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Abstract

In many application areas, complex data sets are often represented by some metric space and metric embedding
is used to provide a more structured representation of the data. In many of these applications much greater emphasis
is put on the preserving the local structure of the original space than on maintaining its complete structure. This is
also the case in some networking applications where “small world” phenomena in communication patterns has been
observed. Practical study of embedding has indeed involved with finding embeddings with this property. In this
paper1 we initiate the study of local embeddings of metric spaces and provide embeddings with distortion depending
solely on the local structure of the space.

1 Introduction

The field of metric space embedding studies embeddings that “faithfully” preserve distances of the source space in the
host space. There are many ways to formally measure the “faithfulness” of an embedding. In this paper we suggest
a new and quite natural paradigm of local distortion embeddings: I.e. embeddings that preserve the local structure of
the space, distances of close neighbors are preserved better than those of distant neighbors.

Metric embedding has emerged as powerful tool in several applications areas. Typically, an embedding takes a
“complex” metric space and maps it into a “simpler” one. For example embedding of metric spaces into trees and
ultrametrics found a large number of algorithmic applications (e.g. [Ind01]). In many fields that use high dimensional
data (e.g. computer vision, computational biology, machine learning, networking, statistics, and mathematical psy-
chology), embeddings are used to map complex data sets into simpler and more compact representations [BN03]. In
distributed network settings, embedding has been used to map the Internet latencies into a simpler metric structure.
Often, the embedding can then be distributed as a labeling scheme in a distributed system [Pel00, CCRK04].

In many important applications of embedding, preserving the distances of nearby points is much more important
than preserving all distances. Indeed, it is sometimes the case in distance estimation, that determining the distance of
nearby objects can be done easily, while far away objects may just be labeled as “far” and only a rough estimate of the
distance between them will be given. Thus large distances may already incorporate an inherently larger error factor. In
such scenarios it is natural to seek local embeddings that maintain only distances of close by neighbors. Indeed both
[BN03] and [XSB06] study low dimensional embeddings that maintain distances only to the k nearest neighbors.

The revolution of large scale Social Networking in the Internet has increased the interest in new areas of research
that emerged from issues in the border of Sociology and Network theory. One aspect studied by Kleinberg [Kle00] is
the algorithmic aspects of the “small world” phenomena: how messages are greedily routed in networks that arise from
a social and geographical structure. In this model the network is assumed to have a local property: the probability of
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choosing a close neighbor as an associate is larger than that of choosing a far away neighbor. Specifically, the proba-
bility of choosing a neighbor is inversely proportional to its distance from the source. Liben-Nowell et. al. [LNK+05]
consider a related model where the probability of choosing the k-th nearest neighbor is chosen proportional to ∝ 1

kα

for some parameter α > 1, they validate this model experimentally. A person would have more interaction with his
close associates than with far away ones. In the context of using metric space embedding in “small world” networks it
is natural to require that the embedding of a close neighbor would be better than that of a far away neighbor.

Kleinberg, Slivkins, and Wexler [KSW04] study network embedding as a means to provide distance estimation of
the Internet latency without need to measure all distances. They note a discrepancy between theory and practice: while
known theoretical embedding results guarantee very weak bounds, practical network coordinates perform quite well.
In order to overcome this gap, the authors suggest to study embeddings with slack, where the distortion bounds are
provided only for distant neighbors but not of close by ones. Strong results have been obtained in this model and its
generalization [ABN06, ABC+05]. However, for certain applications, one might claim that preserving only distances
to far-away neighbors defeats the purpose. For example, an Internet application that is induced by a social structure
might interact mostly amongst local neighbors and so on. Our study on local embedding can be viewed as addressing
the same question of [KSW04] when indeed preserving local distances is more important than preserving far away
distances.

A related notion of nearest neighbor preserving embedding was studied by [IN07], where the goal is to maintain
that the (approximate) nearest neighbor in the embedding was an approximate nearest neighbor in the original metric.
However, this notion is focused only on the first nearest neighbor and moreover does not provide a distortion guarantee,
and therefore only useful in Nearest Neighbor type applications.

Our main results show that embeddings that preserve distances between k nearest neighbors can have distortion
bounded by a function of k alone, essentially replacing O(log n) with O(log k) in known theorems. Moreover, this is
also true for the dimension of the host space if there is no guarantee whatsoever on the far pairs (which is still useful
in applications such as local distance labeling). We study a stronger version of local embedding, where we demand
that the far points will not collapse too much.

In the context of data compression, our results can be viewed as a new type of dimension reduction technique.
Typically, dimension reduction causes a uniform error over all points. The celebrated Johnson Lindenstrauss dimen-
sion reduction Lemma [JL84] states that high dimensional data set X in `2 can be faithfully mapped into O(log |X|)
dimensions. Our techniques allow to map metric spaces into constant dimensional Euclidean space which preserves
distances between all nearby neighbor points, i.e. the local structure of the space, with constant distortion. In the con-
ference version of this work, we asked if there exists a local version of dimension reduction, in which the distortion
may be arbitrarily small and the dimension depends solely on k (potentially O(log k)). Schechtman and Shraibman
[SS09] showed that this is impossible for k ≥ 2: Whenever the distortion is smaller than 3/2, the dimension must be
at least Ω(log n). We do show local dimension reduction for ultrametrics in any `p space. In a recent work by Bartal,
Recht and Schulman [BRS11], it is shown that under certain relaxation of the demand from the local embedding, a
dimension reduction into dimensionO(log k) exists, in particular this holds under a certain weak growth rate condition
on the metric space.

In large scale systems it is often the case that one wants to maintain a compact data structure known as a Distance
Oracle [Pel00]. More demanding tasks are name independent compact routing schemes where the name of the node
is independent of its location [AP90] and mobile user schemes which are competitive distributed protocols for routing
when the target may be mobile. In all these settings it is desirable to obtain improved results for close by neighbors.

1.1 Local Embeddings

We now formally define new notions of local distortion. Fix a metric space (X, d). For any point x let <x be a linear
order relation on the points in X \ {x} such that for any u, v ∈ X \ {x} if d(u, x) < d(v, x) then u <x v. For
any k ∈ N let Nk(x) be the set of first k elements of X \ {x} according to <x, i.e., Nk(x) is the set of k nearest
neighbors of x. For any x ∈ X let N̄k(x) = {y | y ∈ Nk(x) ∧ x ∈ Nk(y)}. Let rk(x) be minimal radius such that
Nk(x) ⊆ B(x, rk(x)).

Definition 1. Let (X, dX) be a metric space on n points, (Y, dY ) a target metric space and k ∈ N, let f : X → Y be
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an embedding.

• f is non-expansive if for any u, v ∈ X , dY (f(u), f(v)) ≤ dX(u, v).

• f is an embedding with k-local distortion α if f is non-expansive and for any u, v ∈ X such that v ∈ Nk(u),

dY (f(u), f(v)) ≥ dX(u, v)

α
.

• f is an embedding with strong k-local distortion α if f is non-expansive and for any u, v ∈ X ,

dY (f(u), f(v)) ≥ min{dX(u, v), rk(u)}
α

• f is an embedding with (strong) scaling local distortion α, for a non-decreasing function α : N→ R+, if f has
(strong) k-local distortion α(k), for all k ∈ N simultaneously.

• Given a distribution D on maps f : X → Y , we say that D has probabilistic (strong) {k, scaling}-local
distortion if the appropriate lower bound holds for all embedding in the support ofD and the appropriate upper
bound holds in expectation over D.

• Given a set S ⊆ X , we say that the embedding f has (strong) {k, scaling}-local distortion with respect to S if
the appropriate upper and lower bounds hold for all pairs (u, v) such that u ∈ S.

We also study a related notion of proximity distortion.

Definition 2. Let (X, dX) be a metric space on n points with minx,y∈X{dX(x, y)} ≥ 1, let (Y, dY ) be a target metric
space, let t ≥ 1, let f : X → Y be an embedding.
• f is an embedding with t-proximity distortion α if for any u, v ∈ X such that d(u, v) ≤ t,

dX(u, v) ≥ dY (f(u), f(v)) ≥ dX(u, v)

α
.

• f is an embedding with scaling proximity distortion α, for non-decreasing function α : R+ → R+, if it has
t-proximity distortion α(t), for all t simultaneously.

1.2 Overview of Results

We begin by providing some basic results in this model. Theorem 1 shows that any metric space can be embedded
into a single tree (in fact, an ultrametric) with scaling local distortion k. In Theorem 2 it is shown that strong k-
local embeddings with distortion O(log k) are possible for any k using O(log n · log k) dimensions. We remark
that a similar result is implicit in [MN04]. In Theorem 3 we give an embedding with strong scaling local distortion
of Õ(log k) and dimension O(log2 n) using a variation of Bourgain’s embedding method. The dimension can be
improved to O(log n) as shown in Theorem 12 by using partition-based embedding techniques. It is not hard to see
that logarithmic dependence of the dimension on the number of points is necessary for a strong local embedding2.

Another aspect of k-local embeddings is that the dimension can be bounded in terms of k (for non-strong local
embeddings). In this introductory section we demonstrate this phenomenon for the special case of k = 1: Theorem 4
shows that 1-local embeddings into `p with p

√
3 distortion requires only 3 dimensions. We conclude the introductory

section with a simple yet surprising result, that local (non-strong) dimension reduction is in fact possible for an equi-
lateral metric (even for adversarial choice of nearest neighbors). This lies in contrast to the standard setting, in which
an equilateral metric is the ”bad example” for dimension reduction.

2Consider an equilateral metric (where all distances are 1); a strong local embedding imposes constraints on all pairs, thus a standard volume
argument suggests that the required dimension is Ω(logα n) for distortion α.
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After the basic results we study embeddings into ultrametrics and into distributions of ultrametrics. Theorem 5
shows a strong k-local distortionO(log k) into a distribution of ultrametrics. Its scaling counterpart, Theorem 6 obtains
scaling local distortion Õ(log k), and worst case distortion O(log n). The proof of Theorem 6 is unique, all known
embeddings into ultrametrics are non-contracting, we provide an embedding which is non-expanding in expectation.
This requires to make subtle modifications of known ultrametric construction algorithms. We then prove in Theorem 7
that embedding a graph into a distribution of spanning trees must have large local distortion, that depends on n.

While Theorem 2 provides an embedding into `p with k-local distortion, its dimension is a function of the size
of the data set. Our main result, Theorem 8, does not have the strong local guarantees, and therefore significantly
improves the dependence on the dimension. It provides a new form of dimension reduction; an embeddings that
require only O(log2 k) dimensions and optimal O(log k) distortion. Some of the novel techniques introduced to prove
this theorem are:

• Bounded cardinality probabilistic partitions, which are a variation on the standard diameter bounded partitions.

• Assignment of carefully chosen vector colors to the clusters of the partitions, instead of the usual {0, 1} values,
which are used to prevent dependencies.

We combine these with an application of the Lovász local lemma and other embedding tools. To obtain the optimal
O(log k) dimension, we have Theorem 9, which requires that the metric space obeys a weak form of growth bound
(formally defined later). Our result shows that the k-local structure of the space can be embedded in its natural
dimension which is independent of the size of the original space.

We then turn to dimension reduction with arbitrarily good precision. As mentioned above, [SS09] showed this is
impossible in general. Theorem 10 presents a positive result for the family of ultrametrics. In fact, our dimension
reduction can be done in any `p space. As a by product of the techniques used to prove Theorem 10, we are able
to show in Theorem 11 a standard dimension reduction for the class of doubling ultrametrics. The idea of having
Theorem 11 was influenced by a recent result of Gottlieb and Krauthgamer [GK11], who have obtained a result of a
similar flavor.

Using embeddings based on partitions, Theorem 13 provides better local scaling distortion for decomposable
metrics (defined formally below, these metrics include doubling and planar metrics). In Section 9 we also provide
stronger guarantees for the Metric Ramsey Partitions which depend on the local neighborhood of a node, which we
later use for application to proximity problems.

Another natural property one may desire is to have embeddings whose distortion depends on the distance between
points and not on the cardinality of the closer neighbors. For example, in a social network it may be desirable to
obtain good distortion to all neighbors of distance t away, as a function of t. In the context of “small world” networks,
[Kle00] studied a distribution that depends on the distance with exactly this type of local behavior. In Section 10 we
study embeddings with proximity distortion – in which the distortion bound of a pair x, y is a function of d(x, y).
Theorem 14 is our main result using this notion. We show that embeddings into `p with scaling proximity distortion
Õ(log t) are given for decomposable metrics.

In Section 11 we discuss some applications of our local embeddings. We show that in systems using a “small
world” distribution, our local embeddings provide constant average distortion. We also discuss the application of our
probabilistic embedding into ultrametrics to online problems with local structure of the request sequence. Finally, we
discuss how our techniques can be used to provide better distance oracles and proximity ranking data structures. For
example, we provide distance oracles with linear storage, constant query time and scaling local stretch Õ(log k) (that
is the stretch for the kth nearest neighbor).

2 Preliminaries

We assume throughout the paper that if (X, d) is a metric space then for all x 6= y ∈ X , d(x, y) ≥ 1. A ball around
x ∈ X with radius r ≥ 0 is defined as B(x, r) = {z ∈ X | d(x, z) ≤ r}, the open ball is B◦(x, r) = {z ∈ X |
d(x, z) < r}. The diameter is defined as diam(X) = maxx,y∈X{d(x, y)}. For sets A,B,C ⊆ X we define that
A ./ (B,C) if A ∩B 6= ∅ and A ∩ C 6= ∅.
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An ultrametric (X, d) is a metric space satisfying a strong form of the triangle inequality, that is for all x, y, z ∈ X ,
d(x, z) ≤ max{d(x, y), d(y, z)}. The following definition is known to be equivalent to the above definition for finite
spaces.

Definition 3. An ultrametric is a metric space whose elements are the leaves of a rooted tree T . Each vertex u ∈ T
is associated with a label ∆(u) ≥ 0 such that ∆(u) = 0 iff u is a leaf of T . It is required that if a u is a child of a v
then ∆(u) ≤ ∆(v) . The distance between two leaves x, y ∈ T is defined as ∆(lca(x, y)), where lca(x, y) is the least
common ancestor of x and y in T .

Some of our results apply to a restricted family of metric spaces with bounded growth rate. We use the following:

Definition 4 (Growth bound). Let (X, d) be a metric space and χ ≥ 1 a fixed real constant.

• X has a χ growth bound if |B(u, 2r)| ≤ 2χ|B(u, r)| for all u, r > 0.
• X has a χ weak growth bound if |B(u, 2r)| ≤ |B(u, r)|χ for all u, r > 0 such that |B(u, r)| > 1.

Note that the weak growth bound is an extremely weak property that even constant-degree expanders satisfy.

In many of our scaling results we shall use the following family Ξ of functions: A function ϑ : R+ → R+ is in Ξ
if it is a monotone non-decreasing function satisfying

∞∑
i=1

1

ϑ(i)
= 1 . (1)

For example if we define log(0) n = n, and for any i > 0 define recursively log(i) n = log(log(i−1) n), then we

can take for any constants θ > 0, t ∈ N the function ϑ(n) = ĉ
∏t−1
j=0 log(j)(n) ·

(
log(t)(n)

)1+θ

, for sufficiently small
constant ĉ > 0, and it will satisfy the conditions.

We will use the following concentration bounds,

Lemma 1 (Chernoff). Let Xi be {0, 1} independent random variables for i = 1, . . . , d, each with Pr[Xi = 1] = pi.
Let X =

∑d
i=1Xi and µ = E[X], then for any 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ e−δ
2µ/2 .

Lemma 2 (Hoeffding). Let Zi be independent random variables for i = 1, . . . , d, let E[Zi] = µi and 0 ≤ Zi ≤ Mi.
Let Z =

∑d
i=1 Zi, µ =

∑d
i=1 µi and M =

∑d
i=1M

2
i . Then for any η > 0

Pr[|Z − µ| ≥ η] ≤ 2e−2η2/M .

A powerful tool we will often use is the following Lemma known as Lovász Local Lemma.

Lemma 3 (Local Lemma). Let A1,A2, . . .An be events in some probability space. Let G(V,E) be a graph on n
vertices with degree at most d, each vertex corresponding to an event. Assume that for any i = 1, . . . , n

Pr

Ai | ∧
j∈Q
¬Aj

 ≤ p
for all Q ⊆ {j : (Ai,Aj) /∈ E}. If ep(d+ 1) ≤ 1, then

Pr

[
n∧
i=1

¬Ai

]
> 0
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3 Local Probabilistic Partitions

Several of our results use probabilistic partitions [Bar96]. In this section we review some definitions and results
concerning these tools, extending the notions of [ABN06].

Definition 5. The local growth rate of x ∈ X at radius r > 0 for a given scale γ > 0 is defined as

ρ(x, r, γ) = |B(x, rγ)|/|B(x, r/γ)|.

Given a subspace Z ⊆ X , the minimum local growth rate of Z at radius r > 0 and scale γ > 0 is defined as

ρ(Z, r, γ) = min
x∈Z

ρ(x, r, γ).

The minimum local growth rate of x ∈ X at radius r > 0 and scale γ > 0 is defined as

ρ̄(x, r, γ) = ρ(B(x, r), r, γ).

Claim 4. Let x, y ∈ X , let γ > 0 and let r be such that 2(1 + 1/γ)r < d(x, y) ≤ (γ − 2− 1/γ)r, then

max{ρ̄(x, r, γ), ρ̄(y, r, γ)} ≥ 2.

Proof. Let Bx = B(x, r(1 + 1/γ)), By = B(y, r(1 + 1/γ)), and assume w.l.o.g that |Bx| ≤ |By|. As r(1 + 1/γ) <
d(x, y)/2 we haveBx∩By = ∅. Note that for any x′ ∈ B(x, r),B(x′, r/γ) ⊆ Bx, and similarly for any y′ ∈ B(y, r),
B(y′, r/γ) ⊆ By . On the other hand B(x′, rγ) ⊇ Bx ∪ By , since for any y′ ∈ By , d(x′, y′) ≤ d(x′, x) + d(x, y) +
d(y, y′) ≤ r + r(γ − 1/γ − 2) + r(1 + 1/γ) = rγ. We conclude that

ρ(x′, r, γ) = |B(x′, rγ)|/|B(x′, r/γ)| ≥ (|Bx|+ |By|)/|Bx| ≥ 2.

Definition 6 (Partition). A partition P of X is a collection of pairwise disjoint sets C(P ) = {C1, C2, . . . , Ct} for
some integer t, such that X = ∪jCj . The sets Cj ⊆ X are called clusters. For x ∈ X denote by P (x) the cluster
containing x. Given ∆ > 0, a partition is ∆-bounded if for all j ∈ [t], diam(Cj) ≤ ∆. For Z ⊆ X we denote by
P [Z] the restriction of P to points in Z.

Definition 7 (Probabilistic Partition). A probabilistic partition P̂ of a metric space (X, d) is a distribution over a set
P of partitions of X . Given ∆ > 0, P̂ is ∆-bounded if each P ∈ P is ∆-bounded. Let supp(P̂) ⊆ P be the set of
partitions with non-zero probability under P̂ .

Definition 8 (Uniform Function). Given a partition P of a metric space (X, d), a function f defined on X is called
uniform with respect to P if for any x, y ∈ X such that P (x) = P (y) we have f(x) = f(y).

Let P̂ be a probabilistic partition. A collection of functions defined on X , f = {fP |P ∈ P} is uniform with
respect to P if for every P ∈ P , fP is uniform with respect to P .

Definition 9 (Uniformly Padded Local PP). Given ∆ > 0 and 0 < δ ≤ 1, let P̂ be a ∆-bounded probabilistic
partition of (X, d). Given a collection of functions η = {ηP : X → [0, 1]|P ∈ P}, we say that P̂ is (η, δ)-padded if
for any x ∈ X ,

Pr[B(x, ηP (x)∆) ⊆ P (x)] ≥ δ .

We say that P̂ is (η, δ)-locally padded if the event B(x, ηP (x)∆) ⊆ P (x) occurs with probability at least δ regardless
of the structure of the partition outsideB(x, 2∆). Formally, for all x ∈ X , for allC ⊆ X\B(x, 2∆) and all partitions
P ′ of C,

Pr[B(x, ηP (x)∆) ⊆ P (x) | P [C] = P ′] ≥ δ

We say that P̂ is (η, δ)-uniformly (locally) padded if η is uniform with respect to P .
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Definition 10. Let (X, d) be a finite metric space. Let τ ∈ (0, 2−7]. We say thatX admits a (local) τ -decomposition if
for every 0 < ∆ ≤ diam(X) there exists a ∆-bounded probabilistic partition P̂ ofX such that for all δ ≤ 1 satisfying
log(1/δ) ≤ 26/τ , P̂ is (τ · log(1/δ), δ)-(locally) padded.

Several known families of decomposable metrics include λ-doubling metrics3, that admit a local Ω(log−1 λ)-
decomposition [GKL03, ABN08a], and metrics induced by the shortest path on Kr-minor excluded graphs, that admit
a Ω(r−2)-decomposition [KPR93, FT03]. Observe that any metric admits a local τ -decomposition for sufficiently
small τ (for instance if τ < minx 6=y∈X d(x,y)

diam(X) ).

