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Abstract

Minimum Spanning Trees of weighted graphs are fundamental objects in numerous applica-
tions. In particular in distributed networks, the minimum spanning tree of the network is often
used to route messages between network nodes. Unfortunately, while being most efficient in the
total cost of connecting all nodes, minimum spanning trees fail miserably in the desired prop-
erty of approximately preserving distances between pairs. While known lower bounds exclude
the possibility of the worst case distortion of a tree being small, it was shown in [4] that there
exists a spanning tree with constant average distortion. Yet, the weight of such a tree may be
significantly larger than that of the MST. In this paper, we show that any weighted undirected
graph admits a spanning tree whose weight is at most (1 + ρ) times that of the MST, providing
constant average distortion O(1/ρ).

The constant average distortion bound is implied by a stronger property of scaling distortion,
i.e., improved distortion for smaller fractions of the pairs. The result is achieved by first showing
the existence of a low weight spanner with small prioritized distortion, a property allowing to
prioritize the nodes whose associated distortions will be improved. We show that prioritized
distortion is essentially equivalent to coarse scaling distortion via a general transformation,
which has further implications and may be of independent interest. In particular, we obtain an
embedding for arbitrary metrics into Euclidean space with optimal prioritized distortion.2

1 Introduction

One of the fundamental problems in graph theory is that of constructing a Minimum Spanning
Tree (MST) of a given weighted graph G = (V,E). This problem and its variants received much
attention, and has found numerous applications. In many of these applications, one may desire not
only minimizing the weight of the spanning tree, but also other desirable properties, at the price
of losing a small factor in the weight of the tree compared to that of the MST. Define the lightness
of T to be the total weight of T (the sum of its edge weights) divided by the weight of an MST.
One well known example is that of a Shallow Light Tree (SLT) [21, 8], which is a rooted spanning
tree having near optimal (1 + ρ) lightness, while approximately preserving all distances from the
root to the other vertices.

It is natural to ask that the spanning tree will preserve well all pairwise distances in the graph.
However, it is easy to see that no spanning tree can maintain such a requirement. In particular,
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even in the case of the unweighted cycle graph on n vertices, for every spanning tree there is a
pair of neighboring vertices whose distance increases by a factor of n − 1. A natural relaxation
of this demand is that the spanning tree approximates all pairwise distances on average. For-
mally, the distortion of the pair u, v ∈ V in T is defined as dT (u,v)

dG(u,v) , and the average distortion is

1

(n2)

∑
{u,v}∈(V2)

dT (u,v)
dG(u,v) , where dG (respectively dT ) is the shortest-path metric in G (resp. T ).1 In

[4], it was shown that for every weighted graph, it is possible to find a spanning tree which has
constant average distortion.

In this paper, we devise a spanning tree of optimal (1 + ρ) lightness that has O(1/ρ) average
distortion over all pairwise distances. We show that this result is tight by exhibiting a lower bound
on the tradeoff between lightness and average distortion, that in order to get 1 + ρ lightness the
average distortion must be Ω(1/ρ) (this holds even if the spanning subgraph is not necessarily a
tree), and in particular, the average distortion for an MST is as bad as Ω(n).

Our main result may be of interest for network applications. It is extremely common in the
area of distributed computing that an MST is used for communication between the network nodes.
This allows easy centralization of computing processes and an efficient way of broadcasting through
the network, allowing communication to all nodes at a minimum cost. Yet, as already mentioned
above, when communication is required between specific pairs of nodes, the cost of routing through
the MST may be extremely high, even when their real distance is small. However, in practice it
is the average distortion, rather than the worst-case distortion, that is often used as a practical
measure of quality, as has been a major motivation behind the initial work of [22, 3, 4]. As noted
above, the MST still fails even in this relaxed measure. Our result overcomes this by promising
small routing cost between nodes on average, while still possessing the low cost of broadcasting
through the tree, thereby maintaining the standard advantages of the MST.

Our main result on a low average distortion embedding follows from analyzing the scaling
distortion of the embedding. This notion, first introduced in [22]2, requires that for every 0 < ε < 1,
the distortion of all but an ε-fraction of the pairs is bounded by the appropriate function of ε. In [3]
it was shown that one may obtain bounds on the average distortion, as well as on higher moments
of the distortion function, from bounds on the scaling distortion. Our scaling distortion bound for
the constructed spanning tree is3 Õ(1/

√
ε)/ρ, which is nearly tight as a function of ε [4].

We also obtain a probabilistic embedding devising a distribution over (light) spanning trees
with polylog(1/ε)/ρ scaling distortion, thus providing constant bounds on all fixed moments of the
distortion (i.e., the lq-distortion [3] for fixed q).

