmenting path of length 3 that starts at u and ends in v.
However, this path can be detected once we are done with
u, set its status to free, and handle v.
Case 2.b: deg(u) >

√
2m. Note that u cannot become free

because its degree is too high, alas it has no free neighbor.
In order to keep u matched, we run surrogate(u) to find a
surrogate su for u that may become free instead of u (see
Figure 4). Even though deg(u) is high, we claim that af-
ter inspecting

√
2m of the neighbors w ∈ N(u), we must

have found one with degree at most
√

2m, and then stop
the scan. Indeed, otherwise the sum of degrees in the graph
would be more than

√
2m ·

√
2m = 2m (note that mate(w)

are distinct for different w), which is impossible. Since the
surrogate su has degree at most

√
2m, changing its status to

free (if needed) would not violate Invariant 3.2. Next, han-
dle su as u is handled above just before Case 2.a (that is,
find a free neighbor of su or an augmenting path of length 3).
Note that handling su cannot bring us to case 2.b, so there

is no risk of an infinite loop. We claim that no augment-
ing path of length 3 can remain, because any augmenting
path emanating from su is detected, and the edge {u, w}
that is added to M in surrogate(u) cannot be a part of an
augmenting path because u has no free neighbors2.

It is easy to see that handling the deletion of {u, v} in
each of the two cases above: (1) requires an overall update
time of O(

√
n + m), and (2) preserves both Invariants 3.2

and 3.3.

3.2.3 Bounding the Degree of Free Vertices
Here we show how to preserve Invariant 3.1, that free ver-

tices have bounded degrees, which is a key property in our
algorithm. The general idea is to identify some problematic
vertices at the end of each round, and to correct them. We
say that a vertex is problematic if (i) it is free, and (ii) its de-
gree exceeds

√
2m. Such a problematic vertex x is corrected

by applying case 2.b above on x. That is, find a surrogate sx

that may become free instead of x, with deg(sx) ≤
√

2m. In
order to preserve Invariant 3.3, we then find an augmenting
path of length at most 3 emanating from sx if one exists.

Since each correction takes O(
√

n + m) time, we can only
afford to correct O(1) problematic vertices at the end of
each round. It turns out that correcting the following three
vertices (if they are problematic) suffices: first the two end-
points u and v of the handled edge ei, and afterwards a
free vertex x with maximal degree (such a vertex can be
extracted from the heap Fmax in O(log n) time).

The next lemma implies that Invariant 3.1 is preserved.

Lemma 3.4. At the end of each round i, for any free ver-
tex x, deg(x) ≤

√
2n + 2m.

Proof. Recall that Gi = (V, Ei) denotes the i-th graph
in the graph sequence G, and mi = |Ei| stands for the num-
ber of edges in it. First observe that the degree of a prob-
lematic vertex x cannot change as long as it is problematic.
This is because any change to the degree would mean that
we added or deleted an edge touching x, and so must have
corrected it.

Seeking contradiction, assume that at round t the vertex
x is free and deg(x) >

√
2n + 2mt. Let k < t be such that

at round k, deg(x) ≤ √
2mk and in all rounds k < j ≤ t

we have that deg(x) >
√

2mj . Since x is problematic in all
the rounds from k + 1 to t, its degree does not change, and
it follows that

√
2mk >

√
2n + 2mt, or mk − mt > n. Let

k ≤ q < t be the minimal round such that the number of
edges in every round q + 1, . . . , t is less than mk, observe
that n < t − q because there must have been more that n
deletions of edges.

We claim that x must be corrected in one of these n
rounds. To prove this, it suffices to show that every vertex
that becomes problematic after round q will have smaller
degree than deg(x). Once it becomes problematic its degree
cannot change, so in Fmax the vertex x will be handled be-
fore all the “new” problematic vertices. Since we handle one
vertex from Fmax at each round, and there are more than
n rounds from q to t, it must be that x is handled in one of
them. Suppose vertex w becomes problematic at the con-
clusion of round q < r ≤ t. There could be three reasons
for this: First, if the degree of w changed in round r, then

2Again we exclude augmenting paths ending at v, those will
be detected later.

actually it must have been corrected (recall that we correct
both endpoints of the new edge). Second, if w became a new
free vertex, then by Invariant 3.2 deg(w) ≤ √

2mr, and as x
is problematic in round r, deg(x) >

√
2mr. The last case is

that w was already free, and the number of edges decreased.
But then in round r− 1, x is problematic and w is not, thus
deg(w) ≤ √

2mr−1 < deg(x). We conclude that x is indeed
corrected before round t ends, a contradiction.