The following Lemma with local properties is proven in [ABN08a], we give the proof in Appendix A for com-
pleteness.

Lemma 5. Let (X, d) be a finite metric space. Assume X admits a (local) τ -decomposition. Let 0 < ∆ ≤ diam(X),
let δ̂ ∈ (0, 1/2] satisfying ln(1/δ̂) ≤ 26τ−1, and let γ ≥ 16. There exists a ∆-bounded probabilistic partition P̂ of
(X, d) and a collection of uniform functions {ξP : X → {0, 1} | P ∈ P} and {ηP : X → (0, 1/ ln(1/δ̂)] | P ∈ P}
such that for any δ̂ ≤ δ ≤ 1, the probabilistic partition P̂ is (η · ln(1/δ), δ)-uniformly padded probabilistic partition;
and the following conditions hold for any P ∈ P and any x ∈ X:

• ηP (x) ≥ τ/2.

• If ξP (x) = 1 then: 2−7/ ln ρ(x, 2∆, γ) ≤ ηP (x) ≤ 2−7/ ln(1/δ̂).

• If ξP (x) = 0 then: ηP (x) = 2−7/ ln(1/δ̂) and ρ̄(x, 2∆, γ) < 1/δ̂.

Furthermore, if X admits a local τ -decomposition then P̂ is local.

3.1 Bounded Cardinality Probabilistic Partitions

In this section we describe new type of probabilistic partitions, where instead of the usual notion of bounded diameter
partitions, we require a bound on the cardinality of the clusters. Similar partitions (without the local property) were
independently shown by [CMM10].

Definition 11. Fix an integer k ≥ 2. Let 2/k ≤ δ ≤ 1. A distribution on partitions P̂ of a metric space (X, d) is
k-bounded and locally padded with parameter δ if

1. For any P ∈ supp(P̂) and x ∈ X , diam(P (x)) ≤ rk(x)/8.

2. Denote by L(x) the event that B(x, 2−9rk(x) log(1/δ)/ log k) ⊆ P (x). For any Z ⊂ X \ B(x, rk(x)/4) and
any partition P ′ of Z,

Pr[¬L(x) | P [Z] = P ′] ≤ 1− δ

The first property bounds the number of points in each cluster by k (the property is actually slightly stronger,
in order to enable an application of the Lovász Local Lemma. The constant 8 is somewhat arbitrary). The second
property states that the probabilistic partition is locally padded with probability at least δ, where the locality is with
respect to the points in B(x, rk(x)/4), as opposed to B(x, 2∆) used in ∆-bounded partitions.

Lemma 6. For any metric space (X, d) on n points, any integer 2 ≤ k ≤ n and any 2/k ≤ δ ≤ 1, there exists a
k-bounded and locally padded probabilistic partition with parameter δ.

Create the partition P of X into clusters by generating a sequence of clusters: C1, C2, . . . Cs, for some fixed
s ∈ [n]. Notice that we are generating a distribution over partitions and therefore the generated clusters are random
variables. First we deterministically assign centers v1, v2, . . . , vs by the following iterative process: Let W1 = X and
j = 1.

3A metric space (X, d) is λ-doubling if for any x ∈ X and r > 0, B(x, 2r) can be covered by λ balls of radius r.
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1. Let vj ∈Wj be the point maximizing rk(x) over all x ∈Wj .

2. Let Wj+1 = Wj \B(vj , rk(vj)/64).

3. Set j = j + 1. If Wj 6= ∅ return to 1.

Now the algorithm for the partition is as follows: Let Z1 = X . For j = 1, 2, 3 . . . s:

• Apply the decomposition of Lemma 49 on the set Zj with the center vj and the parameters λ = k and ∆ =
rk(vj)/16, to obtain a partition of Zj to (S,Zj \ S). Recall that S = B(vj , r) ∩ Zj for some r ∈ [∆/4,∆/2].

• Define Cj = S and Zj+1 = Zj \ Cj .

Observe that some clusters may be empty, it is not necessarily the case that vj ∈ Cj , and every cluster contains at most
k points.

Fix x ∈ X and let C be the cluster that contains x and has center v, then we have the following

rk(v)/2 ≤ rk(x) ≤ rk(v) . (2)

To see the left hand side of (2), note that since d(x, v) ≤ rk(v)/32, it follows that |B(x, rk(v)/2)| ≤ |B(v, (1/2 +
1/32)rk(v))| ≤ k, hence rk(x) ≥ rk(v)/2. For the right hand side, we use the maximality of rk(v): Note that
Wj ⊆ Cj for all 1 ≤ j ≤ s, so that x /∈ Cj for any cluster Cj formed before C implies that x /∈Wj as well.

Now we are ready to show the first property of Definition 11. Fix y ∈ X such that rk(x)/8 < d(x, y), we need to
show that y /∈ P (x) = C. Since C ⊆ B(v, rk(v)/32) we get that

d(v, y) ≥ d(y, x)− d(x, v) > rk(x)/8− rk(v)/32
(2)
≥ rk(v)/16− rk(v)/32 = rk(v)/32 ,

it follows that y /∈ C.
Next we will prove the locality of the second property of the partition. Let η = 2−9 ln(1/δ)/ ln k, and for any

x ∈ X let Tx = B(x, rk(x)/8). If v is a cluster center that contains some point in B(x, η · rk(v)), then it must be that
v ∈ Tx. To see this, first observe that d(v, x) ≤ rk(v)/32 + η · rk(v) ≤ rk(v)/16 and also rk(v) ≤ d(v, x) + rk(x) ≤
rk(v)/16 + rk(x), thus rk(v) ≤ 16rk(x)/15, and finally d(x, v) ≤ rk(v)/16 ≤ rk(x)/8. Let v be such a center.
Since the choice of radius is the only randomness in the process of creating P , the event of padding for x ∈ X is
determined by the choice of radiuses for centers vj ∈ Tx. Let Z = X \ B(x, rk(x)/4), then it suffices to show that
any cluster C with center v ∈ Tx satisfies C ∩ Z = ∅. Fix such cluster C, and observe that for any point y ∈ C,

d(x, y) ≤ d(x, v) + d(v, y) ≤ rk(x)/8 + rk(v)/32
(2)
< rk(x)/4 .

We conclude by proving the bound on the padding probability. Consider the distribution over the clustersC1, C2, . . . Cs
as defined above. For 1 ≤ m ≤ s, define the events:

Zm = {∀j, 1 ≤ j < m, B(x, η · rk(vm)) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, η · rk(vm)) ./ (Cj , Zj+1) ∧ Zm}.

Also let T = Tx and θ =
√
δ. We prove the following inductive claim: For every 1 ≤ m ≤ s:

Pr[Em | Zm] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

k−1). (3)

Note that Pr[Es] = 0 and Pr[Z1] = 1. Assume the claim holds for m+ 1 and we will prove for m. Define the events:

Fm = {B(x, η · rk(vm)) ./ (Cm, Zm+1) ∧ Zm},
Gm = {B(x, η · rk(vm)) ⊆ Zm+1 ∧ Zm} = {Zm+1 ∧ Zm},
Ḡm = {B(x, η · rk(vm)) * Zm+1 ∧ Zm} = {Z̄m+1 ∧ Zm}.
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First we bound Pr[Fm]. By Lemma 49, noting that η · rk(vm) = 1
16 ln(1/θ)/ ln k · ∆ and that indeed θ =

√
δ ≥√

2/k ≥ 2/k = 2χ−1, we get that

Pr[Fm | Zm] = Pr[B(x, η · rk(vm)) ./ (Cm, Zm+1)|Zm] (4)
≤ (1− θ)(Pr[B(x, η · rk(vm)) * Zm+1|Zm] + θk−1)

= (1− θ)(Pr[Ḡm | Zm] + θk−1) .

Using the induction hypothesis we prove the inductive claim, recalling that Pr[Fm] = 0 if vm /∈ T (note that vm ∈ T
is determined by a deterministic process),

Pr[Em | Zm] ≤ Pr[Fm | Zm] + Pr[Gm | Zm] Pr[Em+1 | Zm ∧ Gm]

≤ (1− θ)(Pr[Ḡm | Zm] + θk−1)1{vm∈T} + Pr[Gm | Zm] · (1− θ)(1 + θ
∑

j≥m+1,vj∈T

k−1)

≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

k−1) ,

where the second inequality follows from (4) and the induction hypothesis. Note that for any x ∈ X , |Tx| ≤ k, so that∑
j≥1,vj∈Tx k

−1 ≤ 1. We conclude from the claim (3) for m = 1, observing that conditioned on event Zm, x ∈ Zm
so by (2) rk(x) ≤ rk(vm). Finally,

Pr[B(x, η · rk(x)) * P (x)] ≤ Pr[∃j, 1 ≤ j < s s.t. B(x, η · rk(vj)) ./ (Cj , Zj+1) | Zj ]
= Pr[E1 | Z1]

≤ (1− θ)(1 + θ ·
∑

j≥1,vj∈T

k−1)

≤ (1− θ)(1 + θ) = 1− δ.

.

4 Basic Results

4.1 Embedding into an Ultrametric with
Scaling Local Distortion

The following theorem is a strengthening of the known embeddings of metrics into an ultrametric [Bar96, BLMN05,
HPM06]:

Theorem 1. For any finite metric space (X, d) on n points there exists an embedding into an ultrametric with strong
scaling local distortion k.

Proof. Let T be any minimum spanning tree of the metric (X, d) (viewed as a complete graph with vertex set X and
edge weights that correspond to distances d). Let Pxy be the unique path connecting x and y in T , and define ρ(x, y)
as the maximal weight of an edge in Pxy . We claim that (X, ρ) is indeed an ultrametric, that is for any x, y, z ∈ X ,

ρ(x, y) ≤ max{ρ(x, z), ρ(y, z)}. (5)

Indeed, consider the maximal edge e ∈ Pxy , then one of the paths Pxz , Pyz must contain this edge, therefore (5) holds.
Next we show that ρ(x, y) ≤ d(x, y). If the edge (x, y) ∈ T then there is equality, otherwise, consider the cycle

Pxy ∪ (x, y). A known property of minimum spanning trees states that any edge e in an MST is not longer than the
maximal edge in a cycle containing e, therefore the maximal edge length in Pxy is bounded by d(x, y). It remains to
show that if y ∈ Nk(x), then ρ(x, y) ≥ d(x, y)/k. This will be proven by showing that the path Pxy must contain
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an edge of weight at least d(x, y)/k. Assume by contradiction this is not so, then the triangle inequality implies that
there are at least k points at distance strictly smaller than d(x, y) from x (the first k points in Pxy after x), which is a
contradiction to the fact that y ∈ Nk(x). We conclude the the maximal edge in Pxy is of weight at least d(x, y)/k.

To see that we actually obtain strong scaling local distortion, if y /∈ Nk(x) then still ρ(x, y) ≥ rk(x)/k. Otherwise,
the same first k points of Pxy are of distance strictly smaller than rk(x) to x, which is contradiction to the definition
of rk(x).

4.2 Embedding into `p with k-Local Distortion

Theorem 2. For any metric space (X, d) on n points, there exists an embedding f : X → `p with strong k-local
distortion O( log k

p ) and dimension O(2p log n log k).

Remark 1. In Section 6 we show how to obtain dimension which is independent of n, using more sophisticated
techniques.

Proof. The embedding is basically Bourgain’s embedding [Bou85] with improvement for large p by Matoušek [Mat90],
however we use only the first (log k)/p densities.

Let s = 2p, t = dlogs ke, and q = c · s log n for a constant c to be determined later. Choose subsets Aij ⊆ X for
every i ∈ [t], j ∈ [q], such that each point is included in Aij independently with probability 1

si . We now define the
embedding f : X → Rtq by defining for each i ∈ [t], j ∈ [q] a function fij : X → R by fij(u) = d(u,Aij), and

f(u) =

t⊕
i=1

q⊕
j=1

fij(u) .

Fix some pair u, v ∈ X . Let L = min{d(u, v), rk(u)}. For i ∈ [t] ∪ {0} define ρi = max{rsi(u), rsi(v)}. Let m be
the minimal positive integer such that ρm + ρm−1 ≥ L/4, and observe that ρt ≥ rk(u), thus m ≤ t. If ρm > L/2
redefine ρm = L/2. We will prove that with high probability, for all pairs and all i ∈ [m] there are at least q/(24s)
values of j such that,

|d(u,Aij)− d(v,Aij)| ≥ ρi − ρi−1 , (6)

Before proving (6), let us see how to conclude the proof of the theorem. In order to bound the expansion of the
embedding we note that the triangle inequality suggests that |d(u,Aij)− d(v,Aij)| ≤ d(u, v) for all i, j, thus

‖f(u)− f(v)‖pp =

t∑
i=1

q∑
j=1

|d(u,Aij)− d(v,Aij)|p ≤ tq · d(u, v)p .

Now we turn to the contraction. First observe that ρ0 = 0, and since the ρi are monotonically increasing, ρm ≥ L/8.
For each i ∈ [m] let Qi ⊆ [q] be the subset of indices j for which (6) holds, then |Qi| ≥ q/(24s) for all i, we conclude
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that

‖f(u)− f(v)‖pp =

t∑
i=1

q∑
j=1

|d(u,Aij)− d(v,Aij)|p

≥
m∑
i=1

∑
j∈Qi

|d(u,Aij)− d(v,Aij)|p

(6)
≥

m∑
i=1

∑
j∈Qi

(ρi − ρi−1)p

≥ q

24s ·mp−1

(
m∑
i=1

(ρi − ρi−1)

)p
≥ q

24s · tp−1
ρpm

≥ q

24s · tp−1
(L/8)p .

Recall that L = min{d(u, v), rk(u)} is the lower bound quantity for strong k-local distortion. The distortion is
bounded by 8(tq · 24s·tp−1

q )1/p = O(t) = O((log k)/p). It remains to prove (6) for sufficiently many values of j. Fix
some i ∈ [m]. Assume that ρi = rsi(v) (the case where ρi = rsi(u) is symmetric), and define events for all j ∈ [q]

Ej = d(Aij , u) ≤ ρi−1

Fj = d(Aij , v) ≥ ρi .

It is easy to check that if both events hold then (6) holds for this j. We will use that ex/2 ≤ 1+x ≤ ex for 0 ≤ x ≤ 1/2.
Since |B(u, ρi−1)| ≥ si−1,

Pr[Ej ] = 1− (1− s−i)|B(u,ρi−1)| ≥ 1− (1− s−i)s
i−1

≥ 1− e−s
−i·si−1

= 1− e−s
−1

≥ 1/(2s) ,

and since |B◦(v, ρi)| < si (observe that this is true for ρm as well, even if we redefined it),

Pr[Fj ] = (1− s−i)|B
◦(v,ρi)| ≥ (1− s−i)s

i

≥ 1/(2e) .

These events depend on inclusion in Aij of points that belong to disjoint balls, and thus are independent. We conclude
that

Pr[|d(u,Aij)− d(v,Aij)| ≥ ρi − ρi−1] ≥ Pr[Ej ∧ Fj ] ≥ 1/(12s) .

Let Xij be indicator random variable for the event that both Ej and Fj hold, and let Xi =
∑q
j=1Xij . Note that

E[Xi] ≥ q/(12s) = c/12 · log n, and by Chernoff bound

Pr[Xi < E[Xi]/2] ≤ e−E[Xi]/4 ≤ e−(c logn)/48 = n−4 ,

where the last equation is by choosing c as a large enough constant. By the union bound over all values of i and all
pairs u, v, with probability at least 1 − 1/n, (6) holds for at least E[Xi]/2 ≥ q/(24s) values of j for all pairs and all
i.

4.3 Embedding into `p with Scaling Local Distortion

Theorem 3. For any finite metric space (X, d) on n points and ϑ ∈ Ξ there exists an embedding into `p with

strong scaling local distortion O
((

log k
p

)1− 1
p
(
ϑ
(

log k
p

)) 1
p

)
, worse case distortion O((log n)/p) and dimension

O(2p log2 n).
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Proof. The embedding is similar to Bourgain’s embedding described in the previous section, the main novelty is the
use of a function ϑ ∈ Ξ to scale down each coordinate as described below.

Let s = 2p,t = logs n, q = c · s log n for a constant c to be determined later. Choose subsets Aij ⊆ X for
every i ∈ [t], j ∈ [q], such that each point is included in Aij independently with probability 1

si . We now define the
embedding f : X → Rtq by defining for each i ∈ [t], j ∈ [q] a function fij : X → R by fij(u) =

d(u,Aij)

ϑ(i)1/p , and

f(u) =

t⊕
i=1

q⊕
j=1

fij(u) .

Fix u, v ∈ X and some integer k ∈ [n]. Let L = min{d(u, v), rk(u)}. For i ∈ [t] ∪ {0} define ρi =
max{rsi(u), rsi(v)}. Let m be the minimal positive integer such that ρm + ρm−1 ≥ L/4, if ρm > L/2 redefine
ρm = L/2. Observe that rsm−1(u) ≤ rk(u) thus m ≤ 1 + logs k. The same proof as the previous section suggests
that with high probability, for all pairs and all i ∈ [m] there are at least q/(24s) values of j such that,

|d(u,Aij)− d(v,Aij)| ≥ ρi − ρi−1 . (7)

To bound the expansion we have that

‖f(u)− f(v)‖pp =

t∑
i=1

q∑
j=1

(
|d(u,Aij)− d(v,Aij)|

ϑ(i)1/p

)p
(8)

≤ q · d(u, v)p
t∑
i=1

1

ϑ(i)

≤ q · d(u, v)p .

Now we turn to the contraction. For each i ∈ [m] let Qi ⊆ [q] be the subset of indices j for which (6) holds, then
|Qi| ≥ q/(24s) for all i, we conclude that

‖f(u)− f(v)‖pp =

t∑
i=1

q∑
j=1

(
|d(u,Aij)− d(v,Aij)|

ϑ(i)1/p

)p
(9)

≥
m∑
i=1

∑
j∈Qi

(
|d(u,Aij)− d(v,Aij)|

ϑ(i)1/p

)p

≥ q

24s

m∑
i=1

1

ϑ(i)
(ρi − ρi−1)p

≥ q

24s · ϑ(m) ·mp−1

(
m∑
i=1

(ρi − ρi−1)

)p
≥ q

26s · ϑ(logs k) · (logs k)p−1
ρpm

≥ q

26s · ϑ(logs k) · (logs k)p−1
(L/8)p .

The distortion is bounded by 8
(
q · 26s·ϑ(logs k)·(logs k)p−1

q

)1/p

= O

((
log k
p

)1− 1
p
(
ϑ
(

log k
p

)) 1
p

)
.

To see the worse case distortion of O(logs n), let ϑ̄(i) = min{ϑ(i), logs n} and use ϑ̄−1/p as the scaling factor in
the embedding. This has the effect that in (9) we get a lower bound of q

26s·ϑ̄(logs k)·(logs k)p−1 (L/8)p, which is always
lower bounded by q

O(s logps n)
(L/8)p.
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It remains to show an upper bound of 2q on the expansion. Let i′ be the largest integer such that ϑ(i′) ≤ logs n,
then

t∑
i=1

1

ϑ̄(i)
≤

i′∑
i=1

1

ϑ(i)
+

t∑
i=i′+1

1

logs n
< 2 ,

plugging this into the last inequality of (8) concludes the proof.

Note that for any ε > 0 there exists ĉ such that ϑ(k) = ĉ · k(log k)1+ε and ϑ ∈ Ξ, hence

Corollary 7. For any finite metric space (X, d) on n points and any constant ε > 0 there exists an embedding into `p
with scaling local distortion

O

(
log k

p
(log log k)

1+ε
p

)

4.4 Lower Dimension for 1-Local Distortion

Theorem 4. For any finite metric space X there exists an embedding into 3 dimensional `p with 1-local distortion
p
√

3.

Proof. Let G = (V,E) be an unweighed graph with vertices corresponding to the points of X , and a pair (u, v) ∈ E,
iff v ∈ N1(u) of u. Since each node has outdegree one, each connected component in G (viewed as undirected graph)
has at most one cycle. Fix some component H and, let rH be an arbitrary node of H , and if there is an odd cycle,
such that the two farthest points from rH on it, call them u, v are such that v ∈ N1(u) (or u ∈ N1(v)) set wH = u (or
wH = v). Otherwise let wH be arbitrary point.

Define 2 sets A1, A2 as follows: for any connected component H in G, insert into A1 all the vertices in even
distance from rH , and into A2 all the vertices in odd distance from rH . Define the embedding into R3 as

f(u) = (d(u,A1), d(u,A2), g(u))

where g(u) is d(u,N1(u)) if u = wH and 0 otherwise.
Fix any u, v, to bound the expansion observe that no coordinate can have value larger than d(u, v). This is by the

triangle inequality for the first two coordinates, for the third, it is non-zero only if one of u, v, say u, is wH , but even
then its value d(u,N1(u)) ≤ d(u, v). This suggests expansion at most p

√
3. To bound contraction, assume v ∈ N1(u),

and then u, v are connected by an edge in G, and lie in some component H . If their distance to rH has different parity,
then w.l.o.g v ∈ A1 and d(u,A1) = d(u, v) and d(v,A1) = 0. The only case where their distance to rH has the
same parity is that both of them are the farthest points from rH in an odd cycle, but in such a case u is wH and we get
contribution from the third coordinate (if v was chosen as wH , then also u ∈ N1(v) and again we get contribution of
d(u, v)).