Our main technical contribution, en route to this result, may be of its own interest: We devise a
spanner (a subgraph ofG) with 1+ρ lightness and low prioritized distortion. This notion, introduced
recently in [16], means that for every given ranking v1, . . . , vn of the vertices of the graph, there
is an embedding where the distortion of pairs including vj is bounded as a function of the rank j.
Here we show a light spanner construction with prioritized distortion at most Õ(log j)/ρ. We then
show a connection between the notions of prioritized distortion and scaling distortion (discussed
further below), and use this to argue that our spanner has scaling distortion Õ(log(1/ε))/ρ, and
thus average distortion O(1/ρ). Although we do not obtain a spanning tree here, this result has
a few advantages, as we get constant bounds on all fixed moments of the distortion function (also
called the `q-distortion). Moreover, the worst-case distortion is only logarithmic in n. We note that

1Distortion is sometimes referred to as stretch.
2Originally coined gracefully degrading embedding.
3By Õ(f(n)) we mean O(f(n) · polylog(f(n))).
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all of our results admit deterministic polynomial time algorithms.
Another technical contribution is a general, black-box reduction, that transform constructions

of spanners with distortion t and lightness ` into spanners with distortion t/δ and lightness 1 + δ`
(here 0 < δ < 1). This reduction can be applied in numerous settings, and also for many different
special families of graphs. In particular, this reduction allows us to construct prioritized spanners
with lightness arbitrarily close to 1.

Prioritized vs. Scaling Distortion As mentioned above, one of the ingredients of our work
is a general reduction relating the notions of prioritized distortion and scaling distortion. In fact,
we show that prioritized distortion is essentially equivalent to a strong version of scaling distortion
called coarse scaling distortion, in which for every point, the 1 − ε fraction of the farthest points
from it are preserved with the desired distortion. We prove that any embedding with a given
prioritized distortion α has coarse scaling distortion bounded by O(α(8/ε)). This result could be
of independent interest; in particular, it shows that the results of [16] on distance oracles and
embeddings have their scaling distortion counterparts (some of which were not known before). We
further show a reduction in the opposite direction, informally, that given an embedding with coarse
scaling distortion γ there exists an embedding with prioritized distortion γ(µ(j)), where µ is a
function such that

∑
i µ(i) = 1 (e.g. µ(j) = 6

(π·j)2 ). This result implies that all existing coarse

scaling distortion results have priority distortion counterparts, thus improving few of the results of
[16]. In particular, by applying a theorem of [3] we obtain prioritized embedding of arbitrary metric
spaces into lp in dimension O(log n) and prioritized distortion O(log j), which is best possible.

Outline and Techniques. Our proof has the following high level approach; Given a graph and a
ranking of its vertices, we first find a low weight spanner with prioritized distortion Õ(log j)/ρ. We
then apply the general reduction from prioritized distortion to scaling distortion to find a spanner
with scaling distortion Õ(log(1/ε))/ρ. Finally, we use the result of [4] to find a spanning tree of
this spanner with scaling distortion O(1/

√
ε). We then conclude that the scaling distortion of the

concatenated embeddings is roughly their product, which implies our main result of a spanning
tree with lightness 1 + ρ and scaling distortion Õ(1/

√
ε)/ρ.

Similarly, we can apply the probabilistic embedding of [4] to get a light counterpart, devising
a distribution over spanning trees, each with lightness 1 + ρ, with (expected) scaling distotion
polylog(1/ε)/ρ.

The main technical part of the paper is finding a light prioritized spanner. In a recent result [14]
(following [18, 13]), it was shown that any graph on n vertices admits a spanner with (worst-case)
distortion O(log n) and with constant lightness. However, these constructions have no bound on
the more refined notions of distortion. To obtain a prioritized distortion, we use a technique similar
in spirit to [16]: group the vertices into log log n sets according to their priority, the set Ki will
contain vertices with priority up to 22i . We then build a low weight spanner for each of these sets.
As prioritized distortion guarantees a bound for every pair containing a high ranking vertex, we
must augment the spanner of Ki with shortest paths to all other vertices. Such a shortest path tree
may have large weight, so we use an idea from [12] and apply an SLT rooted at Ki, which balances
between the weight and the distortion from Ki.

The main issue with the construction described above is that the weight of the spanner in each
phase can be proportional to that of the MST, but we have log log n of those. Obtaining constant
lightness, completely independent of n, requires a subtler argument. We use the fact that the
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weight of the light spanners in each phase come ”mostly” from the MST, and then some additional
weight. We ensure that all the spanners will have the same MST. Then we select the parameters
carefully, so that the additional weights will be small enough to form converging sequences, without
affecting the distortion by too much.

1.1 Related Work

Partial and scaling embeddings4 have been studied in several papers [22, 1, 3, 12, 4, 5]. Some of the
notable results are embedding arbitrary metrics into a distribution over trees [1] or into Euclidean
space [3] with tight O(log(1/ε)) scaling distortion. These results imply constant average distortion
and O(q) bound on the `q-distortion. In [4], an embedding into a single spanning tree with tight
O(1/

√
ε) scaling distortion is shown, which implies constant average distortion, but there is no

guarantee on the weight of the tree.
Prioritized distortion embeddings were studied in [16], for instance they give an embedding

of arbitrary metrics into a distribution over trees with prioritized distortion O(log j) and into
Euclidean space with prioritized distortion Õ(log j).

