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Abstract
A t-spanner of a weighted undirected graph G = (V,E), is a subgraph H such that dH(u, v) ≤

t · dG(u, v) for all u, v ∈ V . The sparseness of the spanner can be measured by its size (the number of
edges) and weight (the sum of all edge weights), both being important measures of the spanner’s quality
– in this work we focus on the latter.

Specifically, it is shown that for any parameters k ≥ 1 and ε > 0, any weighted graph G on n vertices
admits a (2k − 1) · (1 + ε)-stretch spanner of weight at most w(MST (G)) · Oε(kn

1/k/ log k), where
w(MST (G)) is the weight of a minimum spanning tree of G. Our result is obtained via a novel analysis
of the classic greedy algorithm, and improves previous work by a factor of O(log k).

1 Introduction

Given a weighted connected graph G = (V,E) with n vertices and m edges, let dG be its shortest path
metric. A t-spanner H = (V,E′) is a subgraph that preserves all distances up to a multiplicative factor t.
That is, for all u, v ∈ V , dH(u, v) ≤ t · dG(u, v). The parameter t is called the stretch. There are several
parameters that have been studied in the literature that govern the quality of H , two of the most notable ones
are the size of the spanner (the number of edges) and its total weight (the sum of weights of its edges).

There is a basic tradeoff between the stretch and the size of a spanner. For any graph on n vertices,
there exists a (2k − 1)-spanner with O(n1+1/k) edges [ADD+93]. Furthermore, there is a simple greedy
algorithm for constructing such a spanner, which we shall refer to as the greedy spanner (see Algorithm 1).
The bound on the number of edges is known to be asymptotically tight for certain small values of k, and for
all k assuming Erdős’ girth conjecture.

In this paper we focus on the weight of a spanner. Light weight spanners are particularly useful for effi-
cient broadcast protocols in the message-passing model of distributed computing [ABP90, ABP91], where
efficiency is measured with respect to both the total communication cost (corresponding to the spanner’s
weight) and the speed of message delivery at all destinations (corresponding to the spanner’s stretch). Ad-
ditional applications of light weight spanners in distributed systems include network synchronization and
computing global functions [ABP90, ABP91, Pel00]. Light weight spanners were also found useful for var-
ious data gathering and dissemination tasks in overlay networks [BKR+02, KV02], in wireless and sensor
networks [SS10], for network design [MP98, SCRS01], and routing [WCT02].
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While a minimum spanning tree (MST) has the lowest weight among all possible connected spanners,
its stretch can be quite large. Nevertheless, when measuring the weight of a spanner, we shall compare
ourselves to the weight of an MST: The lightness of the spanner H is defined as w(H)

w(MST ) (here w(H)

is the total edge weight of H). It was shown by [ADD+93] that the lightness of the greedy spanner is
at most O(n/k), and their result was improved by [CDNS92], who showed that for any ε > 0 the greedy
(2k−1) ·(1+ε)-spanner has Oε(n

1+1/k) edges and lightness O(k ·n1/k/ε1+1/k). A particularly interesting
special case arises when k ≈ log n. Specifically, in this case the result of [CDNS92] provides stretch and
lightness both bounded by O(log n). Another notable point on the tradeoff curve of [CDNS92] (obtained
by setting ε = log n as well) is stretch O(log2 n) and lightness O(1).

These results of [CDNS92] remained the state-of-the-art for more than twenty years. In particular, prior
to this work it was unknown if spanners with stretch O(log n) and lightness o(log n), or vice versa, exist.
In this paper we answer this question in the affirmative, and show in fact something stronger – spanners
with stretch and lightness both bounded by o(log n) exist. We provide a novel analysis of the classic greedy
algorithm, which improves the tradeoff of [CDNS92] by a factor of O(log k). Specifically, we prove the
following theorem.

Theorem 1. For any weighted graph G = (V,E) and parameters k > 1, ε > 0, there exists a (2k − 1) ·
(1 + ε)-spanner H with O(n1+1/k) edges1 and lightness O(n1/k · (1 + k/(ε1+1/k log k))).

By substituting k ≈ log n we obtain stretch log n and lightness O(log n/ log logn) (for fixed small
ε). We also allow ε to be some large value. In particular, setting ε = log n/ log log n yields stretch
log2 n/ log logn and lightness O(1). Also, by substituting k = log n/ log log log n we can have both stretch
and lightness bounded by O(log n/ log log log n).