Remark 2. For any metric space (X, d) there is an embedding into the line which is an isometry on nearest neighbors4.

Proof. Let G = (V,E) be the weighted graph containing only edges between points x, y ∈ X such that y ∈ N1(x),
the weight of the edge is simply d(x, y). Similarly to Theorem 4 the graph G contains no cycles. Choose an arbitrary
root rC for every connected component C of G. Define the embedding f : X → R+ as f(x) = d(x, rC) where C is
the connected component containing x.

If x, y ∈ X are such that y ∈ N1(x) then they are in the same connected component C, which is a tree, therefore
|d(x, rC)− d(y, rC)| = d(x, y).

4Unlike the previous embedding, this embedding may have arbitrary expansion.
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4.5 Local Dimension Reduction for the Equilateral Metric

The “usual suspect” for high dimensionality in `2 is the equilateral metric. Alon [Alo03] used this metric to provide
the best known lower bound for dimension reduction, in particular, he showed that an n point equilateral requires
dimension at least Ω(log n/(log(1/ε) · ε2)), for 1 + ε distortion. However, this is not the case for local embedding, in
the sense that the dimension required does not depend on n.

To embed an equilateral metric, first consider the neighborhood graph G = (X,E), where (u, v) ∈ E iff v ∈
Nk(u) (note that we allow adversarial choice of neighbors). By Lemma 12 there exists a proper coloring of G with
2k + 1 colors. Using the standard dimension reduction of [JL84] we can embed the m = 2k + 1 color classes into
O((logm)/ε2) dimensional `2 space with k-local distortion 1 + ε. This is because for any point u ∈ X , all the points
in Nk(x) have different color than the color of x, so the distance between them is maintained up to the 1 + ε factor
loss of the dimension reduction.

5 Probabilistic Local Embedding into Ultrametrics

Probabilistic embedding of metrics into ultrametrics [Bar96] has many applications in online and approximation algo-
rithms. The basic theorem states that every metric space probabilistically embeds into a distribution over ultrametrics
with O(log n) expected distortion [Bar98, FRT03, Bar04]. Here we extend this result to local embeddings. We will
use the following lemma implicitly proven in [CKR01, FRT03].

Lemma 8. Given a finite metric space (X, d) and 0 < ∆ ≤ diam(X), there exists a ∆-bounded probabilistic
partition P̂ of (X, d) such that for any x ∈ X and any 0 ≤ η ≤ 1/8,

Pr[B(x, η∆) * P (x)] ≤ 16η log ρ(x,∆/4, 4) .

A proof of this lemma can be found in [MN06] and also in [ABN06] (with different constants).

5.1 Probabilistic Embedding into Trees with k-Local Distortion

Theorem 5. For any finite metric space (X, d) on n points there exists a probabilistic embedding into a distribution
of ultrametrics with strong k-local distortion O(log k).

To prove this theorem we follow the constructions of [Bar96, FRT03, Bar04], and create am ultrametric from a
probabilistic decomposition. A careful analysis of these construction reveals that the distortion of a pair x, y is bounded
by O(logS) where S is the size of the largest cluster containing x, y in the partition. This is trivially O(log n). In
order to obtain improved distortion for k nearest neighbors, we delete clusters that contain more than k points. Now the
main difficulty is to create a meaningful tree from these partial partitions, and proving the required distortion bound.

Let ∆0 = diam(X). For each i > 0 define ∆i = ∆0

2i , and create a ∆i-bounded probabilistic partition Q̂i given
by Lemma 8. Fix for each i > 0 some Qi ∈ Qi, and for every cluster C ∈ Qi define an arbitrary center υ(C) ∈ C.
Since we are required to give sufficient lower bound only on k-nearest neighbors, we shall eliminate large clusters.
Formally, a cluster C ∈ Qi is called large if |B(υ(C), 3∆i)| > k. Define P ′i by removing all the large clusters from
Qi, that is, P ′i = {C ∈ Qi | |B(υ(C), 3∆i)| ≤ k}. Define Ui to be the union of all the points in the large clusters
of Qi, formally Ui = {x ∈ C | C ∈ Qi, |B(υ(C), 3∆i)| > k}. In order to make this collection of sets laminar, we
perform the following iterative process: for each integer i > 0 define Pi = {C ∩D | C ∈ P ′i , D ∈ Pi−1 ∪ {Ui−1}}
(where P0 = {X}, U0 = ∅). If x is not covered by any cluster of Pi we write Pi(x) = ⊥.

The next step is to build an ultrametric T from this (partial) hierarchical partition. First observe that if C ∈ Qi is
not large, then any cluster D ∈ Qi+1 such that C ∩ D 6= ∅, is not large as well. This holds because if u ∈ C ∩ D
then d(υ(D), υ(C)) ≤ d(υ(D), u)+d(u, υ(C)) ≤ ∆i+1 +∆i, thus |B(υ(D), 3∆i+1)| ≤ |B(υ(C), 4∆i+1 +∆i)| =
|B(υ(C), 3∆i)| ≤ k. Now for each C ∈ Pi define a tree node labeled ∆i, its children are the clusters of Pi+1 that are
contained in C (by the observation above every point in C is contained in some cluster of Pi+1), and if there exists a
cluster in Pi−1 that contain C, then its node will be the parent of the node corresponding to C. We got a collection of
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trees T1, . . . , Tl with labels a1 ≤ · · · ≤ al, combine these into a single tree by adding l−1 additional nodes u2, . . . , ul,
such that uj has as children the roots of Tj−1, Tj , and is labeled aj . This concludes the description of T , which is
rooted at ul. It is not hard to check that the labels are weakly monotone, in a sense that a parent has label at least as
large as any of its children. Recall that the distance between two leaves is defined as the label of their least common
ancestor.

Observation 9. Let x, y ∈ X , and i be the maximal integer such that Pi(x) = Pi(y), then dT (x, y) ≤ ∆i.

Proof. Since at least one of the cluster Pi+1(x), Pi+1(y) 6= ⊥, we may assume w.l.o.g that Pi+1(x) 6= ⊥. If it is the
case that Pi(x) 6= ⊥ as well, then the tree node corresponding to Pi(x) is the least common ancestor of x, y, and is
labeled ∆i. Otherwise, x, y will fall into different trees among T1, . . . , Tl, say x ∈ Ta and y ∈ Tb, then the root of Ta
is labeled ∆i+1 and the root of Tb is labeled by at most ∆i+1, thus we may assume a ≥ b. Since we combine trees by
taking the smaller labeled trees first, the least common ancestor of x, y, which is the node ua, is labeled by ∆i+1.

Fix some x, y ∈ X , and let L = min{d(x, y), rk(x)}. We begin by proving a bound on the contraction of the
embedding. Let i be the smallest integer such that 4∆i ≤ L. Let v = υ(Qi(x)), then

B(v, 3∆i) ⊆ B(x, 4∆i) ⊆ B(x, L) ⊆ B(x, rk(x)),

which implies that |B(v, 3∆i)| ≤ k, and Qi(x) was not a large cluster. Therefore Pi(x) 6= ⊥ and is labeled by ∆i,
furthermore, as the partition Qi is ∆i-bounded and d(x, y) ≥ L, it follows that Pi(x) 6= Pi(y). The monotonicity of
labels suggests that

dT (x, y) ≥ ∆i ≥ L/8 .

We now turn to bounding the expected expansion when sampling a partition according to the distribution Q̂. Observe
that if Pi(x) 6= ⊥ then it must be that |B(x,∆i)| ≤ |B(υ(Qi(x)), 3∆i)| ≤ k. Let δi(x) = 1 if |B(x,∆i)| ≤ k and
δi(x) = 0 otherwise. Let Ei be the event that i is the minimal such that Pi(x) 6= Pi(y).

Claim 10. Ei implies that Qi(x) 6= Qi(y) and δi(x) + δi(y) ≥ 1.

Proof. Assume by contradiction that Qi(x) = Qi(y), then if for all i′ < i, Qi′(x) = Qi′(y) then Pi(x) = Pi(y).
Otherwise consider the maximal i′ < i such that Qi′(x) 6= Qi′(y), there are two cases: if both clusters Qi′(x), Qi′(y)
are large, thenQi′(x), Qi′(y) ⊆ Ui′ , and when we create the clusters of Pi′+1, Pi′+2, . . . , Pi, x, y will not be separated
in any of these (partial) partitions (using the maximality of i′), thus we arrive to Pi(x) = Pi(y), which contradicts Ei.
Otherwise at least one of the clusters, say Qi′(x), is small and will be included in P ′i′ , hence also Pi′(x) 6= Pi′(y)
which contradicts the minimality of i.

Assume now that δi(x) = δi(y) = 0, then we remove the large clusters Qi(x), Qi(y) when creating P ′i , thus
Pi(x) = Pi(y) = ⊥.

Using Lemma 8 with parameter η = d(x, y)/∆i we get that for all i satisfying ∆i > 8d(x, y),

Pr[Qi(x) 6= Qi(y)] ≤ 16d(x, y) · log ρ(x,∆i/4, 4)

∆i
(10)

Pr[Qi(x) 6= Qi(y)] ≤ 16d(x, y) · log ρ(y,∆i/4, 4)

∆i
.

Using Observation 9 and Claim 10 we bound the expected distance by

E[dT (x, y)] ≤
∑
i>0

Pr[Ei] ·∆i−1 (11)

≤
∑
i>0

Pr[Qi(x) 6= Qi(y)](δi(x) + δi(y)) ·∆i−1

≤ 2
∑
i>0

Pr[Qi(x) 6= Qi(y)]δi(x) ·∆i + 2
∑
i>0

Pr[Qi(x) 6= Qi(y)]δi(y) ·∆i ,
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We focus on the first summation, let m be the maximal such that ∆m > 8d(x, y), then

2
∑
i>0

Pr[Qi(x) 6= Qi(y)]δi(x) ·∆i ≤ 2

m∑
i=1

Pr[Qi(x) 6= Qi(y)]δi(x) ·∆i + 2
∑
i>m

∆i

(10)
≤ 32

m∑
i=1

d(x, y) · log ρ(x,∆i/4, 4) · δi(x) + 2∆m

≤ 32d(x, y)
∑
i>0

log

(
|B(x,∆i)|
|B(x,∆i+4)|

)
δi(x) + 16d(x, y)

≤ 128d(x, y) log k + 16d(x, y) ,

where the last inequality hold because the summation is telescopic (observe that δi(x) is weakly monotone increasing
with respect to i), and as δi(x) = 0 when |B(x,∆i)| > k, the largest element is bounded by log k. Since we can
bound the second summation of (11) in the exact same manner, we get that

E[dT (x, y)] ≤ O(log k) · d(x, y) ,

which concludes the proof of Theorem 5.

5.2 Probabilistic Embedding into Trees with Scaling Local Distortion

Theorem 6. For any finite metric space (X, d) on n points and ϑ ∈ Ξ there exists a probabilistic embedding into a
distribution of ultra-metrics with strong scaling local distortion O(ϑ(log k)), and worst case distortion O(log n).

The construction for the scaling local distortion is more involved than the one of the previous section, as here we
are required to handle all values of k simultaneously. We use an idea similar to the one used in the proof of Theorem 3,
and scale down the labels by a factor proportional to the logarithm of their size, and apply a function ϑ ∈ Ξ in order to
guarantee convergence. The main obstacle is that after scaling down, the labels are no longer monotone, which means
that creating the tree in the standard manner [Bar96, FRT03, Bar04] will not give a legal tree. We therefore apply a
certain iterative process, that handles any non-monotonicity by ”beaming up” clusters from lower levels to replace the
violating clusters, thus increasing their label. We now turn to the formal proof.

Let ∆0 = diam(X) and for any integer i > 0 let ∆i = ∆0

4i . For all i > 0 create a ∆i-bounded probabilistic
partition P̂i as in Lemma 8, define for each Pi ∈ Pi and any cluster C ∈ Pi an arbitrary center υ(C) ∈ C and define

b(C) = log (|B(υ(C), 4∆i)|) .

Fix some collection of partitions P = {Pi ∈ Pi | i > 0}, and let the label of a cluster C ∈ Pi be α(C) = ∆i

ϑ(b(C)) .

Claim 11. For all i > 0, if C ∈ Pi, D ∈ Pi−1 and C ∩D 6= ∅ then α(D) ≤ 4α(C).

Proof. Since d(υ(C), υ(D)) ≤ ∆i−1+∆i ≤ 2∆i−1, we getB(υ(C), 4∆i) ⊆ B(υ(D), 4∆i+2∆i−1) ⊆ B(υ(D), 4∆i−1)

which suggests that b(C) ≤ b(D) hence α(C) = ∆i

ϑ(b(C)) = ∆i−1

4ϑ(b(C)) ≥ α(D)/4.

Note that a cluster C ∈ Pi may have a label smaller than a clusterD ∈ Pj for j > i and C∩D 6= ∅, hence creating
a laminar family from the partition in the usual manner will not maintain the weak monotonicity property of labels. To
overcome this hurdle we recursively define a sequence of hierarchical partitions Q(1), . . . ,Q(log ∆0) where for each i,
Q(i) is a sequence of i partitions for scales ∆1 to ∆i. Initially Q(1) = {Q(1)

1 = P1}. Given a hierarchical partition
Q(i−1) = {Q(i−1)

1 , . . . , Q
(i−1)
i−1 } and Pi we define a hierarchical partition Qi = {Q(i)

1 , . . . , Q
(i)
i } in the following

manner.
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1. “Beam up” phase: For any C ∈ Pi and j < i let Rj(C) = {D ∈ Q(i−1)
j | D ∩ C 6= ∅ ∧ α(D) < α(C)},

let sj(C) = C ∩
⋃
D∈Rj(C)D. Intuitively, We want to “beam up” each sj(C) to be a cluster in Qj . Formally,

for any j < i, let Q(i)
j = {D \

⋃
{C|D∈Rj(C)} C | D ∈ Q

(i−1)
j } ∪ {sj(C) | C ∈ Pi}. The labels are naturally

maintained: each cluster D \
⋃
{C|D∈Rj(C)} C gets label α(D) and each cluster sj(C) gets label α(C).

2. “Laminarization” phase: Let Q(i)
i = {C ∩D | C ∈ Pi, D ∈ Q(i)

i−1}. Each cluster C ∩D gets label α(C).

For each set of partitions P ∈ P denote Q = Q(log ∆0) = {Q1, . . . , Qlog ∆0}. Note that the “laminarization”
phase guarantees that Q is indeed hierarchical. Construct a labeled tree T from Q and its labels in the natural manner,
where each node corresponding to a cluster in Qi, has as children the nodes corresponding to clusters in Qi+1 that it
contains, and as a parent the node corresponding to the cluster in Qi−1 that contains it. Note that T indeed represents
an ultrametric, since the “beam up” phase guarantees that if C ∈ Qi, D ∈ Qi−1 such that C ⊆ D then α(D) ≥ α(C).

Fix x, y ∈ X , and let L = min{d(x, y), rk(x)}. We begin by showing a bound on the contraction of the embed-
ding. Let i be the smallest integer such that 5∆i ≤ L, since Pi is ∆i-bounded, x, y are separated in the partition Pi.
Let v = υ(Pi(x)), then

B(v, 4∆i) ⊆ B(x, 5∆i) ⊆ B(x, L) ⊆ B(x, rk(x)),

which implies that b(Pi(x)) ≤ log k, hence α(Pi(x)) ≥ ∆i

ϑ(log k) ≥ Ω
(

L
ϑ(log k)

)
. It remains to show that α(Qi(x)) ≥

α(Pi(x)). This holds since if in the “beam up” phase some cluster replaced the part of Pi(x) that contained x it must
have had a larger label than α(Pi(x)), and its radius is only smaller than the radius of Pi(x) therefore Qi(x) 6= Qi(y).
This concludes the bound on the contraction.

We now turn to prove a bound on the expected expansion of the embedding. Let αi = max{α(Pi(x)), α(Pi(y))}.
Define the events

Ci = {Pi(x) 6= Pi(y)} ,

Mi =

Ci ∧∧
j>i

αi ≥ αj

 .

Given a hierarchical partition Q, the distance between x, y in the tree T created from Q is the label of the cluster
Qh(x), where h is the maximal such that Qh(x) = Qh(y). Observe that if i is the minimal such that eventMi holds,
then it is the case that Qi(x) 6= Qi(y), because it cannot be that both Pi(x), Pi(y) are replaced in the ”beam up”
phase. We also claim that dT (x, y) ≤ 2αi. To prove this, fix the minimal j such that sj(Pi(x)) 6= ∅ or sj(Pi(y)) 6= ∅
(assume for now that sj(Pi(x)) 6= ∅), then the ”beam up” phase will make sj(Pi(x)) a cluster in Qj . This suggests
that α(Pi(x)) ≥ α(Pj(x)), and since we did not replace the j − 1 level, also αj−1 ≥ αi, and by the minimality of i,
it must be that Pj−1(x) = Pj−1(y), thus also Qj−1(x) = Qj−1(y). We conclude by Claim 11 that

dT (x, y) = α(Qj−1(x)) ≤ 4α(Pj(x)) ≤ 4α(Pi(x)) =
4∆i

ϕ(b(Pi(x)))
≤ 4∆i

ϕ(log |B(x,∆i)|)
.

If it is the case that sj(Pi(y)) was the one to ”beam up”, we get a similar bound, and conclude that

dT (x, y) ≤ 4∆i

ϕ(log |B(x,∆i)|)
+

4∆i

ϕ(log |B(y,∆i)|)
. (12)

Let l be the maximal integer such that ∆l ≥ 8d(x, y). We also use Lemma 8 with parameter η = d(x, y)/∆i to
bound

Pr[Ci] ≤ 16
d(x, y) log ρ(x,∆i/4, 4)

∆i
, (13)

and similar bound for y. Finally we bound the expected expansion,

ET [dT (x, y)] ≤
∑
i>0

Pr[Mi] · ET [dT (x, y) | Mi] (14)

(12)
≤

l∑
i=1

Pr[Ci] ·
4∆i

ϕ(log |B(x,∆i)|)
+

l∑
i=1

Pr[Ci] ·
4∆i

ϕ(log |B(y,∆i)|)
+
∑
i>l

4∆i,
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focus on the first summand of (14), then

l∑
i=1

Pr[Ci] ·
4∆i

ϕ(log |B(x,∆i)|)
(13)
≤

l∑
i=1

16
d(x, y) log ρ(x,∆i/4, 4)

∆i
· 4∆i

ϕ(log |B(x,∆i)|)
(15)

≤ 64d(x, y)

l∑
i=1

(log |B(x,∆i)| − log |B(x,∆i+4)|) · 1

ϕ(log |B(x,∆i)|)

≤ 64d(x, y)

l∑
i=1

log |B(x,∆i)|∑
j=log |B(x,∆i+4)|

1

ϕ(j)

≤ 256d(x, y)
∑
j>0

1

ϕ(j)

= O(d(x, y)) ,

The second summation of (14) is bounded is the same manner, and for the third one,
∑
i>l 4∆i ≤ 4∆l ≤ O(d(x, y)).

This conclude the bound on the expansion, it remains to show that the worst case contraction can be bounded by
O(log n). Let ϑ̄(k) = min{ϑ(k), log n}, and use ϑ̄ instead of ϑ when defining the labels. Notice that labels can
only increase, hence the lower bound remains true, and furthermore for any pair x, y we have dT (x, y) ≥ d(x,y)

logn .
It remains to show that the expected expansion remains a universal constant. Let t be the largest integer such that
ϑ(log |B(x,∆t)|) > log n. Then divide the term in (15) into two summations, up to t and after, to bounds the first,

t∑
i=1

(log |B(x,∆i)| − log |B(x,∆i+4)|) · 1

ϑ̄(log |B(x,∆t)|)
≤ 4

log n
(log |B(x,∆1)| − log |B(x,∆t+4)|) ≤ 4,

and as in (15),

l∑
i=t+1

(log |B(x,∆i)| − log |B(x,∆i+4)|) · 1

ϑ̄(log |B(x,∆t)|)
≤

l∑
i=t+1

bi∑
j=bi+4

4

ϑ(j)
= O(1) .

This concludes the proof of Theorem 6.

5.3 Lower Bound for Spanning Trees

An important variant in embedding into trees occurs in a graph setting, when we seek an embedding into a spanning
tree of the graph. Probabilistic embedding into spanning trees has been studied in [AKPW95, EEST05, ABN08b].
In [ABN07a] embeddings into a single spanning tree and into a distribution on spanning trees, with constant average
distortion are shown. However, local embedding into a single spanning tree can incur distortion n− 1 even for k = 1
(take the cycle graph, finding a spanning tree is done by removing some edge, which will incur the distortion for an
adversarial choice of nearest neighbors). In what follows we show that unlike the general trees setting, probabilistic
embedding into a distribution of spanning trees cannot overcome the Ω(log n) lower bound even for k = 1.

Theorem 7. There exists a graphG on n vertices such that any embedding of its shortest-path metric into a distribution
of spanning trees of G, will incur 1-local distortion of Ω(log n).