Probabilistic embedding into trees [9, 10, 11, 19] and spanning trees [7, 15, 2, 6] has been
intensively studied, and found numerous applications to approximation and online algorithms, and
to fast linear system solvers. While our distortion guarantee does not match the best known worst-
case bounds, which are O(log n) for arbitrary trees and Õ(log n) for spanning trees, we give the
first probabilisitc embeddings into spanning trees with polylogarithmic scaling distortion in which
all the spanning trees in the support of the distribution are light.

The paper [12] considers partial and scaling embedding into spanners, and show a general
transformation from worst-case distortion to partial and scaling distortion. In particular, they
show a spanner with O(n) edges and O(log(1/ε)) scaling distortion. For a fixed ε > 0, they also
obtain a spanner with O(n) edges, O(log(1/ε)) partial distortion and lightness O(log(1/ε)).5 Note
that these results fall short of achieving both constant average distortion and constant lightness.

2 Preliminaries

All the graphs G = (V,E,w) we consider are undirected and weighted with nonnegative weights.
We shall assume w.l.o.g that all edge weights are different. If it is not the case, then one can
break ties in an arbitrary (but consistent) way. Note that under this assumption, the MST T
of G is unique. The weight of a graph G is w(G) =

∑
e∈E w(e). Let dG be the shortest path

metric on G. For a subset K ⊆ V and v ∈ V let dG(v,K) = minu∈K{dG(u, v)}. For r ≥ 0 let
BG(v, r) = {u ∈ V : dG(u, v) ≤ r} (we often omit the subscript when clear from context).

For a graph G = (V,E) on n vertices, a subgraph H = (V,E′) where E′ ⊆ E (with the induced
weights) is called a spanner of G. We say that a pair u, v ∈ V has distortion at most t if

dH(v, u) ≤ t · dG(v, u) ,

(note that always dG(v, u) ≤ dH(v, u)). If every pair u, v ∈ V has distortion at most t, we say that
the spanner H has distortion t. Let T be the (unique) MST of G, the lightness of H is the ratio

4A partial embedding (introduced by [22] under the name embedding with slack) requires that for a fixed 0 < ε < 1,
the distortion of all but an ε-fraction of the pairs is bounded by the appropriate function of ε.

5The original paper claims lightness O(log2(1/ε)), but their proof in fact gives the improved bound.
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between the weight of H and the weight of the MST, that is Ψ(H) = w(H)
w(T ) . We sometimes abuse

notation and identify a spanner or a spanning tree with its set of edges.

Prioritized Distortion. Let π = v1, . . . , vn be a priority ranking (an ordering) of the vertices of
V , and let α : N→ R+ be some monotone non-decreasing function. We say that H has prioritized
distortion α (w.r.t π), if for all 1 ≤ j < i ≤ n, the pair vj , vi has distortion at most α(j).

Scaling Distortion. For v ∈ V and ε ∈ (0, 1) let R(v, ε) = min {r : |B(v, r)| ≥ εn}. A vertex u
is called ε-far from v if d(u, v) ≥ R(v, ε). Given a function γ : (0, 1) → R+, we say that H has
scaling distortion γ, if for every ε ∈ (0, 1), there are at least (1− ε)

(|V |
2

)
pairs that have distortion

at most γ(ε). We say that H has coarse scaling distortion γ, if every pair v, u ∈ V such that both
u, v are ε/2-far from each other, has distortion at most γ(ε).6

Moments of Distortion. For 1 ≤ q ≤ ∞, define the `q-distortion of a spanner H of G as:

distq(H,G) = E
[(

dH(u, v)

dG(u, v)

)q]1/q

,

where the expectation is taken according to the uniform distribution over
(
V
2

)
. The classic notion

of distortion is expressed by the `∞-distortion and the average distortion is expressed by the `1-
distortion. The following was proved in [4].

Lemma 1. ([4]) Given a weighted graph G = (V,E) on n vertices, if a spanner H has scaling
distortion γ then

distq(H,G) ≤

(
2

∫ 1

1
2(n2)

−1
γ(x)qdx

)1/q

.

These notions of distortion apply for embedding of general metric spaces as well.

3 Light Spanner with Prioritized Distortion

In this section we prove that every graph admits a light spanner with bounded prioritized distortion.

Theorem 1 (Prioritized Spanner). Given a graph G = (V,E), a parameter 0 < ρ < 1 and any
priority ranking v1, v2, . . . , vn of V , there exists a spanner H with lightness 1 + ρ and prioritized
distortion Õ (log j) /ρ.

