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Abstract

Metric Embedding plays an important role in a vast range of application areas such as com-
puter vision, computational biology, machine learning, networking, statistics, and mathematical
psychology, to name a few. The mathematical theory of metric embedding is well studied in
both pure and applied analysis and has more recently been the a source of interest for computer
scientists as well. Most of this work is focused on the development of bi-Lipschitz mappings
between metric spaces. In this paper we present new concepts in metric embeddings as well as
new embedding methods for metric spaces. We focus on finite metric spaces, however some of
the concepts and methods are applicable in other settings as well.

One of the main cornerstones in finite metric embedding theory is a celebrated theorem of
Bourgain which states that every finite metric space on n points embeds in Euclidean space with
O(logn) distortion. Bourgain’s result is best possible when considering the worst case distortion
over all pairs of points in the metric space. Yet, it is natural to ask: can an embedding can do
much better in terms of the average distortion? Indeed, in most practical applications of metric
embedding the main criteria for the quality of an embedding is its average distortion over all
pairs.

In this paper we provide an embedding with constant average distortion for arbitrary metric
spaces, while maintaining the same worst case bound provided by Bourgain’s theorem. In
fact, our embedding possesses a much stronger property. We define the ℓq-distortion of a
uniformly distributed pair of points. Our embedding achieves the best possible ℓq-distortion for
all 1 ≤ q ≤ ∞ simultaneously.

The results are based on novel embedding methods which improve on previous methods in
another important aspect: the dimension of the host space. The dimension of an embedding
is of very high importance in particular in applications and much effort has been invested in
analyzing it. However, no previous result improved the bound on the dimension which can be
derived from Bourgain’s embedding. Our embedding methods achieve better dimension, and in
fact, shed new light on another fundamental question in metric embedding, which is: whether
the embedding dimension of a metric space is related to its intrinsic dimension ? I.e., whether
the dimension in which it can be embedded in some real normed space is related to the intrinsic
dimension which is reflected by the inherent geometry of the space, measured by the space’s
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doubling dimension. The existence of such an embedding was conjectured by Assouad1. and
was later posed as an open problem in several papers. Our embeddings give the first positive
result of this type showing any finite metric space obtains a low distortion (and constant average
distortion) embedding in Euclidean space in dimension proportional to its doubling dimension.

Underlying our results is a novel embedding method. Probabilistic metric decomposition
techniques have played a central role in the field of finite metric embedding in recent years.
Here we introduce a novel notion of probabilistic metric decompositions which comes particularly
natural in the context of embedding. Our new methodology provides a unified approach to all
known results on embedding of arbitrary finite metric spaces. Moreover, as described above,
with some additional ideas they allow to get far stronger results.

The results presented in this paper2 have been the basis for further developments both within
the field of metric embedding and in other areas such as graph theory, distributed computing and
algorithms. We present a comprehensive study of the notions and concepts introduced here and
provide additional extensions, related results and some examples of algorithmic applications.
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1 Introduction

The theory of embeddings of finite metric spaces has attracted much attention in recent decades
by several communities: mathematicians, researchers in theoretical Computer Science as well as
researchers in the networking community and other applied fields of Computer Science.

The main objective of the field is to find low distortion embeddings of metric spaces into other
more simple and structured spaces.

Given two metric spaces (X, dX) and (Y, dY ) an injective mapping f : X → Y is called an
embedding of X into Y . An embedding is non-contractive if for every u ̸= v ∈ X: dY (f(u), f(v)) ≥
dX(u, v). The distortion of a non-contractive embedding f is: dist(f) = supu ̸=v∈X distf (u, v),

where distf (u, v) =
dY (f(u),f(v))

dX(u,v) . Equivalently, the distortion of a non-contracting embedding is the
infimum over values α such that f is α-Lipschitz.

We say that X embeds in Y with distortion α if there exists an embedding of X into Y with
distortion α.

In Computer Science, embeddings of finite metric spaces have played an important role, in
recent years, in the development of algorithms. More general practical use of embeddings can
be found in a vast range of application areas including computer vision, computational biology,
machine learning, networking, statistics, and mathematical psychology to name a few.

From a mathematical perspective embeddings of finite metric spaces into normed spaces are
considered natural non-linear analogues to the local theory of Banach spaces. The most classic
fundamental question is that of embedding metric spaces into Hilbert Space.

Major effort has been put into investigating embeddings into lp normed spaces (see the surveys
[Ind01, Lin02, IM04] and the book [Mat02] for an exposition of many of the known results). The
main cornerstone of the field has been the following theorem by Bourgain [Bou85]:

Theorem 1 (Bourgain). For every n-point metric space there exists an embedding into Euclidean
space with distortion O(log n).

This theorem has been the basis on which the theory of embedding into finite metric spaces
has been built. In [LLR94] it is shown that Bourgain’s embedding provides an embedding into lp
with distortion O(log n), where the dimension of the lp space is at most O(log2 n). In this paper
we improve this result in two ways: for any 1 ≤ p ≤ ∞ we present an embedding with average
distortion O(1) into O(log n) dimensional lp space, while maintaining O(log n) distortion.
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1.1 On the Average Distortion of Metric Embeddings

The O(log n) distortion guaranteed by Bourgain’s theorem is existentially tight. A nearly matching
bound was already shown in Bourgain’s paper and later Linial, London and Rabinovich [LLR94]
proved that embedding the metrics of constant-degree expander graphs into Euclidean space re-
quires Ω(log n) distortion.

Yet, this lower bound on the distortion is a worst case bound, i.e., it means that there exists a
pair of points whose distortion is large. However, the average case is often more significant in terms
of evaluating the quality of the embedding, in particular in relation to practical applications. For-
mally, the average distortion of an embedding f is defined as: avgdist(f) = 1

(n2)

∑
u ̸=v∈X distf (u, v).

See Section 1.6 for discussion on other related notions.
Indeed, in most real-world applications of metric embeddings average distortion and similar

notions are used for evaluating the embedding’s performance in practice, for example see [HS03,
HFC00, AS03, HBK+03, ST04, TC04]. Moreover, in some cases it is desired that the average
distortion would be small and the worst case distortion would still be reasonably bounded as well.
While these papers provide some indication that such embeddings are possible in practice, the
classic theory of metric embedding fails to address this natural question.

In particular, applying Bourgain’s embedding to the metric of a constant-degree expander graph
results in Ω(log n) distortion for a constant fraction of the pairs3.

In this paper we prove the following theorem which provides a qualitative strengthening of
Bourgain’s theorem:

Theorem 2 (Average Distortion). For every n-point metric space there exists an embedding into
O(log n) dimensional Euclidean space with distortion O(log n) and average distortion O(1).

In fact our results are even stronger. For 1 ≤ q ≤ ∞, define the ℓq-distortion of an embedding
f as:

distq(f) = ∥distf (u, v)∥(U)
q = E[distf (u, v)q]1/q,

where ∥ · ∥(U)
q denotes the normalized q norm over the distribution (U), defined as in the equation

above, for q < ∞, where the expectation is taken according to the uniform distribution U over(
X
2

)
. For q = ∞ we have: dist∞(f) = ∥distf (u, v)∥

(U)
∞ = maxu,v∈X distf (u, v). The classic notion

of distortion is expressed by the ℓ∞-distortion and the average distortion is expressed by the ℓ1-
distortion. Theorem 2 follows from the following:

Theorem 3 (ℓq-Distortion). For every n-point metric space (X, d) there exists an embedding
f of X into O(log n) dimensional Euclidean space such that for any 1 ≤ q ≤ ∞, distq(f) =
O(min{q, log n}).

Both of these theorems follow from Theorem 10, which is proven in Section 4.
A variant of average distortion that is natural is what we call distortion of average: distavg(f) =∑

u ̸=v∈X dY (f(u),f(v))∑
u ̸=v∈X d(u,v) , which can be naturally extended to its ℓq-normed extension termed distortion

of ℓq-norm. Theorems 2 and 3 extend to those notions as well.
Besides q = ∞ and q = 1, the case of q = 2 provides a particularly natural measure. It is closely

related to the notion of stress which is a standard measure in multidimensional scaling methods,
invented by Kruskal [Kru64] and later studied in many models and variants. Multidimensional

3Similar statements hold for the more recent metric embeddings of [Rao99, KLMN04] as well.
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scaling methods (see [KW78, HS03]) are based on embedding of a metric representing the rela-
tions between entities into low dimensional space to allow feature extraction and are often used
for indexing, clustering, nearest neighbor searching and visualization in many application areas
[HFC00].

1.2 Low-Dimension Embeddings

Our new embeddings into lp improve on the previous embedding methods by achieving optimal
dimension.

Recall that Bourgain proved that every n point metric space embeds into lp with O(log n)
distortion. One of the most important parameters of an embedding into a normed space is the
dimension of the embedding. This is of particular important in applications and has been the main
object of study in the paper by Linial, London and Rabinovich [LLR94] In particular, they ask:
what is the dimension of the embedding in Theorem 1 ?

For embedding into Euclidean space, this can be answered by applying the Johnson and Lin-
denstrauss [JL84] dimension reduction lemma which states that any n-point metric space in L2 can
be embedded in Euclidean space of dimension O(log n) with constant distortion. This reduces the
dimension in Bourgain’s theorem to O(log n).

However, dimension reduction techniques4 cannot be used to generalize the low dimension bound
to lp for all p. In particular, while every metric space embeds isometrically in l∞ there are super
constant lower bounds on the distortion of embedding specific metric spaces into low dimensional
l∞ space [Mat96].

This problem has been addressed by Linial, London, and Rabinovich [LLR94] and separately by
Matoušek [Mat90] where they observe that the embedding given in Bourgain’s proof of Theorem 1
can be used to bound the dimension of the embedding into lp by O(log2 n).

In this paper we prove the following:

Theorem 4. For any 1 ≤ p ≤ ∞, every n-point metric space embeds in lp with distortion O(log n)
in dimension O(log n).

The proof of Theorem 4 introduces new embedding techniques. In particular, the lower dimen-
sion is achieved due to a new technique of summing up the components of the embedding over all
scales. This is in contrast to previous embeddings where such components were allocated separate
coordinates. This allows us to create an embedding into a single dimension that preserves the dis-
tortion in expectation. This saves us the extra logarithmic factor in dimension, since logarithmic
dimension suffices by a Chernoff-type argument.

Moreover, we show the following trade-off between distortion and dimension , which generalizes
Theorem 4 :

Theorem 5. For any 1 ≤ p ≤ ∞, and integer D ≥ 1, every n-point metric space embeds in lp with
distortion O(n1/D logn) in dimension O(D).

In particular one can choose for any θ > 0, D = logn
θ log logn and obtain dimension O(D) with

almost optimal distortion of O(log1+θ n). The bounds in theorems 4 and 5 are tight for all values
of n, p and D, as shown in Theorem 13 by examining the metric of an expander.

4For 1 ≤ p < 2, a combination of lemmas of [JL84] and [JS82] (generalization of [FLM77]’s result for p = 1) can
be used to obtain an embedding in dimension O(logn).

6



Matoušek extended Bourgain’s proof to improve the distortion bound into lp to O(⌈ lognp ⌉). He
also showed this bound is tight [Mat97]. The dimension obtained in Matoušek’s analysis of the
embedding into lp is eO(p) log2 n. Our methods extend to give the following improvement:

Theorem 6. For any 1 ≤ p ≤ ∞ and any 1 ≤ k ≤ p, every n-point metric space embeds in lp with

distortion O(⌈ lognk ⌉) in dimension eO(k) log n.

The bound on the dimension in Theorem 6 is nearly tight (up to lower order terms) as follows
from volume arguments by Matoušek [Mat96] (based on original methods of Bourgain [Bou85]).

Theorem 4 and Theorem 5 are proven in Section 4, in particular by Corollary 19, and the proof
of Theorem 6 is implied by the proof of Theorem 10, which is proven in the same section.

1.3 Infinite Compact Spaces

It is well known that infinite metric spaces may require infinite distortion when embedded into
Euclidean space, this is also implied by Bourgain’s result - the distortion tends to infinity with
the cardinality of (X, d). However, our bound on the average distortion (and in general the ℓq-
distortion) does not depend on the size of (X, d), hence we can apply our embedding technique to
infinite compact metric spaces as well.

For a compact metric space (X, d) equipped with a measure5 σ we define the product distribution
Π = Π(σ) over X × X as Π(x, y) = σ(x)σ(y). Define the ℓq-distortion of an embedding f for
1 ≤ q <∞ as:

distq(f) = E(x,y)∼Π[distf (x, y)
q]1/q.

Theorem 7. For any q ≥ 1, p ≥ 1, any compact metric space (X, d) and any probability measure
σ over X, there is a mapping f : X → lp with distq(f) = O(q), for every 1 ≤ q <∞.

In particular the embedding has constant average distortion.

1.4 Intrinsic Dimension

Metric embedding has important applications in many practical fields. Finding compact and faithful
representations of large and complex data sets is a major goal in fields like data mining, information
retrieval and learning. Many real world measurements are of intrinsically low dimensional data that
lie in extremely high dimensional space.

Given a metric space with high intrinsic dimension, there is an obvious lower bound of Ω(logα n)
on the dimension for embedding this metric space into Euclidean space with distortion α (see
[Mat02]). The intrinsic dimension of a metric space X is naturally measured by the doubling
constant of the space: the minimum λ such that every ball can be covered by λ balls of half the
radius. The doubling dimension of X is defined as dim(X) = log2 λ. The doubling dimension of
a metric space is the minimal dimension in which a metric space can be embedded into a normed
space in a sense that embedding into less dimensions may cause arbitrarily high distortion.

A fundamental question in the theory of metric embedding is the relationship between the
embedding dimension of a metric space and its intrinsic dimension That is, whether the dimension
in which it can be embedded in some real normed space is implied by the intrinsic dimension which
is reflected by the inherent geometry of the space.

5We may assume w.l.o.g that σ is a probability measure
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Variants of this question were posed by Assouad [Ass83] as well as by Linial, London and Ra-
binovich [LLR94], Gupta, Krauthgamer and Lee [GKL03], and mentioned in [Mat05]. Assouad
[Ass83] proved that for any 0 < γ < 1 there exist numbers D = D(λ, γ) and C = C(λ, γ) such
that for any metric space (X, d) with dim(X) = λ, its “snowflake” version (X, dγ) can be embed-
ded into a D-dimensional Euclidean space with distortion at most C. Assouad conjectured that
similar results are possible for γ = 1, however this conjecture was disproved by Semmes [Sem96].
Gupta, Krauthgamer and Lee [GKL03] initiated a comprehensive study of embeddings of doubling
metrics. They analyzed the Euclidean distortion of the Laakso graph, which has constant doubling
dimension, and show a lower bound of Ω(

√
log n) on the distortion. They also show a matching

upper bound on the distortion of embedding doubling metrics, more generally the distortion is
O(log1/p n) for embedding into lp. The best dependency on dim(X) of the distortion for embedding
doubling metrics is given by Krauthgamer et. al. [KLMN04]. They show an embedding into lp with
distortion O((dim(X))1−1/p(log n)1/p), and dimension O(log2 n).

However, all known embeddings for general spaces [Bou85, Mat96, LLR94, ABN06], and even
those that were tailored specifically for bounded doubling dimension spaces [GKL03, KLMN04]
require Ω(log n) dimensions. In this paper we give the first general low-distortion embeddings into
a normed space whose dimension depends only on dim(X) .

Theorem 8. There exists a universal constant C such that for any n-point metric space (X, d)
and any C/ log logn < θ ≤ 1, there exists an embedding f : X → lDp with distortion O

(
log1+θ n

)
where D = O

(
dim(X)

θ

)
.

We present additional results in Section 1.12, including an embedding into Õ(dim(X)) 6 dimen-
sions with constant average distortion and an extension of Assouad’s result.

1.5 Novel Embedding Methods

There are few general methods of embedding finite metric spaces that appear throughout the
literature. One is indeed the method introduced in Bourgain’s proof (which itself is based on a
basic approach attributed to Fréchet). This may be described as a Fréchet-style embedding where
coordinates are defined as distances to randomly chosen sets in the space. Some examples of its use
include [Bou85, LLR94, Mat90, Mat97], essentially providing the best known bounds on embedding
arbitrary metric spaces into lp.

The other embedding method which has been extensively used in recent years, is based on
probabilistic partitions of metric spaces [Bar96], originally defined in the context of probabilistic
embedding of metric spaces. Probabilistic partitions for arbitrary metric spaces were also given in
[Bar96] and similar constructions appeared in [LS91].

The probabilistic embedding of [Bar96] (and later improvements in [Bar98, FRT03, Bar04])
provide in particular embeddings into L1 and serve as the first use of probabilistic partitions in the
context of embeddings into normed spaces. A partition is simply a collection of disjoint clusters
of points whose union cover the entire space, and probabilistic partition is a distribution over such
collections.

A major step was done in a paper by Rao [Rao99] where he shows that a certain padding
property of such partitions can be used to obtain embeddings into L2. Informally, a probabilistic

6By Õ(N) we mean N · logO(1) N .
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partition is padded if every ball of a certain radius depending on some padding parameter has a
good chance of being contained in a cluster. Rao’s embedding defines coordinates which may be
described as the distance from a point to the edge of its cluster in the partition and the padding
parameter provides a lower bound on this quantity (with some associated probability). While Rao’s
original proof was done in the context of embedding planar metrics, it has since been observed by
many researchers that his methods are more general and in fact provide the first decomposition-
based embedding into lp, for p > 1. However, the resulting distortion bound still did not match
those achievable by Bourgain’s original techniques.

This gap has been recently closed by Krauthgamer et. al [KLMN04]. Their embedding method is
based on the probabilistic partition of [FRT03], which in turn is based on an algorithm of [CKR01]
and further improvements by [FHRT03]. In particular, the main property of the probabilistic
partition of [FRT03] is that the padding parameter is defined separately at each point of the space
and depends in a delicate fashion on the growth rate of the space in the local surrounding of that
point.

This paper introduces novel probabilistic partitions with even more refined properties which
allow stronger and more general results on embedding of finite metric spaces.

Probabilistic partitions were also shown to play a fundamental role in the Lipschitz extension
problem [LN05]. Partition based embeddings also play a fundamental role in the recently developed
metric Ramsey theory [BBM06, BLMN05c, MN06]. In [BLMN05a] it is shown that the standard
Fréchet style embeddings do not allow similar results. One indication that our approach significantly
differs from the previous embedding methods discussed above is that our new theorems crucially
rely on the use of non-Fréchet embeddings.

The main idea is the construction of uniformly padded probabilistic partitions. That is the
padding parameter is uniform over all points within a cluster. The key is that having this property
allows partition-based embeddings to use the value of the padding parameter in the definition of the
embedding in the most natural way. In particular, the most natural definition is to let a coordinate
be the distance from a point to the edge of the cluster (as in [Rao99]) multiplied by the inverse
of the padding parameter. This provides an alternate embedding method with essentially similar
benefits as the approach of [KLMN04].

We present a construction of uniformly padded probabilistic partitions which still posses intri-
cate properties similar to those of [FRT03]. The construction is mainly based on a decomposition
lemma similar in spirit to a lemma which appeared in [Bar04], which by itself is a generalization of
the original probabilistic partitions of [Bar96, LS91]. However the proof that the new construction
obeys the desired properties is quite technically involved and requires several new ideas that have
not previously appeared.

We also give constructions of uniformly padded hierarchical probabilistic partitions. The idea is
that these partitions are padded in a hierarchical manner – a much stronger requirement than for
only a single level partition. Although these are not strictly necessary for the proof of our main
theorems they capture a stronger property of our partitions and play a central role in showing that
arbitrary metric spaces embed in lp with constant average distortion, while maintaining the best
possible worst case distortion bounds. The embeddings in this paper demonstrate the versatility
of these techniques and further applications that appeared subsequent to this work are discussed
in Subsection 1.16.
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1.6 Related Work

Average distortion. Related notions to the ones studied in this paper have been considered
before in several theoretical papers. Most notably, Yuri Rabinovich [Rab03] studied the notion
of distortion of average7 motivated by its application to the Sparsest Cut problem. This however
places the restriction that the embedding is Lipschitz or non-expansive. Other recent papers have
address this version of distortion of average and its extension to weighted average. In particular, it
has been recently shown (see for instance [FHL05]) that the work of Arora, Rao and Vazirani on
Sparsest Cut [ARV04] can be rephrased as an embedding theorem using these notions.

In his paper, Rabinovich observes that for Lipschitz embeddings the lower bound of Ω(logn)
still holds. It is therefore crucial in our theorems that the embeddings are co-Lipschitz 8 (a notion
defined by Gromov [Gro83]) (and w.l.o.g non-contractive).

To the best of our knowledge the only paper addressing such embeddings prior to this work is
by Lee, Mendel and Naor [LMN05] where they seek to bound the average distortion of embedding
n-point L1 metrics into Euclidean space. However, even for this special case they do not give a
constant bound on the average distortion9.

Network embedding. Our work is largely motivated by a surge of interest in the networking
community on performing passive distance estimation (see e.g. [FJJ+01, NZ02, LHC05, CDK+04,
ST04, CCRK04]), assigning nodes with short labels in such a way that the network latency between
nodes can be approximated efficiently by extracting information from the labels without the need
to incur active network overhead. The motivation for such labeling schemes are many emerging
large-scale decentralized applications that require locality awareness, the ability to know the rela-
tive distance between nodes. For example, in peer-to-peer networks, finding the nearest copy of a
file may significantly reduce network load, or finding the nearest server in a distributed replicated
application may improve response time. One promising approach for distance labeling is network
embedding (see [CDK+04]). In this approach nodes are assigned coordinates in a low dimensional
Euclidean space. The node coordinates form simple and efficient distance labels. Instead of repeat-
edly measuring the distance between nodes, these labels allow to extract an approximate measure
of the latency between nodes. Hence these network coordinates can be used as an efficient building
block for locality aware networks that significantly reduce network load.

In networking embedding, a natural measure of efficiency is the embedding performance on
average. Where the notion of average distortion comes in several variations are possible in terms
of the definitions given above. The phenomenon observed in measurements of network distances
is that the average distortion of network embeddings was bounded by a small constant. Our work
gives the first full theoretical explanation for this intriguing phenomenon.

Embedding with relaxed guaranties. The theoretical study of such phenomena was ini-
tiated by the work of Kleinberg, Slivkins and Wexler [KSW09]. They mainly focus on the fact
reported in the networking papers that the distortion of almost all pairwise distances is bounded
by some small constant. In an attempt to provide theoretical justification for such phenomena
[KSW09] define the notion of a (1− ϵ)-partial embedding10 where the distortion is bounded for at
least some (1− ϵ) fraction of the pairwise distances. They obtained some initial results for metrics

7Usually this notion was called average distortion but the name is somewhat confusing.
8We use the term co-Lipschitz to mean a function f : X → Y such that for all u, v ∈ X: dY (f(u), f(v)) ≥ c·dX(u, v)

for some universal constant c. Up to scaling we can assume such a function to be non-contractive.
9The bound given in [LMN05] is O(

√
logn) which applies to a somewhat weaker notion.

10Called “embeddings with ϵ-slack” in [KSW09].
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which have constant doubling dimension [KSW09]. In Abraham et. al. [ABC+05] it was shown
that any finite metric space has a (1 − ϵ)-partial embedding into Euclidean space with O(log 2

ϵ )
distortion.