Proof. Let (X, d) be an n point metric space induced by a graph G on n vertices and 2n edges, whose girth (length
of shortest cycle) is c log n + 1, for some universal constant c. Such graphs are known to exist [Bol78]. Note that
every edge in G is part of a cycle of length at least c log n, therefore removing that edge will increase the distance
between its end points to c log n. Also note that every spanning tree of G is obtained by removing at least half of the
edges, hence in any distribution over spanning trees there exists some edge (u, v) with PrT [(u, v) /∈ T ] ≥ 1/2, thus
E[dT (u, v)] ≥ (c/2) log n.
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6 Embedding into `p with k-Local Distortion and Low Dimension

In this section we strengthen the results of Section 4.2 by providing an embedding with both k-local distortion and
dimension depending on k and not on n, the number of points. Our main result is an embedding with optimal k-local
distortion of O(log k), and dimension O(log2 k) for arbitrary metrics. Later we will show a tight O(log k) bound on
the dimension as well, for metrics satisfying a weak growth bound.

6.1 Main Result

Theorem 8. For any n point metric space (X, d), a parameter k ≤ n, and an integer p satisfying p ≤ ln k/2 there
exists an embedding into `p with k-local distortion O((log k)/p) and dimension O(ep log2 k).

Let s = ep, D = cs ln2 k for some universal constant c to be determined later. The proof of this theorem will
require a composition of two functions f : X → RD and g : X → RD with the following properties:

1. The functions f , g are non-expansive, i.e. for all u, v ∈ X

‖f(u)− f(v)‖p ≤ d(u, v) , ‖g(u)− g(v)‖p ≤ d(u, v)

2. For any pair u, v ∈ X such that v ∈ Nk(u) and d(u, v) < rk(u)/8,

‖f(u)− f(v)‖p > Cp · d(u, v)/ log k

for a universal constant C.

3. For any pair u, v ∈ X such that v ∈ Nk(u) and rk(u)/8 ≤ d(u, v) ≤ rk(u),

‖g(u)− g(v)‖p > C ′p · d(u, v)/ log k

for a universal constant C ′.

The embedding is defined as f⊕g, and it follows directly that the dimension isO(ep log2 k) and from the properties
that the k-local distortion is O((log k)/p).

A main tool that will assist us in obtaining the low dimension is Lovász Local Lemma. Note that the embedding of
Section 4.2 only uses logarithmic number of dimensions in order to obtain high success probability for all pairs. If we
could argue that the event that a certain k nearest neighbor pair has bounded contraction depends only on poly(k) other
k nearest neighbor pairs, we could have used the local lemma, and its algorithmic versions [Bec91, Mos09, MT10] to
construct an embedding which is good for all k nearest neighbor pairs using poly(log k) dimensions. Unfortunately,
this is not the case, as it could be that for some u ∈ X there are many points whose distance to u is slightly larger
than rk(u), and these points have some k-nearest neighbor inside B(u, rk(u)), so there will be many dependencies. In
Section 6.2 we show that assuming a weak growth bound will solve this issue, and we may obtain optimal dimension
of O(log k) with optimal distortion O(log k). For the general setting, we can only use the local lemma for pairs u, v
that are ”close” with respect to rk(u), as defined in the second property. Thus the map f is very similar to the map
of Section 4.2, with fewer dimension and analysis that uses the Local Lemma. The main difficulty is construction the
map g, which provides bounded contraction for pairs that are ”far-away” with respect to rk(u). From a high level, the
map g is based on padded probabilistic partitions, similarly to maps of [Rao99, KLMN04, ABN06], however there are
several subtle differences whose combination yields the desired result. We highlight two of the new ideas here:

1. In order to define the map g, we use a new type of probabilistic partition, where clusters are bounded not by their
diameter but by the number of points they contain. Since we need to apply the Local Lemma, the padding prob-
ability must depend only on local events. A related partitioning notion was suggested by Charikar, Makarychev
and Makarychev in [CMM10], however their partition algorithm was based on the probabilistic partitions of
[CKR01, FRT03], which are inherently non-local and hence cannot be used for our application. The construc-
tion of our bounded cardinality probabilistic partition uses the truncated exponential distribution approach of
[Bar96, ABN06]. The proof requires some technical modifications to adapt to the bounded cardinality case (see
Definition 11).
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2. A common use of probabilistic partitions for embeddings is to randomly color each cluster by 0 or 1, or uni-
formly in [0, 1] (see [Rao99, KLMN04, ABN06]). This typically means that the distortion of a pair depends on
the color event of the clusters of both vertices. Even in the local setting it could be that some nodes participates
in many pairs (for example the center node in a star metric), then this may create dependencies among many
pairs and hence prohibit the use of the Local Lemma. To overcome this issue without any growth bound as-
sumptions, we deterministically color each cluster into a D̄ = Θ(log k) dimensional vector in such a way that
if v is among the k nearest neighbors of u and u, v belong to different clusters C,C ′ then the hamming distance
between the colors of C and C ′ is at least D̄/8. This allows to define the success event for the pair u, v for the
map g only as a function of the probabilistic partition around u independent of the events around v.

6.1.1 The ”Small” Distance Map

First we describe the map f , it is essentially the same map f produced in Section 4.2, with the difference of choosing
q = c · s log k. In order for the same analysis to go through (observe that the distortion does not depend on q), it
suffices to verify that for any u, v ∈ X , (6) holds for at least q/(24s) values of j ∈ [q].

Fix some u ∈ X , v ∈ Nk(u) with d(u, v) ≤ rk(u)/8 and i ∈ [m] (m was the minimal integer such that
ρm +ρm−1 ≥ d(u, v)/4). Recall that for some j ∈ [q], events Ej and Fj suggest that (6) will hold. Observe that these
events depend on the inclusion in Aij of some points in B(u, d(u, v)) ∪ B(v, d(u, v)) ⊆ B(u, 2d(u, v)) (because
ρi ≤ d(u, v) for all i ≤ m). Let Ai(u, v) be the event that there are at least q/(24s) values of j ∈ [q] for which both
events Ej and Fj hold, let A(u, v) be the event that Ai(u, v) holds for all i ∈ [m], and let A be the event that A(u, v)
hold for all u ∈ X and v ∈ Nk(u). We will show by the Lovász Local Lemma that Pr[A] > 0, and by its algorithmic
versions we can find a good map f in polynomial time.

Define a dependency graph whose vertices are the events A(u, v) for all u, v ∈ X such that d(u, v) ≤ rk(u)/8,
and two events A(u, v), A(u′, v′) are connected by an edge iff u′ ∈ N̄k(u) (recall that N̄k(u) = {x ∈ Nk(u) | u ∈
Nk(x)}, so this is a symmetric relation). The degree of the graph is at most k2, because there are at most k points
u′ ∈ N̄k(u), and each u′ has at most k points v′ satisfying d(u′, v′) ≤ rk(u′)/8. Assume that events A(u, v) and
A(u′, v′) are not connected by an edge, we will show that the balls B(u, 2d(u, v)) and B(u′, 2d(u′, v′)) are disjoint,
thus the events are indeed independent. To see this, first we note that rk(u) ≤ 2d(u, u′) and also rk(u′) ≤ 2d(u, u′).
Because if, for instance, the former does not hold, then d(u, u′) < rk(u)/2 ≤ (d(u, u′) + rk(u′))/2, so u′ ∈ Nk(u)
and also d(u, u′) < rk(u′) thus u ∈ Nk(u′), which contradicts the fact that u′ /∈ N̄k(u). A symmetric argument
shows that the latter must hold as well. We conclude that

2 (d(u, v) + d(u′, v′)) ≤ 1

4
(rk(u) + rk(u′)) ≤ 1

4
(2d(u, u′) + 2d(u, u′)) = d(u, u′) .

Let Xij be indicator random variable for the event that both Ej and Fj hold, and let Xi =
∑q
j=1Xij . By the

calculation done in Section 4.2 we have that E[Xi] ≥ q/(12s) = c/12 · log k, and by Chernoff bound

Pr[¬Ai(u, v)] = Pr[Xi < E[Xi]/2] ≤ e−E[Xi]/4 ≤ e−(c log k)/48 = k−4 ,

where the last equation is by choosing c as a large enough constant. By the union bound (recall that m ≤ t < k)

Pr[¬A(u, v)] = Pr[∃i ∈ [m],¬Ai(u, v)] ≤ t · k−4 ≤ k−3 .

Now by Lemma 3 on the dependency graph we defined, with degree d = k2 and p = k−3, there is some positive
probability that all the good events A(u, v) hold simultaneously.

6.1.2 The “Large” Distances Embedding

We now detail the map g, that has bounded contraction for pairs such that rk(u)/8 ≤ d(u, v) ≤ rk(u).
Recall that s = ep, and let δ = 1/s, observe that δ = e−p ≥ 2/k. Let D′ = D̂ · D̄ where D̂ = cs · ln k for a

constant c to be determined later, and D̄ = 16 log k. Let P̂ be a k-bounded locally padded probabilistic partition with
parameter δ, as in Lemma 6. For each t ∈ [D̂] fix some P = P (t) ∈ P (the particular choice of P will be detailed later
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in Lemma 15). Define a directed graph G = (V,A), which will be the k-neighborhood graph between the clusters of
the partition P . Let the vertex set V be the clusters of P . Draw a directed edge (C,C ′) between clusters C and C ′ iff
there exists points x ∈ C, y ∈ C ′ such that y ∈ Nk(x). As every cluster contains at most k points, the out-degree of
G is at most k2.

We use the following property of directed graphs with bounded out-degree.

Lemma 12. Any directed graph G = (V,A) with maximal out-degree k can be properly colored5 using 2k+1 colors.

Proof. The proof is by induction. Assume we can color with 2k + 1 colors any graph on less that |V | vertices, whose
out-degree is bounded by k. Since |A| ≤ k · |V |, there must be a vertex x ∈ V of total degree6 at most 2k. Create
a graph H by removing x and all the edges touching x from G, and note that the degree of every vertex in H is still
trivially bounded by k. Using the induction hypothesis, properly color H with 2k + 1 colors. Now we add x back to
the graph, since it has at most 2k edges touching it, we can color it with a color none of its neighbors has.

We also use a set S of vectors in {−1, 1}O(log k) such that any two points in S are “far” from each other.

Lemma 13. For any integer D̄ > 1 and Ω(1/D̄) < δ ≤ 1/2 there exists a set S ⊆ {−1, 1}D̄, |S| ≥ 2D̄(1−H(δ))/2

(H is the entropy function), such that for any u, v ∈ S, the Hamming distance between u and v is at least δD̄.

There is a randomized procedure to produce such a set S, which is a classical result in error correcting codes
[Gil52]. In particular, fixing δ = 1/8 and recalling that D̄ = 16 log k we get a set S of 2k2 + 1 vectors in {−1, 1}D̄
such that the Hamming distance between each two vectors is at least D̄/8. Using Lemma 12 we can properly color G
with m = 2k2 + 1 colors, and define σ = σ(t) : V → S, such that if (C,C ′) ∈ A then σ(C) 6= σ(C ′), by giving each
color class of V a distinct vector in S. For any t ∈ [D̂] define g(t) : X → RD̄ by

g(t)(u) = D̄−1/p · d(u,X \ P (t)(u)) · σ(P (t)(u)).

The embedding g : X → RD′ is the normalized concatenation of the g(t)s,

g(u) = D̂−1/p
D̂⊕
t=1

g(t)(u)

Observe that for any cluster C ∈ P , σ(C) is a D̄ = O(log k) dimensional vector hence g(t) is a mapping into D̄
dimensions and g is a mapping into D′ = D̂ · D̄ = O(ep log2 k) dimensions.

Lemma 14. For any u, v ∈ X , ‖g(t)(u)− g(t)(v)‖p ≤ O(d(u, v)).

Proof. Fix any P = P (t). We distinguish between two cases

Case 1: P (u) = P (v). Denote by (a1, . . . aD̄) = σ(P (u)) = σ(P (v)), then as
∣∣d(u,X \P (u))−d(v,X \P (u))

∣∣ ≤
d(u, v),

‖g(t)(u)− g(t)(v)‖pp = D̄−1
∣∣d(u,X \ P (u))− d(v,X \ P (u))

∣∣p D̄∑
i=1

|ai|p ≤ d(u, v)p.

Case 2: P (u) 6= P (v), then d(u,X \ P (u)) ≤ d(u, v) and also d(v,X \ P (v)) ≤ d(u, v), hence

‖g(t)(u)− g(t)(v)‖pp ≤ ‖g(t)(u)‖pp + ‖g(t)(v)‖pp ≤ 2D̄−1
∣∣d(u, v)

∣∣p D̄∑
i=1

1p ≤ (2d(u, v))p.

5Properly colored means that the end points of every directed edge are colored by different colors.
6The total degree of a vertex in a directed graph is the number of edges touching the vertex.
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Lemma 15. There exist partitions P (t) ∈ supp(P̂) for each t ∈ [D̂], such that for any u, v ∈ X with v ∈ Nk(u) and
rk(u)/8 < d(u, v) ≤ rk(u),

‖g(u)− g(v)‖p ≥ Ω(p · d(u, v)/ log k) .

Proof. Fix any t ∈ [D̂] and let P = P (t). From the first property of Definition 11, v /∈ P (u). Since v ∈ Nk(u) by
the proper coloring σ(P (u)) 6= σ(P (v)). Let Iuv = Iuv(t) ⊆ [D̄] be the subset of at least D̄/8 coordinates such
that for any i ∈ Iuv we have σ(P (u))i 6= σ(P (v))i, and note that for any two positive numbers a, b we have that
|a · σ(P (u))i − b · σ(P (v))i| = a+ b. By the second property of Definition 11 with probability 1/s we have that u is
padded, if it holds then d(u,X \ P (u)) ≥ 2−9rk(u) · log s/ log k ≥ 2−9p · d(u, v)/ log k. Given the padding event,

‖g(t)(u)− g(t)(v)‖pp ≥ D̄−1
∑
i∈Iuv

(d(u,X \ P (v)) + d(v,X \ P (v)))p

≥ |Iuv|/D̄ · d(u,X \ P (u))p

≥ (1/8) · (2−9p · d(u, v)/ log k)p.

Let Zt be an indicator for the event that u is padded in P (t). Note that this event is sufficient for obtaining bounded
contraction in the t-th coordinate. Define Eu,v as an indicator random variable for the event that exists a subset T ⊆ [D̂]

of size at least D̂/(2s) such that for all t ∈ T , Zt holds. Note that if Eu,v holds then

‖g(u)− g(y)‖pp ≥ D̂−1
∑
t∈T
‖g(t)(u)− g(t)(v)‖pp ≥ Ω((1/s) · (p · d(u, v)/ log k)p).

As required, so it remains to show that there exists some choice of randomness such that all events Eu,v , for pairs
u, v ∈ X such that rk(u)/8 < d(u, v) ≤ rk(u), hold simultaneously.

Let Z =
∑
t∈[D̂]Zt, then E[Z] ≥ D̂/s. In order for Eu,v to hold, we need that Z ≥ D̂/(2s). Using Chernoff

bound,
Pr[Z ≤ D̂/(2s)] = PrZ ≤ E[Z]/2] ≤ e−D̂/(8s) ≤ 1/(4k2) ,

where the last inequality holds for c ≥ 16 ln 4. Define a dependency graph whose vertices are events Eu,v , and draw
an edge (Eu,v, Ex,y) iff x ∈ N̄k(u) (note that this is a symmetric definition). The degree of the graph is at most
k2. Recall that the second property of Definition 11 states that the padding probability of any x ∈ X is essentially
determined by the partition restricted to B(x, rk(x)/4). If Eu,v is not connected by an edge in the dependency graph
to Ex,y , then it must be that B(u, rk(u)/4) ∩ B(x, rk(x)/4) = ∅. Assume by contradiction that this is not so, then
d(u, x) ≤ rk(u)/4+rk(x)/4, we also know that rk(x) ≤ d(x, u)+rk(u) ≤ 5rk(u)/4+rk(x)/4 so rk(x) ≤ 2rk(u),
and then d(u, x) ≤ rk(u)/4 + rk(x)/4 ≤ rk(u)/4 + 2rk(u)/4 < rk(u). An identical calculation shows that
d(u, x) < rk(x), and this contradicts the fact that x /∈ N̄k(u). We conclude that we may condition on events that
are not connected by an edge to Eu,v , and the bound on the padding probability remains. By applying Lemma 3 with
probability p = 1/(4k2) and degree d ≤ k2 we conclude that there is a choice of randomness for which all events Eu,v
hold simultaneously.

6.2 Optimal Dimension for Weak Growth Bounded Metrics

Theorem 9. For any finite metric space (X, d) on n points with a χ-weak growth bound there exists an embedding
into `p with k-local distortion O(poly(χ) · log k) and dimension O(poly(χ) · log k).

The proof will follow the lines of the ”small” distance map of Section 6.1.1, with two main differences. We will use
embedding that are based on locally padded probabilistic partitions, similar in spirit to those used in [ABN06], instead
of Bourgain type embedding, to achieve a better dimension of O(log k). This creates some complications: Bourgain
type embeddings are inherently defined with respect to densities, so we could simply eliminate densities higher than
k. However, in the partition based embedding, we need to carefully delete contribution from dense clusters, and argue
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that it does not harm the analysis. In order to apply the Lovász Local Lemma, we will use the growth bound to argue
that there are few dependencies between pairs of k-nearest neighbors.

Let D = c ln k, for some constant c to be defined later. We will define an embedding f : X → RD with k-
local distortion O(log k). We define f by defining for each 1 ≤ t ≤ D, a function f (t) : X → R+, and letting
f = D−1/p

⊕
1≤t≤D f

(t). Fix t, 1 ≤ t ≤ D. In what follows we define f (t). Let ∆0 = diam(X) and for every
integer i > 0 let ∆i = ∆0/4

i. We construct for all i > 0 a ∆i-bounded ηi-uniformly locally padded probabilistic
partition P̂i as in Lemma 5 with parameter γ = 64. Let ξi be as defined in the lemma. Denote by Ω the probability
space of all possible embeddings f . Now for every i > 0 fix a partition Pi ∈ Pi. We define the embedding by defining
the coordinates for each x ∈ X . For every cluster C ∈ Pi fix an arbitrary center υ(C) ∈ C. Let `(x) be the minimal
integer such that |B(υ(P`(x)(x)), 3γ∆`(x))| ≤ kχ

4

.
We now define ξ̄ in the following manner :

ξ̄i(x) =

{
0 i < `(x)

ξi(x) otherwise

Define for x ∈ X , 0 < i ∈ I , φ(t)
i : X → R+, by φ(t)

i (x) = ξ̄i(x)/ηi(x). Lemma 5 and the definition of `(x) ensures
that ξ̄i and ηi are uniform functions with respect to P̂i so we have:

Claim 16. For any x, y ∈ X and i > 0, if Pi(x) = Pi(y) then φ(t)
i (x) = φ

(t)
i (y).

Claim 17. For any x ∈ X , t ∈ [D], ∑
i>0

φ
(t)
i (x) ≤ 210χ4 log k

Proof. By the second property of Lemma 5 and the definition of ξ̄i, if ξ̄i = 1 then in particular it must be ξi(x) = 1
and so 1/ηi(x) ≤ 27 log ρ(x, 2∆i, γ). Now,∑

i>0

φ
(t)
i (x) =

∑
i>0|ξ̄i(x)=1

η−1
i (x)

≤
∑
i≥`(x)

27 log

(
|B(x, 2γ∆i)|
|B(x, 2∆i/γ)

)
≤ 29 · χ4 log k.

The last in-equation holds since d(x, υ(P`(x)(x))) ≤ ∆`(x), and so |B(x, 2γ∆`(x))| ≤ |B(υ(P`(x)(x)), 3γ∆`(x))| ≤
kχ

4

, so the summation telescopes to 4χ4 log k.

For each 0 < iwe define a function f (t)
i : X → R+ and for x ∈ X , let f (t)(x) =

∑
i>0 f

(t)
i (x). Let {σ(t)

i (C)|C ∈
Pi, 0 < i} be i.i.d symmetric {0, 1}-valued Bernoulli random variables. The embedding is defined as follows: for each
x ∈ X:

• For each 0 < i, let f (t)
i (x) = σ

(t)
i (Pi(x)) ·min{φ(t)

i (x) · d(x,X \ Pi(x)),∆i}.

The following claim was essentially proved in [ABN06], we include the proof for completeness

Claim 18. For any x, y ∈ X and 0 < i : f (t)
i (x)− f (t)

i (y) ≤ min{φ(t)
i (x) · d(x, y),∆i}.

Proof. First note that for any set A ⊂ X and positive real r, by the triangle inequality

min{d(x,A), r} −min{d(y,A), r} ≤ min{d(x, y), r} . (16)

If it is the case that Pi(x) = Pi(y), then using the uniformity of φ(t)
i and (16),

f
(t)
i (x)− f (t)

i (y) = σ
(t)
i (Pi(x)) ·

(
min{φ(t)

i (x) · d(x,X \ Pi(x)),∆i} −min{φ(t)
i (x) · d(y,X \ Pi(x)),∆i}

)
≤ min{φ(t)

i (x) · d(x, y),∆i} .
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Otherwise, if Pi(x) 6= Pi(y) then d(x,X \ Pi(x)) ≤ d(x, y), and then

f
(t)
i (x)− f (t)

i (y) ≤ f (t)
i (x) ≤ min{φ(t)

i (x) · d(x, y),∆i} .