Our result shows that the potentially natural tradeoff between stretch 2k − 1 and lightness O(k · n1/k)
is not the right one. This can also be seen as an indication that the right tradeoff is stretch (2k − 1) and
lightness O(n1/k). (Note that lightness O(n1/k) is the weighted analogue of O(n1+1/k) edges, and so it is
asymptotically tight assuming Erdős’ girth conjecture.)

1.1 Proof Overview

The main idea in the analysis of the greedy algorithm by [CDNS92] is to partition the edges of the greedy
spanner to scales according to their weight, where edge weights in the same scale differ by at most a factor
of 2, and bound the contribution of edges in each scale separately. For each scale they create a graph from
the edges selected by the greedy algorithm to the spanner, and argue that such a graph has high girth2 and
thus few edges. The main drawback is that when analyzing higher weight edges, this argument ignores the
lower weight edges that were already inserted into the spanner.

We show that one indeed can use information on lower weight edges when analyzing the contribution of
higher scales. We create a different graph from edges added to the spanner, and argue that this graph has high
girth. The new ingredient in our analysis is that we add multiple edges per spanner edge, proportionally to its
weight. More specifically, these new edges form a matching between certain vertices in the neighborhoods
of the original edge’s endpoints. Intuitively, a high weight edge enforces strong restrictions on the length
of cycles containing it, so it leaves a lot of “room” for adding low weight edges in its neighborhood while
maintaining high girth. The structure of the matching is what enables us to efficiently exploit this room, i.e.,

1In fact for large ε a better bound can be obtained. Specifically, it is O(n1+1/bd(2k−1)·(1+ε)e/2c).
2The girth of a graph is the minimal number of edges in a cycle.
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without affecting the girth; in particular, we show that a cycle in the graph constructed in this way can be
mapped to a closed tour in the greedy spanner of proportional length.

Unfortunately, with our current techniques we can only use edges of weight at most k times smaller
than the weight of edges in the scale which is now under inspection. Hence this gives an improvement of
O(log k) to the lightness of the greedy spanner. We hope that a refinement of our method, perhaps choosing
the matching more carefully, will eventually lead to an optimal lightness of O(n1/k).

1.2 Related Work

A significant amount of research attention was devoted to constructing light and sparse spanners for Eu-
clidean and doubling metrics. A major result is that for any constant-dimensional Euclidean metric and any
ε > 0, there exists a (1 + ε)-spanner with lightness O(1) [DHN93]. Since then there has been a flurry of
work on improving the running time and other parameters. See, e.g., [CDNS92, ADM+95, DES08, ES13,
CLNS13], and the references therein. An important question still left open is whether the O(1) lightness
bound of [DHN93] for constant-dimensional Euclidean metrics can be extended to doubling metrics. Such
a light spanner has implications for the running time of a PTAS for the traveling salesperson problem (TSP).
Recently, [GS14] showed such a spanner exists for snowflakes3 of doubling metrics.

Light spanners with (1+ε) stretch have been sought for other graph families as well, with the application
to TSP in mind. It has been conjectured that graphs excluding a fixed minor have such spanners. Currently,
some of the known results are for planar graph [ADM+95], bounded-genus graphs [Gri00], unit disk graphs
[KPX08], and bounded pathwidth graphs [GH12].

A lot of research focused on constructing sparse spanners efficiently, disregarding their lightness. Cohen
[Coh93] devised a randomized algorithm for constructing ((2k− 1) · (1 + ε))-spanners with O(k · n1+1/k ·
(1/ε) · log n) edges. Her algorithm requires expected O(m ·n1/k · k · (1/ε) · log n)) time. Baswana and Sen
[BS03] improved Cohen’s result, and devised an algorithm that constructs (2k − 1)-spanners with expected
O(k · n1+1/k) edges, in expected O(k · m) time. Roditty et al. [RTZ05] derandomized this algorithm,
while maintaining the same parameters (including running time). Roditty and Zwick [RZ04] devised a
deterministic algorithm for constructing (2k − 1)-spanners with O(n1+1/k) edges in O(k · n2+1/k) time.