While this result is very appealing it has the disadvantage of lacking any promise for some
fraction of the pairwise distances. This may be critical for applications - that is we really desire an
embedding which in a sense does “as well as possible” for all distances. To define such an embedding
[KSW09] suggested a stronger notion of scaling distortion11. An embedding has scaling distortion
of α(ϵ) if it provides this bound on the distortion of a (1 − ϵ) fraction of the pairwise distances,
for any ϵ. In [KSW09], such embeddings with α(ϵ) = O(log 2

ϵ ) were shown for metrics of bounded
growth dimension, this was extended in [ABC+05] to metrics of bounded doubling dimension. In
addition [ABC+05] give a rather simple probabilistic embedding with scaling distortion, implying
an embedding into (high-dimensional) L1 (see also Section 9 of this paper).

The most important question arising from the work of [KSW09, ABC+05] is whether embeddings
with small scaling distortion exist for embedding arbitrary metrics into Euclidean space. We give
the following theorem12 which lies at the heart of the proof o Theorem 3:

Theorem 9. For every finite metric space (X, d), there exists an embedding of X into Euclidean
space with scaling distortion O(log 2

ϵ ) and dimension O(log n).

This theorem is proved by Corollary 19 in Section 4.

1.7 Additional Results and Applications

In addition to our main result, the paper contains several other contributions: we extend the results
on average distortion to weighted averages. We show the bound is O(log Φ) where Φ is the effective
aspect ratio of the weight distribution.

Then we demonstrate some basic algorithmic applications of our theorems, mostly due to their
extensions to general weighted averages. Among others is an application to uncapacitated quadratic
assignment [PRW94, KT02]. We also extend our concepts to analyze Distance Oracles of Thorup
and Zwick [TZ05] providing results with strong relation to the questions addressed by [KSW09].
We however feel that our current applications do not make full use of the strength of our theorems
and techniques and it remains to be seen if such applications will arise.

In the next few sections of the introduction we formally define all notions we use or introduce in
this paper and provide formal statements of our theorems.

1.8 Novel Notions of Distortion

Given two metric spaces (X, dX) and (Y, dY ) an injective mapping f : X → Y is called an embedding
ofX into Y . An embedding f is called c-co-Lipschitz [Gro83] if for any u ̸= v ∈ X: dY (f(u), f(v)) ≥
c · dX(u, v) and non-contractive if c = 1. In the context of this paper we will restrict attention
to co-Lipschitz embeddings, which due to scaling may be further restricted to non-contractive
embeddings. This has no difference for the classic notion of distortion but has a crucial role for the
results presented in this paper. We will elaborate more on this issue in the sequel.

11Called “gracefully degrading distortion” in [KSW09].
12In fact in this theorem the definition of scaling distortion is even stronger. This is explained in detail in the

appropriate section.
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For a non-contractive embedding f , define the distortion function of f , distf :
(
X
2

)
→ R+,

where for u ̸= v ∈ X: distf (u, v) = dY (f(u),f(v))
dX(u,v) . The distortion of f is defined as dist(f) =

supu ̸=v∈X distf (u, v).

Definition 1 (ℓq-Distortion). Given a distribution Π over
(
X
2

)
define for 1 ≤ q ≤ ∞ the ℓq-

distortion of f with respect to Π:

dist(Π)
q (f) = ∥distf (u, v)∥(Π)

q = EΠ[distf (u, v)
q]1/q,

where ∥ · ∥(Π)
q denotes the normalized q norm over the distribution (Π), defined as in the equation

above for q <∞. For q = ∞ we have: dist∞(f) = ∥distf (u, v)∥
(Π)
∞ = supπ(u,v)̸=0 distf (u, v), where π

denotes Π’s probability function. Let U denote the uniform distribution over
(
X
2

)
. The ℓq-distortion

of f is defined as: distq(f) = dist
(U)
q (f).

In particular the classic distortion may be viewed as the ℓ∞-distortion: dist(f) = dist∞(f). An
important special case of ℓq-distortion is when q = 1:

Definition 2 (Average Distortion). Given a distribution Π over
(
X
2

)
define the average distortion

of f with respect to Π as: avgdist(Π)(f) = dist
(Π)
1 (f), and the average distortion of f is given by:

avgdist(f) = dist1(f).

Another natural notion is the following:

Definition 3 (Distortion of ℓq-Norm). Given a distribution Π over
(
X
2

)
define the distortion of

ℓq-norm of f with respect to Π:

distnorm(Π)
q (f) =

EΠ[dY (f(u), f(v))
q]1/q

EΠ[dX(u, v)q]1/q
,

for q <∞, and for q = ∞ we have: distnorm∞(f) = ∥distnormf (u, v)∥
(Π)
∞ =

supπ(u,v) ̸=0 dY (f(u),f(v))

supπ(u,v) ̸=0 dX(u,v) ,

where π denotes Π’s probability function. Finally, let distnormq(f) = distnorm
(U)
q (f).

Again, an important special case of distortion of ℓq-norm is when q = 1:

Definition 4 (Distortion of Average). Given a distribution Π over
(
X
2

)
define the distortion of

average of f with respect to Π as: distavg(Π)(f) = distnorm
(Π)
1 (f) and the distortion of average of

f is given by: distavg(f) = distnorm1(f).

For simplicity of the presentation of our main results we use the following notation:

dist
∗(Π)
q (f) = max{dist(Π)

q (f),distnorm
(Π)
q (f)}, dist∗q(f) = max{distq(f),distnormq(f)}, and avgdist∗(f) =

max{avgdist(f),distavg(f)}.

Definition 5. A probability distribution Π over
(
X
2

)
, with probability function π :

(
X
2

)
→ [0, 1], is

called non-degenerate if for every u ̸= v ∈ X: π(u, v) > 0. The aspect ratio of a non-degenerate
probability distribution Π is defined as:

Φ(Π) =
maxu ̸=v∈X π(u, v)

minu ̸=v∈X π(u, v)
.
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In particular Φ(U) = 1. If Π is not non-degenerate then Φ(Π) = ∞.
For an arbitrary probability distribution Π over

(
X
2

)
, define its effective aspect ratio as:13 Φ̂(Π) =

2min{Φ(Π),
(
n
2

)
} .

Theorem 10 (Embedding into lp). Let (X, d) an n-point metric space, and let 1 ≤ p ≤ ∞. There
exists an embedding f of X into lp of dimension eO(p) log n, such that for every 1 ≤ q ≤ ∞,

and any distribution Π over
(
X
2

)
: dist

∗(Π)
q (f) = O(⌈(min{q, log n} + log Φ̂(Π))/p⌉). In particu-

lar, avgdist∗(Π)(f) = O(⌈log Φ̂(Π)/p⌉). Also: dist(f) = O(⌈(log n)/p⌉), dist∗q(f) = O(⌈q/p⌉) and
avgdist∗(f) = O(1).

Theorem 14, Lemma 2 and Theorem 15 show that all the bounds in the theorem above are
tight.

The proof of Theorem 10 follows directly from results on embedding with scaling distortion,
discussed in the next paragraph.

1.9 Partial Embedding and Scaling Distortion

Following [KSW09] we define:

Definition 6 (Partial Embedding). Given two metric spaces (X, dX) and (Y, dY ), a partial em-
bedding is a pair (f,G), where f is a non-contractive embedding of X into Y , and G ⊆

(
X
2

)
. The

distortion of (f,G) is defined as: dist(f,G) = sup{u,v}∈G distf (u, v).

For ϵ ∈ (0, 1), a (1− ϵ)-partial embedding is a partial embedding such that |G| ≥ (1− ϵ)
(
n
2

)
.14

Next, we would like to define a special type of (1− ϵ)-partial embeddings. Let Ĝ(ϵ) = {{x, y} ∈(
X
2

)
| min{|B(x, d(x, y))|, |B(y, d(x, y))|} ≥ ϵn/2}. A coarsely (1 − ϵ)-partial embedding f is a

partial embedding (f, Ĝ(ϵ))15.

Definition 7 (Scaling Distortion). Given two metric spaces (X, dX) and (Y, dY ) and a function
α : (0, 1) → R+, we say that an embedding f : X → Y has scaling distortion α if for any ϵ ∈ (0, 1),
there is some set G(ϵ) such that (f,G(ϵ)) is a (1 − ϵ)-partial embedding with distortion at most
α(ϵ). We say that f has coarsely scaling distortion if for every ϵ, G(ϵ) = Ĝ(ϵ).

We can extend the notions of partial embeddings and scaling distortion to probabilistic embed-
dings. For simplicity we will restrict to coarsely partial embeddings.16

Definition 8 (Partial/Scaling Prob. Embedding). Given (X, dX) and a set of metric spaces S, for
ϵ ∈ (0, 1), a coarsely (1 − ϵ)-partial probabilistic embedding consists of a distribution F̂ over a set
F of coarsely (1 − ϵ)-partial embeddings from X into Y ∈ S. The distortion of F̂ is defined as:
dist(F̂) = sup{u,v}∈Ĝ(ϵ) E(f,Ĝ(ϵ))∼F̂ [distf (u, v)].

The notion of scaling distortion is extended to probabilistic embedding in the obvious way.

We observe the following relation between partial embedding, scaling distortion and the ℓq-
distortion (we note that a similar relation holds in the other direction as well given by Lemma 2).

13The factor of 2 in the definition is placed solely for the sake of technical convenience.
14Note that the embedding is strictly partial only if ϵ ≥ 1/

(
n
2

)
.

15It is elementary to verify that indeed this defines a (1 − ϵ)-partial embedding. We also note that in most of the
proofs we can use a max rather than min in the definition of Ĝ(ϵ). However, this definition seems more natural and
of more general applicability.

16Our upper bounds use this definition, while our lower bounds hold also for the non-coarsely case.
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Lemma 1 (Scaling Distortion vs. ℓq-Distortion). Given an n-point metric space (X, dX) and a
metric space (Y, dY ). If there exists an embedding f : X → Y with scaling distortion α then for
any distribution Π over

(
X
2

)
:17

dist(Π)
q (f) ≤

(
2

∫ 1

1
2(

n
2)

−1
Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)1/q

+ α(Φ̂(Π)−1).

In the case of coarsely scaling distortion this bound holds for dist
∗(Π)
q (f).

Combined with the following theorem we obtain Theorem 10. We note that when applying
the lemma we use α(ϵ) = O(log 2

ϵ ) and the bounds in the theorem mentioned above follow from
bounding the corresponding integral.

Theorem 11 (Scaling Distortion Theorem into lp). Let 1 ≤ p ≤ ∞. For any n-point metric space
(X, d) there exists an embedding f : X → lp with coarsely scaling distortion O(⌈(log 2

ϵ )/p⌉) and

dimension eO(p) log n.

This theorem is proved in Section 4.3.

1.10 Infinite Compact Spaces

For embedding of infinite compact spaces we require slightly different definitions. Let (X, d) be a
compact metric space, equipped with a probability measure σ (in compact space every measure is
equivalent to a probability measure). Define the product distribution Π = Π(σ) over X × X as
Π(x, y) = σ(x)σ(y). Now for 1 ≤ q < ∞, the ℓq-distortion of an embedding f will be defined with
respect to Π

distq(f) = E(x,y)∼Π[distf (x, y)
q]1/q.

The definition of Ĝ(ϵ) for coarse scaling embedding will become

Ĝ(ϵ) =
{
(x, y) ∈

(
X
2

)
| min{σ(B(x, d(x, y))), σ(B(y, d(x, y)))} ≥ ϵ/2

}
.

In order to prove Theorem 7 we again will show an embedding with scaling distortion.

Theorem 12 (ℓq-Distortion for Compact Spaces). Let 1 ≤ p ≤ ∞ and let (X, d) be a compact
metric space. There exists an embedding f : X → lp having coarsely scaling distortion O(⌈(log 2

ϵ )⌉).
For any 1 ≤ q <∞, the ℓq-distortion of this embedding is: distq(f) = O(q).

1.11 Lower Bounds

In Section 11 We show that our results are tight. First we show that the distortion-dimension
tradeoff of Theorem 5 is indeed tight.

Theorem 13. For any 1 ≤ p < ∞ and any θ > 0, if the metric of an n-node constant de-
gree expander embeds into lp with distortion O(log1+θ n) then the dimension of the embedding is
Ω(log n/⌈log(min{p, log n}) + θ log log n⌉).

The following theorem shows that the bound on the weighted average distortion (and distortion
of average) is tight as well.

17Assuming the integral is defined. We note that lemma is stated using the integral for presentation reasons.
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Theorem 14. For any p ≥ 1 and any large enough n ∈ N there exists a metric space (X, d) on n
points, and non-degenerate probability distributions Π,Π′ on

(
X
2

)
with Φ(Π) = n and Φ(Π′) = n2,

such that any embedding f of X into lp will have dist
(Π)
p (f) ≥ Ω(log(Φ(Π))/p), and distnorm

(Π′)
p (f) ≥

Ω(log(Φ(Π′))/p).

The following simple Lemma gives a relation between lower bound on partial embedding and
the ℓq distortion.

Lemma 2 (Partial Embedding vs. ℓq-Distortion). Let Y be a target metric space, let X be a family
of metric spaces. If for any ϵ ∈ (0, 1), there is a lower bound of α(ϵ) on the distortion of (1 − ϵ)
partial embedding of metric spaces in X into Y , then for any 1 ≤ q ≤ ∞, there is a lower bound of
1
2α(2

−q) on the ℓq-distortion of embedding metric spaces in X into Y .

Finally we give a lower bound on partial embeddings. In order to describe the lower bound, we
require the notion of metric composition introduced in [BLMN05c].

Definition 9. Let N be a metric space, assume we have a collection of disjoint metric spaces Cx

associated with the elements x of N , and let C = {Cx}x∈N . The β-composition of N and C, for
β ≥ 1

2 , denoted M = Cβ [N ], is a metric space on the disjoint union
∪̇

xCx. Distances in C are
defined as follows: let x, y ∈ N and u ∈ Cx, v ∈ Cy, then:

dM (u, v) =

{
dCx(u, v) x = y
βγdN (x, y) x ̸= y

where γ = maxx∈N diam(Cx)
minu,v∈N dN (u,v) , guarantees that M is indeed a metric space.

Definition 10. Given a class X of metric spaces, we consider compβ(X ), its closure under ≥ β-
composition.
X is called nearly closed under composition if for every δ > 0 there exists some β ≥ 1/2, such that
for every X ∈ compβ(X ) there is X̂ ∈ X and an embedding of X into X̂ with distortion at most
1 + δ.

Among the families of metric spaces that are nearly closed under composition we find the
following: tree metrics, any family of metrics that exclude a fixed minor (including planar metrics)
and normed spaces. When the size of all the composed metrics Cx is equal, also doubling metrics
are nearly closed under composition.

Theorem 15 (Partial Embedding Lower Bound). Let Y be a target metric space, let X be a family
of metric spaces nearly closed under composition. If for any k > 1, there is Z ∈ X of size k such
that any embedding of Z into Y has distortion at least α(k), then for all n > 1 and 1

n ≤ ϵ ≤ 1 there
is a metric space X ∈ X on n points such that the distortion of any (1− ϵ) partial embedding of X

into Y is at least α
(
⌈ 1
4
√
ϵ
⌉
)
/2.

See Corollary 72 for some implication of this Theorem.

1.12 Intrinsic Dimension

The intrinsic dimension of a metric space is naturally measured by its doubling constant:
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Definition 11. The doubling constant of a metric space (X, d) is the minimal λ such that for any
x ∈ X and r > 0 the ball B(x, 2r) can be covered by λ balls of radius r. The doubling dimension
denoted by dim(X) is define as log2 λ.

The doubling dimension of a metric space (X, d) provides an inherent bound on the dimension
in which the metric can be embedded into some normed space with small distortion. Specifically,
a simple volume argument suggests that to embed X into L2 with distortion α requires at least
Ω(dim(X)/ logα) dimensions.

Our main theorem is Theorem 8 which states that for any 0 < θ ≤ 1, every n-point metric
space X embeds in lp in dimension O(dim(X)/θ) with distortion O(log1+θ n). In addition we have
the following results.

We prove the following theorem which shows that Assouad’s conjecture is true in the following
practical sense: low dimensional data embed into constant dimensional space with constant average
distortion:

Theorem 16. For any λ-doubling metric space (X, d) there exists an embedding f : X → lDp with

coarse scaling distortion O
(
log26(1ϵ )

)
where D = O(log λ log log λ).

Obtaining bounds on the scaling distortion in a dimension which depends only on dim(X) is
considerably more demanding. The technical difficulties are discussed in Section 6.2

We also show a theorem that strengthens Assouad’s result [Ass83], regarding embedding of a
”snowflake” of metrics with low doubling dimensions, that is, for a metric (X, d) embed (X, dα)
for some 0 < α < 1 with distortion and dimension that depend only on the doubling dimension of
(X, d).

Theorem 17. For any n point λ-doubling metric space (X, d), any 0 < α < 1, any p ≥ 1, any
θ ≤ 1 and any 2192/θ ≤ k ≤ log λ, there exists an embedding of (X, dα) into lp with distortion

O(k1+θλ1/(pk)/(1− α)) and dimension O
(
λ1/k lnλ

αθ ·
(
1− log(1−α)

log k

))
.

1.13 Additional Results

1.13.1 Decomposable Metrics

For metrics with a decomposability parameter τ (see Definition 18 for precise definition)18 we obtain
the following theorem, which is the scaling analogous of the main result of [KLMN04].

Theorem 18. Let 1 ≤ p ≤ ∞. For any n-point τ -decomposable metric space (X, d) there exists
an embedding f : X → lp with coarse scaling distortion O(min{(1/τ)1−1/p(log 2

ϵ )
1/p, log 2

ϵ}) and
dimension O(log2 n).

1.13.2 Scaling Embedding into Trees

Definition 12. An ultrametric (X, d) is a metric space satisfying a strong form of the triangle
inequality, for all x, y, z ∈ X, d(x, z) ≤ max{d(x, y), d(y, z)}. In particular, it is also a tree metric.

Theorem 19 (Scaling Probabilistic Embedding). For any n-point metric space (X, d) there exists a
probabilistic embedding into a distribution over ultrametrics with coarse scaling distortion O(log 2

ϵ ).

18In particular doubling metrics and planar metrics have constant decomposability parameter
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Applying Lemma 1 to Theorem 19 we obtain:

Theorem 20. Let (X, d) be an n-point metric space. There exists a probabilistic embedding F̂ of X

into ultrametrics, such that for every 1 ≤ q ≤ ∞, and any distribution Π over
(
X
2

)
: dist

∗(Π)
q (F̂) =

O(min{q, log n}+ log Φ̂(Π)).

For q = 1 and for a given fixed distribution the following theorem gives a deterministic version
of Theorem 20, which follows from the method of [CCG+98] for finding a single ultrametric.

Theorem 21. Given an arbitrary fixed distribution Π over
(
X
2

)
, for any finite metric space (X, d)

there exist embeddings f, f ′ into ultrametrics, such that avgdist(Π)(f) = O(log Φ̂(Π)) and distavg(Π)(f ′) =
O(log Φ̂(Π)).

We note that complementary to these results in was shown in [ABN07a] that any metric space
embeds in a single ultrametric with scaling distortion and as a consequence with constant average
distortion (see more in Section 1.16).

1.13.3 Partial Embedding Results

Even though partial embeddings are inferior to embeddings with scaling distortion, in a sense that
they guarantee distortion bound only on a fraction of pairs, they can be useful since the dimension
of the embedding can be much lower. We show general theorems that convert any embedding into
lp into partial embedding, for subset-closed19 families of metric spaces. For most of the known
results for specific families of metric spaces we can use this general reduction to obtain partial
embedding results where the role of n is replaced by 1/ϵ in the distortion and in the dimension
bounds. In particular, these theorems imply that for any ϵ > 0 and 1 ≤ p ≤ ∞ any metric space
has a (1− ϵ) partial embedding into lDp space with distortion O(log(2/ϵ)) where D = O(log(2/ϵ)).
We also present theorem providing a (1− ϵ) coarse partial embedding with comparable distortion
bound with an overhead of O(log n) in the dimension20. See Section 10 for the specific theorems.

Similar results were obtained independently by [CDG+09].

1.14 Algorithmic Applications

We demonstrate some basic applications of our main theorems. We must stress however that our
current applications do not use the full strength of these theorems. Most of our applications are
based on the bound given on the distortion of average for general distributions of embeddings f into
lp and into ultrametrics with distavg(Π)(f) = O(log Φ̂(Π)). In some of these applications it is crucial
that the result holds for all such distributions Π. This is useful for problems which are defined with
respect to weights c(u, v) in a graph or in a metric space, where the solution involves minimizing
the sum over distances weighted according to c. This is common for many optimization problem
either as part of the objective function or alternatively it may come up in the linear programming
relaxation of the problem. These weights can be normalized to define the distribution Π. Using
this paradigm we obtain O(log Φ̂(c)) approximation algorithms, improving on the general bound
which depends on n in the case that Φ̂(c) is small. This is the first result of this nature.

19A family of metrics X is subset-closed if for all X ∈ X , any sub-metric Y ⊂ X satisfies Y ∈ X
20For coarse embeddings Ω(log n) dimension is necessary.
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We are able to obtain such results for the following group of problems: general sparsest
cut [LR99, AR98, LLR94, ARV04, ALN05], multicut [GVY93], minimum linear arrangement
[ENRS00, RR98b], embedding in d-dimensional meshes [ENRS00, Bar04], multiple sequence align-
ment [WLB+99] and uncapacitated quadratic assignment [PRW94, KT02].

We would like to emphasize that the notion of bounded weights is in particular natural in the
last application mentioned above. The problem of uncapacitated quadratic assignment is one of the
most basic problems in operations research (see the survey [PRW94]) and has been one of the main
motivations for the work of Kleinberg and Tardos on metric labeling [KT02].

We also give a different use of our results for the problem of min-sum k-clustering [BCR01].

1.15 Distance Oracles

Thorup and Zwick [TZ05] study the problem of creating distance oracles for a given metric space. A
distance oracle is a space efficient data structure which allows efficient queries for the approximate
distance between pairs of points.

They give a distance oracle of space O(kn1+1/k), query time of O(k) and worst case distortion
(also called stretch) of 2k − 1. They also show that this is nearly best possible in terms of the
space-distortion tradeoff.

We extend the new notions of distortion in the context of distance oracles. In particular, we can
define the ℓq-distortion of a distance oracle. Of particular interest are the average distortion and
distortion of average notions. We also define partial distance oracles, distance oracle scaling dis-
tortion, and extend our results to distance labels and distributed labeled compact routing schemes
in a similar fashion. Our main result is the following strengthening of [TZ05]:

Theorem 22. Let (X, d) be a finite metric space. Let k = O(lnn) be a parameter. The metric
space can be preprocessed in polynomial time, producing a data structure of size O(n1+1/k logn),
such that distance queries can be answered in O(k) time. The distance oracle has worst case
distortion 2k− 1. Given any distribution Π, its average distortion (and distortion of average) with
respect to Π is O(log Φ̂(Π)). In particular the average distortion (and distortion of average) is O(1).