Lemma 19. There exists a universal constant C1 > 0 such that for any x, y ∈ X:

|f (t)(x)− f (t)(y)| ≤ C1χ
4 log k · d(x, y).

Proof. From Claims 17 and 18 we get

f (t)(x)− f (t)(y) =
∑
i>0

f
(t)
i (x)− f (t)

i (y)

≤
∑
i>0

φ
(t)
i (x) · d(x, y)

≤ 29χ4 log k · d(x, y)

6.2.1 Lower Bound Analysis

For every pair of points x, y such that y ∈ Nk(x), we define a critical scale i = ixy , which is the unique integer
satisfying 6∆i ≤ d(x, y) < 6∆i−1. If N is the set of all such x, y pairs, we partition it according to the critical scales,
that is, Ni = {(x, y) | ixy = i ∧ y ∈ Nk(x)}, and let N =

⋃
i>0Ni. Fix some x, y and i = ixy , define the event

Zt(x, y) as |f (t)
i (x)− f (t)

i (y)| ≥ ∆i ∧

∣∣∣∣∣∣
∑
j<i

f
(t)
j (x)− f (t)

j (y)

∣∣∣∣∣∣ ≤ ∆i

2

∨
f (t)

i (x) = f
(t)
i (y) = 0 ∧

∣∣∣∣∣∣
∑
j<i

f
(t)
j (x)− f (t)

j (y)

∣∣∣∣∣∣ > ∆i

2

 .

Also define a function gi : Ni → 2D as follows

gi(x, y) = {t ∈ [D] | Zt(x, y)} ,

and let Z(x, y) be the event that |gi(x, y)| ≥ D/16. Finally let Z =
⋂

(x,y)∈N Z(x, y), then we would like to show
the following

Lemma 20.
Pr[Z] > 0.

Before proving this Lemma, let us see that it is sufficient to bound the contraction of the embedding.

Claim 21. For any integer i > 0, (x, y) ∈ Ni and t ∈ gi(x, y),

|f (t)(x)− f (t)(y)| > d(x, y)/29 .

Proof. By Claim 18 and since ∆j is a geometric series

|
∑
j>i

f
(t)
j (x)− f (t)

j (y)| ≤
∑
j>i

∆j = ∆i/3 .
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Since Zt(x, y) holds |
∑
j≤i f

(t)
j (x)− f (t)

j (y)| ≥ ∆i/2, so

|
∑
j>0

f
(t)
j (x)− f (t)

j (y)| ≥ |
∑
j≤i

f
(t)
j (x)− f (t)

j (y)| − |
∑
j>i

f
(t)
j (x)− f (t)

j (y)| ≥ ∆i/6 ≥ d(x, y)/28 .

Lemma 22. There exists a universal constant C2 and a choice of embedding f such that for any x, y ∈ N :

|f(x)− f(y)| ≥ C2d(x, y).

Proof. Using Lemma 20, let f be an embedding such that event Z holds. Consider any integer i > 0, (x, y) ∈ Ni and
t ∈ gi(x, y). Using Claim 21 and the fact that |gi(x, y)| ≥ D/16,

‖f(x)− f(y)‖pp =
1

D

∑
t∈D
|f (t)(x)− f (t)(y)|

≥ 1

D

∑
t∈gi(x,y)

|f (t)(x)− f (t)(y)|

≥ (1/16)
d(x, y)

28

Proof of Lemma 20. We shall make use the following variation of the Local Lemma, in which the bad events have
rating, and events may only depend on other events with equal or larger rating.

Lemma 23 (Local Lemma). LetA1,A2, . . .An be events in some probability space. Let G(V,A) be a directed graph
on n vertices with out-degree at most d, each vertex corresponding to an event. Let c : V → [m] be a rating function
of events, such that if (Ai,Aj) ∈ A then c(Ai) ≤ c(Aj). Assume that for any i = 1, . . . , n

Pr

Ai | ∧
j∈Q
¬Aj

 ≤ p
for all Q ⊆ {j : (Ai,Aj) /∈ A ∧ c(Ai) ≥ c(Aj)}. If ep(d+ 1) ≤ 1, then

Pr

[
n∧
i=1

¬Ai

]
> 0

Proof. We iteratively apply the Lovász Local Lemma on every rating level k ∈ [m], and prove the property by
induction on k. For k ∈ [m] denote by Vk ⊆ V all the events with rating k, and by Gk = (Vk, Ek) the induced
subgraph on Vk. The base of the induction k = 1, by the assumption for all Ai ∈ V1,

Pr

Ai | ∧
j∈Q
¬Aj

 ≤ p,
for any Q satisfying Q ⊆ {j : (Ai,Aj) /∈ E1 ∧ c(Aj) = 1}. This means that by the usual local lemma on the graph
G1 there is a choice of randomness for which all the bad events in V1 do not occur.

Fix some k ∈ [m] and assume all events in V1, . . . Vk−1 do not hold. Note that by definition an event in Vk depends
only on events of rating k or higher, so given that events in V1, . . . Vk−1 are fixed to not happen, for allAi ∈ Vk by the
assumption

Pr

Ai | ∧
j∈Q
¬Aj

 ≤ p,
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for any Q satisfying Q ⊆ {j : (Ai,Aj) /∈ Ek ∧ c(Aj) = k} ∪ {j : Aj ∈ V1 ∪ · · · ∪ Vk−1}. So once again by the
usual local lemma on Gk there is non-zero probability that all the events in Vk do not occur.

Define a directed graph G = (V,A) where V = {Z(x, y) | (x, y) ∈ Ni}, define the ranking function as
c(Z(x, y)) = ixy and

(Z(x, y),Z(x′, y′)) ∈ A⇔ d(x, x′) ≤ 6rk(x) ∧ c(Z(x, y)) ≤ c(Z(x′, y′)),

note that the definition is not symmetric, G is a directed graph, and that the rating matches the requirements of
Lemma 23.

Claim 24. The out-degree of G is bounded by kχ
4

.

Proof. Fix any vertex Z(x, y) ∈ V . By the weak growth bound condition |B(x, 6rk(x))| ≤ |B◦(x, rk(x))|χ3 ≤ kχ3

,
and for each x′ ∈ B(x, 6rk(x)) there are at most k possible values of y′ such that (x′, y′) ∈ N , hence the out degree
is bounded by kχ

4

.

The following claim will establish that pairs inNi that are not connected by an edge inG, are far apart with respect
to ∆i.

Claim 25. Let (x, y) ∈ Ni. If (x′, y′) ∈ Ni such that (Z(x, y),Z(x′, y′)) /∈ A then d({x, y}, {x′, y′}) > 4∆i.

Proof. By definition of Ni both d(x, y), d(x′, y′) < 6∆i−1. By definition of G, and since d(x, y) ≤ rk(x), we
have that d(x, x′) > 6rk(x) ≥ 6d(x, y), and thus d(x′, y) ≥ d(x, x′) − d(x, y) ≥ 5d(x, y). We also have that
d(y′, y) ≥ d(x′, y) − d(y′, x′) ≥ 5d(x, y) − 6∆i−1 ≥ 30∆i − 6∆i−1 > 4∆i. Similarly, d(x, y′) ≥ d(x, x′) −
d(x′, y′) ≥ 6d(x, y)− 6∆i−1 > 4∆i.

We now show a claim about event Zt(x, y) which is essential for using the local Lemma.

Claim 26. For all (x, y) ∈ Ni,

Pr

¬Zt(x, y) |
∧

(x′,y′)∈Q

Z(x′, y′)

 ≤ 7/8

for all Q ⊆ {(x′, y′) ∈ Ni′ : (Z(x, y),Z(x′, y′)) /∈ A ∧ c(Z(x, y)) ≥ c(Z(x′, y′))}.

Proof. Fix (x, y) ∈ Ni, t ∈ [D]. We will show that event Z(x, y) can hold with probability at least 1/8, and that
this will depend only on the padding event for x or y, and on the choice of σi for Pi(x), Pi(y), so if we show that
any outcome for events in Z(x

′, y′) for x′, y′ ∈ Q cannot affect the padding and σ, we will be done. For i′ < i and
any x′, y′ ∈ Ni′ the event Z(x′, y′) depend only on the random choices for the first i′ levels of the partition, so the
padding in scale i and choice of σi will be independent of these events. Otherwise i′ = i. For any x′, y′ ∈ Ni such that
(Z(x, y),Z(x′, y′)) /∈ A, by Claim 25 d({x, y}, {x′, y′}) > 4∆i. This suggests that x, y and x′, y′ fall into different
clusters in scale i, hence the choice of σi is independent for each. By the locality of our partition, the padding event
for x ∈ X in scale ∆i is essentially determined by the partition restricted to B(x, 2∆i), so we have that the padding
probability in scale i for x, y remains bounded even given any outcome of the padding for x′, y′.

Even though the event Z(x, y) does depend on scales j < i, we will show that there is probability at least 1/8 for
it to hold given any outcome for scales j < i. Since (2 + 1/16)2∆i < 6∆i ≤ d(x, y) ≤ 6∆i−1 ≤ (14− 1/16)2∆i,
we get from Claim 4 that max{ρ̄(x, 2∆i, γ), ρ̄(y, 2∆i, γ)} ≥ 2. We will show that |B(υ(Pi(y)), 3γ∆i)| ≤ kχ

4

. As
d(x, υ(Pi(y))) ≤ d(x, y) + ∆i ≤ 2d(x, y), due the weak growth bound assumption,

|B(υ(Pi(y)), 3γ∆i)| ≤ |B(x, 48∆i + 2d(x, y))| ≤ |B(x, 9d(x, y))| ≤ |B(x, 9rk(x))| ≤ |B◦(x, rk(x))|χ
4

≤ kχ
4

.
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The same argument holds for |B(υ(Pi(x)), 3γ∆i)|. This suggests that ξ̄i(y) = ξi(y) and ξ̄i(x) = ξi(x). W.l.o.g
assume that ρ̄(x, 2∆i, γ) ≥ 2, which implies that ξi(x) = 1, hence φ(t)

i (x) = 1/ηi(x). If it is the case that∣∣∣∣∣∣
∑
j<i

f
(t)
j (x)− f (t)

j (y)

∣∣∣∣∣∣ ≤ ∆i

2
,

then it is enough that the following will hold

• B(x, ηi(x)∆i) ⊆ Pi(x),

• σ(t)
i (Pi(x)) = 1.

• σ(t)
i (Pi(y)) = 0.

By Lemma 5, the definition of σ and the fact that Pi(x) 6= Pi(y), the probability of each of these events is indepen-
dently at least 1/2. If all these events occur then |f (t)

i (x)− f (t)
i (y)| ≥ min{η−1

i (x) · d(x,X \ Pi(x)),∆i} ≥ ∆i.
If on the other hand ∣∣∣∣∣∣

∑
j<i

f
(t)
j (x)− f (t)

j (y)

∣∣∣∣∣∣ > ∆i

2
,

then we just need

• σ(t)
i (Pi(x)) = σ

(t)
i (Pi(y)) = 0,

which again holds with probability 1/4. In any case with probability at least 1/8 event Zt(x, y) will hold.

Notice that eventsZt(x, y) are independent of eventsZt(x, y) for t 6= t′. For any x, y ∈ Ni letB =
∑
t∈D Zt(x, y),

then E[B] ≥ D/8, and by Chernoff bound we get that

Pr [B < D/16] ≤ Pr [B < E[B]/2] ≤ e−E[B]/8 = e−D/64 ≤ k−χ
5

,

where we choose c = 64χ5.
Let p = k−χ

5

. To conclude, using Claim 26

Pr

¬Z(x, y) |
∧

(x′,y′)∈Q

Z(x′, y′)

 ≤ p
for all Q ⊆ {(x′, y′) ∈ Ni′ | (Z(x, y),Z(x′, y′)) /∈ A ∧ c(Z(x, y)) ≥ c(Z(x′, y′))}. Note that ep(kχ

4

+ 1) ≤ 1,
hence by Lemma 23

Pr[Z] > 0

7 Local Dimension Reduction for Ultrametrics

Even though local dimension reduction is impossible in general, we show that it is possible for the class of ultrametrics.
The local dimension reduction can be done in any `p space, in contrast to the Johnson-Lindenstrauss [JL84] (non-local)
dimension reduction that can be done in `2, is impossible in `1, `∞ and unknown for other `p spaces. The proof has
three main steps: first embed the ultrametric to a θ−eHST (exact Hierarchically Separated Tree, see definition below)
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with distortion θ, then embed the HST with k-local distortion 1 into a bounded degree HST, where the bound is
polynomial in k. Finally we extend the general framework of [BM04, BLMN04], who showed dimension reduction
for ultrametrics, and give lower dimension for bounded degree HSTs. We show that such HSTs can be embedded,
preserving all distances up to 1 + ε, into a dimension that is logarithmic in the degree of the HST. Recall,

• Ultrametric: An ultrametric (X, d) is a metric space satisfying a strong form of the triangle inequality, for all
x, y, z ∈ X , d(x, z) ≤ max{d(x, y), d(y, z)}.

• HST: For θ ≥ 1, a θ − eHST is a finite metric space defined on the branches of a rooted infinite tree, having
a finite number of branches. For branches x, y denote by lca(x, y) the least common ancestor of x and y in the
tree, i.e. , the deepest node in x ∩ y, and by dlca(x, y) its depth. The distance between branches is defined as
d(x, y) = θ−dlca(x,y). Denote by xi the i-th node in the branch x.

Theorem 10. Let (X, d) be an ultrametric, then for any p ≥ 1, 0 < ε ≤ 1 and k ≤ |X| there is an embedding of X
into `p with k-local distortion 1 + ε and dimension O(ε−3 log k). 7

To prove this theorem we first introduce the following lemmata. The first lemma is a variant of a lemma of [Bar96]
(a proof is given in [BLMN05]):

Lemma 27. For any θ > 1, any ultrametric embeds in a θ − eHST with distortion θ.

Lemma 28. For all θ > 1, any θ − eHST T ′ can be embedded into a θ − eHST T , where every internal node in the
tree representation of T has degree at most 2k2 + 1, with k-local distortion 1.

Proof. For a θ − eHST T ′ let r(T ′) denote the root of T ′ and for a node u ∈ T ′ let c(u) the set of all children of u.
The intuition behind the construction of T from T ′ is by defining a neighborhood graph on the children of the root,
and unite those children which are not connected by an edge in this graph, thus obtaining a small number of children.
Once we have few children continue recursively on each of them. Formally, perform the following recursive process
on T ′ creating T :

1. Let r = r(T ′). Define a neighborhood graph with vertices c(r) = {v1, . . . , v`} by adding a directed edge
(vi, vj) iff one of the branches x in the subtree rooted at vi has y ∈ Nk(x) where y is a branch in the subtree
rooted in vj . It can be seen that only children with at most k branches have out-going edges, hence the out-degree
of this graph is bounded by k2.

2. Using Lemma 12 properly color the graph with m = 2k2 + 1 colors. For any 1 ≤ i ≤ m let vi1 , . . . , vis be the
children colored by color i, replace them by a single node ri and set c(ri) =

⋃s
j=1 c(vij ).

3. For each 1 ≤ i ≤ m continue recursively on the subtree rooted at ri.

Let x, y be two branches such that y ∈ Nk(x). Then for any level i of the recursive process, let v be the current root -
if it is the case that v /∈ x or v /∈ y then the unions done to the children of v cannot affect d(x, y). Otherwise, let vj , v`
be the children of v which lie on branches x, y respectively (it could be that j = `). Since the graph we define on the
children of v contains the (directed) edge (vj , v`), the vertices vj , v` will be colored by distinct colors and will not be
united. It follows that the distance between x, y will never change in the process.

Note that the construction of the tree in the deeper recursion levels is done with respect to the original set Nk(x),
which guarantees that distances between k-nearest neighbors are preserved.

Lemma 29. Let 0 < ε ≤ 1/2, m ∈ N and θ = eε. Let T be a θ − eHST with branches H , such that the out-
degree of every node in T is at most m. Then T can be embedded into `p with distortion 1 + ε and dimension
D̄ = O((logm) · (ln(2 min{p, 1/ε})/ε)2 ·max{1, 1/(εp)}).

7The actual bound on the dimension is in fact O((log k) · (ln(2 min{p, 1/ε})/ε)2 ·max{1, 1/(εp)}), which is O(ε−3 log k · p−1 log p) for
p = O(1/ε), and O(ε−2 log(1/ε) log k) for p = Ω(1/ε).
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Proof. Let θ = eε, α = ln(2 min{p, 1/ε}), d = α/ε (note that θd = min{2p, 2/ε}). Let q be a parameter to be
determined later, let D = cq · max{1, 1/(εp)} for some constant c to be determined later, and set D̄ = D · d. Let
(ei)i∈{0,...,d−1} be the standard orthonormal basis of Rd, and (ei)i∈N its extension to a periodic sequence modulo d.
For each node a ∈ T let ba ∈ {0, 1} be a random symmetric i.i.d bit. Define for all t ∈ [D], i > 0 f

(t)
i : H → Rd as

f
(t)
i (x) = θ−ibxiei ,

and define f (t) : H → Rd as f (t)(x) =
∑∞
i=1 f

(t)
i (x). Finally define f : H → RD̄ by

f(x) =

D⊕
t=1

f (t)(x) .

Fix some x, y ∈ H and t ∈ [D]. For any j ∈ {0, . . . , d− 1} let Z(t)
j = |(f (t)(x)− f (t)(y))j |p. Let ij = min{i >

dlca(x, y) | i = j mod (d)} and let Ij = {i ≥ ij | i = j mod d}. Note that since xi = yi for any i ≤ dlca(x, y),
we have that Z(t)

j = |
∑
i∈Ij (f

(t)
i (x)− f (t)

i (y))i|p. Then we have the following

0 ≤ Z(t)
j ≤

∑
i∈Ij

θ−i

p

=

(
θ−ij

∞∑
i=0

θ−id

)p
=

(
θ−ij

1− θ−d

)p
(17)

Claim 30. For any j ∈ {0, . . . , d− 1} and t ∈ [D], Pr[Z
(t)
j ≥ θ−ijp] ≥ 1/16. Moreover, this bound depends only on

random variables bxi , byi where i ∈ {ij , ij + d}.

Proof. There is probability of 1/16 that the random bits bxij = 1, byij = 0, bxij+d
= 1 and byij+d

= 0 . In such a

case (f
(t)
ij

(x)− f (t)
ij

(y))ij = θ−ij and (f
(t)
ij+d

(x)− f (t)
ij+d

(y))ij+d = θ−ij−d. Note that θ−d

1−θ−d = 1
eα−1 ≤ 1 (because

α ≥ ln 2), which suggests that

|
∑

i∈Ij\{ij ,ij+d}

(f
(t)
i (x)− f (t)

i (y))i| ≤ θ−ij−2d
∞∑
i=0

θ−di =
θ−ij−2d

1− θ−d
≤ θ−ij−d.

It follows that with probability at least 1/16

Z
(t)
j =

∣∣∣∣∣∣
∑
i∈Ij

(f
(t)
i (x)− f (t)

i (y))i

∣∣∣∣∣∣
p

≥

∣∣∣∣∣∣θ−ij + θ−ij−d − |
∑

i∈Ij\{ij ,ij+d}

(f
(t)
i (x)− f (t)

i (y))i|

∣∣∣∣∣∣
p

≥ θ−ijp

For any 1 ≤ t ≤ D let Z(t)(x, y) = Z(t) =
∑d−1
j=0 Z

(t)
j = ‖f (t)(x) − f (t)(y)‖pp . Also let Z(x, y) = Z =
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∑D
t=1 Z

(t)(x, y) and µ = E[Z]. Note that µ/d(x, y)p is a constant independent of d(x, y), because we can write

µ =

D∑
t=1

d−1∑
j=0

E[Z
(t)
j ]

=

D∑
t=1

d−1∑
j=0

E

∣∣∣∣∣∣
∑
i∈Ij

(f
(t)
i (x)− f (t)

i (y))i

∣∣∣∣∣∣
p

=

D∑
t=1

d−1∑
j=0

E

∣∣∣∣∣∣
∑
i∈Ij

θ−i(bxi − byi)

∣∣∣∣∣∣
p

=

D∑
t=1

d−1∑
j=0

E

[∣∣∣∣∣θ−dlca(x,y)−1
∞∑
i=0

θ−id−j(bxdlca(x,y)+id+j
− bydlca(x,y)+id+j

)

∣∣∣∣∣
p]

= d(x, y)pθ−p ·
D∑
t=1

d−1∑
j=0

E

[∣∣∣∣∣
∞∑
i=0

θ−id−j(bxi − byi)

∣∣∣∣∣
p]

The last equality holds as for calculating the expectation over the random bits it does not matter from which level
of the tree they are taken - they are all independent with the same distribution. We conclude that we can scale the
embedding f by this constant. It follows that it is enough to prove that there exists a choice of the random bits such
that |Z1/p − µ1/p| < εµ1/p for all pairs, then the embedding will have distortion 1 +O(ε).