We have shown the following.

Theorem 3.5. Starting with the empty graph on n ver-
tices, a maximal matching in the graph which is also a 3/2-
approximate MCM can be maintained in time O(

√
n + m)

per edge update, where m is the (current) number of edges.

4. LOW ARBORICITY GRAPHS
In this section we consider graphs with arboricity bounded

by c.

Definition 4.1. A graph G = (V, E) has arboricity c if

c = max
U⊆V

⌈ |E(U)|
|U | − 1

⌉

,

where E(U) = {{u, v} ∈ E | u, v ∈ U}.
The family of graphs with bounded arboricity is the family
of uniformly sparse graphs. In particular, it contains planar
and bounded genus graphs, bounded tree-width graphs and
in general all graphs excluding fixed minors.

A ∆-orientation of an undirected graph G = (V, E) is a
directed graph H = (V, A) where A contains the same edges
as in E (each edge is given a direction), so that the out-
degree of every vertex in H is at most ∆. A well known
theorem of Nash and Williams [18] asserts that a graph has
arboricity at most c iff E can be partitioned to E1, . . . , Ec

such that (V, Ei) is a forest for all 1 ≤ i ≤ c. This suggests
that one can select an arbitrary root for all trees in the
forests, and direct all edges towards the root. The out-degree
of any vertex in each forest (V, Ei) is at most 1, so G has a
c-orientation.

Consider a sequence of graphs G = (G0, G1, . . . , Gk) on
the vertex set V with |V | = n. We say that G has arboricity
c if: G0 is the empty graph, for all 1 ≤ i ≤ k, Gi is obtained
from Gi−1 by adding or deleting an edge, and all graphs
Gi have arboricity at most c. We say that an algorithm
maintains a ∆-orientation for G with amortized time T if
it provides a ∆-orientation Hi for every Gi, and the total
number of edge re-orientations is k·T . Brodal and Fagerberg
[7] proved the following theorem.

Theorem 4.2 (Brodal and Fagerberg [7]). For any
sequence of graphs G with arboricity c, and any ∆ ≥ 2δ > 2c
there is an algorithm that maintains a ∆-orientation for G
with amortized time T = O(∆ + ∆+1

∆+1−2δ
· logδ/c n).

4.1 Reduction from Matchings to Orientations
Now we explain how to use an algorithm A that maintains

a ∆-orientation in amortized time T , in order to obtain an
algorithm that maintains a maximal matching in amortized
time O(∆ + T). The idea behind the algorithm is the fol-
lowing: every vertex is responsible to notify about its state
- free or matched - all the vertices it is pointing to (there
are at most ∆ such vertices). In other words, each vertex

knows exactly who is free among the (possibly many) ver-
tices pointing towards it, but knows nothing of the (at most
∆) vertices it is pointing to. This partial information enables
vertices to pay only O(∆) time in order to retrieve all in-
formation about their neighbors, and also they can perform
the necessary status updates in O(∆) time.

Consider a sequence of graphs G with arboricity c. For
every graph Gi ∈ G we have an orientation Hi given by
algorithm A. For a vertex u ∈ V denote by Ni(u) the set
of neighbors of u in Gi, and let Di(u) ⊆ Ni(u) be the set of
vertices such that the edge (u, v) is directed out of u in the
current orientation induced by Hi. Observe that |Di(u)| ≤
∆ for all u ∈ V and 0 ≤ i ≤ k. We will maintain the
following data structures:

• A data structure D(u) holding all the vertices of Di(u).

• A data structure F (u) holding all the free vertices v ∈
Ni(u) \ Di(u).

• A data structure M containing all the matched edges,
and a value for every vertex indicating whether it is
free or matched.

Each of these data structures will be implemented using
an array of size n augmented with a linked list. For D(u)
and F (u) the array will be boolean, while for M entry i will
include the mate of node i in the matching, or ⊥ if node i
is free. Insertions can easily be done in O(1) time, however
deletions are done only in the array - the linked lists may
contain extra elements that are in fact deleted. Whenever
an extraction is needed, we go over the linked list starting
at its head, and verify every element we encounter against
the array. If an extraction took r verifications until a valid
element was found, then we have deleted r−1 elements from
the list and the cost is divided among these r − 1 delete op-
erations. We conclude that all these data structures support
insertion, deletion and extraction in amortized O(1) time.

We now give an overview of the algorithm that maintains
a maximal matching in G.

• Orientation: At every step we run algorithm A that
preserves a ∆-orientation for the current graph. We
then update the data structures F and D as described
in Figure 6 so that they will be consistent with the
current orientation. If there are t edge re-orientations
then this takes O(t) time.