Our extension of Assouad’s theorem can yield an improved distance oracle for metrics with
small doubling dimension. Taking p = ∞, θ = Θ(1/ log k) and α = 1/ log k in Theorem 17 yields
the following:

Theorem 23. Let (X, d) be a finite metric space. Let k = O(lnn) be a parameter. The metric space

can be preprocessed in polynomial time, producing a data structure of size O(n · λ
log k
k log λ log2 k) ,

such that distance queries can be answered in O(λ
log k
k log λ log2 k) time, with worst case distortion

O(k).

This distance oracle improves known constructions when dim(X) = o(logk n).

1.16 Subsequent Research and Impact

The results presented in this paper have been the basis for further developments both within the
field of metric embedding and in other areas such as graph theory, distributed computing and
algorithms. We give here a partial survey of such subsequent work.

Subsequent to [ABN06], the idea of average distortion and related notions have been further
studied in different contexts. Chan et al. [CDG06] proved results on spanners with slack. Given
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a graph they find a sparse graph (with linear number of edges) that preserves the distances in the
original graph. Their main result is partial and scaling spanners with O(log 1/ϵ) distortion. Results
of similar flavor were obtained for compact routing problems in the context of distributed networks
[Din07, KRXY07].

Simultaneously and independently to our results on doubling metrics [ABN08], Chan, Gupta
and Talwar [CGT08] obtained a result similar in spirit to our results of Section 6. Our main
result on embedding metric spaces in their intrinsic dimension was used in [LS08] in the context of
Kleinberg’s the small world random graph model [Kle00].

The probabilistic partitions of [ABN06] were later used and refined in [ABN07b] and [ABN08]
. For our main theorem of embedding with constant average distortion into lp we did not require
the partitions to possess the local property defined in the sequel. However for the results for
doubling metrics and also for the local embedding results of [ABN07b], as well as in the work of
[BRS11, GK11] this extra property is required, hence we present here our most general partitions.

Another application of the probabilistic partitions of [ABN06] is for constructing low stretch
spanning trees, where for a given graph we wish to find a spanning tree with low average stretch
(which is simply the average distortion over the edges of the graph). In [ABN08] we show a nearly
tight result of Õ(log n). One of the ingredients of the construction is a generalization of the [ABN06]
probabilistic partitions of metric spaces to graphs, i.e. the clusters of the partition are connected
components of the graph. One of the main applications of low stretch spanning trees is solving
sparse symmetric diagonally dominant linear systems of equations. This approach was suggested
by Boman, Hendrickson and Vavasis [BHV08] and later improved by Spielman and Teng [ST04] to
a near linear time solver. The best result of this type is due to Koutis, Miller and Peng [KMP].
A fast construction of a low stretch spanning tree is a basic component of these solvers, and the
construction of [ABN08] plays a crucial role in the result of [KMP]. Another important application
of this construction is for graph sparsification [KMST10].

In [ABN07a] we show that any metric can be embedded into a single ultrametric and any graph
contains a spanning tree with constant average distortion (and ℓ2-distortion of O(

√
log n)). Elkin

et al. [ELR07] have shown that this implies a strictly fundamental cycle basis of length O(n2) for
any unweighted graph, proving the conjecture of Deo et al. [DPK82].

Extending the main embedding result given here, [ABNS10] show an embedding that pre-
serves not only pairwise distances but also volumes of sets of size k with average volume-distortion
O(log k).

In [ABN07b] and [ABN09] our embedding techniques were used to obtain local embeddings
were the distortion and dimension depend solely on the size of the local neighborhood in which the
embedding preserves distances.

Recently, a local dimension reduction in Euclidean space was given [BRS11] which breaks
the Johnson-Lindenstrauss [JL84] dimension bound. Similar techniques [GK11, BRS11] provide
Assouad-type dimension reduction theorems. These results make use of various ideas among which
are some of our notions and techniques.

1.17 Organization of the Paper

In Section 3 we define the new probabilistic partitions, including a uniform padding lemma, a
lemma for decomposable metrics and a hierarchical lemma.

Section 4 contains the proof of our main embedding result. In Section 4.1 we present the main
technical lemma, that gives an embedding into the line. This embedding is used in Section 4.2 to
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prove Theorem 9, which by Lemma 1 implies O(1) average distortion, and ℓq-distortion of O(q)
as stated in Theorems 2, 3. The proof of Theorems 4, 5 is shown as well in that section. In
Section 4.3 we extend the previous result for embedding into lp proving Theorem 11 which implies
also Theorem 6.

In Section 5 we show how to extend the embedding for infinite compact metric spaces, proving
Theorem 12 and showing how it implies Theorem 7.

In Section 6 we prove the theorems regarding the intrinsic dimension of metric spaces, that are
described in Section 1.12, in particular Theorem 8. In Section 7 we prove Theorem 18, a general-
ization for decomposable metrics.

In Section 8 we prove Lemma 1 and Lemma 62, showing the relation between scaling distortion
and our notions of average distortion.

Next in Section 9 we prove Theorem 19 - a probabilistic embedding into distribution of trees
with scaling distortion.

In Section 10 we include some results on partial embedding.
In Section 11 we prove all the lower bound results mentioned in Section 1.11, including Theorem 13.
Finally, in Section 12 we show some algorithmic applications of our methods and in Section 13

we show how our results can be used as distance oracles.

2 Preliminaries

Consider a finite metric space (X, d) and let n = |X|. The diameter of X is denoted diam(X) =
maxx,y∈X d(x, y). For a point x and r ≥ 0, the ball at radius r around x is defined as BX(x, r) =
{z ∈ X|d(x, z) ≤ r}. We omit the subscript X when it is clear from the context. The notation
B◦(x, r) = {z ∈ X|d(x, z) < r} stands for strict inequality. For any ϵ > 0 let rϵ(x) denote the
minimal radius r such that |B(x, r)| ≥ ϵn.

2.1 Local Growth Rate

The following definition and property below are useful for the properties of our partitions described
in Section 3.

Definition 13. The local growth rate of x ∈ X at radius r > 0 for given scales γ1, γ2 > 0 is defined
as

ρ(x, r, γ1, γ2) = |B(x, rγ1)|/|B(x, rγ2)|.

Given a subspace Z ⊆ X, the minimum local growth rate of Z at radius r > 0 and scales γ1, γ2 > 0
is defined as ρ(Z, r, γ1, γ2) = minx∈Z ρ(x, r, γ1, γ2). The minimum local growth rate of x ∈ X at
radius r > 0 and scales γ1, γ2 > 0 is defined as ρ̄(x, r, γ1, γ2) = ρ(B(x, r), r, γ1, γ2).

Claim 3. Let x, y ∈ X, let γ1, γ2 > 0 and let r be such that 2(1 + γ2)r < d(x, y) ≤ (γ1 − γ2 − 2)r,
then

max{ρ̄(x, r, γ1, γ2), ρ̄(y, r, γ1, γ2)} ≥ 2.

Proof. Let Bx = B(x, r(1 + γ2)), By = B(y, r(1 + γ2)), and assume w.l.o.g that |Bx| ≤ |By|. As
r(1 + γ2) < d(x, y)/2 we have Bx ∩ By = ∅. Note that for any x′ ∈ B(x, r), B(x′, rγ2) ⊆ Bx, and
similarly for any y′ ∈ B(y, r), B(y′, rγ2) ⊆ By. On the other hand B(x′, rγ1) ⊇ Bx ∪ By, since for
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any y′ ∈ By, d(x
′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) ≤ r + r(γ1 − γ2 − 2) + r(1 + γ2) = rγ1. We

conclude that

ρ(x′, r, γ1, γ2) = |B(x′, rγ1)|/|B(x′, rγ2)| ≥ (|Bx|+ |By|)/|Bx| ≥ 2.

3 Partition Lemmas

In this section we show the main tool of our embedding: uniformly padded probabilistic partitions.
We give several versions of these partitions, first a general one, then an extension of it to decompos-
able metrics (defined formally in the sequel), and finally a hierarchical construction of partitions.
These partitions will be used in almost all the embedding results.

Definition 14 (Partition). A partition P of X is a collection of pairwise disjoint sets C(P ) =
{C1, C2, . . . , Ct} for some integer t, such that X = ∪jCj . The sets Cj ⊆ X are called clusters. For
x ∈ X denote by P (x) the cluster containing x. Given ∆ > 0, a partition is ∆-bounded if for all
j ∈ [t], diam(Cj) ≤ ∆. For Z ⊆ X we denote by P [Z] the restriction of P to points in Z.

Definition 15 (Probabilistic Partition). A probabilistic partition P̂ of a metric space (X, d) is a
distribution over a set P of partitions of X. Given ∆ > 0, P̂ is ∆-bounded if each P ∈ P is
∆-bounded. Let supp(P̂) ⊆ P be the set of partitions with non-zero probability under P̂.

Definition 16 (Uniform Function). Given a partition P of a metric space (X, d), a function f
defined on X is called uniform with respect to P if for any x, y ∈ X such that P (x) = P (y) we
have f(x) = f(y).

Let P̂ be a probabilistic partition. A collection of functions defined on X, f = {fP |P ∈ P} is
uniform with respect to P if for every P ∈ P, fP is uniform with respect to P .

Definition 17 (Uniformly Padded Local PP). Given ∆ > 0 and 0 < δ ≤ 1, let P̂ be a ∆-bounded
probabilistic partition of (X, d). Given collection of functions η = {ηP : X → [0, 1]|P ∈ P}, we say
that P̂ is (η, δ)-locally padded if the event B(x, ηP (x)∆) ⊆ P (x) occurs with probability at least δ
regardless of the structure of the partition outside B(x, 2∆).

Formally, for all x ∈ X, for all C ⊆ X \B(x, 2∆) and all partitions P ′ of C,

Pr[B(x, ηP (x)∆) ⊆ P (x) | P [C] = P ′] ≥ δ

Let 0 < δ̂ ≤ 1. We say that P̂ is strong (η, δ̂)-locally padded if for any δ̂ ≤ δ ≤ 1, P̂ is (η · ln(1/δ), δ)-
padded.

We say that P̂ is (η, δ)-uniformly locally padded if η is uniform with respect to P.

The following lemma is a generalization of a decomposition lemma that appeared in [Bar04],
which by itself is a generalization of the original probabilistic partitions of [Bar96, LS91]. For sets
A,B,C ⊆ X we denote by A ◃▹ (B,C) the property that A ∩B ̸= ∅ and A ∩ C ̸= ∅.

Lemma 4 (Probabilistic Decomposition). For any metric space (Z, d), point v ∈ Z, real parameters
χ ≥ 2,∆ > 0, let r be a random variable sampled from a truncated exponential density function
with parameter κ = 8 ln(χ)/∆

f(r) =

{
χ2

1−χ−2κe
−κr r ∈ [∆/4,∆/2]

0 otherwise
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If S = B(v, r) and S̄ = Z \ S then for any θ ∈ [χ−1, 1) and any x ∈ Z:

Pr
[
B(x, η∆) ◃▹ (S, S̄)

]
≤ (1− θ)

(
Pr
[
B(x, η∆) * S̄

]
+

2θ

χ

)
.

where η = 2−4 ln(1/θ)/ lnχ.

Proof. Let x ∈ Z. Let a = infy∈B(x,η∆){d(v, y)} and b = supy∈B(x,η∆){d(v, y)}. By the triangle
inequality: b− a ≤ 2η∆. We have:

Pr[B(x, η∆) ◃▹ (S, S̄)] =∫ b

a
f(r)dr = ( χ2

1−χ−2 )χ
− 8a

∆ (1− χ−8 b−a
∆ )

≤ ( χ2

1−χ−2 )χ
− 8a

∆ (1− θ), (1)

which follows since:

8(b− a)

∆
≤ 16η∆

∆
= 16η = lnχ(1/θ).

Pr[B(x, η∆) * S̄] =∫ ∆/2

a
f(r)dr = ( χ2

1−χ−2 )(χ
− 8a

∆ − χ−4). (2)

Therefore we have:

Pr[B(x, η∆) ◃▹ (S, S̄)]− (1− θ) · Pr[B(x, η∆) * S̄]

≤ (1− θ)( χ2

1−χ−2 )χ
−4 ≤ (1− θ) · 2χ−2,

where in the last inequality we have used the assumption that χ ≥ 2. Since χ−1 ≤ θ, this completes
the proof of the lemma.

3.1 Uniform Padding Lemma

The following lemma describes the uniform probabilistic partition, the uniformity is with respect
to η - the padding parameter, which will the same for all points that are in the same cluster. This
η will actually be a function of the local growth rate of a single point, “the center“ of the cluster,
which has the minimal local growth rate among all the other points in the cluster. The purpose of
the function ξ is to indicate which clusters have high enough local growth rate at their centers for
η to be as above, while the threshold for being high enough is set by the parameter δ̂.

Lemma 5. Let (Z, d) be a finite metric space. Let 0 < ∆ ≤ diam(Z). Let δ̂ ∈ (0, 1/2], γ1 ≥ 2 ,
γ2 ≤ 1/16. There exists a ∆-bounded probabilistic partition P̂ of (Z, d) and a collection of uniform
functions {ξP : Z → {0, 1} | P ∈ P} and {ηP : Z → (0, 1] | P ∈ P} such that the probabilistic
partition P̂ is a strong (η, δ̂)-uniformly locally padded probabilistic partition; and the following
conditions hold for any P ∈ supp(P̂) and any x ∈ Z:
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• If ξP (x) = 1 then: 2−6/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−6/ ln(1/δ̂).

• If ξP (x) = 0 then: ηP (x) = 2−6/ ln(1/δ̂) and ρ̄(x, 2∆, γ1, γ2) < 1/δ̂.

Proof. We generate a probabilistic partition P̂ of Z by invoking the probabilistic decomposition
Lemma 4 iteratively. Define the partition P of Z into clusters by generating a sequence of clusters:
C1, C2, . . . Cs, for some s ∈ [n] whose value will be determined later . Notice that we are generating
a distribution over partitions and therefore the generated clusters are random variables. First we
deterministically assign centers v1, v2, . . . , vs and parameters χ1, χ2, . . . , χs. LetW1 = Z and j = 1.
Conduct the following iterative process:

1. Let vj ∈Wj be the point minimizing χ̂j = ρ(x, 2∆, γ1, γ2) over all x ∈Wj .

2. Set χj = max{2/δ̂1/2, χ̂j}.

3. Let Wj+1 =Wj \B(vj ,∆/4).

4. Set j = j + 1. If Wj ̸= ∅ return to 1.

Now the algorithm for the partition and functions ξ, η is as follows: Let Z1 = Z. For j = 1, 2, 3 . . . s:

1. Let (Svj , S̄vj ) be the partition created by Svj = BZj (vj , r) and S̄vj = Zj \ Svj where r is
distributed as in Lemma 4 with parameter κ = 8 ln(χj)/∆.

2. Set Cj = Svj , Zj+1 = S̄vj .

3. For all x ∈ Cj let ηP (x) = 2−6/max{ln χ̂j , ln(1/δ̂)}. If χ̂j ≥ 1/δ̂ set ξP (x) = 1, otherwise set
ξP (x) = 0.

Throughout the analysis fix some δ̂ ≤ δ ≤ 1. Let θ = δ1/2, hence θ ≥ 2χ−1
j for all j ∈ [s]. Let

ηj = 2−4 ln(1/θ)/ lnχj = 2−5 ln(1/δ)/ lnχj . Note that for all x ∈ Cj we have ηP (x) · ln(1/δ) =

2−6 ln(1/δ)min{1/ ln χ̂j , 1/ ln(1/δ̂)} ≤ 2−5 ln(1/δ)min{1/ ln χ̂j , 1/ ln(2/δ̂
1/2)} = ηj . Observe that

some clusters may be empty and that it is not necessarily the case that vm ∈ Cm. We now prove the
properties in the lemma for some x ∈ Z. Consider the distribution over the clusters C1, C2, . . . Cs

as defined above. For 1 ≤ m ≤ s, define the events:

Zm = {∀j, 1 ≤ j < m, B(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, ηj∆) ◃▹ (Svj , S̄vj )|Zm}.

Also let T = Tx = B(x,∆). We prove the following inductive claim: For every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T
χ−1
j ). (3)

Note that Pr[Es] = 0. Assume the claim holds for m+1 and we will prove for m. Define the events:

Fm = {B(x, ηm∆) ◃▹ (Svm , S̄vm)|Zm},
Gm = {B(x, ηm∆) ⊆ S̄vm |Zm} = {Zm+1|Zm},
Ḡm = {B(x, ηm∆) * S̄vm |Zm} = {Z̄m+1|Zm}.
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First we bound Pr[Fm]. Recall that the center vm of Cm and the value of χm are determined
deterministically. The radius rm is chosen from the interval [∆/4,∆/2]. Since ηm ≤ 1/2, if
B(x, ηm∆) ◃▹ (Svm , S̄vm) then d(vm, x) ≤ ∆, and thus vm ∈ T . Therefore if vm /∈ T then Pr[Fm] =
0. Otherwise by Lemma 4

Pr[Fm] (4)

= Pr[B(x, ηm∆) ◃▹ (Svm , S̄vm)|Zm]

≤ (1− θ)(Pr[B(x, ηm∆) * S̄vm |Zm] + θχ−1
m )

= (1− θ)(Pr[Ḡm] + θχ−1
m ).

Using the induction hypothesis we prove the inductive claim:

Pr[Em] ≤ Pr[Fm] + Pr[Gm] Pr[Em+1]

≤ (1− θ)(Pr[Ḡm] + θ1{vm∈T}χ
−1
m ) +

Pr[Gm] · (1− θ)(1 + θ
∑

j≥m+1,vj∈T
χ−1
j )

≤ (1− θ)(1 + θ
∑

j≥m,vj∈T
χ−1
j ),

The second inequality follows from (4) and the induction hypothesis. Since the choice of radius is
the only randomness in the process of creating P , the event of padding for z ∈ Z is independent
of all choices of radii for centers vj /∈ Tz. That is, for any assignment to clusters of points outside
B(z, 2∆) (this may determine radius choices for points in Z \ B(z,∆)), the padding probability
will not be affected.

Fix some x ∈ Z, T = Tx. Observe that for all vj ∈ T , d(vj , x) ≤ ∆, and so we get B(vj , 2γ2∆) ⊆
B(x, 2∆). On other hand B(vj , 2γ1∆) ⊇ B(x, 2∆). Note that the definition of Wj implies that if
vj is a center then all the other points in B(vj ,∆/4) cannot be a center as well, therefore for any
j ̸= j′, d(vj , vj′) > ∆/4 ≥ 4γ2∆, so that B(vj , 2γ2∆) ∩B(vj′ , 2γ2∆) = ∅. Hence, we get:∑

j≥1,vj∈T
χ−1
j ≤

∑
j≥1,vj∈T

χ̂j
−1

≤
∑

j≥1,vj∈T

|B(vj , 2γ2∆)|
|B(vj , 2γ1∆)|

≤
∑

j≥1,vj∈T

|B(vj , 2γ2∆)|
|B(x, 2∆)|

≤ 1.

Let j ∈ [s] such that P (x) = Cj , then as ηP (x) · ln(1/δ) ≤ ηj follows B(x, ηP (x) · ln(1/δ)∆) ⊆
B(x, ηj∆). We conclude from the claim (3) for m = 1 that:

Pr[B(x, ηP (x) · ln(1/δ)∆) * P (x)] ≤ Pr[E1] ≤

(1− θ)(1 + θ ·
∑

j≥1,vj∈T
χ−1
j ) ≤ (1− θ)(1 + θ) = 1− δ.

It follows that P̂ is strong uniformly padded. Finally, we show the properties stated in the lemma.
Let x ∈ Z and j ∈ [s] be such that x ∈ Cj . For the first property if ξP (x) = 1 by definition χ̂j ≥ 1/δ̂
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so ηP (x) = 2−6/ ln ρ(vj , 2∆, γ1, γ2) and by the minimality of vj , ηP (x) ≥ 2−6/ ln ρ(x, 2∆, γ1, γ2).

By definition also ηP (x) ≤ 2−6/ ln(1/δ̂). As for the second property, ξP (x) = 0 implies that
χ̂j = ρ(vj , 2∆, γ1, γ2) < 1/δ̂ and ρ̄(x, 2∆, γ1, γ2) ≤ ρ(vj , 2∆, γ1, γ2), also by definition ηP (x) =

2−6/ ln(1/δ̂).

The following corollary shows that our probabilistic partitions may lead to results similar to
those given in [FRT03] (which are based on [CKR01] and improved analysis of [FHRT03]).

Corollary 6. Let (X, d) be a metric space. Let γ1 = 2, γ2 = 1/32. For any ∆ > 0 there exists a
∆-bounded probabilistic partition P̂, which for any 1/2 ≤ δ ≤ 1 is (η, δ) padded, where

η
(δ)
P (x) = min

{
ln(1/δ)

26 ln(ρ(x, 2∆, γ1, γ2))
, 2−6

}
.

Proof. Let δ̂ = 1/2, and let P̂ be a ∆-bounded probabilistic partition as in Lemma 5 with pa-

rameters δ̂, γ1, γ2. Let ρ(x) = ρ(x, 2∆, γ1, γ2), B(x) = B(x, η
(δ)
P (x)∆) and let 1/2 ≤ δ ≤ 1. We

distinguish between two cases:

Case 1: ρ(x) < 2. We will show that Pr[B(x) * P (x)] = 0. Let j be the minimal such that
vj is a center of a cluster Cj that intersects B(x). We will show that it must be the case

that d(x, vj) ≤ ∆/8. Assume this is the case then since η
(δ)
P (x) ≤ 2−6, it follows that

B(x) ⊆ B(x,∆/26) ⊆ B(vj ,∆/4) ⊆ Cj = P (x). Now if we assume that d(x, vj) > ∆/8 we
will reach to a contradiction: Let A = |B(x, 4∆)|, a = |B(x,∆/16)|, B = |B(vj , 4∆)| and
b = |B(vj ,∆/16)|. Note that ρ(x) = A/a and ρ(vj) = B/b. By our assumption we have
that B(x,∆/16) ∩ B(vj ,∆/16) = ∅. As d(x, vj) ≤ ∆/2 + ∆/32 ≤ ∆ we have a + b ≤ A,
a+ b ≤ B, so that A+B ≥ 2(a+ b). On the other hand from the minimality of ρ(vj) follows
ρ(vj) < ρ(x) < 2, therefore A < 2a and B < 2b, hence A+B < 2(a+ b), a contradiction.

Case 2: ρ(x) ≥ 2. In this case we simply use the argument in Lemma 5 which states that if x ∈ Cj

with center vj then x is (η′P (x) ln(1/δ), δ)-padded for η′P (x) = 2−6/max{ln(ρ(vj)), ln 2}, and
as vj minimizes ρ(vj) ≤ ρ(x), we have that η

(δ)
P (x) ≤ η′P (x) ln(1/δ) it follows that

Pr[B(x) ⊆ P (x)] ≥ δ

Remark. In [MN06] an extension of the [FRT03] lemma was used to obtain metric Ramsey
theorems ([BFM86, BBM06, BLMN05c]). We note that similar lemma follows from arguments in
the proof of Lemma 5 combined with the above corollary, essentially extending the corollary to
hold for all values of 0 < δ ≤ 1.