Now the analysis is different for various values of p, first we prove for the case that p ≤ 4/ε, note that in this case

D ≥ cq/(4εp). Let Mj =
(

θ−ij

1−θ−d

)p
≤ e · θ−ijp, using that (1 − θ−d)p ≥ (1 − 1/(2p))p ≥ e−p/p = 1/e, and note

that (17) suggests that 0 ≤ Z(t)
j ≤Mj . Let M =

∑D
t=1

∑d
j=1M

2
j , and we have the following bound:

M ≤ e2D

d−1∑
j=0

θ−2ijp (18)

=
e2D · θ−2(dlca(x,y)+1)p · (1− θ−2pd)

1− θ−2p

≤ e2D · d(x, y)2p

e2εp − 1

≤ 4D · d(x, y)2p

εp
,

where we used in the second inequality that θ−2p

1−θ−2p = 1
e2εp−1 and that 1− θ−2pd ≤ 1, and in the third inequality that

e2εp − 1 ≥ 2εp.
By linearity of expectation and by Claim 30 it follows that

µ ≥ D

16

d−1∑
j=0

θ−ijp

=
D · θ−p(dlca(x,y)+1)

16

d−1∑
i=0

θ−ip

=
D · θ−p · d(x, y)p

16
· 1− θ−dp

1− θ−p

≥ D · d(x, y)p

2000εp
,
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where in the last inequality we used that 1− θ−dp ≥ 1− e−p ≥ 1− 1/e ≥ 1/2, that 1− θ−p = 1− e−εp ≤ εp and
that θ−p ≥ 1/e4.

Now we want to show that with high enough probability it will be the case that |Z − µ| < εpµ, and since εp ≤
eεp−1 ≤ (1+2ε)p−1 (using that eε ≤ 1+2ε for 0 < ε ≤ 1/2) it will imply that (1−2ε)µ1/p < Z1/p < (1+2ε)µ1/p

which gives the desired distortion 1 + O(ε). By Hoeffding’s inequality (Lemma 2) with η = εpµ ≥ D·d(x,y)p

2000 and
using (18),

Pr[|Z − µ| ≥ εpµ] = Pr[|Z − µ| ≥ η] ≤ 2e−2η2/M ≤ 2e−εpD/8000000 ≤ e−q−1,

for a large enough constant c. Denote by P = e−q−1.
Consider the case p > 4/ε, where D = cq. First observe that 1 − θ−d = 1 − ε/2 and θ−p ≤ (1 − ε + ε2/2)p ≤

(1− 3ε/4)p (the last inequality holds since ε ≤ 1/2) hence θ−p

(1−θ−d)p
≤ (1−3ε/4)p

(1−ε/2)p ≤ (1− ε/4)p ≤ 1/e. Also note that
1− θ−p ≥ 1− e−4. Assume w.l.o.g that i0 is the minimal among i0, i1, . . . , id−1, then by (17) for any 0 ≤ ` ≤ d− 1,

d−1∑
j=`

Z
(t)
j ≤ 1

(1− θ−d)p
d∑
j=`

θ−ijp (19)

=
θ−(i`−1)p · θ−p

(1− θ−d)p
· 1− θ−dp

1− θ−p

≤ θ−(i`−1)p · 1/e

1− 1/e4

≤ θ−(i`−1)p/2,

In particular for ` = 0 we have that for any 1 ≤ t ≤ D

Z(t) ≤ θ−(i0−1)p/2 = θ−dlca(x,y)·p/2 = d(x, y)p/2,

hence with probability 1

Z =

D∑
t=1

Z(t) ≤ D · d(x, y)p .

By Claim 30 with probability at least 1/16 we have that Z(t)
0 ≥ θ−i0p, and (19) suggests that

∑d−1
j=1 Z

(t)
j ≤ θ−i0p/2.

It follows that with probability 1/16

Z(t) ≥ θ−i0p − |
d∑
j=1

Z
(t)
j | ≥ θ

−i0p/2 ≥ (1− ε)p · d(x, y)p/2 . (20)

Let Kt be an indicator random variable for the event that Z(t) ≥ θ−i0p/2, and K =
∑D
t=1Kt. Note that

E[K] ≥ D/16, denote E[K] = γD/16 for some γ ≥ 1, then by Chernoff bound

Pr[K < D/32] ≤ Pr[E[K]−K > γD/32] ≤ e−γD/8 ≤ e−D/8 ≤ e−q−1 = P

for c large enough. So with probability at least 1−P we have that at least 1/32 fraction of the Z(t) are lower bounded
as in (20), hence

Z =

D∑
t=1

Z(t) ≥ D/32 · (1− ε)p · d(x, y)p/2 = D(1− ε)p · d(x, y)p/64 ,

as required, since the distortion is
(

64
(1−ε)p

)1/p

= 1 +O(ε).

Finally, in order to use the local lemma, we need to argue that the number of dependencies is small relative to
the success probability. Define equivalence relation on unordered pairs of branches such that {x, y} ∼ {x′, y′} iff
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xa+2d = x′a+2d, ya+2d = y′a+2d where a = dlca(x, y) + 1. Denote by [x, y] be the equivalence class of ∼ that
contains the pair x, y. Claim 30 implies that for all the pairs in [x, y] the success event (in either of the above cases)
for each one of the pairs in [x, y] is defined by exactly the same random variables - the first 2d nodes on the branches
x, y just after lca(x, y). Moreover, all the pairs require exactly the same events to occur in order to succeed. Let Y[x,y]

be an indicator variable for the event that the random choices for nodes in the first 2d levels after lca(x, y) are such
that |Z(x, y)− E[Z(x, y)]| < (1 + ε)pE[Z(x, y)]. Our ”bad” events will be ¬Y[x,y], note that Pr[¬Y[x,y]] ≤ P .

Let Q = Q([x, y]) be the number of equivalence classes [x′, y′] such that lca(x, y) and lca(x′, y′) are on the same
branch in T and their tree distance is at most 2d. Note that if one of these two conditions does not hold the random
variables governing the success of Y[x,y] are completely different from those governing Y[x′,y′], hence those events are
independent. We set q = lnQ, hence P = 1/(eQ) and we have that eQP = 1, and the Lovász Local Lemma implies
that there is some probability that all good events Y[x,y] occur simultaneously for all equivalence classes [x, y].

It remains to give a bound on Q in order to show that D is small enough, as promised in the lemma statement.
Since the out-degree of T is bounded by m, for each u ∈ T there are at most m2d descendants of u at tree distance
2d, and hence at most (m2d)2 equivalence classes [x, y] for which the node u is lca(x, y). In addition there are at most
2d ·m2d + 2d ≤ m4d other possible nodes u′ ∈ T at tree distance at most 2d from u such that both u and u′ are on
the same branch of T . It follows that Q ≤ m8d ≤ e9 lnm·α/ε, hence q ≤ 9 lnm · α/ε, which gives the desired bound
on D.

Proof of Theorem 10. Fix any p ≥ 1 and 0 < ε ≤ 1. Let ε̂ = ε/4 and θ = eε̂. Using Lemma 27 embed the ultrametric
(X, d) into a θ − eHST T ′ with distortion θ, and using Lemma 28 embed T ′ into a θ − eHST T such that the degree
of any internal node of T is at most m = 2k2 + 1, with k-local distortion 1. Finally using Lemma 29 with parameter
ε̂ < 1/2, embed T into D̄ dimensional `p space with distortion 1+ ε̂, where D̄ = O((logm) ·(ln(2 min{p, 1/ε})/ε)2 ·
max{1, 1/(εp)}) = O((log k)/ε3). The total k-local distortion is at most θ(1 + ε̂) ≤ 1 + ε.

7.1 Low Dimensional Embedding for Doubling Ultrametrics

As a bi-product of our work, the techniques used to prove Theorem 10 can be used to give near optimal embedding of
Ultrametrics in their intrinsic dimension.

Recall that a metric space is called λ-doubling if for any x ∈ X , r > 0, the ball B(x, 2r) can be covered by λ
balls of radius r.

Theorem 11. For any p ≥ 1 and 0 < ε ≤ 1, every λ-doubling ultrametric (X, d) on n points embeds into LDp with
distortion 1 + ε where D = O((log λ)/ε2). 8

Proof. The proof is the same as that of Theorem 10 except that the bound on Q, the number of dependencies between
equivalence classes, in the end of the argument can be improved, which immediately imply an improvement in D.
For a λ-doubling HST T , and a node u ∈ T , we claim that the number of descendants 2d levels below u is at most
λ3α. This is because all such descendants correspond to a metric distance which is smaller than that of u by a factor
of θ2d = e2α, letting r be the distance of u from the root, the ball of radius θ−r around any branch containing u will
contain all the other branches that contain u, however any ball of radius θ−r−2d include at most only the branches that
contain v, where v a certain descendant of u at distance 2d. Thus applying the doubling condition log(e2α) times we
get that the number of descendants at distance 2d cannot be more than λlog(e2α) ≤ λ3α.

We conclude that for each u there are at most (λ3α)2 equivalence classes of pairs whose lca is u. Fixing some
[x, y], we need to bound the number of possible nodes uwithin tree distance 2d from lca(x, y) such that u and lca(x, y)
are on the same branch. Let v be the node 2d levels above lca(x, y), by the same argument as above there will be
at most λ6α descendants of v at tree distance 4d. Note that only a node that has out-degree at least 2 can actually

8 The actual bound on the dimension is in factO((log λ) · (ln(2 min{p, 1/ε}))2 ·1/ε ·max{1, 1/(εp)}), which isO(ε−2 log λ ·p−1 log2 p)
for p = O(1/ε), and O(ε−1 log2(1/ε) log λ) for p = Ω(1/ε).
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be a lca, so the number of such possible lca nodes u is at most 2λ6α. We conclude that the number of dependencies
Q ≤ (λ3α)2 · 2λ6α ≤ λ8α, and hence D = c log λ · ln(2 min{p, 1/ε}) · max{1, 1/(εp)}, and obtain a dimension
D̄ = d ·D = c log λ · (ln(2 min{p, 1/ε}))2 ·max{1, 1/(εp)}/ε.

8 Partition Based Embeddings into `p

8.1 Scaling with Low Dimension

The following theorem is similar to Theorem 3, it obtains better dimension and slightly worse distortion.

Theorem 12. For any finite metric space (X, d) on n points and any ϑ ∈ Ξ there exists an embedding into `p with
strong scaling local distortion O(ϑ(log k)

p ), worse case distortion O( logn
p ) and dimension O(2p log n).

Let s = ep. Let D = c · ep lnn for a constant c to be determined later. Let ∆0 = diam(X), I = [dlog ∆0e], and
for all i ∈ I , ∆i = ∆0/2

i. We will define an embedding f : X → `Dp , by defining for each 1 ≤ t ≤ D, functions
f (t), ψ(t), µ(t) : X → R+ and letting f (t) = ψ(t) + µ(t) and f = D−1/p

⊕
1≤t≤D f

(t).

Fix t, 1 ≤ t ≤ D. In what follows we define ψ(t). We construct for each i ∈ I a uniformly (ηi · p, 1/s) locally
padded probabilistic partition P̂i as in Lemma 5, and let ξ be as defined in the lemma. Now fix a partition Pi ∈ Pi for
every i ∈ I , and fix an arbitrary center υ(C) for each C ∈ Pi. Define the ”scaling down” factor by

ξ̄i(x) =
ξi(x)

ϑ(log |B(υ(Pi(x)), 33∆i)|)
,

observe that ξ̄ is uniform as well. We define the embedding by defining the coordinates for each x ∈ X . Define for
x ∈ X , 0 < i ∈ I , φ(t)

i : X → R+, by φ(t)
i (x) = ξ̄i(x)/ηi(x). As in Section 6.2 we have Claim 16.

Claim 31. For any 1 ≤ t ≤ D and x ∈ X ,
∑
i∈I φ

(t)
i (x) ≤ O(1).

Proof. Note that d(x, υ(Pi(x))) ≤ ∆i, then

∑
i∈I

φ
(t)
i (x) =

∑
i∈I|ξi(x)=1

ηi(x)−1

ϑ(log |B(υ(Pi(x)), 33∆i)|)

≤ 27
∑
i∈I

ρ(x, 2∆i, 16)

ϑ(log |B(x, 32∆i)|)

≤ 27
∑
i∈I

log |B(x, 32∆i)| − log |B(x,∆i/8)|
ϑ(log |B(x, 32∆i)|)

≤ 27
∑
i∈I

∫ log |B(x,32∆i)|

log |B(x,∆i/8)|

dz

ϑ(z)

≤ 211
∞∑
j=1

1

ϑ(j)

= O(1) .

For each 0 < i ∈ I we define a function ψ(t)
i : X → R+ and for x ∈ X , let ψ(t)(x) =

∑
i∈I ψ

(t)
i (x).

Let {σ(t)
i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random variables. The embedding is

defined as follows: for each x ∈ X:
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• For each 0 < i ∈ I , let ψ(t)
i (x) = σ

(t)
i (Pi(x)) · φ(t)

i (x) · d(x,X \ Pi(x)).

The proof of the following claim is essentially the same as the proof of Claim 18.

Claim 32. For any x, y ∈ X and 0 < i : f (t)
i (x)− f (t)

i (y) ≤ φ(t)
i (x) · d(x, y).

Next, we define the function µ(t), based on the embedding technique of Bourgain [Bou85] and its generalization
by Matoušek [Mat97]. Let T ′ = dlogs ne and K = {k ∈ N|1 ≤ k ≤ T ′}. For each k ∈ K define a randomly chosen
subset A(t)

k ⊆ X , with each point of X included in A(t)
k independently with probability s−k. Define µ(t)

k : X → R+

and for x ∈ X and k ∈ K let µ(t)
k =

d(x,A
(t)
k )

ϑ(k) and define µ(t)(x) =
∑
k∈K µ

(t)
k (x).

Lemma 33. For any 1 ≤ t ≤ D and x, y ∈ X:

|f (t)(x)− f (t)(y)| ≤ O(d(x, y)) .

Proof. From Claim 18 and using Claim 31 we get

ψ(t)(x)− ψ(t)(y) =
∑

0<i∈I
(ψ

(t)
i (x)− ψ(t)

i (y))

≤
∑

0<i∈I
φ

(t)
i (x) · d(x, y)

≤ O(d(x, y)) .

Also

µ(t)(x)− µ(t)(y) =
∑

0<k∈K

µ
(t)
k (x)− µ(t)

k (y)

ϑ(k)

=
∑

0<k∈K

d(x,A
(t)
k )− d(y,A

(t)
k )

ϑ(k)

≤ d(x, y)
∑

0<k∈K

1

ϑ(k)

≤ d(x, y) .

It follows that

|f (t)(x)− f (t)(y)| = |ψ(t)(x) + µ(t)(x)− ψ(t)(y)− µ(t)(y)| ≤ O(d(x, y)) .

Lemma 34. There exists a universal constant C > 0 such that for any x, y ∈ X and any k ∈ [n], with probability at
least e−4p/4:

|f (t)(x)− f (t)(y)| ≥ C ·min{d(x, y), rk(x)}/ϑ(log k) .

Proof. Let L = min{d(x, y), rk(x)}, and let 0 < i ∈ I be such that 128∆i < L ≤ 256∆i. We distinguish between
the following two cases:

• Case 1: Either ξi(x) = 1 or ξi(y) = 1.

Assume w.l.o.g that ξi(x) = 1. Since B(υ(Pi(x)), 33∆i) ⊆ B(x, 34∆i) ⊆ B(x, L), it follows that

φ
(t)
i (x) =

ηi(x)−1

ϑ(log |B(υ(Pi(x)), 33∆i)|)
≥ ηi(x)−1

ϑ(log k)
.
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As P̂i is (η · p, 1/s)-padded we have the following bound

Pr[B(x, ηi(x)p ·∆i) ⊆ Pi(x)] ≥ 1/s.

Therefore with probability at least 1/s:

φ
(t)
i (x) · d(x,X \ Pi(x)) ≥ ηi(x)−1

ϑ(log k)
· ηi(x)p ·∆i ≥

p ·∆i

ϑ(log k)
.

Assume that this event occurs. We distinguish between two cases:

– |f (t)(x) − f (t)(y) − (ψ
(t)
i (x) − ψ(t)

i (y))| ≥ p·∆i

2ϑ(log k) . In this case there is probability at least 1/4 that

σ
(t)
i (Pi(x)) = σ

(t)
i (Pi(y)) = 0, so that ψ(t)

i (x) = ψ
(t)
i (y) = 0.

– |f (t)(x)− f (t)(y)− (ψ
(t)
i (x)− ψ(t)

i (y))| < p·∆i

2ϑ(log k) .

Since diam(Pi(x)) ≤ ∆i < d(x, y) we have that Pi(y) 6= Pi(x). We get that there is probability 1/4 that
σ

(t)
i (Pi(x)) = 1 and σ(t)

i (Pi(y)) = 0 so that ψ(t)
i (x)− ψ(t)

i (y) ≥ p·∆i

ϑ(log k) .

We conclude that with probability at least 1/4s: |f (t)(x)− f (t)(y)| ≥ p·∆i

2ϑ(log k) .

• Case 2: ξi(x) = ξi(y) = 0

It follows from Lemma 5 that max{ρ̄(x, 2∆i, γ), ρ̄(y, 2∆i, γ)} < s. Let x′ ∈ B(x, 2∆i) and y′ ∈ B(y, 2∆i)
such that ρ(x′, 2∆i, γ) = ρ̄(x,∆i, γ) and ρ(y′,∆i, γ) = ρ̄(y,∆i, γ). As γ = 16 and d(x, y) > 128∆i it
follows that B(x′, 32∆i) and B(y′, 32∆i) are disjoint. W.l.o.g assume |B(x′, 32∆i)| ≥ |B(y′, 32∆i)|. Let j
be such that sj−1 < |B(y′, 32∆i)| ≤ sj , and note that by definition of ρ̄, both |B(x′,∆i/8)|, |B(y′,∆i/8)| ≥
sj−2. Define the following events: Fx = {B(x′,∆i/8) ∩ A(t)

j 6= ∅}, Fy = {B(y′,∆i/8) ∩ A(t)
j 6= ∅}, and

E = {B(y′, 32∆i) ∩ A(t)
j = ∅}. As d(x, y) > 64∆i, we have that Fx, E are independent, and also Fx and Fy

are independent. Now for l ∈ {x, y},

Pr[Fl] ≥ 1− (1− s−j)s
j−2

≥ 1− es
−j ·sj−2

≥ 1/(2s2) ,

Pr[E ] ≥ (1− s−j)s
j

≥ 1/4 ,

using that s ≥ 2. We distinguish between two cases

– |f (t)(y) − f (t)(x) − (µ
(t)
j (y) − µ(t)

j (x))| < 15∆i/ϑ(j). In this case there is probability at least 1/(8s2)

that both E and Fx occurred, and then d(y,A
(t)
j ) ≥ d(y′, A

(t)
j )− d(y, y′) ≥ 30∆i, and also d(x,A

(t)
j ) ≤

d(x, x′) + d(x′, A
(t)
j ) ≤ 3∆i. We conclude that

µ
(t)
j y)− µ(t)

j (x) ≥
d(y,A

(t)
j )− d(x,A

(t)
j )

ϑ(j)
≥ 27∆i/ϑ(j) .

– If it is the case that |f (t)(y) − f (t)(x) − (µ
(t)
j (y) − µ(t)

j (x))| ≥ 15∆i/ϑ(j), then there is probability at

least 1/(4s4) that both Fx and Fy occurred, and then both d(x,A
(t)
j ), d(y,A

(t)
j ) ≤ 3∆i, so

µ
(t)
j (y)− µ(t)

j (x) ≤ 3∆i/ϑ(j).

In either case, |f (t)(y)− f (t)(x)| ≥ 12∆i/ϑ(j) happens with probability at least 1/(8s4).

Observe that sj−1 ≤ |B(y′, 32∆i)| ≤ |B(x, L)| ≤ k, so that j ≤ (2 log k)/p.
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It follows that with probability at least 1/(8s4):

|f (t)(x)− f (t)(y)| ≥ p ·∆i

4ϑ(log k
= Ω(p · d(x, y)/ϑ(log k)) .

Proof of Theorem 12. By definition

‖f(x)− f(y)‖pp = D−1
∑

1≤t≤D

|f (t)(x)− f (t)(y)|p.

Lemma 33 implies that

‖f(x)− f(y)‖p ≤ O(d(x, y)) .

Using Lemma 34 and applying Chernoff bounds similarly to Section 4.2 we get w.h.p for any k ∈ [n] and x, y ∈ X ,
with L = min{d(x, y), rk(x)}:

‖f(x)− f(y)‖pp ≥
1

211
e−4p (p · L/ϑ(log k))

p ≥ (Ω(p · d(x, y)/ϑ(log k))
p
.

8.2 Decomposable Metrics

For decomposable metrics (recall Definition 10), we improve the scaling local distortion. Using a partition based
embedding [KLMN04, ABN06] we get the following,

Theorem 13. For any metric space (X, d) on n points admitting a τ -padded decomposition, for any p ≥ 1 and
ϑ ∈ Ξ there exists an embedding into `p with scaling local distortion O

(
τ−1+1/pϑ(log k)1/p

)
, worse case distortion

O(τ−1+1/p(log n)1/p) and dimension O(log2 n).