• Insertion: (see Figure 7). Upon edge {u, v} insertion,
we check if we can add the edge to the matching M ,
and if so remove u and v from the free neighbors data
structure F (w) for every point w in D(u) and D(v).
As all out-degrees are at most ∆, this takes O(∆) time.

• Deletion: (see Figure 8). Upon deletion of a non-
matched edge {u, v}, nothing more needs to be done.
The interesting case is deleting a matched edge {u, v}:
here we try to find new match for u (respectively v)
by going over F (u) and D(u) (respectively F (v) and
D(v)). Observe that D(u) may contain both free and
matched vertices, so we must go over all of its elements,
which takes O(∆) time. Although F (u) may be very
large, we are guaranteed that all vertices in it are free,
so we just need to extract one of them (or tell that
F (u) is empty) which takes amortized O(1) time.

We conclude that the following result holds.

Theorem 4.3. For every sequence of graphs G on n ver-
tices with arboricity c, and for any ∆ > 2c, there is an
algorithm that maintains a maximal matching in amortized
time T = O(∆ + log∆/c n).

Proof. By Theorem 4.2 with parameters δ = 2c and ∆ =
5c we can maintain an orientation with out-degree at most ∆
in amortized T time. Our algorithm in addition performs at
most O(∆+ti) operations, where ti is the number of edge re-
orientations at step i. We conclude that the amortized time
is O(T). It can be easily verified that the data structures
F and D are consistent throughout the execution of the
algorithm, and that M is indeed a maximal matching.

Corollary 4.4. Choosing ∆ = 6c+ log n
log((log n)/c)

will give

amortized time T = O
(

log n
log((log n)/c)

+ c
)

, for any c = o(log n).

In particular, we will get amortized time O(log n/ log log n)
when c ≤ log1−ǫ n (for any constant ǫ > 0). For any
c = Ω(log n), the amortized time is T = O(c).

update-orientation({u, v}):

1. Run algorithm A:

2. If edge (u, v) was inserted and directed from u to v:

(a) Add v to D(u); If u is free, add u to F (v);

3. Otherwise, if edge (u, v) was deleted:

(a) Remove v from D(u); If u is free, remove u from
F (v);

4. For every edge (x, y) that was re-oriented to (y, x):

(a) Delete y from D(x), and add x to D(y);

(b) If x is free, delete x from F (y); If y is free, add
y to F (x);

Figure 6: Updating the orientation for bounded ar-

boricity graphs

insert {u,v}:

1. Run update-orientation({u, v});

2. If both u, v are free:

(a) M = M ∪ {u, v};
(b) For each w ∈ D(u)∪D(v), remove u and v from

F (w);

Figure 7: Edge insertion for bounded arboricity

graphs

5. MAXIMAL MATCHING USING OPTIMAL
SPACE

In this section we show that the algorithm of Section 4 for
bounded arboricity graphs can be implemented using only

delete {u,v}:

1. Run update-orientation({u, v});

2. If {u, v} ∈ M , then M = M \ {u, v}, and for w ∈
{u, v}:

(a) If F (w) 6= ∅, find some x ∈ F (w) and M =
M ∪ {x, w};

(b) Otherwise, for each x ∈ D(w):

i. If x is free:

A. set M = M ∪ {x, w};
B. break;

(c) If {x, w} was added to M , then for all y ∈
D(w) ∪ D(x), remove w and x from F (y);

Figure 8: Edge deletion for bounded arboricity

graphs

O(n + m) space. Using the fact that any graph on m edges
has arboricity at most

√
m (see [8]), we conclude that the

amortized update time is O(
√

m) even for arbitrary graphs.3

We remark that using dynamic hash tables it would have
been easy to obtain space O(n + m), but we desire a fully
deterministic algorithm. Recall that c is the maximum ar-
boricity of the graph, and let ∆ = 5c be the maximum
allowed out-degree in the graph.

Data Structures: A data structure M containing all the
matched edges (and a value for each vertex indicating whether
it is free or matched) will be maintained just as in Section
4. In addition, we will maintain for each vertex u its cur-
rent neighbors N(u), its outgoing neighbors D(u) and its
free incoming neighbors F (u) as linked lists (and maintain
their sizes as well). We will also maintain the degree deg(u)
and a variable indicating whether u is free or matched. The
lists N(u) and F (u) will not be authentic at all times, in a
sense that they may contain redundant elements. In con-
trast, the D(u) lists will always be authentic. In fact, the
Brodal-Fagerberg algorithm [7] that we use maintains these
lists explicitly in O(n + m) space, so we may assume that
D(u) is always up to date. Also, deg(u) will contain the
current degree of u, and thus it may be smaller than |N(u)|
at some stages throughout the execution of the algorithm.
In order to control the total space used, we will guarantee
that |N(u)| (respectively, |F (u)|) never exceeds deg(u) by
more than a factor of 2 (resp., 3). We will also use a ”smart”
boolean array of size n (an array that allows to reset all the
elements to 0 in O(1) time, see, e.g., [1]) for authentication
of the lists. To meet the desired space requirement, the same
smart array will be re-used for all lists.