The main technical lemma is the following.

Lemma 2. Given a graph G = (V,E), a subset K ⊆ V of size k, and a parameter 0 < δ < 1, there
exists a spanner H that 1) contains the MST of G, 2) has lightness 1 + δ, and 3) every pair in
K × V has distortion O(log k/δ).

Before proving this lemma, we use it to prove Theorem 1.

6It can be verified that coarse scaling distortion γ implies scaling distortion γ.
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Proof. (of Theorem 1) For every 1 ≤ i ≤ dlog logne let Ki =
{
vj : j ≤ 22i

}
. Let Hi be the

spanner given by Lemma 2 with respect to the set Ki and the parameter δi = ρ/i2. Hence Hi has

1 + ρ/i2 lightness and O
(

log |Ki|
δi

)
= O(2i · i/ρ) distortion for pairs in Ki × V . Let H =

⋃
iHi

be the union of all these spanners (that is, the graph containing every edge of every one of these
spanners). As each Hi contains the unique MST of G, it holds that

Ψ(H) ≤ 1 +
∑
i≥1

ρ/i2 = 1 +O (ρ) .

To see the prioritized distortion, let vj , vr ∈ V be such that j < r, and let 1 ≤ i ≤ dlog log ne
be the minimal index such that vj ∈ Ki. Note that 22i−1 ≤ j, and in particular 2i−1 ≤ log j (with
the exception of j = 1, which we may ignore). This implies that

dH(vj , vr) ≤ dHi(vj , vr) ≤ O(2i · i2/ρ) · dG(vj , vr)

≤ Õ (log j) /ρ · dG(vj , vr) .

as required.

3.1 Proof of Lemma 2

The construction of the spanner that fullfil the properties promised in Lemma 2 is as follows. First
we use the spanner of [14] to get a spanner with lightness O(1) and distortion O(log k) over pairs in
K ×K. Then, by combining this spanner with the SLT by [21] we expand the O(log k) distortion
guarantee to all pairs in K × V , while the lightness is still O(1). Finally, we use general reduction
(Theorem 2), that reduces the weight of a spanner while increasing its distortion. By applying the
reduction, we get a spanner with 1+ρ lightness while paying additional factor of ρ in the distortion.

We begin by describing the general reduction.

Theorem 2. Let G = (V,E) be a graph, 0 < δ < 1 a parameter and t :
(
V
2

)
→ R+ some a function.

Suppose that for every weight function w : E → R+ there exist a spanner H with lightness ` such
that every pair u, v suffers distortion at most t(u, v). Then for every weight function w there exist
a spanner H with lightness 1 + δ` and such that every pair u, v suffers distortion at most t(u, v)/δ.
Moreover, H contains the MST of G with respect to w.

Proof. Let T be the MST of G with respect to w. Set w′ : E → R+ to be a new weight function

w′(e) =

{
δ · w(e) e ∈ T
w(e) e /∈ T

, that is, we multiply the weight of all the MST edges by δ. Let G′ be the

graph G with the weight function w′. Note that T is also the MST of G′ (as every e /∈ T is still the
heaviest edge in some cycle). Using our assumption, let H ′ = (V,EH′ , w

′) be a spanner of G′ with
stretch t and lightness `. Set H = (V,EH′ ∪ T,w) as a spanner of G. The edge set of H consist of
the edges of H ′ union the MST edges with the original weight function w.

As the weight of the non-MST edges did not changed, we have

w(EH) = w(T ) + w′ (EH′ \ T ) ≤ w(T ) + w′ (EH′)

≤ w(T ) + ` · w′ (T ) = (1 + δ`) · w(T ) ,

in particular the lightness of H is at most 1 + δ`.
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To bound the distortion, consider an arbitrary pair of vertices u, v ∈ V . Let Pu,v be the shortest
path from u to v in H ′. As for each edge e ∈ Pu,v, w(e) ≤ w′(e)/δ , we have

dH (u, v) ≤
∑
e∈Pu,v

w (e) ≤ 1

δ
·
∑
e∈Pu,v

w′ (e) =
1

δ
· dH′ (u, v) ≤ t(u, v)

δ
dG′ (u, v) ≤ t(u, v)

δ
dG (u, v) ,

as required.

In a recent work, Chechik and Wulff-Nilsen achieved the following result:

Theorem 3 ([14]). For every weighted graph G = (V,E,w) and parameters k ≥ 1 and 0 < ε < 1,
there exist a polynomial time algorithm that constructs a spanner with distortion (2t−1)(1+ ε) and
lightness n1/t · poly(1

ε ).

Note that for an n-vertex graph with parameters t = log n, ε = 1, they get a spanner with
distortion O(log n) and constant lightness. However, their construction does not provide lightness
arbitrarily close to 1.