3.2 Padding Lemma for Decomposable Metrics

In this section we extend the uniform padding lemma, and obtain an additional lower bound on
the padding parameter with respect to the ”decomposability“ of the metric space, as given by the
following definition.
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Definition 18. Let (X, d) be a finite metric space. Let τ ∈ (0, 1]. We say that X is (locally)
τ -decomposable if for any 0 < ∆ < diam(X) there exists a ∆-bounded probabilistic partition P̂ of
X such that for all δ ≤ 1 satisfying ln(1/δ) ≤ 26τ−1, P̂ is (τ · ln(1/δ), δ)-(locally) padded.

It is known [LS91, Bar96] that any metric space is Ω(1/ log n)-decomposable, however there
are certain families of metric spaces which have a much larger decomposition parameter, such as
doubling metrics and metrics derived from graphs that exclude a fixed minor. Note that we require
padding for a wide range of the parameter δ and not just a fixed value (a common value used in
many papers is δ = 1/2).

Lemma 7 (Uniform Padding Lemma for Decomposable Metrics). Let (X, d) be a finite metric
space. Assume X is (locally) τ -decomposable. Let 0 < ∆ ≤ diam(X), let δ̂ ∈ (0, 1/2] satisfying
ln(1/δ̂) ≤ 26τ−1, and let γ1 ≥ 2 ,γ2 ≤ 1/16. There exists a ∆-bounded probabilistic partition
P̂ of (X, d) and a collection of uniform functions {ξP : X → {0, 1} | P ∈ P} and {ηP : X →
(0, 1/ ln(1/δ̂)] | P ∈ P} such that the probabilistic partition P̂ is a strong (η, δ̂)-uniformly padded
probabilistic partition; and the following conditions hold for any P ∈ P and any x ∈ X:

• ηP (x) ≥ τ/2.

• If ξP (x) = 1 then: 2−7/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−7/ ln(1/δ̂).

• If ξP (x) = 0 then: ηP (x) = 2−7/ ln(1/δ̂) and ρ̄(x, 2∆, γ1, γ2) < 1/δ̂.

Furthermore, if X admits a local τ -decomposition then P̂ is local.

Proof. We generate a probabilistic partition P̂ of X in two phases. the first phase is done by
invoking the probabilistic decomposition Lemma 4 iteratively. By sub-partition we mean a partition
{Ci}i lacking the requirement that

∪
iCi = X. The intuition behind the construction is that we

do the same partition as in Lemma 5 while the local growth rate is small enough. Once the growth
rate is large with respect to the decomposability parameter, we assign all the points who were not
covered by the first partition, a cluster generated by the probabilistic partition known to exists
from Definition 18. This is done in two phases:

Phase 1: Define the sub-partition P1 of X into clusters by generating a sequence of clusters:
C1, C2, . . . Cs, for some s ∈ [n]. Notice that we are generating a distribution over sub-
partitions and therefore the generated clusters are random variables. First we determinis-
tically assign centers v1, v2, . . . , vs and parameters χ1, χ2, . . . , χs. Let W1 = X and j = 1.
Conduct the following iterative process:

1. Let vj ∈Wj be the point minimizing χ̂j = ρ(x, 2∆, γ1, γ2) over all x ∈Wj .

2. If 26 ln(χ̂j) > τ−1 set s = j − 1 and stop.

3. Set χj = max{2/δ̂1/4, χ̂j}.
4. Let Wj+1 =Wj \B(vj ,∆/4).

5. Set j = j + 1. If Wj ̸= ∅ return to 1.

Now the algorithm for the partition and functions ξ, η is as follows: Let Z1 = X. For
j = 1, 2, 3 . . . s:
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1. Let (Svj , S̄vj ) be the partition created by invoking Lemma 4 on Zj with center v = vj
and parameter χ = χj .

2. Set Cj = Svj , Zj+1 = S̄vj .

3. For all x ∈ Cj let ηP (x) = 2−7/max{ln χ̂j , ln(1/δ̂)}. If χ̂j ≥ 1/δ̂ set ξP (x) = 1, otherwise
set ξP (x) = 0.

Fix some δ̂ ≤ δ ≤ 1. Let θ = δ1/4. Note that θ ≥ 2χ−1
j for all j ∈ [s] as required. Recall

that ηj = 2−4 ln(1/θ)/ lnχj = 2−6 ln(1/δ)/ lnχj (it is easy to verify that ηP (x) · ln(1/δ) ≤ ηj).
Observe that some clusters may be empty and that it is not necessarily the case that vm ∈ Cm.

Phase 2: In this phase we assign any points left un-assigned from phase 1. Let P ′
2 = {D1, D2, . . . , Dt}

be a ∆-bounded probabilistic partition ofX, such that for all δ ≤ 1 satisfying ln(1/δ) ≤ 26τ−1,
P ′
2 is (τ · ln(1/δ), δ)-padded. Let Z =

∪s
i=1Ci and Z̄ = X \ Z (the un-assigned points), then

let P2 = {D1 ∩ Z̄,D2 ∩ Z̄, . . . ,Dt ∩ Z̄}. For all x ∈ Z̄ let ηP (x) = τ/2 and ξP (x) = 1. It

can be checked that η
(δ)
P (x) ≤ ηj for all j ∈ [s]. Notice that by the stop condition of phase

1, τ ≤ 2−6/ ln χ̂j , since by definition τ ≤ 2−6/ ln(1/δ̂) as well follows that for all x ∈ Z̄ and
j ∈ [s], ηP (x) · ln(1/δ) ≤ ηj .

Define P = P1 ∪ P2. We now prove the properties in the lemma for some x ∈ X, first consider
the sub-partition P1, and the distribution over the clusters C1, C2, . . . Cs as defined above. For
1 ≤ m ≤ s, define the events:

Zm = {∀j, 1 ≤ j < m, B(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, ηj∆) ◃▹ (Svj , S̄vj )|Zm}.

Also let T = Tx = B(x,∆). We prove the following inductive claim: For every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T
χ−1
j ). (5)

Note that Pr[Es] = 0. Assume the claim holds for m+1 and we will prove for m. Define the events:

Fm = {B(x, ηm∆) ◃▹ (Svm , S̄vm)|Zm},
Gm = {B(x, ηm∆) ⊆ S̄vm |Zm} = {Zm+1|Zm},
Ḡm = {B(x, ηm∆) * S̄vm |Zm} = {Zm+1|Zm}.

First we bound Pr[Fm]. Recall that the center vm of Cm and the value of χm are determined
deterministically. The radius rm is chosen from the interval [∆/4,∆/2]. Since ηm ≤ 1/2, if
B(x, ηm∆) ◃▹ (Svm , S̄vm) then d(vm, x) ≤ ∆, and thus vm ∈ T . Therefore if vm /∈ T then Pr[Fm] =
0. Otherwise by Lemma 4

Pr[Fm] (6)

= Pr[B(x, ηm∆) ◃▹ (Svm , S̄vm)|Zm]

≤ (1− θ)(Pr[B(x, ηm∆) * S̄vm |Zm] + θχ−1
m )

= (1− θ)(Pr[Ḡm] + θχ−1
m ).
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Since the choice of radius is the only randomness in the process of creating P1, the event of padding
for z ∈ Z, and the event B(z, ηP (z)∆) ∩ Z = ∅ for z ∈ Z̄ are independent of all choices of radii
for centers vj /∈ Tz. That is, for any assignment to clusters of points outside B(z, 2∆) (which may
determine radius choices for points in X \ B(x,∆)), the padding probability will not be affected.
Using the induction hypothesis we prove the inductive claim:

Pr[Em] ≤ Pr[Fm] + Pr[Gm] Pr[Em+1]

≤ (1− θ)(Pr[Ḡm] + θ1{vm∈T}χ
−1
m ) +

Pr[Gm] · (1− θ)(1 + θ
∑

j≥m+1,vj∈T
χ−1
j )

≤ (1− θ)(1 + θ
∑

j≥m,vj∈T
χ−1
j ),

The second inequality follows from (6) and the induction hypothesis. Fix some x ∈ X, T = Tx.
Observe that for all vj ∈ T , d(vj , x) ≤ ∆, and so we get B(vj , 2γ2∆) ⊆ B(x, 2∆). On the
other hand B(vj , 2γ1∆) ⊇ B(x, 2∆). Note that the definition of Wj implies that if vj is a center
then all the other points in B(vj ,∆/4) cannot be a center as well, therefore for any j ̸= j′,
d(vj , vj′) > ∆/4 ≥ 4γ2∆, so that B(vj , 2γ2∆) ∩B(vj′ , 2γ2∆) = ∅. Hence, we get:∑

j≥1,vj∈T
χ−1
j ≤

∑
j≥1,vj∈T

χ̂j
−1

≤
∑

j≥1,vj∈T

|B(vj , 2γ2∆)|
|B(vj , 2γ1∆)|

≤
∑

j≥1,vj∈T

|B(vj , 2γ2∆)|
|B(x, 2∆)|

≤ 1.

We conclude from the claim (5) for m = 1 that

Pr[E1] ≤ (1− θ)(1 + θ ·
∑

j≥1,vj∈T
χ−1
j ) ≤ (1− θ)(1 + θ) ≤ 1− δ1/2.

Hence there is probability at least δ1/2 that event ¬E1 occurs. Given that this happens, we will
show that there is probability at least δ1/2 that x is padded. If x ∈ Z, then let j ∈ [s] such that
P (x) = Cj , then ηP (x) · ln(1/δ) ≤ ηj and so B(x, ηP (x) · ln(1/δ)∆) ⊆ B(x, ηj∆). Note that if x ∈ Z
is padded in P1 it will be padded in P . If x ∈ Z̄: since for any j ∈ [s], ηP (x) · ln(1/δ) ≤ ηj we have
that ¬E1 implies that B(x, ηP (x) · ln(1/δ)∆) ∩ Z = ∅. As P2 is performed independently of P1 we
have Pr[B(x, (τ/2) ln(1/δ)) ⊆ P2(x)] ≥ δ1/2, hence

Pr[B(x, (τ/2) ln(1/δ)) ⊆ P (x)] ≥ Pr[B(x, (τ/2) ln(1/δ)) ⊆ P (x) | ¬E1] · Pr[¬E1] ≥ δ1/2 · δ1/2 = δ.

It follows that P̂ is uniformly padded. Finally, we show the properties stated in the lemma. The
first property follows from the stop condition in phase 1 and from the definition of ηP (x). The
second property holds: first take x ∈ Z and let j be such that x ∈ Cj , then ξP (x) = 1 implies

that χ̂j ≥ 1/δ̂ hence ηP (x) = 2−7/ ln χ̂j = 2−7/ ln ρ(vj , 2∆, γ1, γ2) and by the minimality of vj ,

ηP (x) ≥ 2−7/ ln ρ(x, 2∆, γ1, γ2). By definition ηP (x) ≤ 2−7/ ln(1/δ̂). If x ∈ Z̄ then ηP (x) = τ/2,
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by the stop condition of phase 1 τ/2 ≥ 2−7/ ln χ̂j . Again by definition of δ̂ follows that τ/2 ≤
2−7/ ln(1/δ̂). As for the third property, which is meaningful only for x ∈ Z, let j such that x ∈ Cj ,

then ξP (x) = 0 implies that χ̂j < 1/δ̂ hence ηP (x) = 2−7/ ln(1/δ̂) and since d(x, vj) ≤ ∆ also

ρ̄(x, 2∆, γ1, γ2) ≤ ρ(vj , 2∆, γ1, γ2) < 1/δ̂.

Lemma 8 (Local Padding Lemma for Doubling Metrics). Every finite metric space (X, d) is locally
τ -decomposable where τ = 2−6/dim(X).

Proof. Fix 0 < ∆ < diam(X) and let λ denote the doubling constant of X. We generate a
probabilistic partition P̂ of X by invoking the probabilistic decomposition Lemma 4 iteratively.
Define the partition P of X into clusters by generating a sequence of clusters: C1, C2, . . . Cs.

First we deterministically assign centers v1, v2, . . . , vs, by choosing an arbitrary sequence of an
arbitrary ∆/4-net of X. Now the algorithm for the partition is as follows: Let Z1 = X. For
j = 1, 2, 3 . . . s:

1. Let (Svj , S̄vj ) be the partition created by invoking Lemma 4 on Zj with center v = vj and
parameter χ = χj = λ4.

2. Set Cj = Svj , Zj+1 = S̄vj .

Throughout the analysis fix some δ and let θ = δ1/2. Note that θ ≥ λ−3 ≥ 2χ−1 as required,
where we use the fact that λ ≥ 2 assuming |X| > 1.

Recall that ηj = 2−4 ln(1/θ)/ lnχj = 2−5 ln(1/δ)/ lnχj , and define: ηP (x) = ηj/ ln(1/δ) = τ/2.
Define the events

Zm = {∀j, 1 ≤ j < m, B(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < s s.t. B(x, ηj∆) ◃▹ (Svj , S̄vj )|Zm}.

Also let T = Tx = B(x,∆). The following inductive claim is identical to that in Lemma 5: For
every 1 ≤ m ≤ s:

Pr[Em] ≤ (1− θ)(1 + θ
∑

j≥m,vj∈T
χ−1
j ).

Now consider a fixed choice of partition P . Let tT be the number of center points vj such that
vj ∈ T . Consider covering of T by balls of radius ∆/8. Observe that there exists such a covering
with at most λ4 balls. Since the centers are a net for any j ̸= j′, d(vj , v

′
j) > ∆/4. It follows that

each of the balls in the covering of T contains at most one vj and therefore tT ≤ λ4. We therefore
obtain: ∑

j≥1,vj∈T
χ−1
j = tT · λ−4 ≤ 1.

For x ∈ X, if P (x) = Svj then by definition ηP (x) ln(1/δ) = ηj . We conclude that:

Pr[B(x, (ηP (x)) ln(1/δ)∆) * P (x)] = Pr[E1] ≤ (1−θ)(1+θE[
∑

j≥1,vj∈T
χ−1
j ]) ≤ (1−θ)(1+θ) = 1−δ.

We also have the following Lemma from [KPR93, FT03]

Lemma 9. Let G be a weighted graph that excludes the minor Kr. Then the metric (X, d) derived
from the graph is τ -decomposable for any 0 < ∆ < diam(X) where τ = 2−6/r2.
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3.3 Hierarchical Padding Lemma

Definition 19 (Hierarchical Partition). Given a finite metric space (X, d) and a parameter k > 1,

let Λ =
maxx,y∈X{d(x,y)}
minx ̸=y∈X{d(x,y)} be the aspect ratio of (X, d) and let I = {0 ≤ i ≤ logk Λ|i ∈ N}. Let

∆0 = diam(X), and for each 0 < i ∈ I, ∆i = ∆i−1/k. A k-hierarchical partition H of (X, d) is a
hierarchical collection of partitions {Pi}i∈I , each Pi is ∆i-bounded, where P0 consists of a single
cluster equal to X and for any 0 < i ∈ I and x ∈ X, Pi(x) ⊆ Pi−1(x).

Definition 20 (Prob. Hierarchical Partition). A probabilistic k-hierarchical partition Ĥ of a finite
metric space (X, d) consists of a probability distribution over a set H of k-hierarchical partitions.
A collection of functions defined on X, f = {fP,i|Pi ∈ H,H ∈ H, i ∈ I} is uniform with respect to
H if for every H ∈ H, i ∈ I, fP,i is uniform with respect to Pi.

Definition 21 (Uniformly Padded PHP). Let Ĥ be a probabilistic k-hierarchical partition. Given
collection of functions η = {ηP,i : X → [0, 1]|i ∈ I, Pi ∈ H,H ∈ H} and δ̂ ∈ (0, 1], Ĥ is called

(η, δ̂)-padded if the following condition holds for all i ∈ I and for any x ∈ X:

Pr[B(x, ηP,i(x)∆i) ⊆ Pi(x)] ≥ δ̂.

Ĥ is called strong (η, δ̂)-padded if for all δ̂ ≤ δ ≤ 1, Ĥ is (η · ln(1/δ), δ)-padded. We say Ĥ is
uniformly padded if η is uniform with respect to H.

In order to construct partitions in a hierarchical manner, one has to note that the padding in
level i ∈ I can fail because of the partition of level j < i. The intuition is that this probability
decays exponentially with i − j, however in order to make this work we will use the fact that our
partitions are strongly padded, and argue about padding in all the levels 1, . . . , i − 1 with larger
value of δ. The main property of the hierarchical partition is that the sum of the inverse padding
parameters over all levels in which there actually was a local growth rate (this is indicated by ξ = 1)
is bounded by a logarithm of a ”global“ growth rate - this is attained by a telescopic sum argument.

Lemma 10 (Hierarchical Uniform Padding Lemma for Decomposable Metrics). Let (X, d) be a
τ -decomposable finite metric space, and let γ1 = 16, γ2 = 1/16. Let δ̂ ∈ (0, 12 ] such that ln(1/δ̂) ≤
26τ−1. There exists a probabilistic 2-hierarchical partition Ĥ of (X, d) and uniform collections of
functions ξ = {ξP,i : X → {0, 1}|i ∈ I, Pi ∈ H,H ∈ H} and η = {ηP,i : X → {0, 1/ ln(1/δ̂)}|i ∈
I, Pi ∈ H,H ∈ H}, such that Ĥ is strong (η, δ̂)-uniformly padded, and the following properties hold:

• ∑
j≤i

ξP,j(x)ηP,j(x)
−1 ≤ 214 ln

(
n

|B(x,∆i+4)|

)
.

and for any H ∈ H, 0 < i ∈ I, Pi ∈ H:

• ηP,i ≥ τ/8.

• If ξP,i(x) = 1 then: ηP,i(x) ≤ 2−9/ ln(1/δ̂).

• If ξP,i(x) = 0 then: ηP,i(x) = 2−9/ ln(1/δ̂) and ρ̄(x,∆i−1, γ1, γ2) < 1/δ̂.
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Proof. We create a probability distribution over hierarchical partitions, by showing how to sample
a random H ∈ H, and uniform functions ξ and η. Define P0 as a single cluster equal to X. For all
x ∈ X, set η̂P,0(x) = 2−9/ ln(1/δ̂), ξP,0(x) = 0. The rest of the levels of the partition are created
iteratively using Lemma 7 as follows. Let i = 1.

1. For each cluster S ∈ Pi−1, let P [S] be a ∆i-bounded probabilistic partition created by invoking
Lemma 7 on S with the parameters δ̂, γ1, γ2, and let ξ′P [S], η

′
P [S] be the uniform functions

defined in Lemma 7.

2. Let Pi = ∪S∈Pi−1P [S].

3. For each cluster S ∈ Pi−1 and each x ∈ S let ηP,i(x) = min{1
4 · η′P [S](x),

3
2 · ηP,i−1(x)}. If it

is the case that ηP,i(x) =
1
4 · η′P [S](x) and also ξ′P [S](x) = 0 then set ξP,i(x) = 0, otherwise

ξP,i(x) = 1.

4. Let i = i+ 1, if i ∈ I, return to 1.

Note, that for i ∈ I, x, y ∈ X such that Pi(x) = Pi(y), it follows by induction that ηP,i(x) =
ηP,i(y) and ξP,i(x) = ξP,i(y), by using the fact that η′ and ξ′ are uniform functions with respect to
P [S], where S = Pi−1(x) = Pi−1(y).

We prove by induction on i that Pi is strong (η, δ̂)-uniformly padded, i.e. that it is (η·ln(1/δ), δ)-
padded for all δ̂ ≤ δ ≤ 1. Assume it holds for i−1 and we will prove for i. Now fix some δ̂ ≤ δ ≤ 1.
Let Bi = B(x, ηP,i(x) ln(1/δ)∆i). We have:

Pr[Bi ⊆ Pi(x)] =

Pr[Bi ⊆ Pi−1(x)] · Pr[Bi ⊆ Pi(x)|Bi ⊆ Pi−1(x)]. (7)

Let S = Pi−1(x). Note that ηP,i(x) ln(1/δ) ≤ 1
4 · η′P [S](x) ln(1/δ) = η′P [S](x) ln(1/δ

1/4). Since

δ1/4 ≥ δ̂, we have by Lemma 7 on S that Pr[Bi ⊆ Pi(x)|Bi ⊆ Pi−1(x)] ≥ δ1/4.
Next observe that by definition ηP,i(x) ln(1/δ) ≤ 3

2 ·ηP,i−1(x) ln(1/δ) =
3
2 ·

4
3ηP,i−1(x) ln(1/δ

3/4) =

2ηP,i−1(x) ln(1/δ
3/4). Since ∆i = ∆i−1/2 we get that ηP,i(x) ln(1/δ)∆i ≤ ηP,i−1(x) ln(1/δ

3/4)∆i−1.
Therefore Bi ⊆ B(x, ηP,i−1(x) ln(1/δ

3/4)∆i−1). Using the induction hypothesis it follows that
Pr[Bi ⊆ Pi−1(x)] ≥ δ3/4. We conclude from (7) above that the inductive claim holds: Pr[Bi ⊆
Pi(x)] ≥ δ1/4 · δ3/4 = δ. This completes the proof that H is strong (η, δ̂)-uniformly padded.

We now turn to prove the properties stated in the lemma. The second property holds by
induction on i: assume ηP,i−1(x) ≥ τ/8 and by the first property of Lemma 7 ηP,i(x) = min{1

4 ·
η′P [S](x),

3
2 ·ηP,i−1(x)} ≥ min{1

4 ·τ/2,
3
2 ·τ/8} = τ/8. Consider some i ∈ I, x ∈ X and let S = Pi−1(x).

The third property holds as ηP,i(x) ≤ 1
4η

′
P [S](x) ≤ 2−9/ ln(1/δ̂), using Lemma 7. Let us prove the

fourth property. By definition if ξP,i(x) = 0 then ηP,i(x) = 1
4η

′
P [S](x) and ξ′P [S](x) = 0. Using

Lemma 7 we have that ηP,i(x) = 2−9/ ln(1/δ̂) and that ρ̄(x,∆i−1, γ1, γ2) < 1/δ̂.
It remains to prove the first property of the lemma. Define ψP,i(x) = 2−9 · ξP,i(x)ηP,i(x)−1.

Using Lemma 7 it is easy to derive the following recursion: ψP,i(x) ≤ ln ρ(x,∆i−1, γ1, γ2) +
(2/3)ψP,i−1(x). A simple induction on t shows that for any 0 ≤ t < i:

∑
t<j≤i ψP,j(x) ≤

3
∑

t<j≤i ln ρ(x,∆j−1, γ1, γ2) + 2ψP,t(x). Now observe that as γ1 = 16, γ2 = 1/16 and that for
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any j ∈ I:

ln ρ(x,∆j , γ1, γ2) = ln

(
|B(x,∆jγ1)|
|B(x,∆jγ2)|

)
=

4∑
h=−3

ln

(
|B(x, 2∆j+h)|
|B(x,∆j+h)|

)
.

It follows that ∑
0<j≤i

ψP,j(x) ≤ 3
∑

0<j≤i

ln ρ(x,∆j−1, γ1, γ2)

= 3
∑

0≤j<i

4∑
h=−3

ln

(
|B(x, 2∆j+h)|
|B(x,∆j+h)|

)

= 3

4∑
h=−3

∑
0≤j<i

ln

(
|B(x, 2∆j+h)|
|B(x,∆j+h)|

)

= 24 ln

(
n

|B(x,∆i+4)|

)
.

This completes the proof of the first property of the lemma.