Handling the N(u) lists: First note that these lists are
never used by the algorithm, their sole purpose is to assist
in the authentication of the F (u) lists. Whenever an edge
{u, v} is added to the graph, we simply add u to N(v) and
v to N(u) in O(1) time. However, upon deletion of the edge
{u, v}, we put 10∆ tokens on the edge to be used later for
authenticating N(u), F (u) and N(v), F (v). As there is at
most one edge deletion per round, we can afford to spend

3Again we ignore additive terms that depend at most loga-
rithmically on n.

so many tokens. For every change to N(u), we check that
|N(u)| < 2 deg(u). If it is not, we authenticate it in the
following manner. Iterate over the list N(u), and for every
element w ∈ N(u):

• Search D(u) for w and search D(w) for u, if none of
them was found, remove w from N(u).

As |D(u)|, |D(w)| ≤ ∆, the cost of this authentication is at
most 2∆ · |N(u)| = 4∆ deg(u). Observe that at least deg(u)
elements are removed from N(u), each due to a deleted edge.
These deleted edges can contribute 4∆ tokens each for this
authentication of N(u), which suffices to cover the cost (an-
other 4∆ tokens will be used for N(v), where {u, v} was the
deleted edge, and ∆ tokens each for F (u), F (v) as described
below).

Handling the F (u) lists: For F (u), we will keep adding
elements in O(1) time according to the algorithm, but sim-
ilarly to N(u), deletions are postponed. We will place O(1)
tokens for each delete operation on some list F (u) that is
postponed. Spending these O(1) extra tokens for each oper-
ation should increase the total amortized time by at most a
constant factor. Similarly to N(u), F (u) may contain non-
authentic elements. Note that unlike N(u), we have only
O(1) tokens per deleted element, thus intuitively, we must
authenticate F (u) using only O(1) time per element. Next
we show how to make sure that the size of F (u) is never more
than 3 deg(u), and how to extract an authentic element from
F (u).

First we show how to extract an authentic element: reset
the smart array, and update it to contain the (authentic)
elements of D(u) in O(c) time. Then we will traverse the
F (u) list and upon encountering element w do the following:

• If w is matched, remove w from F (u) (using the O(1)
tokens created by the deletion of w from F (u)).

• Otherwise, if w ∈ D(u), remove w from F (u). (Check-
ing takes O(1) time using the array, so we can pay for
it with the O(1) tokens).

• Otherwise, search for u in D(w):

– If u is found, then w is an authentic free incoming
neighbor of u. We spent ∆ time, but can termi-
nate the search.

– If u was not found, then the edge {u, w} must
have been deleted. Thus we remove w from F (u).
We spent ∆ time, which can be payed for by ∆
of the tokens placed on the deleted edge {u, w}
exactly for this purpose.

Each of the non-authentic elements we encountered had enough
tokens for executing its removal, thus the actual cost of the
search is only ∆. Observe that the algorithm requires at
most two extractions of authentic elements at every round
(when edge {u, v} is deleted, extractions are required from
F (u) and F (v)), and thus we can afford to spend ∆ = O(c)
time for each.

Finally, we show how to control the size of F (u). When-
ever an element is added or removed from F (u) we check if
|F (u)| ≥ 3 deg(u), and if so start a (partial) authentication
process that will use tokens in order to reduce its size down
to at most 2 deg(u). We reset the smart array, and initial-
ize it with N(u). As |N(u)| < 2 deg(u), this will take at

most O(deg(u)) time. Recall that it could be that N(u) is
not authentic. Now iterate over F (u), and for each element
w ∈ F (u):

• If w is matched, remove w from F (u).

• Otherwise, if w /∈ N(u), remove w from F (u). (This
takes O(1) time using the array).

This (partial) authentication process may make one-sided
mistakes: elements that should have been deleted from F (u)
may still remain, but no element will be deleted from F (u)
un-necessarily, since N(u) contains all the authentic neigh-
bors of u. Observe that since |F (u)| ≥ 3 deg(u) but |N(u)| ≤
2 deg(u), at least deg(u) elements must have been removed
from F (u) in the process (because if w /∈ N(u) it will be re-
moved from F (u)). Each removed element had O(1) tokens
for its removal, so we had the O(deg(u)) tokens to pay for
this authentication process.