2 Preliminaries

Let G = (V,E) be a graph on n vertices with weights w : E → R+, and let dG be the shortest path
metric induced by G. For simplicity of the presentation we shall assume that the edge weights are positive
integers (which can be achieved by an appropriate scaling of the weights). For a subgraph H = (V ′, E′)
define w(H) = w(E′) =

∑
e∈E′ w(e). A subgraph H = (V,E′) is called a t-spanner if for all u, v ∈ V ,

dH(u, v) ≤ t · dG(u, v). Define the lightness of H as w(H)
w(MST (G)) , where MST (G) is a minimum spanning

tree of G. The girth g of a graph is the minimal number of edges in a cycle of G. The following standard
Lemma is implicit in [Bol78].

Lemma 1. Let g > 1 be an integer. A graph on n vertices and girth g has at most O
(
n
1+ 1
b(g−1)/2c

)
edges.

2.1 Greedy Algorithm

The natural greedy algorithm for constructing a spanner is described in Algorithm 1.
3For 0 ≤ α ≤ 1, an α-snowflake of a metric is obtained by taking all distances to power α.
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Algorithm 1 Greedy(G = (V,E), t)

1: H = (V, ∅).
2: for each edge {u, v} ∈ E, in non-decreasing order of weight, do
3: if dH(u, v) > t · w(u, v) then
4: Add the edge {u, v} to E(H).
5: end if
6: end for

Note that whenever an edge e ∈ E is inserted into E(H), it cannot close a cycle with t+1 or less edges,
because the edges other than e of such a cycle will form a path of length at most t · w(e) (all the existing
edges are not longer than w(e)). This argument suggests that H (viewed as an unweighted graph) has girth
t + 2 (when t is an integer), and thus by Lemma 1

|E(H)| ≤ O
(
n
1+ 1
b(t+1)/2c

)
. (1)

We observe that the greedy algorithm must select all edges of an MST (because when inspected they
connect different connected components in H). We will assume without loss of generality that the graph G
has a unique MST, since any ties can be broken using lexicographic rules.

Observation 2. If Z is the MST of G, then Z ⊆ H . Furthermore, each edge in the MST does not close a
cycle in H when it is inspected.

3 Proof of Main Result

Let H be the greedy spanner with parameter t = (2k − 1) · (1 + ε). Let Z be the MST of G, and order
the vertices v1, v2, . . . , vn according to the order they are visited in some preorder traversal of Z (with some
fixed arbitrary root). Since every edge of Z is visited at most twice in such a tour,

L :=
n∑

i=2

dZ(vi−1, vi) ≤ 2w(Z) .

Let I = dlogk ne. For each i ∈ [I], define Ei = {e ∈ E(H) \ E(Z) | w(e) ∈ (ki−1, ki] · L/n}. We
may assume the maximum weight of an edge in H is bounded by w(Z) (in fact w(Z)/t, as heavier edges
surely will not be selected for the spanner), so each edge in H \Z of weight greater than L/n is included in
some Ei. The main technical theorem is the following.

Theorem 2. For each i ∈ [I] and any ε > 0,

w(Ei) ≤ O(L · (n/ki−1)1/k/ε1+1/k) .

Given this, the proof of Theorem 1 quickly follows.

Proof of Theorem 1. Using that the stretch of the spanner is t ≥ 2k − 1, by (1) we have |E(H)| ≤
O(n1+1/k). The total weight of edges in H that have weight at most L/n can be bounded by L/n·|E(H)| ≤
L/n ·O(n1+1/k) = O(w(MST ) · n1/k).
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The contribution of the other (non-MST) edges to the weight of H , using Theorem 2, is at most∑I
i=1O(L · (n/ki−1)1/k/ε1+1/k). To bound this term, first note that

I∑
i=1

(1/ki−1)1/k ≤
∞∑
i=0

(1/ki)1/k =
∞∑
i=0

(e−(ln k)/k)i =
1

1− e−(ln k)/k
.

Note also that e−(ln k)/k ≤ 1− (ln k)/(2k), hence

I∑
i=1

(1/ki−1)1/k ≤ 1

1− e−(ln k)/k
≤ (2k)/(ln k) .

It follows that

I∑
i=1

O(L · (n/ki−1)1/k/ε1+1/k) = O(L · n1/k/ε1+1/k) ·
I∑

i=1

(1/ki−1)1/k

= O(w(MST )) · kn1/k/(ε1+1/k ln k) .