4 Embedding with Scaling Distortion

In this section we prove our main theorem on embeddings with scaling distortion. The construction
is based on the following lemma which gives an embedding into the real line, which is good for
all pairs in expectation. The parameter ζ determines the quality of the embedding, and as a
consequence the number of coordinates needed (which is calculated in Section 4.2) for the distortion
to be good for all pairs, is also a function of ζ.

4.1 Main Scaling Lemma

Lemma 11. Let (X, d) be a finite metric space on n points and let 0 < ζ ≤ 1/8, then there exists
a distribution D over functions f : X → R such that for all u, v ∈ X:

1. For all f ∈ supp(D),

|f(u)− f(v)| ≤ C

⌈
ln

(
n

|B(u, d(u, v))|

)⌉
· d(u, v).

2.
Pr
f∼D

[
|f(u)− f(v)| ≥ ζ3 · d(u, v)/C

]
≥ 1− ζ,

where C is a universal positive constant.
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In the remainder of this section we prove this lemma, let us begin with the construction of the
distribution D.

Let ∆0 = diam(X). For i ∈ N let ∆i = (ζ/8)i∆0 and let Pi be a ∆i-bounded partition.
For all i ∈ N let σi : X → [0, 1], ξi : X → {0, 1}, ηi : X → R+ be uniform functions with respect

to Pi, the functions ηi and ξi will be randomly generated by the probabilistic partition. For every
scale i ∈ N define φi : X → R+ as

φi(x) = min

{
ξi(x)

ηi(x)
d (x,X \ Pi(x)) , ζ∆i/4

}
, (8)

and for i ∈ N define ψi : X → R+ as

ψi(x) = σi(x) · φi(x).

Finally let f : X → R+ be defined as f =
∑

i∈N ψi. Note that f is well defined because f(x) =∑
i∈N ψi(x) ≤

∑
i∈N∆i, and this is a geometric progression and ψi ≥ 0.

The distribution D on embeddings f is obtained by choosing each Pi from the distribution P̂i

as in Lemma 5 with parameters Z = X, ∆ = ∆i, δ̂ = 1/2, γ1 = 8/ζ and γ2 = 1/16. For each i ∈ N
set ξi = ξPi and ηi = ηPi as defined in the lemma. For each i ∈ N, let σi be a uniform function
with respect to Pi defined by setting {σi(C)|C ∈ Pi, 0 < i ∈ I} as i.i.d random variables chosen
uniformly in the interval [0, 1].

Lemma 12. For all u, v ∈ X, f ∈ supp(D),

|f(u)− f(v)| ≤ C

⌈
ln

(
|X|

|B(u, d(u, v))|

)⌉
d(u, v).

where C is a universal constant.

Proof. Fix some u, v ∈ X and f ∈ supp(D). Hence {Pi}i∈N, {σi}i∈N are fixed. Let ℓ ∈ N be the
maximum index such that ∆ℓ ≥ 2d(u, v), if no such ℓ exists then let ℓ = 0. We bound |f(u)− f(v)|
by separating the sum into two intervals 0 ≤ i < ℓ, and i ≥ ℓ:

|f(u)− f(v)| ≤
∑

0≤i<ℓ

|ψi(u)− ψi(v)|+
∑
i≥ℓ

|ψi(u)|+
∑
i≥ℓ

|ψi(v)|. (9)

Proposition 13. For any x, y ∈ X, a set U ⊂ X and r ∈ R+, min{d(u,U), r}−min{d(v, U), r} ≤
d(u, v).

Proof. If it is the case that r = min{d(v, U), r} then min{d(u,U), r}−min{d(v, U), r} = min{d(u, U), r}−
r ≤ r − r = 0. Otherwise min{d(v, U), r} = d(v, U) and min{d(u,U), r} − min{d(v, U), r} ≤
d(u,U)− d(v, U) ≤ d(u, v) by the triangle inequality.

Each term of (9) is bounded as follows:

Claim 14. For any u, v ∈ X, ψi(u)− ψi(v) ≤ ξi(u)
ηi(u)

d(u, v).

Proof. The fact that σi, ξi, ηi are uniform implies that for each 0 ≤ i < ℓ: if it is the case that
Pi(u) = Pi(v) then by Proposition 13 with U = Pi(x) and r = ζ∆i/4, ψi(u)− ψi(v) ≤ ξi(u)

ηi(u)
d(u, v).

Otherwise, if Pi(u) ̸= Pi(v), then d(u,X \ Pi(u)) ≤ d(u, v) and hence ψi(u) − ψi(v) ≤ ψi(u) ≤
ξi(u)
ηi(u)

d(u, v).
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By symmetry we have that

|ψi(u)− ψi(v)| ≤
ξi(u)

ηi(u)
d(u, v) +

ξi(v)

ηi(v)
d(u, v) .

For any x ∈ X ∑
0≤i<ℓ

ξi(x)

ηi(x)
=

∑
0≤i<ℓ:ξi(x)=1

ηi(x)
−1 (10)

≤
∑

0≤i<ℓ:ξi(x)=1

26 ln ρ(x, 2∆i, γ1, γ2)

≤ 26
∑

0≤i<ℓ

ln

(
|B(x, 2γ1∆i)|
|B(x, 2γ2∆i)|

)

≤ 26 · 3 ln
(

|X|
|B(x,∆ℓ−1/8)|

)
≤ 29 ln

(
|X|

|B(x,∆ℓ)|

)
.

The first inequality follows from the first property of Lemma 5, and the third inequality holds as
2γ1∆i = 16∆i−1 = 2γ2 · 82∆i−1 ≤ 2γ2∆i−3 (since ζ ≤ 1/8), this suggests that the sum is telescopic
and is bounded accordingly. And now, noticing that |ψi(u)| ≤ ζ∆i/4 for all u ∈ X and i ∈ N,

|f(u)− f(v)| ≤
∑

0≤i<ℓ

|ψi(u)− ψi(v)|+
∑
i≥ℓ

|ψi(u)|+
∑
i≥ℓ

|ψi(v)|

≤
∑

0≤i<ℓ

(
ξi(u)

ηi(u)
+
ξi(v)

ηi(v)

)
d(u, v) + (ζ/4)

∑
i≥ℓ

∆i + (ζ/4)
∑
i≥ℓ

∆i

≤ 29
(
ln

(
|X|

|B(u,∆ℓ)|

)
+ ln

(
|X|

|B(v,∆ℓ)|

))
d(u, v) + ζ∆ℓ

≤ C

⌈
ln

(
|X|

|B(u, d(u, v))|

)⌉
d(u, v).

The third inequality uses (10). The last inequality uses the fact that B(u, d(u, v)) ⊆ B(u,∆ℓ)∩
B(v,∆ℓ) and that the maximality of ℓ suggests that ∆ℓ ≤ 16d(u, v)/ζ.

Lemma 15. For each u, v ∈ X, Pr
[
|f(u)− f(v)| ≥ ζ3 · d(u, v)/C

]
≥ 1− ζ.

Let s :
(
X
2

)
→ N by s(u, v) = k for the unique k satisfying 8∆k ≤ d(u, v) < 8∆k−1. We will use

the following claims:

Claim 16. For each u, v ∈ X, let k = s(u, v), then ξk(u) + ξk(v) > 0.

Proof. Using Claim 3 with parameters r = 2∆k, γ1, γ2, we have that indeed 2(1 + γ2)r < 8∆k ≤
d(u, v) and (γ1 − γ2 − 2)r ≥ 8∆k−1 > d(u, v) so max{ρ̄(u, 2∆k, γ1, γ2), ρ̄(v, 2∆k, γ1, γ2)} ≥ 2. By
the second property of Lemma 5 it follows that ξk(u) + ξk(v) > 0, using that 1/δ̂ = 2.
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Claim 17. Let A,B ∈ R+ and let α, β be i.i.d random variables uniformly distributed in [0, 1].
Then for any C ∈ R and γ > 0:

Pr[|C +Aα−Bβ| < γ ·max{A,B}] < 2γ.

Proof. Assume w.l.o.g A ≥ B. Consider the condition |C + Aα − Bβ| < γ ·max{A,B} = γA. If
C −Bβ ≥ 0 then it implies α < γ. Otherwise |α− Bβ−C

A | < γ.

Proof of the lemma. Fix u, v ∈ X and let k = s(u, v). Since ξk(u)+ ξk(v) > 0 then assume without
loss of generality that ξk(u) = 1. Recall that P̂k is a strong (ηk, 1/2) locally padded probabilistic
partition, hence it is (η · ln(1/δ), δ)-padded for all 1/2 ≤ δ ≤ 1. We take δ = 1− ζ/2. Note that as

0 < ζ ≤ 1/8, 1
1−ζ/2 = 1 + ζ/2

1−ζ/2 ≥ e
ζ/2

2(1−ζ/2) hence ln
(

1
1−ζ/2

)
≥ ζ/4

Let Eu−pad be the event {B(u, ηk(u) · ζ∆k/4) ⊆ Pk(u)}. From the properties of Lemma 5 we
have Pr[Eu−pad] ≥ 1− ζ/2. In this case, given Eu−pad,

φk(u) = min

{
d(u,X \ Pk(u))

ηk(u)
, ζ∆k/4

}
≥ ζ∆k/4.

Let Eu−color be the event that |
∑

0<j≤k(ψj(u)− ψj(v))| ≥ (ζ/4)2∆k and Euv−good be the event
that both events Eu−pad, Eu−color hold. We will show that

Pr[Eu−color | Eu−pad] ≥ 1− ζ/2 , (11)

therefore

Pr[Euv−good] = Pr[Eu−pad ∧ Eu−color] = Pr[Eu−pad] · Pr[Eu−color | Eu−pad] ≥ (1− ζ/2)2 ≥ 1− ζ.

Now to prove (11). Define A = φk(u), B = φk(v), α = σk(u), β = σk(v) and C =
∑

j<k(ψj(u)−
ψj(v)). Since diam(Pk(u)) ≤ ∆k < d(u, v) we have that Pk(v) ̸= Pk(u). Thus α and β are
independent random variables uniformly distributed in [0, 1], hence we can apply Claim 17 with
γ = ζ/4, noticing that given Eu−pad, max{A,B} ≥ ζ∆k/4

Pr[¬Eu−color | Eu−pad] ≤ Pr[|C +Aα−Bβ| < γ ·max{A,B} | Eu−pad]

≤ Pr[|C +Aα−Bβ| < (ζ/4)2∆k | Eu−pad]

< ζ/2.

Note that |ψj(u)− ψj(v)| ≤ ζ∆j/4, hence

|
∑
j>k

(ψj(u)− ψj(v))| ≤ (ζ/4)
∑
j>k

∆j ≤ (ζ/4) · ζ∆k/6 = (2/3) · (ζ/4)2∆k .

We conclude that with probability at least 1− ζ event Euv−good occur and then

|f(u)− f(v)| ≥ |
∑

0<j≤k

(ψj(u)− ψj(v))| − |
∑
j>k

(ψj(u)− ψj(v))| ≥ (1/3) · (ζ/4)2∆k ≥ ζ3d(u, v)/C ,

for C ≥ 384.
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Lemma 18. The embedding of Lemma 15 can actually give a stronger local result. For any pair
u, v with s(u, v) = k define Q = Q(u, v) ⊆

(
X
2

)
by

Q =

{
(u′, v′) ∈

(
X

2

)
| s(u′, v′) < k ∨ (s(u′, v′) = k ∧ d({u, v}, {u′, v′}) ≥ 4∆k)

}
,

then

Pr

¬Euv−good |
∧

(u′,v′)∈Q

Eu′v′−good

 ≤ ζ.

Proof. The observation is that the bound on the probability of event Euv−good depends only on
random variables σk(u), σk(v) and w.l.o.g the event Eu−pad, given any outcome for scales 1, 2, . . . k−
1, and is oblivious to all events that happen in scales k+1, k+2, . . . . The events {Eu′v′−good}(u′,v′)∈Q
either depend on scale < k, in this case Euv−good holds with probability at least 1 − ζ given any
outcome for those events. If s(u′, v′) = k then it must be that d({u, v}, {u′, v′}) ≥ 4∆k, now the
locality of the partition suggests that the event Eu−pad has probability at least 1 − ζ/2 given any
outcome for Eu′v′−good. Since any partition Pk ∈
supp(P̂k) is ∆k-bounded it follows that {Pk(u), Pk(v)} ∩ {Pk(u

′), Pk(v
′)} = ∅, i.e. the random

variables σk for each pair are independent.

4.2 Scaling Distortion with Low Dimension

Now we prove the following corollary of the embedding into the line

Corollary 19. For any 1 ≤ p ≤ ∞, any finite metric space (X, d) on n points and any θ ≥
(12/ log log n) there is an embedding F : X → lDp with coarse scaling distortion O(log(2/ϵ) · logθ n)
where the dimension D = O

(
logn

θ log log n

)
.

This implies Theorems 4, 5 and Theorem 9 when taking θ = 1/(12 log log n).

Proof. Let D = c · log n/(θ log log n) for some constant c to be determined later. Let ζ = 1
lnθ/3 n

.

We sample for any t ∈ [D] an embedding f (t) : X → R+ as in Lemma 11 with parameter ζ and
let F = D−1/p

⊕
t f

(t). Fix any ε > 0 and let u, v ∈ Ĝε. Let Zt = Zt(u, v) be the indicator for
the event ¬Euv−good, i.e. we failed in the t-th coordinate. Let Z = Z(u, v) =

∑
t∈[D]Zt. We are

interested to bound the probability of the bad event, that Z ≥ D/2. Note that E[Z] ≤ ζD, so let
a ≥ 1 such that E[Z] = ζD/a. Using Chernoff bound:

Pr[Z ≥ D/2] = Pr [Z > aE[Z]/(2ζ)] ≤

(
ea/(2ζ)−1

(a/(2ζ))a/(2ζ)

)E[Z]

≤ (2eζ)D/2 . (12)

As
√
ζ = 1

lnθ/6 n
≤ 1

2e it follows that

Pr[Z ≥ D/2] ≤
√
ζ
D/2

=

(
1

lnθ/6 n

)c·logn/(θ log logn)
≤ 1/n3,

for large enough constant c.
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As there are
(
n
2

)
pairs, by the union bound there is probability at least 1− 1/n that none of the

bad events Z(u, v) occur, in such a case, using the first property of Lemma 11

∥F (u)− F (v)∥pp = D−1
∑
t∈[D]

|f (t)(u)− f (t)(v)|p (13)

≤ D−1 ·D
(
C

⌈
ln

(
n

|B(u, d(u, v))|

)⌉
d(u, v)

)p

= O((ln(2/ε) · d(u, v))p),

since by definition of Ĝε, |B(u, d(u, v))| ≥ εn/2.
Let S = S(u, v) ⊆ [D] be the subset of coordinates in which event Euv−good holds, then as

|S| ≥ D/2 and by the second property of Lemma 11

∥F (u)− F (v)∥pp = D−1
∑
t∈[D]

|f (t)(u)− f (t)(v)|p

≥ D−1
∑
t∈S

|f (t)(u)− f (t)(v)|p

≥ D−1|S|
(
ζ3d(u, v)/C

)p
= Ω

(
d(u, v)

lnθ n

)p

.

4.3 Embedding into lp

In this section we show the proof of Theorem 11, which gives an improved scaling distortion bound
of O(⌈log(2/ϵ)/p⌉), when embedding into lp, with the price of higher dimension. As in the previous
section, the bulk of the proof is showing an embedding into the line with the desired properties,
described in the following lemma.

Lemma 20. Let (X, d) be a finite metric space on n points and let κ ≥ 1, then there exists a
distribution D over functions f : X → R such that for all ϵ ∈ (0, 1] and all x, y ∈ Ĝ(ϵ):

1. For all f ∈ supp(D),

|f(x)− f(y)| ≤ C

⌈
ln

(
2

ϵ

)
/κ+ 1

⌉
· d(x, y).

2.

Pr
f∼D

[|f(x)− f(y)| ≥ d(x, y)/C] ≥ 1

4e5κ
,

where C is a universal positive constant.

The proof of this lemma is in the spirit of Lemma 11, the main difference is that we choose a
partition with very small probability of padding, i.e. the parameter δ̂ ≈ e−κ. This will improve
the distortion by a factor of ln(1/δ̂) = κ, but choosing δ̂ in such a way Claim 16 does not hold
anymore. There may be pairs x, y such that ξi(x) = ξi(y) = 0. For such cases we need to modify f
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by adding additional terms that are essentially distances to random subsets of the space, similarly
to Bourgain’s original embedding, and show that if indeed ξi(x) = ξi(y) = 0 then we can get the
contribution from these additional terms.

Let s = eκ. Let I and ∆i for i ∈ I be as in Definition 19. We will define functions ψ, µ : X → R+

and let f = ψ + µ. In what follows we define ψ. We construct a uniformly (η, 1/s)-padded
probabilistic 2-hierarchical partition Ĥ as in Lemma 10, and let ξ be as defined in the lemma. Now
fix a hierarchical partition H = {Pi}i∈I ∈ H. We define the embedding by defining the coordinates
for each x ∈ X. For each 0 < i ∈ I we define a function ψi : X → R+ and for x ∈ X, let
ψ(x) =

∑
i∈I ψi(x).

Let σi : X → {0, 1} be a uniform function with respect to Pi define by letting {σi(C)|C ∈ Pi, 0 <
i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random variables. The embedding is defined as
follows: for each x ∈ X and 0 < i ∈ I let

ψi(x) = σi(x) ·min

{
ξi(x)

κ · ηi(x)
· d(x,X \ Pi(x)),∆i

}
.

Next, we define the function µ, based on the embedding technique of Bourgain [Bou85] and its
generalization by Matoušek [Mat90]. Let T ′ = ⌈logs n⌉ and K = {k ∈ N|1 ≤ k ≤ T ′}. For each
k ∈ K define a randomly chosen subset Ak ⊆ X, with each point of X included in Ak independently
with probability s−k. For each k ∈ K and x ∈ X, define:

Ik(x) = {i ∈ I|∀u ∈ Pi(x), s
k−2 < |B(u, 4∆i)| ≤ sk}.

We make the following simple observations:

Claim 21. The following hold for every i ∈ I:

• For any x ∈ X: |{k|i ∈ Ik(x)}| ≤ 2.

• For every k ∈ K: the function i ∈ Ik(x) is uniform with respect to Pi.

We define ik : X → I, where ik(x) = min{i|i ∈ Ik(x)}.
For each k ∈ K we define a function µk : X → R+ and let µ(x) =

∑
k∈K µk(x). The function

µk is defined as follows: for each x ∈ X and k ∈ K, let i = ik(x) and

µk(x) = min

{
1

8
d(x,Ak), 2

9d(x,X \ Pi(x)),∆i

}
.

Upper Bound Proof

Claim 22. For any i ∈ I and x, y ∈ X,

ψi(x)− ψi(y) ≤ min

{
ξi(x)

κ · ηi(x)
· d(x, y),∆i

}
.

The proof is essentially the same as the proof of Claim 14.

Claim 23. For any k ∈ K and x, y ∈ X,

µk(x)− µk(y) ≤ min{29d(x, y),∆ik(x)}.
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Proof. Let i = ik(x) and i′ = ik(y). There are two cases. In Case 1, assume Pi(x) = Pi(y), and
first we show that i = i′. By Claim 21 we have that i ∈ Ik(y), implying i′ ≤ i. Since H = {Pi}i∈I
is a hierarchical partition we have that Pi′(x) = Pi′(y). Hence Claim 21 implies that i′ ∈ Ik(x), so
that i ≤ i′, which implies i′ = i.

Since µk(x) ≤ ∆i we have that µk(x)−µk(y) ≤ µk(x) ≤ ∆i. To prove µk(x)−µk(y) ≤ 29d(x, y)
consider the value of µk(y). If µk(y) =

1
8d(y,Ak) then µk(x) − µk(y) ≤ 1

8(d(x,Ak) − d(y,Ak)) ≤
1
8d(x, y). Otherwise, if µk(y) = 29d(y,X \ Pi(x)) then

µk(x)− µk(y) ≤ 29(d(x,X \ Pi(x))− d(y,X \ Pi(x))) ≤ 29d(x, y).

Finally, if µk(y) = ∆i then µk(x)− µk(y) ≤ ∆i −∆i = 0.
Next, consider Case 2 where Pi(x) ̸= Pi(y). In this case we have that d(x,X \ Pi(x)) ≤ d(x, y)

which implies that
µk(x)− µk(y) ≤ µk(x) ≤ min{29d(x, y),∆i} .

Let ℓ be largest such that ∆ℓ+4 ≥ d(x, y) ≥ max{rϵ/2(x), rϵ/2(y)}. If no such ℓ exists then let
ℓ = 0.

By Claim 22 and Lemma 10 we have∑
0<i≤ℓ

(ψi(x)− ψi(y)) ≤
∑

0<i≤ℓ

ξi(x)

κ · ηi(x)
· d(x, y)

≤ 214 · ln
(

n

|B(x,∆ℓ+4)|

)
· d(x, y)/κ ≤ (214 ln(2/ϵ)) · d(x, y)/κ.

We also have that ∑
ℓ<i∈I

(ψi(x)− ψi(y)) ≤
∑
ℓ<i∈I

∆i ≤ ∆ℓ ≤ 25d(x, y).

It follows that

|ψ(x)− ψ(y)| = |
∑
0<i∈I

(ψi(x)− ψi(y))| ≤
(
214 ln(2/ϵ)/κ+ 25

)
· d(x, y).

Let k′ be the largest such that sk
′ ≤ ϵn/2. Note that |{k ∈ K | k > k′}| ≤ ⌈logs n⌉ −

⌊logs(ϵn/2)⌋ ≤ ln(2/ϵ)/κ+ 2, hence∑
k′<k∈K

(µk(x)− µk(y)) ≤
∑

k′<k∈K
29d(x, y) ≤ 29 · (ln(2/ϵ)/κ+ 2)d(x, y).

Now, if k ≤ k′ and i ∈ Ik(x) then for any u ∈ Pi(x) we have |B(x, 2∆i)| ≤ |B(u, 4∆i)| ≤ sk ≤
ϵn/2. It follows that d(x, y) ≥ rϵ/2(x) ≥ 2∆i. Let ℓ

′ = min{i ∈ I | d(x, y) ≥ 2∆i}. Using Claim 23
and the first property of Claim 21 we get∑

k′≥k∈K
(µk(x)− µk(y)) ≤

∑
k′≥k∈K

∆ik(x) ≤
∑

ℓ′≤i∈I

∑
k∈K|i∈Ik(x)

∆i ≤
∑

ℓ′≤i∈I
2∆i ≤ 4∆ℓ′ ≤ 2d(x, y).
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It follows that

|µ(x)− µ(y)| = |
∑
k∈K

(µk(x)− µk(y))| ≤ 29 (ln(2/ϵ)/κ+ 3) · d(x, y).

It follows that

|f(x)− f(y)| = |ψ(x) + µ(x)− ψ(y)− µ(y)| ≤ 215 (ln(2/ϵ)/κ+ 1) · d(x, y).

Lower Bound Proof
Let 0 < ℓ ∈ I be such that 8∆ℓ < d(x, y) ≤ 16∆ℓ. We distinguish between the following two

cases:

• Case 1: Either ξℓ(x) = 1 or ξℓ(y) = 1.