A tree T = (V ′, E′, w′) is called a Steiner tree for a graph G = (V,E,w) if (1) V ⊆ V ′, and
(2) for any pair of vertices u, v ∈ V it holds that dT (u, v) ≥ dG (u, v). The minimum Steiner tree
T of G, denoted SMT (G), is a Steiner tree of G with minimum weight. It is well-known that for
any graph G, w (SMT (G)) ≥ 1

2MST (G). (See, e.g., [20], Section 10.)
We will use [14] spanner to construct a spanner with O(1) lightness and distortion O(log k) over

pairs in K×K. Let Gk = (K,
(
K
2

)
, dG) be the complete graph over the terminal set K with weights

according to the shortest path metric in G. Let Tk be the MST of Gk. Note that the MST T of G
is a Steiner tree of Gk, hence wk(Tk) ≤ 2 · wk(SMT (Gk)) ≤ 2 · w(T ) .

Using Theorem 3, let Hk be a spanner of Gk with weight O(w(T )) (constant lightness) and
distortion O(log k). For a pair of vertices u, v ∈ V , let Puv denote a shortest path between u and
v. Let H ′ = (V,E′, w) be a subgraph of G with the set of edges E′ = ∪{u,v}∈Ek

Puv (i.e. for every
edge {u, v} in Hk, we take some shortest path from u to v). It holds that,

w(H ′) ≤
∑

{u,v}∈Ek

w(Puv) =
∑
e∈Ek

wk(e) = O(1) · wk(Tk) = O(1) · w(T ) .

Moreover, for every pair u, v ∈ K,

dH′(u, v) ≤ dH(u, v) ≤ O(log k) · dG(u, v) . (1)

Now we extend H ′ so that every pair in K × V will suffer distortion at most O(log k). To this
end, we use the following lemma regarding shallow light trees (SLT) is implicitly proved in [21, 8].

Lemma 3. Given a graph G = (V,E), a parameter α > 1, and a subset K ⊆ V , there exists a
spanner S of G with lightness 1 + 2

α−1 , and for any vertex u ∈ V , dS(u,K) ≤ α · dG(u,K).

Let S be the spanner of Lemma 3 with respect to the set K and parameter α = 2. Define H”
as the union of H ′ and S. As both H ′ and S have constant lightness, so does H”. It remains to
bound the distortion of an arbitrary pair v ∈ K and u ∈ V . Let ku ∈ K be the closest vertex
to u among the vertices in K with respect to the distances in the spanner S. By the assertion of
Lemma 3,

dS(u, ku) = dS(u,K) ≤ 2 · dG(u,K) ≤ 2 · dG(u, v) . (2)
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Using the triangle inequality,

dG(v, ku) ≤ dG(v, u) + dG(u, ku) ≤ dG(v, u) + dS(u, ku)
(2)

≤ 3 · dG(v, u) . (3)

Since both v, ku ∈ K it follows that

dH′(v, ku)
(1)

≤ O(log k) · dG(v, ku)
(3)

≤ O(log k) · dG(v, u) . (4)

We conclude that

dH” (v, u) ≤ dH′ (v, ku) + dS (ku, u)
(2)∧(4)

≤ O(log k) · dG(v, u) .

We showed a polynomial time algorithm that given a weighted graph G = (V,E,w) and a subset
K ⊆ V of size k constructs a spanner H with lightness O(1) and such that every pair in K × V
has distortion at most O(log k). Now Theorem 2 implies Lemma 2.

4 Prioritized Distortion vs. Coarse Scaling Distortion

In this section we study the relationship between the notions of prioritized and scaling distortion.
We show that there is a reduction that allows to transform embeddings with prioritized distortion
into embeddings with coarse scaling distortion, and vice versa. We start with the direction that is
used for our main result, showing that prioritized distortion implies scaling distortion.

For two metric spaces (X, dX), (Y, dY ) and a non-contractive embedding f : X → Y ,7 the

distortion of a pair x, y ∈ X under f is defined as dY (f(x),f(y))
dX(x,y) .

Theorem 4. Let (X, dX), (Y, dY ) be metric spaces, then there exists a priority ranking x1, . . . , xn of
the points of X such that the following holds: If there exists a non-contractive embedding f : X →
Y with (monotone non-decreasing) prioritized distortion α, then f has coarse scaling distortion
O(α(8/ε)).

The basic idea of the proof is to choose the priorities so that for every ε, every v ∈ X has a
representative v′ of sufficiently high priority within distance ≈ R(v, ε). Then for any u ∈ X which
is ε-far from v, we can use the low distortion guarantee of v′ with both v and u via the triangle
inequality. To this end, we employ the notion of a density net due to [12], who showed that a greedy
construction provides such a net.

Definition 1 (Density Net). Given a metric space (X, d) and a parameter 0 < ε < 1, an ε-density-
net is a set N ⊆ X such that: 1) for all v ∈ X there exists u ∈ N with d(v, u) ≤ 2R(v, ε) and 2)
|N | ≤ 1

ε .