3.1 Proof of Theorem 2

Overview: Fix some i ∈ [I]. We shall construct a certain graph K from the edges of Ei, and argue
that this graph has high girth, and therefore few edges. The main difference from [CDNS92] is that our
construction combines into one scale edges whose weight may differ by a factor of k (in the construction of
[CDNS92] all edges in a given scale are of the same weight, up to a factor of 2). In order to compensate for
heavy edges, the weight of the edge determines how many edges are added to K. Specifically, if the edge
{u, v} ∈ Ei has weight w · ki−1 ·L/n, we shall add (at least) dwe edges to K that form a matching between
vertices in some neighborhoods of u and v. In this way the weight of K dominates w(Ei). To prove that K
has high girth, we shall map a cycle in K to a closed tour in H of proportional length. The argument uses
the facts that (1) the new edges are close to the original edge, more specifically, the distance in the MST Z
between the respective endpoints is small with respect to the weight of the original edge, and (2) a potential
cycle in K cannot exploit more than one such new edge, since these edges form a matching and are thus
vertex-disjoint, which enables us to map a cycle in K containing two matching edges to a closed tour in H
of proportional length containing the original edge in Ei that induces these matching edges.

Construction of the Graph K: Let P = (p0, . . . , pL) be the unweighted path on L + 1 vertices, created
from V by placing v1, . . . , vn in this order and adding Steiner vertices so that all consecutive distances are
1, and for all 2 ≤ j ≤ n, dP (vj−1, vj) = dZ(vj−1, vj). In particular, p0 = v1, pL = vn, and for every
1 ≤ j < j′ ≤ n,

dP (vj , vj′) =

j′∑
h=j+1

dZ(vh−1, vh) .

Note that dP (vj , vj′) ≥ dZ(vj , vj′) ≥ dG(vj , vj′), and all the inequalities may be strict. In order to be
able to map edges of K back to H , we shall also add corresponding Steiner points to the spanner H: For
every Steiner point ph that lies on P between vj−1 and vj , add a Steiner point on the path in the MST
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N2(h) N2(j) 

u v rh rj z 

Figure 1: Construction of the graph K: The oval vertices are R, the representatives. The edge {u, v} is an
edge of weight 2a selected for the spanner, and u ∈ Ij , v ∈ Ih with representatives rj , rh. The depicted
edges, that form a maximal matching between the neighborhoods of rj and rh, are added to K. (The vertex
z in N2(h) does not participate in the matching, because rj is too close to the left endpoint of the path P .)

Z that connects vj−1 to vj at distance dP (vj−1, ph) from vj−1 (unless there is a point there already). By
Observation 2 all MST edges are indeed in H , and one can simply subdivide the appropriate edge on the
MST path. Note that distances in H do not change, as the new Steiner points have degree 2. Denote by Ĥ
the modified spanner H , i.e., H with the Steiner points.

Let a = ki−1 ·L/n be a lower bound on the weight of edges in Ei. Divide P into s = 8L/(εa) intervals
I1, . . . , Is, each of length L/s = ε

8a (by appropriate scaling, we assume all these are integers). For j ∈ [s],
the interval Ij contains the points p(j−1)L/s, . . . , pjL/s. In each interval Ij pick an arbitrary (interior) point
rj as a representative, and let R be the set of representatives. For each representative rj and an integer b ≥ 0
we define its neighborhood Nb(j) = {rh : |j − h| ≤ b} to be the set of (at most) 2b + 1 representatives
that are at most b intervals away from Ij . (Note that the size of the neighborhood Nb(j) can be smaller
than 2b + 1 if rj is too close to one of the endpoints of the path P .) Define an unweighted (multi) graph
K = (R,F ) in the following manner. Let e = {u, v} ∈ Ei. Assume that u ∈ Ih and v ∈ Ij for some
h, j ∈ [s]. Let b = bw(e)/ac, and let M be an arbitrary maximal matching between Nb(h) and Nb(j). Add
all the edges of M to F , see Figure 1. For each of the edges {q, q′} ∈ M added to F , we say that the edge
{u, v} is its source when q ∈ Nb(h) and q′ ∈ Nb(j), and write S(q, q′) = (u, v). We will soon show (in
Proposition 5 below) that each edge in K has a single source.

The following observation suggests that if all the edges of K (as a multi-set) were given weight a, then
its total weight would be greater than or equal to the weight of the edges in Ei.

Observation 3. |F | · a ≥ w(Ei).