Let D = c lnn for a constant c to be determined later. Let D′ = d32 lnne. We will define an embedding
f : X → `D

′D
p , by defining for each t ∈ [D], an embedding f (t) : X → `D

′

p and let f = D−1/p
⊕

t∈[D] f
(t). Let

∆0 = diam(X), I = {1 ≤ i ≤ dlog ∆0e : i ∈ N}, and for all i ∈ I let ∆i = ∆i−1/2. Fix some t ∈ [D], and in what
follows we define f (t). For each i ∈ I , we shall create a metric (X, di) by contracting short pairs. More formally,
consider the complete graph with vertex set X and edge weights d. Replace every weight smaller than ∆i/n

2 by 0,
and di is the shortest path metric on this graph. Obviously di ≤ d, but observe that the maximal change in any distance
is at most ∆i/n. In what follows, balls are taken with respect to d, the original metric. Let P̂i be a uniformly (ηi, 1/2)
locally padded probabilistic partition P̂i of (X, di) as in Lemma 5, and let ξ be as defined in the lemma. Now fix a
partition Pi ∈ Pi for every i ∈ I , and fix an arbitrary center υ(C) for each C ∈ Pi. Define the ”scaling down” factor
by

ξ̄i(x) =
ξi(x)

ϑ(log |B(υ(Pi(x)), 33∆i)|)
,

observe that ξ̄ is uniform as well. Define for x ∈ X , 0 < i ∈ I , φ(t)
i : X → R+, by φ(t)

i (x) =
(
ξ̄i(x)/ηi(x)

)1/p
. As

in Section 6.2 we have Claim 16.

Claim 35. For any 1 ≤ t ≤ D and x ∈ X ,
∑
i∈I φ

(t)
i (x)p ≤ O(1).
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Proof. Note that d(x, υ(Pi(x))) ≤ ∆i, then∑
i∈I

φ
(t)
i (x)p =

∑
i∈I|ξi(x)=1

ηi(x)−1

ϑ(log |B(υ(Pi(x)), 33∆i)|)

≤ 27
∑
i∈I

ρ(x, 2∆i, 16)

ϑ(log |B(x, 32∆i)|)

≤ 27
∑
i∈I

log |B(x, 32∆i)| − log |B(x,∆i/8)|
ϑ(log |B(x, 32∆i)|)

≤ 27
∑
i∈I

∫ log |B(x,32∆i)|

log |B(x,∆i/8)|

dz

ϑ(z)

≤ 211
∞∑
j=1

1

ϑ(j)

= O(1) .

For i ∈ I let f (t)
i : X → R+. Let {σ(t)

i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli
random variables. Let (e1, . . . , eD′) be the standard orthonormal basis of RD′ , and extend it to a periodic sequence
(e1, . . . , eI) (that is, for i ∈ I , ei = ei( mod D′)). The embedding is defined as follows: for each x ∈ X ,

• f (t)
i (x) = σ

(t)
i (Pi(x)) · φ(t)

i (x) · di(x,X \ Pi(x)),

• f (t)(x) =
∑
i∈I f

(t)
i (x)⊗ ei .

The proof of the following claim is essentially the same as the proof of Claim 18, noting that di(x, y) ≤ d(x, y).

Claim 36. For any x, y ∈ X and 0 < i : f (t)
i (x)− f (t)

i (y) ≤ φ(t)
i (x) · d(x, y).

Lemma 37. For any 1 ≤ t ≤ D and x, y ∈ X:

‖f (t)(x)− f (t)(y)‖p ≤ O(d(x, y)) .

Proof. Fix a coordinate l ∈ [D′], and let Il = {i ∈ I : i = l( mod D′)}. If i(l) = i ∈ Il is the minimal such that
x, y are not contracted in X(i), then d(x, y) ≥ ∆i/n

2. Observe that for all other i′ ∈ Il with i′ < i, di′(x, y) = 0, so
f

(t)
i (x) = f

(t)
i (y). If i′ ∈ Il satisfies i′ = i+ kD′ for some positive integer k, then by definition of Il, i′ ≥ i+ kD′,

so ∆i′ ≤ ∆i/2
kD′ ≤ d(x, y)/n2k, thus the contribution of all these terms to the coordinate l is negligible - at most

d(x, y)/n.
From Claim 36 and using Claim 35 we get

‖f (t)(x)− f (t)(y)‖pp =
∑
l∈[D′]

(∑
i∈Il

f
(t)
i (x)− f (t)

i (y)

)p
≤

∑
l∈[D′]

(
d(x, y)/n+ |f (t)

i(l)(x)− f (t)
i(l)(y)|

)p
≤ 2

∑
0<i∈I

(φ
(t)
i (x)p + φ

(t)
i (y)p) · di(x, y)p

≤ O(d(x, y)p) .
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Lemma 38. There exists a universal constant C > 0 such that for any x, y ∈ X and k ∈ N such that y ∈ Nk(x),
with probability at least 1/8:

‖f (t)(x)− f (t)(y)‖p ≥ C · d(x, y) · τ1−1/p/ϑ(log k)1/p .

Proof. Let 0 < i ∈ I be such that 128∆i < d(x, y) ≤ 256∆i, observe that di(x, y) can differ from d(x, y) by at most
∆i/n, so we ignore this slight change. By Claim 4 it follows that one of max{ξi(x), ξi(y)} = 1, so assume w.l.o.g that
ξi(x) = 1. By Lemma 5, with probability at least 1/2, x is padded, thus d(x,X \ Pi(x)) ≥ ηi(x) ·∆i. Also since Pi
is ∆i-bounded we get that Pi(x) 6= Pi(y), and with probability 1/4, σi(Pi(x)) = 1 and σi(Pi(y)) = 0. Also note that
|B(υ(Pi(x)), 33∆i)| ≤ |B(x, 34δi)| ≤ |B(x, rk(x)/2)| ≤ k. If all these things occur, since B(υ(Pi(x)), 33∆i) ⊆
B(x, 34∆i) ⊆ B(x, rk(x)/2), it follows that

|f (t)
i (x)− f (t)

i (y)| = f
(t)
i (x) ≥ ηi(x)−1/p

ϑ(log |B(υ(Pi(x)), 33∆i)|)1/p
· ηi(x) ·∆i ≥

d(x, y) · ηi(x)1−1/p

ϑ(log k)1/p
.

By the first property of Lemma 5, ηi(x) ≥ τ/2. There are several terms in the coordinate l ∈ [D′] such that
i ∈ Il, however we will show that these terms are zero or negligible. If i′ ∈ Il is such that i′ < i, then ∆i′ ≥
∆i−D′ ≥ n4∆i ≥ n4d(x, y)/256 > n2d(x, y) (assuming n > 16), so the pair x, y will be contracted in scale i′

and thus necessarily f (t)
i′ (x) = f

(t)
i′ (y). If it is the case that i′ > i, then ∆i′ ≤ ∆i−D′ ≤ ∆i/n

4, so fi′(t)(x) ≤
d(x,X \ Pi′(x))/ηi′(x) ≤ ∆i′/(1/ log n) < ∆i/n

3 < d(x, y)/n2, and the same holds for f (t)
i′ (y), so that all these

terms are negligible with respect to d(x,y)·τ1−1/p

2ϑ(log k) .

We conclude that with probability at least 1/8,

‖f (t)(x)− f (t)(y)‖pp ≥

∣∣∣∣∣∑
i∈Il

f
(t)
i (x)− f (t)

i (y)

∣∣∣∣∣
p

≥
(
d(x, y) · τ1−1/p

4ϑ(log k)1/p

)p
.

Proof of Theorem 13. Let x, y ∈ X , and k ∈ N such that y ∈ Nk(x). Then by Lemma 37

‖f(x)− f(y)‖pp =
1

D

⊕
t∈[D]

‖f (t)(x)− f (t)(y)‖pp ≤ O(d(x, y))p .

Let Zt be an indicator random variable for the event that ‖f (t)(x) − f (t)(y)‖pp ≥
(
d(x,y)·τ1−1/p

4ϑ(log k)1/p

)p
, and Z =∑

t∈[D] Zt. By Lemma 38 E[Z] ≥ D/8, and since Zt are independent it follows by standard Chernoff bound that

Pr[Z < E[Z]/16] ≤ e−D/64 ≤ 1/n2 ,

when c is sufficiently large constant. By a union bound on all pairs, with probability at least 1/2, we have that for any
k ∈ N and any x, y ∈ X with y ∈ Nk(x),

‖f(x)− f(y)‖pp =
1

D

⊕
t∈[D]

‖f (t)(x)− f (t)(y)‖pp ≥
(
d(x, y) · τ1−1/p

4ϑ(log k)1/p

)p
.
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9 Local Ramsey Partitions

In this section we extend the results of [MN06, Bar07] and exhibit Ramsey Partitions with improved local guarantees.
These are later used to obtain improved local approximations for distance oracles and for approximate ranking.

Definition 12. Let (X, d) be a metric space and ϑ ∈ Ξ. Let P be a hierarchical partition9 of X , let t be a parameter.

• A point x ∈ X is completely locally padded with parameter t ifB(x, 2i/ti) ⊆ Pi(x) for ti = min{t, ϑ(log |B(x, 2i)|)}
for all i.

• A point x ∈ X is k-locally padded with parameter t if B(x, 2i/t) ⊆ Pi(x) for all i > 0 such that 2i ≤ rk(x).

We will use a lemma that appeared in [MN06], which is a strengthening of Lemma 8. It also follows directly from
the uniform padding lemma of [ABN06] (with different constants).

Lemma 39. For any metric space (X, d), ∆ > 0 there exists a ∆-bounded probabilistic partition P̂ of X such that
for all η ∈ (0, 1/8] and x ∈ X ,

Pr[B(x, η∆) ⊆ P (x)] ≥ ρ(x,∆/4, 4)−16η .

The following Lemma extends a similar lemma of [MN06], by giving better padding parameters depending on the
locality.

Lemma 40. For any finite metric space (X, d) and parameter t > 8, there exists a distribution on ultrametrics such
that any point x ∈ X is completely locally padded with parameter t with probability nΩ(−1/t).

We also have the following k-local variation

Lemma 41. For any finite metric space (X, d), k ∈ N and parameter t > 8, there exists a distribution on ultrametrics
such that any point x ∈ X is k-locally padded with parameter t with probability kΩ(−1/t).

Proof of Lemma 40. Create 2i-bounded probabilistic partitions as in Lemma 39 independently for each scale i > 0.
Let ` = `(x, t) be the largest integer such that ϑ(log |B(x, 2`)|) ≤ t

Pr[∀i, B(x, 2i/ti) ⊆ P (x)] ≥
∏
i>0

(
|B(x, 2i)|
|B(x, 2i/8)|

)−16/ti

≥
∏̀
i=1

(
|B(x, 2i)|
|B(x, 2i/8)|

)−16/ϑ(log |B(x,2i)|)

·
∏
i>`

(
|B(x, 2i)|
|B(x, 2i/8)|

)−16/t

≥ 2

∑`
i=1 log

(
|B(x,2i)|
|B(x,2i/8)|

)
(−16/ϑ(log |B(x,2i)|))

· n−48/t

We now bound the exponent of the first multiple,

∑̀
i=1

log

(
|B(x, 2i)|
|B(x, 2i/8)|

)
(16/ϑ(log |B(x, 2i)|)) ≤

∑̀
i=1

log |B(x,2i)|∑
j=log |B(x,2i/8)|

16/ϑ(log |B(x, 2i)|)

≤
∑̀
i=1

log |B(x,2i)|∑
j=log |B(x,2i/8)|+1

16/ϑ(j)

≤ 3
∑
j>0

16/ϑ(j) = O(1).

Which gives probability nΩ(−1/t) as required.
9Recall that this is a collection of 2i-bounded partitions Pi, for all integers i, such that if i < j then Pi is a refinement of Pj .
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Proof of Lemma 41. Similarly to the previous lemma, create 2i-bounded probabilistic partitions as in Lemma 39 in-
dependently for each scale i > 0. For each x ∈ X let ` = max{i | 2i ≤ rk(x)}.

Pr[∀i ∈ [1, `], B(x, 2i/t) ⊆ P (x)] ≥
∏̀
i=1

(
|B(x, 2i)|
|B(x, 2i/8)|

)−16/t

≥ k−48/t.

10 Embedding with Proximity Distortion

Embeddings with local distortion provide bounds on the distortion of a pair x, y as a function of how many neighbors
are closer. It is natural to ask if one can provide distortion bounds that are simply a function of the distance between x
and y. We call such embeddings: embeddings with proximity distortion. See Definition 2. For decomposable metrics
we have the following result.

Theorem 14. For any finite metric (X, d) on n points that admits a τ -padded decomposition and ϑ ∈ Ξ there exists
an embedding into `p with scaling proximity distortion O(τ−1ϑ(log t)) and dimension O(log n).

Let D = c log n for a constant c to be determined later. We will define an embedding f : X → RD with scaling
proximity distortionO(τ−1ϑ(log t)). We define f by defining for each integer s ∈ [D], a function f (s) : X → R+ and
let f = D−1/p

⊕
1≤s≤D f

(s). Fix s ∈ [D], and in what follows we define f (s). Let I = dlog diam(X)e, and for every
integer i ∈ [I] construct a 2i-bounded uniformly τ -padded probabilistic partition P̂i as guaranteed by Definition 10.
For all i ∈ [I] fix a partition Pi ∈ Pi. Let {σ(s)

i (C)|C ∈ Pi, i ∈ [I]} be i.i.d symmetric {0, 1}-valued Bernoulli
random variables. The embedding is defined as follows: for each x ∈ X , i ∈ [I] let f (s)

i : X → R+, by

f
(s)
i (x) = σ

(s)
i (Pi(x)) · d(x,X \ Pi(x))

ϑ(i)
,

and let f (s)(x) =
∑
i∈[I] f

(s)
i (x).

Lemma 42. For any x, y ∈ X:
|f (s)(x)− f (s)(y)| ≤ d(x, y).

Proof. For all i ∈ [I], if Pi(x) = Pi(y) then by the triangle inequality f
(s)
i (x) − f

(s)
i (y) ≤ d(x,y)

ϑ(i) , otherwise

f
(s)
i (x)− f (s)

i (y) ≤ f (s)
i (x) ≤ d(x,y)

ϑ(i) . Similarly if we switch the roles of x, y, so we get that

|
∑
i∈[I]

(f
(s)
i (x)− f (s)

i (y))| ≤
∑
i∈[I]

|f (s)
i (x)− f (s)

i (y)| ≤ d(x, y)
∑
i∈[I]

1/ϑ(i) ≤ d(x, y) .

Lemma 43. There exists a universal constant C2 > 0 such that for any x, y ∈ X where d(x, y) ≤ t, and any s ∈ [D],
with probability at least 1/8:

|f (s)(x)− f (s)(y)| ≥ C2
τ · d(x, y)

ϑ(log t)
.

Proof. Let 0 < ` ∈ I be such that 2` < d(x, y) ≤ 2`+1. Note that P`(x) 6= P`(y) and that ` ≤ log t. We distinguish
between two cases:

Case 1: |
∑
i∈[I]|i 6=`(f

(s)
i (x)−f (s)

i (y))| ≥ τ ·d(x,y)
4ϑ(log t) . In this case there is probability at least 1/4 that both σ(s)

` (P`(x)) =

σ
(s)
` (P`(y)) = 0, so that f (s)

` (x) = f
(s)
` (y) = 0.
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Case 2: |
∑
i∈[I]|i 6=`(f

(s)
i (x)− f (s)

i (y))| < τ ·d(x,y)
4ϑ(log t) . Since the partition P̂` is τ -padded, Pr[B(x, τ · 2`) ⊆ P`(x)] ≥

1/2, so there is probability 1/8 that σ(s)
` (P`(x)) = 1, σ(s)

` (P`(y)) = 0 and B(x, τ · 2`) ⊆ P`(x). Then follows
|f (s)
` (x)− f (s)

` (y)| ≥ τ ·2`
ϑ(`) ≥

τ ·d(x,y)
2ϑ(log t) .

In either case, with probability at least 1/8,

|f (s)(x)− f (s)(y)| = |
∑
i∈[I]

(f
(s)
i (x)− f (s)

i (y))| ≥ τ · d(x, y)

4ϑ(log t)
.

To concludes the proof of Theorem 14 apply a Chernoff bound to obtain that at least D/16 coordinates s ∈ [D]

satisfy |f (s)(x)− f (s)(y)| ≥ τ ·d(x,y)
4ϑ(log t) with probability ≥ 1− 1/n2, and apply a union bound on all pairs.

10.1 Growth Bounded Metrics

For growth-bounded metrics the local distortion results can be translated into proximity distortion. Recall that a metric
(X, d) is said to be χ-growth bounded if for all x ∈ X , r > 0 : |B(x, 2r)| ≤ 2χ|B(x, r)|.

Claim 44. Let (X, d) be an χ-growth bounded metric, then there exists an embedding into `p with scaling proximity
distortion O(ϑ(χ log t)).

Proof. By definition of growth bound if x, y ∈ X such that d(x, y) ≤ t then |B(x, t)| ≤ tχ (recall that we assume
d(x, y) ≥ 1 for x 6= y), hence y ∈ B(x, rtχ(x)), so there exists an embedding where the distortion of x, y is bounded
by O(ϑ(log(tχ))) = O(ϑ(χ log t)).

All the other results translate into proximity distortion for growth-bounded metrics in a similar manner.

11 Applications

11.1 Small World Model

For many applications, the notion of distortion can be too restrictive, as it requires a bound on all pairs of points in
the metric space. In some situations, we could be satisfied with a promise on the average performance guarantee of an
embedding, the notions of average distortion and lq-distortion have been extensively studied in [ABN06].

Definition 13. Let (X, d), (Y, ρ) be metric spaces, and f : X → Y be a non-expansive embedding. The average
distortion of f with respect to a distribution Π over

(
X
2

)
is

avgdist(Π)(f) =
∑
x,y∈X

Π(x, y)
d(x, y)

ρ(f(x), f(y))
.

The distortion of average of f with respect to Π is

distavg(Π)(f) =

∑
x,y∈X Π(x, y)d(x, y)∑

x,y∈X Π(x, y)ρ(f(x), f(y))
.

Given a metric space (X, d) and a certain distributions Π on
(
X
2

)
such that local pairs are given higher probability,

then our embedding techniques yields constant average distortion with respect to Π. For instance, let α > 0 and
consider any of Kleinberg’s “small world” distributions Π(x, y | x) = k−(1+α)∑n

i=1 i
−(1+α) [Kle00], where d(x, y) = rk(x).
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Lemma 45. Let (X, d) be a metric space, and Π a probability distribution on
(

(X
2)

)
satisfying that for all integers k

and x, y ∈ X with d(x, y) ≥ rk(x), the conditional probability satisfies Π(x, y | x) ≤ 1
ϑ(k)·ϑ(log k) . Then there exists

an embedding f into `p with avgdist(Π)(f) = O(1).

Proof. Let f : X → `p be a scaling local embedding with distortion c · ϑ(log k) for some constant c, as given by
Theorem 3. Let Π(x, ·) denote the marginal distribution on the first element of

(
X
2

)
, then

avgdist(Π)(f) =
∑
x∈X

Π(x, ·)
∑
y∈X

Π(x, y | x)
d(x, y)

‖f(x)− f(y)‖p

≤
∑
x∈X

Π(x, ·)
n∑
k=1

∑
y∈X

Π(x, y | x ∧ d(x, y) = rk(x))cϑ(log k)

≤ c

n∑
k=1

ϑ(log k)

ϑ(k) · ϑ(log k)
= c

n∑
k=1

1/ϑ(k) = O(1).

Lemma 46. Let (X, d) be a metric space, and Π a probability distribution on
(

(X
2)

)
satisfying that for all integers k

and x, y ∈ X with d(x, y) ≥ rk(x), the conditional probability satisfies Π(x, y | x) ≤ Z
d(x,y)·ϑ(k)·ϑ(log k) , where Z is

a scaling factor. Then there exists an embedding f into `p with distavg(Π)(f) =
E(x,y)∼Π[d(x,y)]

E(x,y)∼Π[‖f(x)−f(y)‖p] = O(1).

Proof. Let f : X → `p be a scaling local embedding with distortion O(ϑ(log k)) for some constant c, as given by
Theorem 3.

distavg(Π)(f) =

∑
x,y∈X Π(x, y) · d(x, y)∑

x,y∈X Π(x, y) · ‖f(x), f(y)‖p

=

∑
x∈X Π(x, ·)

∑n
k=1 Π(x, y | x ∧ d(x, y) = rk(x))d(x, y)∑

x∈X Π(x, ·)
∑n
k=1 Π(x, y | x ∧ d(x, y) = rk(x))d(x, y)/(cϑ(log k))

≤
Z
∑n
k=1

1
ϑ(k)·ϑ(log k)

Z
∑n
k=1

1
cϑ(k)

≤ O(1).

11.2 Online Problems

Consider any online problem defined on a metric space, which has poly-logarithmic competitive ratio algorithm based
on probabilistic embedding into a distribution of ultrametrics, e.g. the metrical task system [BBBT97], file allocation
[Bar96], k-server [BBMN11]. Obtaining poly-logarithmic approximation is desirable, but it may be desirable, in
addition, to obtain better results if the demand sequence happens to have a local nature.