To conclude, we have shown that the algorithm from Sec-
tion 4 can be implemented in optimal space O(n+m), with-
out increasing the amortized update time by more than a
constant factor. To obtain maximal matching in amortized
time O(

√
m) and within space O(n+m), we do the following.

In order to use the orientation algorithm, at the beginning
of every stage we set a bound on the maximum arboricity
to be c =

√
2m. Whenever m changes by a factor of 2 (until

that moment the arboricity of the graph is bounded by the
parameter c that was fixed at the beginning of the stage),
we end the current stage, reset the value of c, and recom-
pute the orientation (this can be done in O(m) time–which
increases the amortized time by only a constant, and within
O(n+m) space). Observe that ∆ = 5c ≤ 10

√
m, and so the

amortized time per update is indeed O(
√

m). Thus we have
the following theorem.

Theorem 5.1. Starting with the empty graph on n ver-
tices, a maximal matching can be maintained in amortized
time O(

√
m) using space O(n+m), where m is the (current)

number of edges.

Acknowledgements. We thank Tsvi Kopelowitz and Itay
Gonshorovitz for helpful discussions.

6. REFERENCES
[1] A. Aho, J. Hopcroft, , and J. Ullman. The design and

analysis of computer algorithms. Addison-Wesley,
1974.

[2] D. Alberts and M. R. Henzinger. Average case
analysis of dynamic graph algorithms. In Proc. of 6th
SODA, pages 312–321, 1995.

[3] A. Anand, 2012. Personal communication.

[4] A. Andersson and M. Thorup. Dynamic ordered sets
with exponential search trees. J. ACM, 54(3):13, 2007.

[5] B. Awerbuch and T. Leighton. Improved
approximation algorithms for the multi-commodity
flow problem and local competitive routing in dynamic
networks. In STOC, pages 487–496, 1994.

[6] S. Baswana, M. Gupta, and S. Sen. Fully dynamic
maximal matching in O(log n) update time. In Proc.
of 52nd FOCS, pages 383–392, 2011.

[7] G. S. Brodal and R. Fagerberg. Dynamic
representation of sparse graphs. In Proc. of 6th
WADS, pages 342–351, 1999.

[8] A. M. Dean, J. P. Hutchinson, and E. R. Scheinerman.
On the thickness and arboricity of a graph. J. Comb.
Theory, Ser. B, 52(1):147–151, 1991.

[9] C. Demetrescu and G. F. Italiano. A new approach to
dynamic all pairs shortest paths. J. ACM,
51(6):968–992, 2004.

[10] C. Demetrescu and G. F. Italiano. Trade-offs for fully
dynamic transitive closure on dags: breaking through
the O(n2) barrier. J. ACM, 52(2):147–156, 2005.

[11] D. Eppstein, Z. Galil, G. F. Italiano, and
A. Nissenzweig. Sparsification - a technique for
speeding up dynamic graph algorithms. J. ACM,
44(5):669–696, 1997.

[12] M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time
per operation. J. ACM, 46(4):502–516, 1999.

[13] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J.
Comput., 2(4):225–231, 1973.

[14] Z. Ivković and E. L. Lloyd. Fully dynamic
maintenance of vertex cover. In Proc. of 19th WG,
pages 99–111, 1993.

[15] M. T. J. Holm, K. de. Lichtenberg. Poly-logarithmic
deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity. J. ACM, 48(4):723–760, 2001.

[16] V. King and G. Sagert. A fully dynamic algorithm for
maintaining the transitive closure. J. Comput. Syst.
Sci., 65(1):150–167, 2002.

[17] S. Micali and V. V. Vazirani. An O(
√

|V ||E|)
algorithm for finding maximum matching in general
graphs. In Proc. of 21st FOCS, pages 17–27, 1980.

[18] C. Nash-Williams. Decomposition of finite graphs into
forests. Journal of the London Mathematical Society,
39(1):12, 1964.

[19] K. Onak and R. Rubinfeld. Maintaining a large
matching and a small vertex cover. In Proc. of 42nd
STOC, pages 457–464, 2010.

[20] P. Sankowski. Faster dynamic matchings and vertex
connectivity. In Proc. of 18th SODA, pages 118–126,
2007.

[21] M. Thorup. Fully-dynamic min-cut. Combinatorica,
27(1):91–127, 2007.