Proof. (of Theorem 4) We begin by describing the desired priority ranking of X. For every integer
1 ≤ i ≤ dlog ne let εi = 2−i, and let Ni ⊆ X be an εi-density-net in X. Take any priority ranking

of X satisfying that every point v ∈ Ni has priority at most
∣∣∣⋃i

j=1Nj

∣∣∣ ≤∑i
j=1 |Nj |. As for any j,

|Nj | ≤ 1
εj

= 2j , each point in Ni has priority at most
∑i

j=1
1
εj
≤
∑i

j=1 2j < 2i+1.

7An embedding f is non-contractive if for every x, y ∈ X, dY (f(x), f(y)) ≥ dX(x, y).
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Let f : X → Y be some non-contractive embedding with prioritized distortion α with respect
to the priorities we defined. Fix some ε ∈ (0, 1) and a pair v, u ∈ V so that u is ε-far from v. Let i
be the minimal integer such that εi ≤ ε (note that we may assume 1 ≤ i ≤ dlog ne, because there is
nothing to prove for ε < 1/n). By Definition 1 we can take v′ ∈ Ni such that d(v, v′) ≤ 2R(v, εi).
As u is ε-far from v, it holds that

dX(v, v′) ≤ 2R (v, εi) ≤ 2R (v, ε) ≤ 2dX(v, u) . (5)

In particular, by the triangle inequality,

dX(u, v′) ≤ dX(u, v) + dX(v, v′)
(5)

≤ 3dX(u, v) . (6)

The priority of v′ is at most 2i+1, hence

dY (f(v), f(u))

≤ dY (f(v), f(v′)) + dY (f(v′), f(u))

≤ α(2i+1) · dX(v, v′) + α(2i+1) · dX(v′, u)

(5)∧(6)

≤ 5α(2/εi) · dX(v, u) .

By the minimality of i it follows that 1/εi ≤ 2/ε, and since α is monotone

dY (f(v), f(u)) ≤ 5α(2/εi) · dX(v, u) ≤ 5α(4/ε) · dX(v, u) ,

as required. Since we desire distortion guarantee for pairs that are ε/2-far, the distortion becomes
O(α(8/ε)).

Combining Theorem 1 and Theorem 4 we obtain the following.

Theorem 5. For any parameter 0 < ρ < 1, any graph contains a spanner with coarse scaling
distortion Õ (log (1/ε)) /ρ and lightness 1 + ρ.

Remark 1. By Lemma 1 it follows that this spanner has `q-distortion Õ(q)/ρ for any 1 ≤ q <∞.
We can also obtain a spanner with both scaling distortion and prioritized distortion simultane-

ously, where the priority is with respect to an arbitrary ranking π = v1, . . . , vn. To achieve this,
one may define a ranking which interleaves π with the ranking generated in the proof of Theorem 4.
We leave the details to the reader.

We now turn to show that coarse scaling distortion implies prioritized distortion.

Theorem 6. Let µ : N → R+ be a non-increasing function such that
∑

i≥1 µ(i) = 1. Let Y
be a family of finite metric spaces, and assume that for every finite metric space (Z, dZ) there
exists a non-contractive embedding fZ : Z → YZ , where (YZ , dYZ ) ∈ Y, with (monotone non-
increasing) coarse scaling distortion γ. Then, given a finite metric space (X, dX) and a priority
ranking x1, . . . , xn of the points of X, there exists an embedding f : X → Y , for some (Y, dY ) ∈ Y,
with (monotone non-decreasing) prioritized distortion γ(µ(i)).
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Proof. Given the metric space (X, dX) and a priority ranking x1, . . . , xn of the points of X, let
δ = mini 6=j dX(xi, xj)/2. We define a new metric space (Z, dZ) as follows. For every 1 ≤ i ≤ n,
every point xi is replaced by a set Xi of |Xi| = dµ(i)ne points, and let Z =

⋃n
i=1Xi. For every

u ∈ Xi and v ∈ Xj define dZ(u, v) = dX(xi, xj) when i 6= j, and dZ(u, v) = δ otherwise. Observe
that |Z| =

∑n
i=1 |Xi| ≤

∑n
i=1(µ(i)n+ 1) ≤ 2n.

We now use the embedding fZ : Z → YZ with coarse scaling distortion γ, to define an embedding
f : X → YZ , by letting for every 1 ≤ i ≤ n, f(xi) = fZ(ui) for some (arbitrary) point ui ∈ Xi.
By construction of Z, for every j > i, we have that Xi ⊆ B(ui, dZ(ui, uj)) ∩ B(uj , dZ(ui, uj)). As

|Xi| ≥ µ(i)n ≥ µ(i)
2 |Z|, it holds that ui, uj are ε/2-far from each other for ε = µ(i). This implies

that
dYZ (f(xi),f(xj))

dX(xi,xj) =
dYZ (fZ(ui),fZ(uj))

dZ(ui,uj) ≤ γ(µ(i)).