Proof. Note that always |Nb(j)| ≥ b + 1, which means that we add at least b + 1 ≥ w(e)/a edges to K for
each edge e ∈ Ei. Summing over all edges concludes the proof.

Mapping from K to Ĥ: We shall map every edge {q, q′} ∈ F to a tour T (q, q′) in the spanner Ĥ connecting
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q and q′. If S(q, q′) = (u, v), then T (q, q′) consists of the following paths:

• A path in Z connecting q to u.

• The edge {u, v}.

• A path in Z connecting v to q′.

The following proposition asserts that the length of the tour is not longer than the weight of the source edge,
up to a 1 + ε/2 factor.

Proposition 4. If an edge {q, q′} ∈ F has a source S(q, q′) = (u, v) of weight w, then T (q, q′) is a tour in
Ĥ of length at most (1 + ε/2)w.

Proof. First observe that the distance in P between any two points in intervals Ij and Ij+b is at most
(b + 1)L/s. Since dP ≥ dZ we also have that the distance in the MST Z between two such points is
bounded by (b + 1)L/s. (By definition, this holds for Steiner points as well.) Denote the representatives
of u, v as rj , rh, respectively. For b = bw/ac, the set Nb(j) contains representatives of at most b intervals
away from Ij . As u ∈ Ij we get that dZ(q, u) ≤ (b + 1)L/s. Similarly dZ(q′, v) ≤ (b + 1)L/s, thus the
total length of the tour is at most w + 2(b + 1)L/s = w + 2(bwa c+ 1) ε8a ≤ (1 + ε/2)w.

Our goal is to show that K is a simple graph of girth at least 2k + 1. As a warmup, let us first show that
K does not have parallel edges.

Proposition 5. The graph K does not have parallel edges.

Proof. Seeking contradiction, assume there is an edge {q, q′} ∈ F with two different sources {u, v}, {u′, v′} ∈
Ei. Without loss of generality assume that {u, v} is the heavier edge of the two, with weight w. Then
{q, q′} is mapped to two tours in Ĥ connecting q, q′, whose total length, using Proposition 4, is at most
w(2 + ε). Consider the tour T̂ = u → q → u′ → v′ → q′ → v in Ĥ which has total length at most
w(2 + ε) − w = w(1 + ε). Since the Steiner points have degree 2, they can be removed from T̂ without
increasing its length, and thus there is in H a simple path T from u to v of length at most w(1 + ε).

We claim that T must exist at the time the edge {u, v} is inspected by the greedy algorithm. The edge
{u′, v′} exists because it is lighter. The MST edges exist since by Observation 2 they must connect different
components when inspected, while if some of them are inserted after {u, v}, at least one of them will close
the cycle T ∪ {u, v}. As w(1 + ε) ≤ w · (2k− 1)(1 + ε), we conclude that the edge {u, v} should not have
been added to H , which is a contradiction.

Showing that K has large girth will follow similar lines, but is slightly more involved. The difficulty
arises since we added multiple edges for each edge of H , thus a cycle in K may be mapped to a closed tour
in H that uses the same edge e ∈ E(H) more than once. In such a case, e may not be a part of any simple
cycle contained in the closed tour, and we will not be able to derive a contradiction from the greedy choice
of e to H . 4 To rule out such a possibility, we use the fact that the multiple edges whose source is e form a
matching, and that the weights are different by a factor of at most k.

Lemma 6. The graph K = (R,F ) has girth 2k + 1.

4In fact, this is the only reason our method improves the lightness by a factor of log k rather than the desired k.
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Proof. It will be easier to prove a stronger statement, that for any j ∈ [s] and any r, r′ ∈ Nk(j), every path
in K between r and r′ contains at least 2k + 1 edges. Once this is proven, we may use this with r = r′ to
conclude that girth(K) ≥ 2k + 1.