Assume w.l.o.g that ξℓ(x) = 1. Let Eu−pad be the event that

B(x, ηℓ(x) ln s ·∆ℓ) ⊆ Pℓ(x).

As Ĥ is (η, 1/s)-padded, Pr[Eu−pad] ≥ 1/s, recalling that κ = ln s, if this event occurs

ψℓ(x) ≥ σℓ(x) ·min

{
ξℓ(x)

κ · ηℓ(x)
· ηℓ(x)κ ·∆ℓ,∆ℓ

}
= σℓ(x) ·∆ℓ.

Assume that Eu−pad occurs. Since diam(Pℓ(x)) ≤ ∆ℓ < d(x, y) we have that Pℓ(y) ̸= Pℓ(x),
so the value of σℓ(x) is independent of the value of f(y). We distinguish between two cases:

– |f(x)− f(y)−ψℓ(x)| ≥ 1
2∆ℓ. In this case there is probability 1/2 that σℓ(x) = 0, so that

ψℓ(x) = 0.

– |f(x)− f(y)−ψℓ(x)| ≤ 1
2∆ℓ. In this case there is probability 1/2 that σℓ(x) = 1, so that

ψℓ(x) ≥ ∆ℓ.

We conclude that with probability at least 1/(2s): |f(x)− f(y)| ≥ 1
2∆ℓ.

• Case 2: ξP,ℓ(x) = ξP,ℓ(y) = 0

It follows from Lemma 10 that max{ρ̄(x, 2∆ℓ, γ1, γ2), ρ̄(y, 2∆ℓ, γ1, γ2)} < s. Let x′ ∈ B(x, 2∆ℓ)
and y′ ∈ B(y, 2∆ℓ) such that ρ(x′, 2∆ℓ, γ1, γ2) = ρ̄(x, 2∆ℓ, γ1, γ2) and ρ(y′, 2∆ℓ, γ1, γ2) =
ρ̄(y, 2∆ℓ, γ1, γ2).

Recall that γ1 = 16, γ2 = 1/16. For z ∈ {x′, y′} we have:

s > ρ(z, 2∆ℓ, γ1, γ2) =
|B(z, 32∆ℓ)|
|B(z, 2∆ℓ/16)|

≥ |B(x, 14∆ℓ)|
|B(z,∆ℓ/8)|

,

using that d(x, x′) ≤ 2∆ℓ and d(x, y′) ≤ d(x, y) + d(y, y′) ≤ 18∆ℓ, so that B(x, 14∆ℓ) ⊆
B(z, 32∆ℓ).

Let k ∈ K be such that sk−1 < |B(x, 14∆ℓ)| ≤ sk. We deduce that for z ∈ {x′, y′},
|B(z,∆ℓ/8)| > sk−2. Consider an arbitrary point u ∈ Pℓ(x), as d(u, x

′) ≤ 3∆ℓ it follows
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that sk−2 < |B(u, 4∆ℓ)| ≤ sk. This implies that ℓ ∈ Ik(x) and therefore ik(x) ≤ ℓ. As Ĥ is
(η, 1/s)-padded we have the following bound

Pr[B(x, ηℓ(x) · κ∆ℓ) ⊆ Pℓ(x)] ≥ 1/s.

Assume that this event occurs. Since H is hierarchical we get that for every i ≤ ℓ, B(x, ηℓ(x) ·
κ∆ℓ) ⊆ Pℓ(x) ⊆ Pi(x) and in particular this holds for i = ik(x). As ξℓ(x) = 0 we have that
ηℓ(x) = 2−9/κ. Hence,

29 · d(x,X \ Pi(x)) ≥ 29 · ηℓ(x)κ∆ℓ = ∆ℓ.

Implying:

µk(x) = min

{
1

8
d(x,Ak), 2

9 · d(x,X \ Pi(x)),∆i

}
≥ min

{
1

8
d(x,Ak),∆ℓ

}
.

The following is a variant on the original argument in [Bou85, Mat90]. Define the events: A1 =
B(y′,∆ℓ/8)∩Ak ̸= ∅, A2 = B(x′,∆ℓ/8)∩Ak ̸= ∅ andA3 = [B(x, 14∆ℓ)\B(y′,∆ℓ/8)]∩Ak = ∅.
Then for m ∈ {1, 2}:

Pr[Am] ≥ 1−
(
1− s−k

)sk−2

≥ 1− e−s−k·sk−2
= 1− e−s−2 ≥ s−2/2,

Pr[A3] ≥
(
1− s−k

)sk
≥ 1/4,

using s ≥ 2. Observe that d(x′, y′) ≥ d(x, y) − d(x, x′) − d(y, y′) ≥ d(x, y) − 4∆ℓ ≥ 4∆ℓ,
implying B(y′,∆ℓ/8) ∩ B(x′,∆ℓ/8) = ∅. It follows that event A1 is independent of either
event A2 or A3.

Assume event A1 occurs. It follows that d(y,Ak) ≤ d(y, y′) + ∆ℓ/8 ≤ 17
8 ∆ℓ. We distinguish

between two cases:

– |f(x) − f(y) − (µk(x) − µk(y))| ≥ 3
8∆ℓ. In this case there is probability at least s−2/2

that event A2 occurs, in such a case d(x,Ak) ≤ d(x, x′) +∆ℓ/8 ≤ 17
8 ∆ℓ so that |µk(x)−

µk(y)| ≤ 1
8 max{d(x,Ak), d(y,Ak)} ≤ 17

64∆ℓ. We therefore get with probability at least
s−2/2 that |f(x)− f(y) ≥ 24

64∆ℓ − 17
64∆ℓ ≥ ∆ℓ/10.

– |f(x)− f(y)− (µℓ(x)− µℓ(y))| < 3
8∆ℓ. In this case there is probability at least 1/4 that

event A3 occurs. Observe that:

d(x,B(y′,∆ℓ/8)) ≥ d(x, y)− d(y, y′)−∆ℓ/8

≥ 8∆ℓ − 2∆ℓ −∆ℓ/8 =
47

8
∆ℓ,

implying that d(x,Ak) ≥ min {14∆ℓ, d(x,B(y′,∆ℓ/8))} ≥ 47
8 ∆ℓ and therefore µk(x) ≥

min{1
8 · 47

8 ∆ℓ,∆ℓ} = 47
64∆ℓ. Since µk(y) ≤ 1

8d(y,Ak) ≤ 17
64∆ℓ we obtain that: µk(x) −

µk(y) ≥ 30
64∆ℓ. We therefore get with probability at least 1/4 that |f(x) − f(y)| ≥

30
64∆ℓ − 3

8∆ℓ ≥ ∆ℓ/10.

We conclude that given events Eu−pad and A1, with probability at least s−2/2: |f(x)−f(y)| ≥
∆ℓ/10.
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It follows that with probability at least s−5/4:

|f(x)− f(y)| ≥ ∆ℓ/10 ≥ d(x, y)/160.

This concludes the proof of Lemma 20.

Proof of Theorem 11. Fix some 1 ≤ p < ∞. 21 Let D = ecp lnn for a universal constant c and
define F : X → lDp by F (x) = D−1/p

⊕D
t=1 f

(t)(x) where each f (t) is sampled as in Lemma 20. Let

x, y ∈ Ĝ(ϵ), then by the first property of the lemma

∥F (x)− F (y)∥pp = D−1
D∑
t=1

|f (t)(x)− f (t)(y)|p ≤ (C ln(2/ϵ)/κ+ 1)p d(x, y)p

Let Zt(x, y) be an indicator random variable for the event that |f (t)(x) − f (t)(y)| ≥ d(x, y)/C,
and Z = Z(x, y) =

∑
t∈[D] Zt(x, y). By the second property of the lemma, for any t ∈ [D],

Pr[Zt(x, y)] ≥ 1
4e5κ

, thus E[Z] ≥ D
4e5κ

≥ 16 lnn for constant c ≥ 11 (and using that κ ≤ p). By
Chernoff bound

Pr[Z < E[Z]/2] ≤ e−E[Z]/8 ≤ 1/n2 .

Observe that if Z ≥ E[Z]/2 then if we write G(x, y) = {t ∈ [D] | Zt(x, y)}, it holds that |G(x, y)| ≥
D

8e5κ
and then

∥F (x)− F (y)∥pp ≥
1

D

∑
t∈G(x,y)

|f (t)(x)− f (t)(y)|p ≥ 1

8e5κ
(d(x, y)/C)p ≥

(
d(x, y)

8Ce5

)p

.

The proof is concluded by applying the union bound over the
(
n
2

)
pairs.

5 Extending to Infinite Compact Spaces

In this section we extend our main result to infinite compact spaces. In what follows (X, d) is
a compact metric space equipped with a probability measure σ. Our aim is to bound the ℓq-
distortion of embedding X into lp spaces by O(q), and as before the initial step is to bound the
scaling distortion.

Theorem 12. Let 1 ≤ p ≤ ∞ and let (X, d) be a compact metric space. There exists an embedding
f : X → lp having coarsely scaling distortion O(⌈(log 2

ϵ )⌉). For any 1 ≤ q <∞, the ℓq-distortion of
this embedding is: distq(f) = O(q).

5.1 Uniform Probabilistic Partitions for Infinite Spaces

For infinite metric spaces case we require an extension of the definition of local growth rate, which
can also be infinite.

21For p = ∞ there is an isometric embedding using n− 1 or less dimensions, in particular the Fréchet embedding.
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Definition 22. The local growth rate of x ∈ X at radius r > 0 for given scales γ1, γ2 > 0 is defined
as

ρ(x, r, γ1, γ2) =

{
σ(B(x,rγ1))
σ(B(x,rγ2))

σ(B(x, rγ2)) > 0

∞ σ(B(x, rγ2)) = 0

ρ̄ is defined as before.

The definitions for padded partitions remain the same, as the proof of Lemma 4. Now the
partition lemma will be the following

Lemma 24. Let (X, d) be a compact metric space. Let Z ⊆ X. Let 0 < ∆ ≤ diam(Z). Let
δ̂ ∈ (0, 1/2], γ1 ≥ 2 , γ2 ≤ 1/16. There exists a ∆-bounded probabilistic partition P̂ of (Z, d) and a
collection of uniform functions {ξP : Z → {0, 1} | P ∈ P} and {ηP : Z → (0, 1] | P ∈ P} such that
the probabilistic partition P̂ is a strong (η, δ̂)-uniformly locally padded probabilistic partition; and
the following conditions hold for any P ∈
supp(P̂) and any x ∈ Z:

• If ξP (x) = 1 then:

– If ρ(x, 2∆, γ1, γ2) <∞ then 2−6/ ln ρ(x, 2∆, γ1, γ2) ≤ ηP (x) ≤ 2−6/ ln(1/δ̂).

– Otherwise, when ρ(x, 2∆, γ1, γ2) = ∞ then ηP (x) = 0.

• If ξP (x) = 0 then: ηP (x) = 2−6/ ln(1/δ̂) and ρ̄(x, 2∆, γ1, γ2) < 1/δ̂.

Our partition algorithm will be similar to the one of Lemma 5. First we deterministically assign
a set of centers C = {v1, v2, . . . , vs} ⊆ Z and parameters χ1, χ2, . . . , χs ∈ R+ ∪ {∞}. Let W1 = Z
and j = 1. Conduct the following iterative process:

1. Let vj ∈Wj be the point minimizing χ̂j = ρ(x, 2∆, γ1, γ2) over all x ∈Wj .

2. Set χj = max{2/δ̂1/2, χ̂j}.

3. Let Wj+1 =Wj \B(vj ,∆/4).

4. Set j = j + 1. If Wj ̸= ∅ return to 1.

One observation we require is that the number s of cluster centers in every partition is indeed
finite, using the following claim:

Claim 25. For any ∆ > 0 and the algorithm described above, there exists some s ∈ N such that
Ws = ∅.

Proof. Since the metric is compact by definition it is also totally bounded (i.e. for every r > 0
there exists a finite cover of X with balls of radius at most r). The algorithm starts by assigning a
set of centers C that are actually a ∆/4-net, and we can show that this net is finite. Take r = ∆/8
and consider the finite cover with balls of radius at most r. Every net point c must be covered by
this cover, so there is a ball Bc in the cover with center x such that d(x, c) < r, which implies that
these balls Bc are distinct for every c ∈ C, so as the cover is finite also C is finite.

Let t ≤ s be the minimal index such that χt = ∞. Now the algorithm for the partition and
functions ξ, η is as follows: Let Z1 = Z. For j = 1, 2, . . . , t− 1:
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1. Let (Svj , S̄vj ) be the partition created by Svj = BZj (vj , r) and S̄vj = Zj \ Svj where r is
distributed as in Lemma 4 with parameter λ = 8 ln(χj)/∆.

2. Set Cj = Svj , Zj+1 = S̄vj .

3. For all x ∈ Cj let ηP (x) = 2−6/max{ln χ̂j , ln(1/δ̂)}. If χ̂j ≥ 1/δ̂ set ξP (x) = 1, otherwise set
ξP (x) = 0.

For j = t, t+ 1 . . . s:

1. Let Cj = BZj (vj ,∆/4), Zj+1 = Zj \ Cj .

2. For all x ∈ Cj let ηP (x) = 0, ξP (x) = 1.

The proof remains essentially the same, replacing every |B(x, r)| by σ(B(x, r)) in the part that
bounds

∑
j≥1,vj∈T χ

−1
j . It is easy to see that the padding analysis of Lemma 5 still holds for all

points x ∈ Cj where j < t, and it will hold for j ≥ t since for such points ηP (x) = 0, which means
that we need to pad a ball of radius 0, so the padding probability is 1, and the other properties are
easily checked.

5.2 Embedding Infinite Spaces into lp

As in the finite case, we first construct an embedding into the real line, that is good in expectation.

Lemma 26. Let (X, d) be a compact metric space with diameter ∆ and let 0 < ζ ≤ 1, then there
exists a distribution D over functions f : X → R such that for all u, v ∈ X:

1. For all f ∈ supp(D),

• If there exists ϵ > 0 such that u, v ∈ Ĝ(ϵ)

|f(u)− f(v)| ≤ C

⌈
ln

(
2

σ(B(u, d(u, v)))

)⌉
· d(u, v).

• Otherwise
|f(u)− f(v)| ≤ ∆ .

2.
Pr
f∼D

[
|f(u)− f(v)| ≥ ζ3 · d(u, v)/C

]
≥ 1− ζ,

where C is a universal positive constant.

Proof. The proof of the lemma is very similar to the proof of Lemma 11, we highlight the main
differences.

The embedding f is defined as in Lemma 11, where φi : X → R+ is defined as

φi(x) =

{
min

{
ξi(x)
ηi(x)

d (x,X \ Pi(x)) , ζ∆i/4
}

ηi(x) > 0

ζ∆i/4 ηi(x) = 0
(14)

For the upper bound proof, fix a pair u, v ∈ X such that u, v ∈ Ĝ(ϵ) for ϵ > 0. Then both
σ(B(u, d(u, v))), σ(B(v, d(u, v))) > 0. The proof of Lemma 12 will still hold for such u, v by the
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same argument shown there, just replacing the size of a ball by its measure. This is true because
the choice of scale ℓ was such that the growth rate is indeed finite ρ(u, 2∆i, γ1, γ2) <∞ for all i < ℓ.

For any pair u, v ∈ X, we have that ψi(u)− ψi(u) ≤ ζ∆i/4, hence

|f(u)− f(v)| = |
∑
i>0

ψi(u)− ψi(v)| ≤ ζ/4
∑
i>0

∆i < ∆0.

The proof of the lower bound is essentially the same as in Lemma 15.

Proof of Theorem 12. Define the embedding F : X → Lp(D) as a convex direct sum of all f ∈
supp(D), each f is naturally weighted by Pr(f). It can be seen that ∥F (x)−F (y)∥pp = Ef∼D [|f(x)− f(y)|p],
hence applying Lemma 26 with ζ = 1/2 we get that for any ϵ > 0 and all (u, v) ∈ Ĝ(ϵ),

distF (u, v) ≤ O(log(2/ϵ)) .

5.3 Scaling Distortion Vs. ℓq-distortion for Infinite Spaces

The main difference from the proof of Lemma 1 is that not all pairs u, v ∈ X have an ϵ > 0 such
that (u, v) ∈ Ĝ(ϵ). This means in particular that having scaling distortion gives no guarantees on
the distortion of such pairs. Luckily, the measure of the set of such pairs is zero, hence it is enough
to obtain for every pair some finite bound on the distortion.

Let C be the universal constant of the distortion. Let Gi = Ĝ(2−i)\Ĝ(2−(i−1)) and G∞ =
(
X
2

)
\(∪

ϵ>0 Ĝ(ϵ)
)
, and note that for all x ∈ X if Gi(x) = {y ∈ X | (x, y) ∈ Gi} then σ(Gi(x)) ≤ 2−(i−1),

hence Π(Gi) =
∫
x

∫
y 1y∈Gi(x)dσdσ ≤ 2−(i−1). Also note that as Π(Ĝ(ϵ)) ≥ 1 − ϵ/2, we have that

Π(G∞) = 0. We can now bound the ℓq-distortion as follows:

E(x,y)∼Π[distF (x, y)
q]1/q =

(∫
x

∫
y
distF (x, y)

qdσdσ

)1/q

=

(∫
x

( ∞∑
i=1

∫
y∈Gi(x)

distF (x, y)
qdσ +

∫
y∈G∞(x)

distF (x, y)
qdσ

)
dσ

)1/q

≤ 2C

(∫
x

( ∞∑
i=1

∫
y∈Gi(x)

(log(2i))qdσ + 0

)
dσ

)1/q

≤ 2C

( ∞∑
i=1

iq

2i

)1/q

= O(q).

Given weights w : X × X → R+ on the pairs such that
∫
x

∫
y w(x, y)Π(x, y)dσdσ = 1, an

analogous calculation to the finite case also bound the weighted ℓq-distortion by O(q + log Φ̂(w))
(above was shown the case that for all x, y ∈ X, w(x, y) = 1).

45



6 Embedding of Doubling Metrics

In this section we focus on metrics with bounded doubling constant λ (recall Definition 11). The
main result of this section is a low distortion embedding of metric spaces into lp of dimension
O(log λ). Other results shown here are an extension to scaling distortion, which implies constant
average distortion with low dimension Õ(log λ), a distortion-dimension tradeoff for doubling metrics
and ”snow-flake“ embedding in the spirit of Assouad.

6.1 Low Dimensional Embedding for Doubling Metrics

Theorem 8. There exists a universal constant C such that for any n-point metric space (X, d)
and any C/ log logn < θ ≤ 1, there exists an embedding f : X → lDp with distortion O

(
log1+θ n

)
where D = O

(
dim(X)

θ

)
.

One can take θ to be any small positive constant and obtain low distortion in the (asymptot-
ically) optimal dimension. Another interesting choice is to take θ = O(1/ log log n), and get the
standard O(log n) distortion with only O(log λ · log log n) dimensions.

The proof is also based on the embedding into the line of Lemma 11, with the parameter ζ
being much smaller. The analysis uses nets of the space for each scale, which is standard technique
for doubling metrics, then argues that it is enough to have a successful embedding only for certain
pairs of points in the net in order to have a successful embedding for all pairs. The low dimension
is then obtained by arguing that there are few dependencies between the relevant pairs of points in
the nets, and then using Lovasz local lemma in order to show that small number of dimensions is
sufficient to obtain a positive success probability for all relevant pairs in the nets. W.l.o.g we may
assume that n is larger than some absolute constant. Now for the formal proof:

Let λ = 2dim(X) andD = ⌈(c log λ)/θ⌉ for some constant c to be determined later. Let ζ = 1
lnθ/3 n

and let C be the constant from Lemma 11. For any t ∈ [D] let f (t) : X → R+ be an embedding
as in Lemma 11 with parameter ζ (the exact choice of f (t) will be determined later), and let
F = D−1/p

⊕D
t=1 f

(t). Fix any ε > 0 and let x, y ∈ Ĝε. Recall that ∆0 = diam(X) and for i > 0,
∆i = (ζ/8)i∆0. By the same calculation as in (13) we have that

∥F (x)− F (y)∥p = O(ln(2/ε) · d(u, v)).

The proof on the contraction of the embedding uses a set of nets of the space. For any i ∈ N, let
Ni be a

ζ3∆i

C2 lnn
-net of X. LetM ⊆

(
X
2

)
be the set of net pairs for which we would like the embedding

to give the distortion bound, formallyM =
{
(u, v) ∈

(
X
2

)
| ∃i ∈ N : u, v ∈ Ni, 7∆i ≤ d(u, v) ≤ 9∆i−1

}
.

Recall from Lemma 11 that E(t)
uv−good stands for the event that there is sufficient contribution for

the pair u, v in coordinate t ∈ [D] (see proof of Lemma 15 for precise definition). For all (u, v) ∈M ,

let E(u,v) be the event that E(t)
uv−good holds for at least D/2 of the coordinates t ∈ [D]. Define the

event E =
∩

(u,v)∈M E(u,v) that captures the case that all pairs in M have the desired property. The
main technical lemma is that E occurs with non-zero probability:

Lemma 27. Pr[E ] > 0.

Let us first show that if the event E took place, then the contraction of every pair x, y ∈ X is
bounded. Let i = s(x, y) (recall that i = s(x, y) uniquely satisfy 8∆i ≤ d(x, y) < 8∆i−1). Consider
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u, v ∈ Ni satisfying d(x, u) = d(x,Ni) and d(y, v) = d(y,Ni), then d(u, v) ≤ d(x, y) + d(u, x) +
d(y, v) ≤ 8∆i−1 + 2∆i ≤ 9∆i−1 and d(u, v) ≥ d(x, y)− d(x, u)− d(y, v) ≥ 8∆i − 2∆i

C2 ≥ 7∆i, so by
the definition of M follows that (u, v) ∈ M . The next claim shows that since x, y are very close
to u, v respectively, then by the expansion upper bound F (x) and F (y) will be close to F (u) and
F (v) respectively, therefore a lower bound is obtained.

Claim 28. Let x, y, u, v ∈ X be as above, then given E:

∥F (x)− F (y)∥p ≥ ζ3d(x, y)/(12C) .

Proof. First note that if event E(u,v) holds then letting S ⊆ [D] be the subset of good coordinates
for u, v, by Lemma 11 in each good coordinate there is contribution of at least ζ3d(u, v)/C, and
since there are at least D/2 good coordinates,

∥F (u)− F (v)∥pp ≥ D−1
∑
t∈S

|f (t)(u)− f (t)(v)|p ≥ (ζ3d(u, v)/(2C))p. (15)

Since Ni is
ζ3∆i

C2 lnn
-net, then d(x, u) ≤ ζ3∆i

C2 lnn
. By the first property of Lemma 11,

∥F (x)−F (u)∥pp = D−1
D∑
t=1

|f (t)(x)−f (t)(u)|p ≤ (C lnn ·d(x, u))p ≤ (ζ3∆i/C)
p ≤ (ζ3d(x, y)/(8C))p

using that ∆i ≤ d(x, y)/8. Similarly ∥F (y)− F (v)∥p ≤ ζ3d(x, y)/(8C), then

∥F (x)− F (y)∥p = ∥F (x)− F (u) + F (u)− F (v) + F (v)− F (y)∥p
≥ ∥F (u)− F (v)∥p − ∥F (x)− F (u)∥p − ∥F (y)− F (v)∥p
≥ ζ3d(u, v)/(2C)− 2 · ζ3d(x, y)/(8C)
≥ ζ3d(x, y)/(12C),

where the second inequality follows using (15) and the last inequality follows using that d(u, v) ≥
2d(x, y)/3.