It follows from a result of [16] that the convergence condition on µ in the above theorem is
necessary. We note that this reduction can also be applied to cases where the coarse scaling
embedding is only known for a class of metric spaces (rather than all metrics), as long as the
transformation needed for the proof can be made so that the resulting new space is still in the
class. This holds for most natural classes. We leave the details for the full version of the paper.

The reduction implies that all existing coarse scaling distortion results have priority distortion
counterparts, thus improving few of the results of [16]8. In particular, by applying a theorem of [3]
we get the following:

Theorem 7. For every 1 ≤ p ≤ ∞ and every finite metric space (X, dX), and a priority ranking

of X, there exists an embedding with prioritized distortion O(log j) into l
O(log |X|)
p .

Remark 2. The proof of Theorem 4 provides an even stronger conclusion, that any pair u, v ∈ X
such that one is ε/2-far from the other, has the claimed distortion bound. While in the original
definition of coarse scaling both points are required to be ε/2-far from each other, it is often the
case that we acheive the stronger property. Yet, in some of the cases in previous work the weaker
definition seemed to be of importance. Combining Theorem 4 and Theorem 6, we infer that es-
sentially any coarse scaling embedding can have such a one-sided guarantee, with a slightly worse
dependence on ε, as claimed in the following corollary.

Corollary 4. Fix a metric space (X, d) on n points. Let Y be a family of finite metric spaces as in
Theorem 6. Then there exists an embedding f : X → Y , for some (Y, dY ) ∈ Y, with (monotone non-
decreasing) one-sided coarse scaling distortion O(γ(µ(8/ε))), where µ : N → R+ is a non-increasing
function such that

∑
i≥1 µ(i) = 1. .

Proof. By the condition of Theorem 6, there exists (Y, dY ) ∈ Y so that X embeds to Y with
coarse scaling distortion γ(ε). According to Theorem 6, there is an embedding f with prioritized
distortion γ(µ(i))) (w.r.t to any fixed priority ranking π). We pick π to be the ordering required
by Theorem 4, and conclude that f has strong coarse scaling distortion O(γ(µ(8/ε))).

5 A Light Tree with Constant Average Distortion

Here we prove our main theorem on finding a light spanning tree with constant average distortion.
Later on we show a probabilistic embedding into a distribution of light spanning trees with improved

8It is also worth noting that the reduction also implies that coarse partial embedding results can be translated
into bounds on terminal distortion [17].
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bound on higher moments of the distortion.

Theorem 8. For any parameter 0 < ρ < 1, any graph contains a spanning tree with scaling
distortion Õ(

√
1/ε)/ρ and lightness 1 + ρ.

It follows from Lemma 1 that the average distortion of the spanning tree obtained is O(1/ρ).
Moreover, the `q-distortion is O(1/ρ) for any fixed 1 ≤ q < 2, Õ

(
log1.5 n

)
/ρ for q = 2, and

Õ(n1−2/q)/ρ for any fixed 2 < q <∞.
We will need the following simple lemma, that asserts the scaling distortion of a composition

of two maps is essentially the product of the scaling distortions of these maps.9

Lemma 5. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces. Let f : X → Y (respectively,
g : Y → Z) be a non-contractive onto embedding with scaling distortion α (resp., β). Then g ◦ f
has scaling distortion α(ε/2) · β(ε/2).

Proof. Let n = |X|. Let distf (v, u) = dY (f(v),f(u))
dX(v,u) be the distortion of the pair u, v ∈ X un-

der f , and similarly let distg(v, u) = dZ(g(f(v)),g(f(u)))
dY (f(v),f(u)) . Fix some ε ∈ (0, 1). We would like

to show that at most ε ·
(
n
2

)
pairs suffer distortion greater than α(ε/2) · β(ε/2) by g ◦ f . Let

A =
{
{v, u} ∈

(
X
2

)
: distf (v, u) > α(ε/2)

}
and B =

{
{v, u} ∈

(
X
2

)
: distg(v, u) > β(ε/2)

}
. By the

bound on the scaling distortions of f and g, it holds that |A ∪ B| ≤ |A|+ |B| ≤ ε ·
(
n
2

)
. Note that

if {v, u} /∈ A ∪B then

dZ (g(f(v)), g(f(u)))

dX (v, u)
= distf (v, u) · distg(v, u)

≤ α(ε/2) · β(ε/2) ,

which concludes the proof.

We will also need the following result, that was proved in [4].

Theorem 9 ([4]). Any graph contains a spanning tree with scaling distortion O(
√

1/ε).

Now we can prove the main result.

Proof. (of Theorem 8) Let H be the spanner given by Theorem 5. Let T be a spanning tree
of H constructed according to Theorem 9. By Lemma 5, T has scaling distortion O(

√
1/ε) ·

Õ(log(1/ε))/ρ = Õ(
√

1/ε)/ρ with respect to the distances in G. The lightness follows as Ψ(T ) ≤
Ψ(H) ≤ 1 + ρ.