Instead of using the standard embedding of [Bar96, FRT03, Bar04] we can use the embedding given in Theorem 6
(or Theorem 5 if k is known in advance). This provides the following local strengthening to the standard competitive
ratio bound: if the request sequence is such that the objective function contains only distances between pairs u, v such
that v is the k-th nearest neighbor of u then the competitive ratio improves as a function of k, that is, the O(log n)
overhead due to the embedding is replaced by an overhead of only ϑ(log k) (or O(log k) using Theorem 5). Observe
that in embedding of Theorem 5 the bound on the contraction holds with probability 1, which suffices for all known
applications.
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11.3 Local Distance Oracles

In [MN06, Bar07] it is shown how Ramsey partitions can be used to obtain efficient proximity data structures. Us-
ing the same data structure as [MN06] we can get local variations on distance oracles. We start by showing that
our construction of a ”local” ultrametric can be applied in the setting of Ramsey partitions to give improved local
guarantees.

Claim 47. Let (X, d) be a metric space, let k > 1 be an integer, fix some t > 1, let P be a hierarchical partition, and
S ⊆ X be the set of points that are k-locally padded in P with parameter t. Then there exists an ultrametric T that
has strong k-local distortion O(t) with respect to S.

Proof. Create an ultrametric T from the hierarchical partition P as described in the proof of Theorem 5. Recall that
a cluster C ∈ Pi is labeled by 2i, and is called large if |B(υ(C), 3 · 2i)| > k. Large clusters are ignored in the
construction of T . Fix some x ∈ S and y ∈ X , let L = min{rk(x), d(x, y)}.

We begin by showing a lower bound on dT (x, y). Let i be the maximal integer such that L > 2i+2, then as in the
proof of Theorem 5, y /∈ Pi(x) and the cluster Pi(x) is not large, thus dT (x, y) ≥ 2i ≥ L/8.

To see the upper bound on dT (x, y), let i be the minimal integer such that d(x, y) ≤ 2i/t (if there is no such i
then d(x, y) ≥ diam(X)/t, so dT (x, y) ≤ diam(X) ≤ t · d(x, y)). Since x is k-locally padded, B(x, 2i/t) ⊆ Pi(x)
thus y ∈ Pi(x). If Pi(x) is a large cluster, the least common ancestor of x, y in T will only have a smaller label, thus
dT (x, y) ≤ 2i = 2t · 2i−1/t < 2t · d(x, y). Multiplying every label by 1/2t concludes the proof.

Claim 48. Let (X, d) be a metric space , fix some t > 1, let P be a hierarchical partition, and S ⊆ X be the set of
points that are completely locally padded in P with parameter t. Then there exists an ultrametric T that has strong
scaling local distortion O(min{t, ϑ(log k)}) with respect to S.

Proof. Create an ultrametric T from the hierarchical partition P as described in the proof of Theorem 6. For technical
reasons, we shall only use scales which are powers of 8 in the construction of T , and define I = {i ∈ N : i
mod 3 = 0}. Recall that to create the tree T , for a cluster C ∈ Pi where i ∈ I we assign the label α(C) =

2i

min{t,ϑ(log |B(υ(C),2i+2)|)} and perform the ”beam-up” and ”laminarization” phases to ensure monotonicity of labels.
The proof is very similar to the proof of Theorem 6, we give most of the details below. Fix x ∈ S and y ∈ X , let
L = min{rk(x), d(x, y)}.

To see the lower bound on dT (x, y), let i ∈ I be the maximal such that L > 2i+3, then x, y are separated in Pi,
and also |B(υ(Pi(x)), 2i+2)| ≤ |B(x, 2i+3)| ≤ k, so that

dT (x, y) ≥ α(Pi(x)) =
2i

min{t, ϑ(log |B(υ(Pi(x)), 2i+2)|)}
≥ L

26 min{t, ϑ(log k)}
.

In the reminder of the proof we show that dT (x, y) ≤ O(d(x, y)). Let i ∈ I be the minimal integer such that
d(x, y) ≤ 2i/ti and for all i > j ∈ I , α(Pj(x)) ≤ α(Pi(x)) (so that the cluster Pi(x) is not replaced by any lower
level cluster in the ”beam-up” phase), where ti as is defined in Definition 12. Since P is completely locally padded, we
have that B(x, 2i/ti) ⊆ Pi(x), so y ∈ Pi(x). Since B(υ(Pi(x)), 2i+2) ⊇ B(x, 2i) we have that α(Pi(x)) ≤ 2i/ti,
and since ti ≥ ti−3,

dT (x, y) ≤ α(Pi(x)) ≤ 2i

ti
≤ 8 · 2i−3

ti−3
.

If it is the case that d(x, y) > 2i−3/ti−3, then clearly dT (x, y) < 8d(x, y). Otherwise, if d(x, y) ≤ 2i−3/ti−3, then
the minimality of i suggests that there exists i − 3 > j ∈ I such that α(Pj(x)) > α(Pi−3(x)) (otherwise i − 3
would have been chosen), and also that d(x, y) > 2j/tj (otherwise j would have been chosen). Now observe that
B(υ(Pi−3(x)), 4 · 2i−3) ⊆ B(x, 2i), so that α(Pi−3(x)) ≥ 2i−3/ti, which suggests that

dT (x, y) ≤ 8 · 2i−3

ti
≤ 8α(Pi−3(x)) ≤ 8α(Pj(x)) ≤ 2j

tj
< 8d(x, y) .

In either case we have that dT (x, y) ≤ O(d(x, y)).
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Theorem 15. For any finite metric space and any t > 1 there exists the following type of distance oracles.

1. Fixed k: O(t) stretch for all y ∈ B(x, rk(x))10, O(1) query time, O(n · k1/t) memory.

2. Scaling: min{O(ϑ(log k)), O(t)} stretch for all y ∈ B(x, rk(x)) and all k ∈ N, O(1) query time, O(n1+1/t)
memory.

3. Scaling: k stretch for all y ∈ B(x, rk(x)) and all k ∈ N, O(1) query time, O(n) memory.

Proof. The first two distance oracles are based on [MN06], we refer the reader there for more details. For the first
distance oracle, we follow the proof of Lemma 4.2 from [MN06] to argue that there exist ultrametrics T1, . . . , Tr
(and an efficient randomized algorithm to find them), such that

∑r
i=1 |Ti| = O(n · k1/t), with the property that for

every x ∈ X there exists i ∈ [r] and Ti was created from a hierarchical partition in which x is k-locally padded with
parameter t. For the second distance oracle, we shall use Lemma 4.2 from [MN06] directly (with parameter p = 1)
to argue that there exist m = O(tn1/t) ultrametrics T1, . . . , Tm (and an efficient randomized algorithm to find them),
such that

∑m
i=1 |Ti| = O(n1+1/t), with the property that for every x ∈ X there exists i ∈ [m] and Ti was created

from a hierarchical partition in which x is completely locally padded with parameter t.
Then the data structure for both oracles is simply this collection of ultrametrics, every point in X has pointer to

an ultrametric in which it is k-locally padded (completely padded). Given x, y, the procedure to approximate d(x, y),
is in O(1) time inspect the ultrametric T in which x is k-locally padded (completely padded) and return dT (x, y).
By Claim 47 and Claim 48 the stretch is indeed O(t), min{O(ϑ(log k)), O(t)} respectively, and by construction the
size of this data structures is O(n · k1/t), O(n1+1/t) respectively. By the argument appearing in [MN06] one can
preprocess an ultrametric in linear space as to return the least common ancestor of any pair in O(1) time, so the query
time is O(1) for both cases.

The third distance oracle is the ultrametric with strong scaling local distortion k, given in Theorem 1.

11.4 Approximate Ranking

The ranking problem is defined as follows: Given a metric space (X, d) on {1, . . . , n} points, find for any x ∈ X a
permutation π(x) of X , such that for all y, z ∈ X: if y = π(x)(i), z = π(x)(j) and i < j then d(x, y) ≤ d(x, z). A
t-approximate ranking is relaxing the last condition to d(x, y) ≤ t · d(x, z). It is shown in [MN06], and in [Bar07]
via a deterministic construction, that for any t > 1 there exist a data structure with O(t)-approximate ranking which
can be pre-processed in O(tn2+1/t log n) time, uses O(tn1+1/t) space, and support queries such as π(x)(i) or finding
i ∈ [n] such that π(x)(i) = y in O(1) time. We show a variation on this result, in which the approximation factor
scales in a relative manner to the locality of the query points. Our data structure is based on local Ramsey partitions for
embedding the points with scaling local distortion into an ultrametric. We provide a theorem similar to Theorem 15
for approximate ranking.

Theorem 16. For any finite metric space (X, d) there exist data structures for approximate ranking, such that for any
x ∈ X:

1. Fixed k: O(t) approximation for any y ∈ B(x, rk(x)) and any z ∈ X , O(1) query time, and O(tn · k1/t)
memory.

2. Scaling: min{O(ϑ(log k)), O(t)} approximation for any y ∈ B(x, rk(x)), any z ∈ X and all k ∈ [n], O(1)
query time, and O(tn1+1/t) memory.

3. Scaling: k approximation for all x, y such that y, z ∈ B(x, rk(x)), O(1) query time, and O(n) memory.

Proof. Again the first two constructions are based on [MN06], and we refer the reader there for more details. Fix some
x ∈ X , y ∈ B(x, rk(x)) and z ∈ X . Consider the tree T in which x is k-locally padded (completely padded) with
parameter t, and do the following process to define an ordering: go over the path from the leaf x to the root of T , and

10If y /∈ B(x, rk(x)), then the query will return value at least rk(x)/O(t)
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for every node u on this path, append all the leaves who are descendants of u and did not appear in the ordering, to the
tail of the ordering (in arbitrary order between them). By an argument similar to Lemma 4.2 of [MN06] one can have
a collection ofO(tn ·k1/k) ultrametrics (over all ofX) such that any point x is k-locally padded with parameter t in at
least one of them, and there exists a collection of O(tn1+1/t) ultrametrics, such that any point x is completely padded
with parameter t in at least one of them. The data structure is this collection of ultrametrics, and by the argument
appearing in [MN06], one can compute inO(1) time, given i find z = π(x)(i) and given z find i such that π(x)(i) = z.

The approximation guarantee follows from the padding properties of the partitions. If y ∈ B(x, rk(x)) and z ∈ X
are such that y appear before z in π(x), then lca(x, y) is either descendant of lca(x, z) in T or equal to it. The
monotonicity of labels implies that dT (x, y) ≤ dT (x, z). For the first data structure, by Claim 47 we have that

d(x, y)/O(t) ≤ dT (x, y) ≤ dT (x, z) ≤ d(x, z) ,

so d(x, y) ≤ O(t) · d(x, z). For the second data structure we obtain d(x, y) ≤ min{O(ϑ(log k)), O(t)} · d(x, z) by
using Claim 48.

The third data structure is once again based on the ultrametric with strong scaling local distortion k, given in
Theorem 1.

12 Open Problems

Most of the results in this paper are either tight or nearly tight. The tightness of our k-local results follows from known
metric embedding lower bounds. There are several obvious questions. There is a small gap between our scaling local
distortion upper bounds (such as in theorems 3,6) ofO(ϑ(log k)) and the lower bound of Ω(log k). Another interesting
question is whether there is a k-local dimension reduction with constant distortion (independent of k)? Although small
1 + ε distortion was ruled out by [SS09], it is still concievable that every finite subset of `2 have a k-local embedding
into `d2 with O(1) distortion, where d depends only on k, perhaps even d = O(log k).
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A Proof of Lemma 5

The following decomposition lemma was shown in [ABN06].

Lemma 49 (Probabilistic Decomposition). For any metric space (X, d), a subset Z ⊆ X , a point v ∈ X , real
parameters χ ≥ 2,∆ > 0, let r be a random variable sampled from a truncated exponential density function with
parameter λ = 8 ln(χ)/∆

f(r) =

{
χ2

1−χ−2λe
−λr r ∈ [∆/4,∆/2]

0 otherwise

If S = B(v, r) ∩ Z and S̄ = Z \ S then for any θ ∈ [χ−1, 1) and any x ∈ Z:
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Pr
[
B(x, η∆) ./ (S, S̄)

]
≤ (1− θ)

(
Pr
[
B(x, η∆) * S̄

]
+

2θ

χ

)
.

where η = 2−4 ln(1/θ)/ lnχ.

We are now ready to prove Lemma 5. By sub-partition we mean a partition {Ci}i lacking the requirement that⋃
i Ci = X . The intuition behind the construction is that we perform the partition of [ABN06] as long as the local

growth rate is small enough. Once the growth rate is large with respect to the decomposability parameter, we assign
all the points who were not covered by the first partition a cluster generated by the probabilistic partition known to
exists from Definition 10. This is done in two phases:

Phase 1 Define the sub-partition P1 of X into clusters by generating a sequence of clusters: C1, C2, . . . Cs, for some
s ∈ [n]. Notice that we are generating a distribution over sub-partitions and therefore the generated clusters are
random variables. First we deterministically assign centers v1, v2, . . . , vs and parameters χ1, χ2, . . . , χs. Let
W1 = X and j = 1. Conduct the following iterative process:

1. Let vj ∈Wj be the point minimizing χ̂j = ρ(x, 2∆, γ) over all x ∈Wj .

2. If 26 ln(χ̂j) > τ−1 set s = j − 1 and stop.

3. Set χj = max{2/δ̂1/4, χ̂j}.
4. Let Wj+1 = Wj \B(vj ,∆/4).

5. Set j = j + 1. If Wj 6= ∅ return to (1).

Now the algorithm for the partition and functions ξ, η is as follows: Let Z1 = X . For j = 1, 2, 3 . . . s:

1. Let (Svj , S̄vj ) be the partition created by invoking Lemma 49 on Zj with center v = vj and parameter
χ = χj .

2. Set Cj = Svj , Zj+1 = S̄vj .

3. For all x ∈ Cj let ηP (x) = 2−7/max{ln χ̂j , ln(1/δ̂)}. If χ̂j ≥ 1/δ̂ set ξP (x) = 1, otherwise set
ξP (x) = 0.

Fix some δ̂ ≤ δ ≤ 1. Let θ = δ1/4. Note that θ ≥ 2χ−1
j for all j ∈ [s] as required. Recall that ηj =

2−4 ln(1/θ)/ lnχj = 2−6 ln(1/δ)/ lnχj (it is easy to verify that ηP (x) · ln(1/δ) ≤ ηj). Observe that some
clusters may be empty and that it is not necessarily the case that vm ∈ Cm.

Phase 2 In this phase we assign any points left un-assigned from phase 1. Let P ′2 = {D1, D2, . . . , Dt} be a ∆-
bounded probabilistic partition of X , such that for all δ ≤ 1 satisfying ln(1/δ) ≤ 26τ−1, P ′2 is (τ · ln(1/δ), δ)-
padded, this probabilistic partition exists by Definition 10. Let Z =

⋃s
i=1 Ci and Z̄ = X \ Z (the un-assigned

points), then let P2 = {D1 ∩ Z̄,D2 ∩ Z̄, . . . , Dt ∩ Z̄}. For all x ∈ Z̄ let ηP (x) = τ/2 and ξP (x) = 1. It can
be checked that η(δ)

P (x) ≤ ηj for all j ∈ [s]. Notice that by the stop condition of phase 1, τ ≤ 2−6/ ln χ̂j , since
by definition τ ≤ 2−6/ ln(1/δ̂) as well follows that for all x ∈ Z̄ and j ∈ [s], ηP (x) · ln(1/δ) ≤ ηj .

Define P = P1 ∪ P2. We now prove the properties in the lemma for some x ∈ X , first consider the sub-partition P1,
and the distribution over the clusters C1, C2, . . . Cs as defined above. For 1 ≤ m ≤ s, define the events:

Zm = {∀j, 1 ≤ j < m, B(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, ηj∆) ./ (Svj , S̄vj )|Zm}.

Also let T = Tx = B(x,∆). We prove the following inductive claim: For every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

χ−1
j ). (21)
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Note that Pr[Es] = 0. Assume the claim holds for m+ 1 and we will prove for m. Define the events:

Fm = {B(x, ηm∆) ./ (Svm , S̄vm)|Zm},
Gm = {B(x, ηm∆) ⊆ S̄vm |Zm} = {Zm+1|Zm},
Ḡm = {B(x, ηm∆) * S̄vm |Zm} = {Zm+1|Zm}.

First we bound Pr[Fm]. Recall that the center vm of Cm and the value of χm are determined deterministically. The
radius rm is chosen from the interval [∆/4,∆/2]. Since ηm ≤ 1/2, if B(x, ηm∆) ./ (Svm , S̄vm) then d(vm, x) ≤ ∆,
and thus vm ∈ T . Therefore if vm /∈ T then Pr[Fm] = 0. Otherwise by Lemma 49

Pr[Fm] (22)
= Pr[B(x, ηm∆) ./ (Svm , S̄vm)|Zm]

≤ (1− θ)(Pr[B(x, ηm∆) * S̄vm |Zm] + θχ−1
m )

= (1− θ)(Pr[Ḡm] + θχ−1
m ).

Since the choice of radius is the only randomness in the process of creating P1, the event of padding for z ∈ Z, and
the event B(z, ηP (z)∆)∩Z = ∅ for z ∈ Z̄ are independent of all choices of radii for centers vj /∈ Tz . That is, for any
assignment to clusters of points outside B(z, 2∆) (which may determine radius choices for points in X \ B(x,∆)),
the padding probability will not be affected. Using the induction hypothesis we prove the inductive claim:

Pr[Em] ≤ Pr[Fm] + Pr[Gm] Pr[Em+1]

≤ (1− θ)(Pr[Ḡm] + θ1{vm∈T}χ
−1
m ) +

Pr[Gm] · (1− θ)(1 + θ
∑

j≥m+1,vj∈T

χ−1
j )

≤ (1− θ)(1 + θ
∑

j≥m,vj∈T

χ−1
j ),

The second inequality follows from (22) and the induction hypothesis. Fix some x ∈ X , T = Tx. Observe that for all
vj ∈ T , d(vj , x) ≤ ∆, and so we get B(vj , 2∆/γ) ⊆ B(x, 2∆). On the other hand B(vj , 2γ∆) ⊇ B(x, 2∆). Note
that the definition of Wj implies that if vj is a center then all the other points in B(vj ,∆/4) cannot be a center as well,
therefore for any j 6= j′, d(vj , vj′) > ∆/4 ≥ 4∆/γ, so that B(vj , 2∆/γ) ∩B(vj′ , 2∆/γ) = ∅. Hence, we get:∑

j≥1,vj∈T

χ−1
j ≤

∑
j≥1,vj∈T

χ̂j
−1

≤
∑

j≥1,vj∈T

|B(vj , 2∆/γ)|
|B(vj , 2γ∆)|

≤
∑

j≥1,vj∈T

|B(vj , 2∆/γ)|
|B(x, 2∆)|

≤ 1.

We conclude from the claim (21) for m = 1 that

Pr[E1] ≤ (1− θ)(1 + θ ·
∑

j≥1,vj∈T

χ−1
j ) ≤ (1− θ)(1 + θ) ≤ 1− δ1/2.

Hence there is probability at least δ1/2 that event ¬E1 occurs. Given that this happens, we will show that there is
probability at least δ1/2 that x is padded. If x ∈ Z, then let j ∈ [s] such that P (x) = Cj , then ηP (x) · ln(1/δ) ≤ ηj
and so B(x, ηP (x) · ln(1/δ)∆) ⊆ B(x, ηj∆). Note that if x ∈ Z is padded in P1 it will be padded in P . If x ∈ Z̄:
since for any j ∈ [s], ηP (x) · ln(1/δ) ≤ ηj we have that ¬E1 implies that B(x, ηP (x) · ln(1/δ)∆) ∩ Z = ∅. As P2 is
performed independently of P1 we have Pr[B(x, (τ/2) ln(1/δ)) ⊆ P2(x)] ≥ δ1/2, hence

Pr[B(x, (τ/2) ln(1/δ)) ⊆ P (x)] ≥ Pr[B(x, (τ/2) ln(1/δ)) ⊆ P (x) | ¬E1] · Pr[¬E1] ≥ δ1/2 · δ1/2 = δ.
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It follows that P̂ is uniformly padded. Finally, we show the properties stated in the lemma. The first property follows
from the stop condition in phase 1 and from the definition of ηP (x). The second property holds: first take x ∈ Z and
let j be such that x ∈ Cj , then ξP (x) = 1 implies that χ̂j ≥ 1/δ̂ hence ηP (x) = 2−7/ ln χ̂j = 2−7/ ln ρ(vj , 2∆, γ)

and by the minimality of vj , ηP (x) ≥ 2−7/ ln ρ(x, 2∆, γ). By definition ηP (x) ≤ 2−7/ ln(1/δ̂). If x ∈ Z̄ then
ηP (x) = τ/2, by the stop condition of phase 1 τ/2 ≥ 2−7/ ln χ̂j . Again by definition of δ̂ follows that τ/2 ≤
2−7/ ln(1/δ̂). As for the third property, which is meaningful only for x ∈ Z, let j such that x ∈ Cj , then ξP (x) = 0

implies that χ̂j < 1/δ̂ hence ηP (x) = 2−7/ ln(1/δ̂) and since d(x, vj) ≤ ∆ also ρ̄(x, 2∆, γ) ≤ ρ(vj , 2∆, γ) < 1/δ̂.
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