6.1.1 Proof of Lemma 27

We begin with a variation of Lovasz local lemma in which the bad events have rating, and events
may only depend on other events with equal or larger rating. See the general case of this lemma
Lemma 40 for a proof.

Lemma 29 (Local Lemma). Let A1,A2, . . .An be events in some probability space. Let G(V,E) be
a directed graph on n vertices with out-degree at most d, each vertex corresponding to an event. Let
c : V → [m] be a rating function of events, such that if (Ai,Aj) ∈ E then c(Ai) ≤ c(Aj). Assume
that for any i = 1, . . . , n

Pr

Ai |
∧
j∈Q

¬Aj

 ≤ p

for all Q ⊆ {j : (Ai,Aj) /∈ E ∧ c(Ai) ≥ c(Aj)}. If ep(d+ 1) ≤ 1, then

Pr

[
n∧

i=1

¬Ai

]
> 0.
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Define a directed dependency graph G = (V,E), where V = {E(u,v) | (u, v) ∈ M}, and the
rating of a vertex c(E(u,v)) = s(u, v). Define that (E(u,v), E(u′,v′)) ∈ E iff i = s(u, v) = s(u′, v′) and
d({u, v}, {u′, v′}) ≤ 4∆i.

Claim 30. The out-degree of G is bounded by λ15 ln lnn.

Proof. Fix E(u,v) ∈ V , we bound the number of pairs u′, v′ ∈M such that (E(u,v), E(u′,v′)) ∈ E.
Since i = s(u, v) = s(u′, v′) we have that 8∆i ≤ d(u, v), d(u′, v′) < 8∆i−1, hence if (u, v) ∈ Ni′

or (u′, v′) ∈ Ni′ then i
′ satisfies i−1 ≤ i′ ≤ i+1 by the definition ofM , so let N = Ni−1∪Ni∪Ni+1.

Assume w.l.o.g d(u, u′) ≤ 4∆i, hence d(u, v
′) ≤ d(u, u′) + d(u′, v′) ≤ 4∆i + 8∆i−1 ≤ ∆i−2 and it

follows that u, v, u′, v′ ∈ B = B(u,∆i−2). The number of pairs can be bounded by |N ∩B|2. Since
(X, d) is λ-doubling, the ball B of radius r1 = (8/ζ)2∆i can be covered by A = λ⌈log(r1/r2)⌉ balls

of radius r2 = ζ4∆i

16C2 lnn
, and A ≤ λ8+2 logC+log lnn+log(1/ζ6). Each of these small balls of radius r2

contains at most one point in the net Ni+1. Recall that ζ = 1
lnθ/3 n

, so assuming n is large enough

it follows that |N ∩B|2 ≤ |Ni−1 ∩B|2 + |Ni ∩B|2 + |Ni+1 ∩B|2 ≤ λ15 ln lnn.

The construction of the graph is based on the proposition that pairs of net points that do not
have an edge connecting them in G, either have different critical scales or they have the same scale
i but are farther than ≈ ∆i apart, and hence do not change each other’s bound on their success
probability. Indeed by Lemma 18 the bound on the probability of some event E(u, v) still holds
given any outcome for events E(u′, v′) of smaller or equal rating such that (E(u,v), E(u′,v′)) /∈ E.

Claim 31.

Pr

¬E(u,v) | ∧
(u′,v′)∈Q

E(u′,v′)

 ≤ λ−16 ln lnn,

for all Q ⊆
{
(u′, v′) | s(u, v) ≥ s(u′, v′) ∧

(
E(u,v), E(u′,v′)

)
/∈ E

}
.

Proof. By Lemma 18 for all t ∈ [D]

Pr

¬E(t)
uv−good |

∧
(u′,v′)∈Q

E(u′,v′)

 ≤ ζ.

It follows from Chernoff bound (similarly to (12)) that the probability that more than D/2 coor-
dinates fail is bounded above by:

Pr

¬E(u,v) | ∧
(u′,v′)∈Q

E(u′,v′)

 ≤
√
ζ
D/2

≤ λ−16 ln lnn, (16)

where the last inequality hold as D = ⌈(c log λ)/θ⌉, and c is a sufficiently large constant.

Apply Lemma 29 to the graph G we defined, by Claim 30 let d = λ15 ln lnn and by Claim 31 we
can let p = λ−16 ln lnn satisfying the first condition of Lemma 29. It is easy to see that the second
condition also holds (since λ ≥ 2 and assuming ln lnn ≥ 2). Therefore Pr[E ] = Pr[

∧
(u,v)∈M E(u,v)] >

0, which concludes the proof of Lemma 27.
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6.2 Low Dimensional Embedding of Doubling Metrics with Scaling Distortion

In this section we show an extension of the previous result to embedding with the scaling distortion
property.

Theorem 16. For any λ-doubling metric space (X, d) there exists an embedding f : X → lDp with

coarse scaling distortion O
(
log26(1ϵ )

)
where D = O(log λ log log λ).

6.2.1 Proof overview

We highlight the differences between the proof of Theorem 8 and Theorem 16. We assume the
reader is familiar with the proof of Theorem 8.

1. The main difference is that in the analysis of the lower bound, a contribution for a pair is
”looked for” in one of many scales, instead of examining a single critical scale.

2. We partition the possible ϵ ∈ (0, 1] values into ≈ log log log n buckets (see equation 17 and
definition of ϵk). For each scale ∆i and each of the ≈ log log log n possible values of ϵ we build
a ≈ ∆i/polylog(λ, 1/ϵ)-net.

A naive approach would be to assign separate coordinates for each ϵk and increase the dimen-
sion and hence the distortion by a factor of log log logn. To avoid paying this log log logn
factor we sieve the nets N̄ i

k in a subtle manner (see definition of N i
k for details).

3. The local growth rate of each node is defined with respect to some ϵ value in non standard
manner - this is done so that for sufficiently many levels (as a function of ϵ) there will be a
density change. This is defined by γ1(x, i).

4. A pair with distance ≈ ∆i and epsilon that falls into bucket k (hence k ≈ log log(2/ϵ)) “looks”
for a contribution in the levels i+k/2, . . . , i+k, see the definition of Ê(i,k,u,v) for details. This
is necessary to avoid collisions between contributing scales of pairs with different ϵ values.

5. Showing independence of lower bound successes between two pairs is technical and relies on the
sieving process. For a pair u, v related to a net Nk

i the scales examined are ≈ i+k/2, . . . i+k.
Claim 44 shows that examining only these scales ensures that u, v are independent of a pair
u′, v′ if one of the following occurs (1) u′, v′ belong to a different scale than that of u, v; (2)
u′, v′ are far enough from u, v in the metric space; (3) u′, v′ has a different ϵk value from that
of u, v.

6. Proving that all pairs have the desired scaling distortion given that the sieved net points N i
k

have this property is more involved now since it depends on the ϵ, see Lemma 37.

7. The application of the local lemma is complicated due to two issues - (1) we use the general
case (2) we do not proceed simply from scale i to scale i + 1, but rather use the ranking
function in a non-trivial manner, see proof of Lemma 34.
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6.2.2 The proof

Let C be a constant to be defined later, and D = C log λ log log λ. Let ∆0 = diam(X), I = {i ∈
Z | 1 ≤ i ≤ (log∆0 + log log n)/3}. For i ∈ I let ∆i = ∆0/8

i. By Lemma 8 we have that (X, d) is
locally τ -decomposable for τ = 2−6/ log λ.

Define an ϵ-value for every point in every scale i ∈ I. The idea is that the number of scales
we seek contribution from depends on the density around the point in scale i, so the growth
rate ratio must be defined beforehand with respect to this density. Let c = 12. For any i ∈ I,
x ∈ X let ϵi(x) = |B(x, 2∆i)|/n, and let γ1(x, i) = 82c+4 log2c(64/ϵi(x)). Fix γ2 = 1/16. We
shall define the embedding f by defining for each 1 ≤ t ≤ D, a function f (t) : X → R+ and let
f = D−1/p

⊕
1≤t≤D f

(t).

Fix t, 1 ≤ t ≤ D. In what follows we define f (t). For each 0 < i ∈ I construct a ∆i-
bounded (ηi, 1/2)-padded probabilistic partition P̂i, as in Lemma 7 with parameters τ , γ1(·, i), γ2
and δ̂ = 1/2. Fix some Pi ∈ Pi for all i ∈ I.

We define the embedding by defining the coordinates for each x ∈ X. Define for x ∈ X,

0 < i ∈ I, ϕ
(t)
i : X → R+, by ϕ

(t)
i (x) = ξP,i(x)ηP,i(x)

−1.

Claim 32. For any x ∈ X, 1 ≤ t ≤ D and i ∈ I we have∑
j≤i

ϕ
(t)
j (x) ≤ c29 log2

(
n

|B(x,∆i+1)|

)
.

Proof. ∑
j≤i

ϕj(x) =
∑

j≤i:ξj(x)=1

η−1
j (x) ≤

∑
j≤i:ξj(x)=1

27 log ρ(x, 2∆j , γ1(x, j), γ2)

≤ 27
∑
j≤i

1∑
h=⌊− log8(γ1(x,j))⌋

log

(
|B(x, 8∆j+h)|
|B(x,∆j+h)|

)

≤ 27
1∑

h=⌊−2c−4−2c log log(2/ϵi(x))⌋

∑
j≤i

log

(
|B(x, 8∆j+h)|
|B(x,∆j+h)|

)

≤ 27
(
4c

(
1 + log log

(
n

|B(x,∆i+1)|

)))
log

(
n

|B(x,∆i+1)|

)
≤ c29 log2

(
n

|B(x,∆i+1)|

)
.

For each 0 < i ∈ I we define a function f
(t)
i : X → R+ and for x ∈ X, let f (t)(x) =

∑
i∈I f

(t)
i (x).

Let {σ(t)i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random variables.
The embedding is defined as follows: for each x ∈ X:

• For each 0 < i ∈ I, let f
(t)
i (x) = σ

(t)
i (Pi(x)) ·min{ϕ(t)i (x) · d(x,X \ Pi(x)),∆i}.

Lemma 33. There exists a universal constant C1 > 0 such that for any (x, y) ∈ Ĝ(ϵ):

|f (t)(x)− f (t)(y)| ≤ C1 log
2(2/ϵ) · d(x, y).

50



Proof. Define ℓ to be largest such that ∆ℓ+1 ≥ d(x, y) ≥ max{rϵ/2(x), rϵ/2(y)}. If no such ℓ exists
then let ℓ = 0.

By Claim 32 we have∑
0<i≤ℓ

(f
(t)
i (x)− f

(t)
i (y)) ≤

∑
0<i≤ℓ

ϕ
(t)
i (x) · d(x, y)

≤ c29 log2
(

n

|B(x,∆ℓ+1)|

)
· d(x, y)

≤ c29 log2(2/ϵ) · d(x, y).

We also have that ∑
ℓ<i∈I

(f
(t)
i (x)− f

(t)
i (y)) ≤

∑
ℓ<i∈I

∆i ≤ ∆ℓ ≤ 82 · d(x, y).

It follows that

|f (t)(x)− f (t)(y)| = |
∑
0<i∈I

(f
(t)
i (x)− f

(t)
i (y))|

≤
(
c210 log2(2/ϵ) + 82

)
· d(x, y).

6.2.3 Scaling Lower Bound Analysis

For any x, y ∈ X let ϵx,y = max
{

|B◦(x,d(x,y))|
n , |B

◦(y,d(x,y))|
n

}
. Let

K =
{
k ∈ [⌈log log n⌉] | k = cj , j ∈ N

}
(17)

For any k ∈ K let ϵk = 2−8k and define ϵ1 = 1. Define Ik = {i ∈ I | i = jk, j ∈ N}. For any i ∈ Ik
let N̄ i

k be a ∆i

220 log λ log3(2/ϵk)
-net.

We now wish to sieve the nets: for any k ∈ K and i ∈ Ik remove all the points u from the net
N̄ i

k if one of these conditions apply:

• |B(u,∆i−1)| ≥ ϵk/cn, or

• |B(u,∆i−k−4)| < ϵkn,

and call the resulting set N i
k. The intuition is that the nets we created contain “too many” points,

in a sense that the degree of the dependency graph of the Lovasz Local Lemma will be large, so we
ignore those net points that play no role in the embedding analysis.

Let M =
{
(i, k, u, v) | k ∈ K, i ∈ Ik, u, v ∈ N i

k, 7∆i−1 ≤ d(u, v) ≤ 65∆i−k−1

}
. Define a func-

tion T :M → 2[D] such that for t ∈ [D] :

t ∈ T (i, k, u, v) ⇔
∣∣∣f (t)(u)− f (t)(v)

∣∣∣ ≥ ∆i

4 log(2/ϵk)
.

For all (i, k, u, v) ∈M , let E(i,k,u,v) be the event that |T (i, k, u, v)| ≥ 15D/16.
Then we define the event E =

∩
(i,k,u,v)∈M E(i,k,u,v). The main Lemma to prove is:
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Lemma 34.
Pr[E ] > 0.

we defer the proof for later. In what follows we show that using this lemma we can prove the main
theorem.

Let x, y ∈ X, ϵ = ϵx,y (note that 1/n ≤ ϵ < 1). Let c ≤ k = kx,y ∈ K be such that ϵk ≤ ϵ < ϵk/c.
Let i′ ∈ I be such that ∆i′−2 ≤ d(x, y) < ∆i′−3, and let i = ix,y ∈ Ik be the minimal such that
i ≥ i′. Let u = u(x) ∈ N̄ i

k and v = v(y) ∈ N̄ i
k such that d(x, u) = d(x, N̄ i

k) and d(y, v) = d(y, N̄ i
k).

The following claim show that indeed we did not remove points from the nets, that were needed
for the embedding.

Claim 35. For any x, y ∈ X, u(x), v(y) ∈ N
ix,y
kx,y

.

Proof. Let k = kx,y, i = ix,y, u = u(x), v = v(y). Since N̄ i
k is a ∆i

220 log λ log3(2/ϵk)
-net, |B(u,∆i−1)| ≤

|B(x,∆i−2/2)| ≤ ϵx,yn < ϵk/cn. On the other hand
|B(u,∆i−k−4)| ≥ |B(u,∆i′−4)| ≥ max{|B(x, d(x, y))|, |B(y, d(x, y))|} ≥ ϵx,yn ≥ ϵkn.

The argument for v is similar.

We will use the following claim

Claim 36. For any t ∈ [D] and (i, k, u, v) ∈ M , let m ∈ I be the minimal such that ∆m ≤
∆i

32 log(2/ϵk)
. Then for w ∈ {u, v}:∑

j≤m

ϕ
(t)
j (w) ≤ 213 log2(2/ϵk) log λ.

Proof. By definition of ∆m we have that m ≤ i+2 log8 log(2/ϵk) + log8(32)+ 1. From the proof of
Claim 35 we have that |B(u,∆i−k−4)|, |B(v,∆i−k−4)| ≥ ϵkn.

By Lemma 7 for any i ∈ I, ηP,i(w) ≥ 1/(27 log λ). Using Claim 32 we get

∑
j≤m

ϕ
(t)
j (w) =

∑
j≤i−k−5

ϕ
(t)
j (w) +

m∑
j=i−k−4

ϕ
(t)
j (w)

≤ 27 log2
(

n

|B(w,∆i−k−4)|

)
+ (m− (i− k − 4) + 1)27 log λ

≤ 27 log2(2/ϵk) + (2 log8 log(2/ϵk) + 8)27 log λ

≤ 213 log2(2/ϵk) log λ.

We now show the analogue of Claim 28 for the scaling case, in this case a more delicate argument
is needed, as there is no sufficiently small universal upper bound on the distortion, but one that
depends on ϵ, hence we consider the contribution of different scales: small, medium and large,
separately.

Lemma 37. For any t ∈ T (i, k, u, v)∣∣∣f (t)(x)− f (t)(y)
∣∣∣ ≥ ∆i

16 log(2/ϵk)
.
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Proof. Let m ∈ I be the minimal such that ∆m ≤ ∆i
32 log(2/ϵk)

.

By Claim 35, we have that max{d(x, u), d(y, v)} ≤ ∆i

220 log λ log3(2/ϵk)
. We define for any u, x ∈ X

Ju,x = {j ∈ I | Pj(u) = Pj(x)}.

∣∣∣∣∣∣
∑
j∈I

(
f
(t)
j (u)− f

(t)
j (v)

)∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑
j≤m

(
f
(t)
j (u)− f

(t)
j (v)

)∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j>m

(
f
(t)
j (u)− f

(t)
j (v)

)∣∣∣∣∣∣ (18)

≤

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (u)−

∑
j∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
j /∈Ju,x;j≤m

f
(t)
j (u)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣
+
∑
j>m

∆j .

First we bound the contribution of coordinates in which the points x, y fall in different clusters
than u, v respectively, using Claim 36

∣∣∣∣∣∣
∑

j /∈Ju,x;j≤m

f
(t)
j (u)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣ (19)

≤
∑

j /∈Ju,x;j≤m

f
(t)
j (u) +

∑
j /∈Jv,y ;j≤m

f
(t)
j (v)

≤
∑

j /∈Ju,x;j≤m

ϕ
(t)
j (u)d(u, x) +

∑
j /∈Jv,y ;j≤m

ϕ
(t)
j (v)d(v, y)

≤ ∆i

220 log λ log3(2/ϵk)
214 log2(2/ϵk) log λ

≤ ∆i

25 log(2/ϵk)
.

However we know that ∣∣∣∣∣∣
∑
j∈I

f
(t)
j (u)− f

(t)
j (v)

∣∣∣∣∣∣ ≥ ∆i

4 log(2/ϵk)
,

and since
∑

j>m∆j ≤ ∆m ≤ ∆i
32 log(2/ϵk)

, by plugging this and (19) into (18) we get∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (u)−

∑
j∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣ ≥ ∆i

4 log(2/ϵk)
− ∆i

25 log(2/ϵk)
− ∆i

32 log(2/ϵk)

≥ 3∆i

16 log(2/ϵk)
.

Assume w.l.o.g that
∑

j∈Ju,x f
(t)
j (x) −

∑
j∈Jv,y f

(t)
j (y) > 0, then notice that for any j ∈ Ju,x,

t ∈ D: d(u,X \ Pj(u)) ≤ d(u, x) + d(x,X \ Pj(u)), and since the partition is uniform we get that

f
(t)
j (x) ≥ f

(t)
j (u)− ϕ

(t)
j (u) · ∆i

220 log λ log3(2/ϵk)
,
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and similarly

f
(t)
j (y) ≤ f

(t)
j (v) + ϕ

(t)
j (v) · ∆i

220 log λ log3(2/ϵk)
.

Then by Claim 36∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (x)−

∑
j∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

(
f
(t)
j (u)−

ϕ
(t)
j (u) ·∆i

220log λ log3(2/ϵk)

)
−

∑
j∈Jv,y ;j≤m

(
f
(t)
j (v)+

ϕ
(t)
j (v) ·∆i

220 log λ log3(2/ϵk)

)∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (u)−

∑
j∈Jv,y ;j≤m

f
(t)
j (v)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
j≤m

ϕ
(t)
j (u) ·∆i

220 log λ log3(2/ϵk)
+

ϕ
(t)
j (v) ·∆i

220 log λ log3(2/ϵk)

∣∣∣∣∣∣
≥ 3∆i

16 log(2/ϵk)
− 2

∆i

26 log(2/ϵk)

=
5∆i

32 log(2/ϵk)
,

Using the same argument as in (19) we get that∣∣∣∣∣∣
∑

j /∈Ju,x;j≤m

f
(t)
j (x)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣ ≤ ∆i

25 log(2/ϵk)
,

as well. and finally∣∣∣∣∣∣
∑
j≤m

(
f
(t)
j (x)− f

(t)
j (y)

)∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
∑

j∈Ju,x;j≤m

f
(t)
j (x)−

∑
j∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
j /∈Ju,x;j≤m

f
(t)
j (x)−

∑
j /∈Jv,y ;j≤m

f
(t)
j (y)

∣∣∣∣∣∣
≥ 5∆i

32 log(2/ϵk)
− ∆i

25 log(2/ϵk)

≥ ∆i

8 log(2/ϵk)
.

Notice that
∣∣∣∑j>m

(
f
(t)
j (x)− f

(t)
j (y)

)∣∣∣ ≤ ∆i
32 log(2/ϵk)

, hence∣∣∣∣∣∣
∑
j∈I

(
f
(t)
j (x)− f

(t)
j (y)

)∣∣∣∣∣∣ ≥ ∆i

16 log(2/ϵk)
.

As in the previous section, we have

Lemma 38. If event E took place then there exists a universal constant C2 > 0 such that for any
ϵ′ > 0 and any x, y ∈ Ĝϵ′

∥f(x)− f(y)∥p ≥ C2
d(x, y)

log2c(2/ϵ′)
.
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Proof. Any ϵ′ such that d(x, y) > max{rϵ′/2(x), rϵ′/2(y)} satisfies ϵ′ ≤ 2ϵ = 2ϵx,y, hence it is

enough to lower bound the contribution by Ω
(

d(x,y)

log2c(2/ϵ)

)
. Let i = ix,y, k = kx,y and u = u(x),

v = v(y). Noticing that ∆i−k−3 ≥ d(x, y), |T (i, k, u, v)| ≥ D/16 and that log(2/ϵk) ≤ logc(2/ϵ) for
all ϵ ≤ 1/28, we get from Lemma 37 that

∥f(x)− f(y)∥pp = D−1
∑
t∈D

|f (t)(x)− f (t)(y)|p

≥ D−1
∑

t∈T (i,k,u,v)

(
∆i

16 log(2/ϵk)

)p

≥ D−1|T (i, k, u, v)|
(

d(x, y)

213 log2(2/ϵk)

)p

≥
(

d(x, y)

217 log2c(2/ϵ)

)p

.

So set C2 = 218. (If it is the case that ϵ ≥ 1/28 then log(2/ϵk) = 8c, so we show ∥f(x)− f(y)∥pp ≥
C ′
2d(x, y)).

6.2.4 Proof of Lemma 34

Define for every (i, k, u, v) ∈M , i+ k/2 ≤ ℓ < i+ k and t ∈ [D] the event F(i,k,u,v,t,ℓ) as∣∣f (t)ℓ (u)− f
(t)
ℓ (v)

∣∣ > ∆ℓ ∧
∣∣∑
j<ℓ

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∆ℓ

2

∨
(f (t)ℓ (u) = f

(t)
ℓ (v) = 0

)
∧
∣∣∑
j<ℓ

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆ℓ

2

 .

Now define event Ê(i,k,u,v) as

∃S ⊆ [D], |S| ≥ 15D/16,∀t ∈ S, ∃ℓ s.t. i+ k/2 ≤ ℓ < i+ k and F(i,k,u,v,t,l) holds.

Claim 39. For all (i, k, u, v) ∈M , Ê(i,k,u,v) implies E(i,k,u,v)

Proof. Let S ⊆ [D] be the subset of good coordinates from the definition of Ê(i,k,u,v). For any t ∈ S,
let i+ k/2 ≤ ℓ(t) < i+ k be such that F(i,k,u,v,t,ℓ(t)) holds. Then for such t ∈ S:∣∣ ∑

j≤ℓ(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆ℓ(t)

2
.