Seeking contradiction, assume that there is a path Q in K from r to r′ that contains at most 2k edges,
and take the shortest such Q (over all possible choices of j and r, r′). Let {q, z} ∈ F be the last edge added
to Q, with source S(q, z) = (x, y) (so that {x, y} ∈ Ei is the heaviest among all the sources of edges in Q).
We claim that no other edge in Q has {x, y} as a source. To see this, consider a case in which such an edge
{q′, z′} ∈ F is also in Q with S(q′, z′) = (x, y). We may assume w.l.o.g that q /∈ {r, r′} (since the path Q
contains at least 2 edges), then by definition of the graph K, there exists some j′ ∈ [s] with q, q′ ∈ Nk(j′)
(recall that the neighborhood length b always satisfies b ≤ k by definition of Ei). But then the sub-path of
Q from q to q′ is strictly shorter than Q, and connects two points in the same k-neighborhood. Since the
edges in K with {x, y} as a source form a matching, we get that q 6= q′, and thus this path is not of length
0. This contradicts the minimality of Q. Next, we will show that {x, y} should not have been chosen for H ,
because there is a short path connecting x to y.

By Proposition 4 every edge e ∈ Q whose source S(e) = e′ has weight w(e′), is mapped to a tour T (e)
of length at most (1 + ε/2)w(e′) in Ĥ . Since w(x, y) is the maximum weight source of all edges in Q, we
conclude that the total length of tours connecting x to r and r′ to y is at most (2k − 1) · (1 + ε/2)w(x, y).
Note that r, r′ are representatives in Nk(j), which are at most 2k intervals apart. So their distance in the
MST Z is at most 2k · εa/8 ≤ k · εw(x, y)/4. The total length of the tour x→ r → r′ → y in Ĥ is at most

(2k − 1) · (1 + ε/2)w(x, y) + k · εw(x, y)/4 ≤ (2k − 1)(1 + ε) · w(x, y) .

When the algorithm considers the edge {x, y}, all the edges of the above tour exist in Ĥ . (This follows
since they are all MST edges or lighter than w(x, y), similarly to the argument used in Proposition 5.) We
conclude that there is a path between x and y in H of length at most (2k−1) · (1+ε) ·w(x, y), hence {x, y}
should not have been added to E(H), which yields a contradiction.

Proof of Theorem 2. Recall that the graph K has s vertices. By Proposition 5 it is a simple graph, and
Lemma 6 suggests it has girth at least 2k+ 1, thus by using Lemma 1 it has at most O(s1+1/k) edges. Using
Observation 3,

w(Ei) ≤ |F | · a
≤ O(s1+1/k) · (L/n · ki−1)

=

(
8 · n
εki−1

)1+1/k

· (O(L)/n · ki−1)

≤ O(L · (n/ki−1)1/k/ε1+1/k) .

4 Weighted Girth Conjecture

The girth of a graph is defined on unweighted graphs. Here we give an extension of the definition that
generalizes to weighted graphs as well, and propose a conjecture on the extremal graph attaining a weighted
girth.
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Definition 1. Let G = (V,E) be a weighted graph with weights w : E → R+, the weighted girth of G is
the minimum over all cycles C of the weight of C divided by its heaviest edge, that is

min
C cycle in G

{
w(C)

maxe∈C w(e)

}
.

Note that this matches the standard definition of girth for unweighted graphs. Recall that the lightness
of G is w(G)

w(MST ) . For a given weighted girth value g and cardinality n, we ask what is the graph on n vertices
with weighted girth g that maximizes the lightness?

Conjecture 1. For any integer g ≥ 3, among all graphs with n vertices and weighted girth g, the maximal
lightness is attained for an unweighted graph.

Recall that Erdős’ girth conjecture asserts that there exists an (unweighted) graph with girth g > 2k
and Ω(n1+1/k) edges, that is, its lightness is Ω(n1/k). Observe that any graph of weighted girth larger than
2k + ε(2k − 1) can be thought of as the output of Algorithm 1 with parameter t = (2k − 1) · (1 + ε).
In particular, Theorem 1 implies that its lightness is at most Oε(kn

1/k/ log k). Thus (up to the term of
ε(2k−1) in the girth), there exists an unweighted graph which is at most O(k/ log k) = O(g/ log g) lighter
than the heaviest weighted graph.

The intuition behind this conjecture follows from our method of replacing high weight edges by many
low weight edges. We believe that such replacement should yield a high girth graph even when performed
on all possible scales simultaneously. An immediate corollary of Conjecture 1, is that the lightness of a
greedy 2k-spanner of a weighted graph on n vertices is bounded by O(n1/k). To see why this is true, note
that the spanner’s weighted girth must be at least 2k + 1, and O(n1/k) is a bound on the lightness of an
unweighted graph on n vertices with girth 2k + 1. In particular when k = log n we will get O(1) lightness.
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