Random Tree Embedding. We also derive a result on probabilistic embedding into light span-
ning trees with scaling distortion. That is, the embedding construct a distribution over spanning
tree so that each tree in the support of the distribution is light. In such probabilistic embeddings [9]
into a family Y, each embedding f = fY : X → Y (for some (Y, dY ) ∈ Y) in the support of the dis-

tribution is non-contractive, and the distortion of the pair u, v ∈ X is defined as EY
[dY (f(u),f(v))

dX(u,v)

]
.

9Note that this is not true for the average distortion – one may compose two maps with constant average distortion
and obtain a map with Ω(n) average distortion.
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The prioritized and scaling distortions are defined accordingly. We make use of the following result
from [4].10

Theorem 10. ([4]) Every weighted graph G embeds into a distribution over spanning trees with
coarse scaling distortion Õ(log2(1/ε)).

We note that the distortion bound on the composition of maps in Lemma 5 also holds whenever
g is a random embedding, and we measure the scaling expected distortion. Thus, following the
same lines as in the proof of Theorem 8, (while using Theorem 10 instead of Theorem 9), we obtain
the following.

Theorem 11. For any parameter 0 < ρ < 1 and any weighted graph G, there is an embedding of G
into a distribution over spanning trees with scaling distortion Õ(log3(1/ε))/ρ, such that every tree
T in the support has lightness 1 + ρ.

It follows from Lemma 1 that the `q-distortion is O(1/ρ), for every fixed q ≥ 1.

6 Lower Bound on the Trade-off between Lightness and Average
Distortion

In this section, we give an example of a graph for which any spanner with lightness 1+ρ has average
distortion Ω(1/ρ) (of course this bound holds for the `q-distortion as well). This shows that our
results are tight 11.

Lemma 6. For any n ≥ 32 and ρ ∈ [1/n, 1/32], there is a graph G on n+ 1 vertices such that any
spanner H of G with lightness at most 1 + ρ has average distortion at least Ω (1/ρ).

Proof. We define the graph G = (V,E) as follows. Denote V = {v0, v1, . . . , vn}, E =
(
V
2

)
, and the

weight function w is defined as follows.

w({vi, vj}) =

{
1 if |i− j| = 1

2 otherwise .

I.e., G is a complete graph of size n+ 1, where the edges {vi, vi+1} have unit weight and induce a
path of length n, and all non-path edges have weight 2. Clearly, the path is the MST of G of weight
n. Let k = dρne. Let H be some spanner of G with lightness at most 1 + ρ ≤ n+k

n , in particular,
w(H) ≤ n+ k. Clearly H has at least n edges (to be connected). Let q be the number of edges of
weight 2 contained in H. Then w(H) ≥ (n− q) · 1 + q · 2 = n+ q. Therefore q ≤ k.

Let S be the set of vertices which are incident on an edge of weight 2 in H. Then |S| ≤ 2q ≤ 2k.
Let δ = 1

32ρ . For any v ∈ S, let Nv ⊆ V be the set of vertices that are connected to v via a path of
length at most δ in H, such that this path consists of weight 1 edges only. Necessarily, for any v ∈ S,
|Nv| ≤ 2δ + 1. Let N =

⋃
v∈S Nv, it holds that |N | ≤ 2k · (2δ + 1) ≤ 4ρn( 1

16ρ + 1) ≤ n
4 + n

8 = 3n
8 .

Let N̄ = V \N .

10The fact the embedding yields coarse scaling distortion is implicit in their proof.
11We also mention that in general the average distortion of a spanner cannot be arbitrarily close to 1, unless the

spanner is extremely dense. E.g., when G is a complete graph, any spanner with lightness at most n/2 will have
average distortion at least 3/2.
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Consider u ∈ N̄ . By definition of N every weight 2 edge is further than δ steps away from u in
H. It follows that there are at most 2δ + 1 vertices within distance at most δ from u (in H). Let
Fu = {v ∈ V : dH(u, v) > δ}. It follows that |Fu| ≥ n − 2δ − 1. Note that for any v ∈ Fu, the
distortion of the pair {u, v} is at least δ

2 . Hence, we obtain that∑
{v,u}∈(V2)

dH (v, u)

dG (v, u)
≥ 1

2

∑
u∈N̄

∑
v∈Fu

dH (v, u)

dG (v, u)

≥ 5n

16
· (n− 2δ − 1) · δ

2

≥ 5n

16
· 7n

8
· 1

64ρ
.

Finally,

dist1(H,G) =
1(
n+1

2

) ∑
{v,u}∈(V2)

dH (v, u)

dG (v, u)

≥ n

n+ 1
· 35

64
· 1

64ρ

≥ 1

128ρ
.
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