We also have that ∣∣ ∑
j>ℓ(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∑
j>ℓ(t)

∆j ≤
∆ℓ(t)

4
.

Which implies that ∣∣∑
j∈I

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆ℓ(t)

4
≥ ∆i8

−(k−1)

4
≥ ∆i

4 log(2/ϵk)
,
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as required.

Now we shall use a variation the general case of the local Lemma, the reason being that in the
graph we shall soon define the degree of the vertices will depend on k, and cannot be uniformly
bounded.

Lemma 40 (Lovasz Local Lemma - General Case). Let A1,A2, . . .An be events in some probability
space. Let G(V,E) be a directed graph on n vertices, each vertex corresponds to an event. Let
c : V → [m] be a rating function of events, such that if (Ai,Aj) ∈ E then c(Ai) ≤ c(Aj). Assume
that for all i = 1, . . . , n there exists xi ∈ [0, 1) such that

Pr

Ai |
∧
j∈Q

¬Aj

 ≤ xi
∏

j:(i,j)∈E

(1− xj),

for all Q ⊆ {j : (Ai,Aj) /∈ E ∧ c(Ai) ≥ c(Aj)}, then

Pr

[
n∧

i=1

¬Ai

]
> 0.

Proof. We iteratively apply the Lovasz Local Lemma on every rating level k ∈ [m], and prove the
property by induction on k. For k ∈ [m] denote by Vk ⊆ V all the events with rating k, and by
Gk = (Vk, Ek) the induced subgraph on Vk. The base of the induction k = 1, by the assumption
for all Ai ∈ V1,

Pr

Ai |
∧
j∈Q

¬Aj

 ≤ xi
∏

j:(i,j)∈E1

(1− xj),

for any Q satisfying Q ⊆ {j : (Ai,Aj) /∈ E1 ∧ c(Aj) = 1}. This means that by the usual local
lemma on the graph G1 there is a choice of randomness for which all the bad events in V1 do not
occur.

Fix some k ∈ [m] and assume all events in V1, . . . Vk−1 do not hold. Note that by definition
event in Vk depends only on events of rating k or higher, so given that events in V1, . . . Vk−1 are
fixed to not happen, for all Ai ∈ Vk by the assumption

Pr

Ai |
∧
j∈Q

¬Aj

 ≤ xi
∏

j:(i,j)∈Ek

(1− xj),

for any Q satisfying Q ⊆ {j : (Ai,Aj) /∈ Ek ∧ c(Aj) = k} ∪ {j : Aj ∈ V1 ∪ · · · ∪ Vk−1}. So once
again by the usual local lemma on Gk there is non-zero probability that all the events in Vk do not
occur.

Define a directed graph G = (V,E), where V =
{
Ê(i,k,u,v) | (i, k, u, v) ∈M

}
. Define c : V → I

by c(Ê(i,k,u,v)) = i+ k.

We say that a pair of vertices
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
∈ E if all of these conditions apply:
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• d({u, v}, {u′, v′}) ≤ 4∆i.

• i = i′.

• k = k′.

Claim 41. The out-degree of Ê(i,k,u,v) ∈ G is bounded by λ30k log log(2λ).

Proof. Fix some Ê(i,k,u,v) ∈ V , we will see how many pairs u′, v′ ∈ N i
k can exists such that

(Ê(i,k,u,v), Ê(i,k,u′,v′)) ∈ E.
For any such u′, v′ assume w.l.o.g that d(u, u′) ≤ 4∆i, hence as d(u, v), d(u′, v′) ≤ 65∆i−k−1 we

get u, v, u′, v′ ∈ B = B(u,∆i−k−4). The number of pairs can be bounded by |N i
k∩B|2. Since (X, d)

is λ-doubling the ball B can be covered by λ33+12k+log log λ balls of radius ∆i

87+3k log λ
, each of these

contains at most one point of the set N i
k. As k ≥ c = 12, |N i

k ∩B|2 ≤ λ30k log log(2λ).

Lemma 42.

Pr

¬E(i,k,u,v) | ∧
(i′,k′,u′,v′)∈Q

E(i′,k′,u′,v′)

 ≤ λ−32k log log(2λ),

for all Q ⊆ {(i′, k′, u′, v′) | i+ k ≥ i′ + k′ ∧
(
E(i,k,u,v), E(i′,k′,u′,v′)

)
/∈ E}

Before we prove this lemma, let us see that it implies Lemma 34. Apply Lemma 40 to the
graph G we defined. For any (i, k, u, v) ∈M assign the number xk = λ−30k log log(2λ) for the vertex

Ê(i,k,u,v). From the definition of G it can be seen that if
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
∈ E then xk′ = xk.

By Claim 41 there at most λ30k log log(2λ) neighbors to the vertex Ê(i,k,u,v), so for any such vertex:

xk
∏

(i′,k′,u′,v′):(Ê(i,k,u,v),Ê(i′,k′,u′,v′))∈E

(1− xk′) ≥ xk (1− xk)
λ30k log log(2λ)

≥ 1/4 · xk ≥ λ−32k log log(2λ).

By Lemma 42 we get that indeed

Pr

¬Ê(i,k,u,v) | ∧
(i′,k′,u′,v′):(Ê(i,k,u,v),Ê(i′,k′,u′,v′))/∈E

E(i′,k′,u′,v′)

 ≤ λ−32k log log(2λ),

as required by Lemma 40, hence

Pr[
∧

(i,k,u,v)∈M

Ê(i,k,u,v)] > 0.

By Claim 39 we have

Pr[E ] = Pr[
∧

(i,k,u,v)∈M

E(i,k,u,v)] > 0.
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6.2.5 Proof of Lemma 42

Claim 43. Let (i, k, u, v) ∈M , t ∈ [D] and i+ k/2 ≤ ℓ < i+ k, then

Pr
[
F(i,k,u,v,t,ℓ)

]
≥ 1/8.

Proof. We begin by showing that ξP,ℓ(u) = 1 which will imply that ϕ
(t)
ℓ (u) = ηP,ℓ(u)

−1. In order to
show that we will prove that max{ρ̄(u, 2∆ℓ, γ1(·, ℓ), γ2), ρ̄(v, 2∆ℓ, γ1(·, ℓ), γ2)} ≥ 2, and then assume
w.l.o.g that ρ̄(u, 2∆ℓ, γ1(·, ℓ), γ2) ≥ 2. It follows from Lemma 7 that ξP,ℓ(u) = 1. Now to prove that
max{ρ̄(u, 2∆ℓ, γ1(·, ℓ), γ2), ρ̄(v, 2∆ℓ, γ1(·, ℓ), γ2)} ≥ 2:

Consider any a ∈ B(u, 2∆ℓ) (a is a potential center to the cluster containing u in scale ℓ). As
k > 2 we have that ℓ−1 > i, then since |B(a, 2∆ℓ)| ≤ |B(u,∆i−1)| < ϵk/cn we have that ϵℓ(a) ≤ ϵk/c
which implies that γ1(a, ℓ) ≥ 84 log2c(64/ϵk/c) ≥ 84+2c(k/c) = 84+2k. Since ∆ℓ ≥ 8∆i/8

k we get that

γ1(a, ℓ)2∆ℓ ≥ 84+2k · 16∆i

8k
= 84+2k · 16∆i−k−1

8k+k+1 ≥ 2 · 65∆i−k−1 ≥ 2d(u, v), where the last inequality is
by the definition of M .

The same argument shows that for any a ∈ B(v, 2∆ℓ), γ1(a, ℓ)2∆ℓ ≥ 2d(u, v) as well. Therefore
by Claim 3 we have max{ρ̄(u, 2∆ℓ, γ1(·, ℓ), γ2), ρ̄(v, 2∆ℓ, γ1(·, ℓ), γ2)} ≥ 2 as required.

We now consider the 2 cases in F(i,u,v,t,ℓ): If it is the case that

∣∣∑
j<ℓ

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∆ℓ

2

then we wish that the following will hold

• B(u, η
(t)
P,ℓ(u)∆ℓ) ⊆ Pℓ(u).

• σ
(t)
ℓ (Pℓ(u)) = 1.

• σ
(t)
ℓ (Pℓ(v)) = 0.

Each of these happens independently with probability at least 1/2, the first since Pℓ is (ηℓ, 1/2)-
padded and the other two follow from d(u, v) ≥ 3∆ℓ ⇒ Pℓ(u) ̸= Pℓ(v).

Similarly if it is the case that ∣∣∑
j<ℓ

f
(t)
j (u)− f

(t)
j (v)

∣∣ > ∆ℓ

2

then we wish that the following will hold

• σ
(t)
ℓ (Pℓ(u)) = σ

(t)
ℓ (Pℓ(v)) = 0.

And again there is probability 1/2 for each of these.
So we have probability at least 1/8 for event F(i,u,v,t,ℓ).

The main independence claim is the following:
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Claim 44. Let (i, k, u, v) ∈M , t ∈ [D] and i+ k/2 ≤ ℓ < i+ k. Then

Pr

¬F(i,k,u,v,t,ℓ) |
∧

(i′,k′,u′,v′)∈Q

E(i′,k′,u′,v′)

 ≤ 7/8,

for all Q ⊆ {(i′, k′, u′, v′) | i+ k ≥ i′ + k′ ∧
(
E(i,k,u,v), E(i′,k′,u′,v′)

)
/∈ E}

Proof. Fix some E(i′,k′,u′,v′) such that
(
E(i,k,u,v), E(i′,k′,u′,v′)

)
/∈ E and i+ k ≥ i′ + k′.

First consider the case that d({u, v}, {u′, v′}) > 4∆i. Then since the partition is local, for any
ℓ ∈ [i+ k/2, i+ k) the probability of the padding event and choice of σ for scale ℓ are not affected
by of the outcome of events such as E(i′,k′,u′,v′).

From now on assume that d({u, v}, {u′, v′}) ≤ 4∆i, and w.l.o.g d(u, u′) ≤ 4∆i. The idea is to
show that i′+k′ ≤ i+k/2, and hence as event E(i′,k′,u′,v′) is concerned with scales at most i′+k′−1
the padding and choice of σ for scales i+ k/2, . . . , i+ k − 1 will be independent of the outcome of
events such as E(i′,k′,u′,v′).

Case 1: k′ < k. By the definition of K follows that k′ ≤ k/c. If it is the case that i′ ≤ i then
i′+k′ ≤ i+k/c < i+k/2. If i′ > i, then assume by contradiction that i′+k′ ≥ i+k/2. By the
nets sieving process we have ϵk′n < |B(u′,∆i′−k′−4)| and also ϵk′n ≥ ϵk/cn ≥ |B(u,∆i−1)|.
Now i′ − k′ − 4 ≥ i + k/2 − k′ − k′ − 4 ≥ i + k(1/2 − 2/c) − 4 ≥ i, as c = 12 and k ≥
c. Since d(u, u′) ≤ 4∆i follows that |B(u′,∆i′−k′−4)| ≤ |B(u′,∆i)| ≤ |B(u,∆i−1)| ≤ ϵk′n.
Contradiction.

Case 2: k′ > k. Then it must be that i′ < i. We will show that this cannot be. Note that
since i + k ≥ i′ + k′ and k ≤ k′/c then i ≥ i′ + k′ − k ≥ i′ + k′(1 − 1/c). Now similarly to
the previous case we have ϵkn < |B(u,∆i−k−4)| ≤ |B(u,∆i′+k′(1−1/c)−k′/c−4)| ≤ |B(u,∆i′)| ≤
|B(u′,∆i′−1)| ≤ ϵk′/cn ≤ ϵkn. Contradiction.

Case 3: If k = k′ then by the construction of G i ̸= i′, therefore i′ < i. By the definition of Ik,
i′ + k′ ≤ i < i+ k/2.

We conclude that if indeed
(
Ê(i,k,u,v), Ê(i′,k′,u′,v′)

)
/∈ E then Claim 43 suggests that there is

probability at least 1/8 for event F(i,k,u,v,t,ℓ) to hold, independently of Ê(i′,k′,u′,v′).

Now we are ready to prove Lemma 42. First consider the case where k < 60, then fix some
ℓ ∈ [i+k/2, i+k), and let Ẑt be the indicator event for F(i,k,u,v,t,ℓ), Pr[Ẑt] ≥ 1/8 and let Ẑ =

∑D
t=1 Ẑt.

As each coordinate is independent of the others, and E[Ẑ] ≥ D/8, using Chernoff’s bound:

Pr[Ẑ < D/16] ≤ Pr[Ẑ < E[Ẑ]/2] ≤ e−D/64 ≤ λ−32·60 log log(2λ) ≤ λ−32k log log(2λ),

for large enough constant C.
On the other hand if k ≥ 60, then for every coordinate t ∈ [D], we have k/2 possible values of ℓ.

In each scale ℓ, by Claim 44 there is probability at most (7/8) to fail, this probability is unaffected
by of all other scales ℓ′ < ℓ. Let Yℓ be the indicator event for ¬F(i,k,u,v,t,ℓ). The probability that
we failed for all scales ℓ ∈ [i+ k/2, i+ k) can be bounded by:

Pr

 i+k−1∧
ℓ=i+k/2

Yℓ

 =
i+k−1∏
ℓ=i+k/2

Pr

Yℓ |
ℓ−1∧

j=i+k/2

Yj

 ≤ (7/8)k/2 = z.
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Let Zt be the event that we failed in the t-th coordinate, Pr[Zt] ≤ z, and Z =
∑

t∈D Zt. We
have that E[Z] ≤ zD, let α ≥ 1 such that E[Z] = zD

α . Using Chernoff bound:

Pr[Z > D/2] ≤

(
eα/(2z)−1

(α/(2z))α/(2z)

)zD/α

≤ (2ez)D/2 ≤ λ(log(2e)+(k/2) log(7/8))(C/2) log log(2λ)

≤ λ(k/4) log(7/8)(C/2) log log(2λ)

≤ λ−32k log log(2λ),

since for k ≥ 60 we have log(2e) < −(k/4) log(7/8), and for large enough constant C. This
concludes the proof of Lemma 42 and hence the proof of Theorem 16.

6.3 Snowflake Results

In this section we prove a stronger version of the original theorem of Assouad [Ass83], in which
for a given metric space (X, d) one embeds a ”snowflake” version (X, dα) of the metric for some
constant 0 < α < 1.

Theorem 17. For any n point λ-doubling metric space (X, d), any 0 < α < 1, any p ≥ 1, any
θ ≤ 1 and any 2192/θ ≤ k ≤ log λ, there exists an embedding of (X, dα) into lp with distortion

O(k1+θλ1/(pk)/(1− α)) and dimension O
(
λ1/k lnλ

αθ ·
(
1− log(1−α)

log k

))
.

One can put α = 1/2 which translate the distortion to O(k1+θλ1/(pk)) and the dimension to

O
(
λ1/k lnλ

θ

)
. Now taking k = log λ yields for any p ≥ 1 distortion O(log1+θ λ) and dimension

O((log λ)/θ), which is very similar to the results of Theorem 8 where in the distortion instead of
being a function of n is replaced by being a function of λ. The special case when k = log λ and
θ = 1/(192 log log λ) was shown by [GKL03]. Another interesting choice of parameters is when we
embed into lp for p ≥ log λ, then one can choose θ = 1, a constant k, and obtain an embedding
with constant distortion.

6.3.1 Proof overview

The high level approach is similar to that of Theorem 8. However here it is sufficient to use
Lemma 8 instead of Lemma 7. In each term for scale i of the embedding (i.e. fi(x)) we follow
Assouad’s technique [Ass83] and introduce a factor of ∆α−1

i . Hence the upper bound of Lemma 46
is independent of the number of scales or the number of points in the metric. We exploit the higher
norm lp in the lower bound, Lemma 50. The main technical lemma is Lemma 53 which requires a
subtle use of Chernoff bounds.

6.3.2 The proof

Let ∆0 = diam(X) and I = {i ∈ Z | 1 ≤ i ≤ (log∆0 + θ log log λ)/3}. For i ∈ I let ∆i = ∆0/8
i/α.

Set D = cλ1/k lnλ
αθ

(
1− log(1−α)

log k

)
for some constant c to be determined later.

Let δ = λ−1/k, τ = 2−7 ln(1/δ)/ ln(λ) = 2−7/k. We shall define the embedding f by defining
for each t ∈ [D] a function f (t) : X → R+ and let f = D−1/p

⊕
t∈[D] f

(t).

60



Fix t ∈ [D]. In what follows we define f (t). For each 0 < i ∈ I construct a ∆i-bounded
(τ, δ)-padded probabilistic partition P̂i, as in Lemma 8. Fix some Pi ∈ Pi for all i ∈ I.

For each 0 < i ∈ I we define a function f
(t)
i : X → R+ and for x ∈ X, let f (t)(x) =

∑
i∈I f

(t)
i (x).

Let {σ(t)i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random variables. The
embedding is defined as follows: for each x ∈ X:

• For each 0 < i ∈ I, let f
(t)
i (x) = σ

(t)
i (Pi(x)) ·∆α−1

i min{τ−1 · d(x,X \ Pi(x)),∆i}.

Claim 45. For any 0 < i ∈ I and x, y ∈ X: f
(t)
i (x)− f

(t)
i (y) ≤ ∆α−1

i ·min{τ−1 · d(x, y),∆i}.

The proof of this claim is essentially the same as of Claim 14.

Lemma 46. For any x, y ∈ X and t ∈ [D]:

|f (t)(x)− f (t)(y)| ≤ 29k
d(x, y)α

1− α
.

Proof. We will divide the sum to two parts. Let ℓ ∈ I be the minimal such that ∆ℓ ≤ d(x, y) (so
that ∆ℓ > d(x, y)/81/α). By Claim 45∑

0<i<ℓ

|f (t)i (x)− f
(t)
i (y)| ≤ τ−1 · d(x, y)

∑
0<i<ℓ

∆α−1
i ≤ 28k · d(x, y)α/(1− α) ,

where we used that τ−1 = 27k and∑
0<i<ℓ

∆α−1
i = ∆α−1

0

∑
0≤i<ℓ

(8(1−α)/α)i ≤
∆α−1

ℓ

8(1−α)/α − 1
≤ (8−1/αd(x, y))α−1

8(1−α)/α − 1
≤ 2d(x, y)α−1

1− α
.

Also ∑
i≥ℓ

|f (t)i (x)− f
(t)
i (y)| ≤

∑
i≥ℓ

∆α
i ≤ ∆α

ℓ

∑
i≥0

8−i ≤ 2d(x, y)α .

To conclude, for any t ∈ [D],

|f (t)(x)− f (t)(y)| =
∑
i∈I

|f (t)i (x)− f
(t)
i (y)| ≤ 29k · d(x, y)α/(1− α) , (20)

Lemma 47. For any p ≥ 1 and x, y ∈ X,

∥f(x)− f(y)∥p ≤ 29kd(x, y)α/(1− α) .

Proof. By Lemma 46

∥f(x)− f(y)∥pp =
1

D

∑
t∈[D]

|f (t)(x)− f (t)(y)|p

≤ 1

D

∑
t∈[D]

(
29k · d(x, y)α/(1− α)

)p
=

(
29k · d(x, y)α/(1− α)

)p
.
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6.3.3 Lower Bound Analysis

The lower bound analysis uses a set of nets. First we define a set of scales in which we hope to
succeed with high probability. Let r = ⌈(θ/3) log k⌉, let R = {i ∈ I : r|i}. For any 0 < i ∈ R let

Ni be a ∆i

(
1−α

213k1+θ

)1/α
-net of X. The purpose of considering only one of every ≈ θ log k scales is

to avoid dependencies when using the local lemma.
LetM = {(i, u, v) | i ∈ R, u, v ∈ Ni, 7∆i−1 ≤ d(u, v) ≤ 9∆i−r−2}. Given an embedding f define

a function T :M → 2[D] such that for t ∈ [D]:

t ∈ T (i, u, v) ⇔
∣∣∣f (t)(u)− f (t)(v)

∣∣∣ ≥ ∆α
i

4kθ
.

For all (i, u, v) ∈ M , let E(i,u,v) be the event |T (i, u, v)| ≥ λ−1/kD/4. Then we define the event
E =

∩
(i,u,v)∈M E(i,u,v) that captures the case that all triplets in M have the desired property.

The main technical lemma is the following:

Lemma 48.
Pr[E ] > 0.

We defer the proof for later, and now show that if the event E took place, then we can show the
lower bound. Let x, y ∈ X, and let 0 < i′ ∈ I be such that 8∆i′−1 ≤ d(x, y) ≤ 8∆i′−2. Let i ∈ R be

the minimal such that i ≥ i′, note that ∆α
i ≥ ∆α

i′
kθ

. Consider u, v ∈ Ni satisfying d(x, u) = d(x,Ni)
and d(y, v) = d(y,Ni), as d(u, v) ≤ d(u, x) + d(x, y) + d(y, v) ≤ 8∆i′−2 + ∆i ≤ 8∆i−r−2 + ∆i ≤
9∆i−r−2 and d(u, v) ≥ d(x, y)− d(u, x)− d(v, y) ≥ 8∆i′−1 −∆i ≥ 7∆i−1, so by the definition of M
follows that (i, u, v) ∈M . The next lemma shows that since x, y are very close to u, v respectively,
then by the triangle inequality the embedding f of x, y cannot differ by much from that of u, v
(respectively).

Lemma 49. Let x, y ∈ X, let i′ such that 8∆i′−1 ≤ d(x, y) ≤ 8∆i′−2, let i ∈ R be the minimal
such that i ≥ i′ and let u, v ∈ Ni satisfying d(x, u) = d(x,Ni) and d(y, v) = d(y,Ni).

Given E, for any t ∈ T (i, u, v): ∣∣∣f (t)(x)− f (t)(y)
∣∣∣ ≥ ∆α

i

8kθ
.

Proof. SinceNi is ∆i

(
1−α

213k1+θ

)1/α
-net, then d(x, u)α ≤ ∆α

i
1−α

213k1+θ . By Lemma 46 |f (t)(x)−f (t)(u)| ≤
29k · d(x, u)α/(1− α) ≤ ∆α

i

16kθ
, and similarly |f (t)(y)− f (t)(v)| ≤ ∆α

i

16kθ
. By the triangle inequality we

get that

|f (t)(x)− f (t)(y)| = |f (t)(x)− f (t)(u) + f (t)(u)− f (t)(v) + f (t)(v)− f (t)(y)|
≥ |f (t)(u)− f (t)(v)| − |f (t)(x)− f (t)(u)| − |f (t)(y)− f (t)(v)|

≥ ∆α
i

4kθ
− 2∆α

i

16kθ

=
∆α

i

8kθ
.

This Lemma and Lemma 48 implies the following:
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Lemma 50. There exists a universal constant C2 > 0 and an embedding f such that for any
x, y ∈ X

∥f(x)− f(y)∥p ≥ C2
d(x, y)α

k2θλ1/(pk)
.

Proof. Let f be an embedding such that event E took place. Let i′ ∈ I such that 8∆i′−1 ≤ d(x, y) <
8∆i′−2, i ∈ R the minimal such that i ≥ i′ and u, v be the nearest points to x, y respectively in the

net Ni. Noticing that ∆α
i ≥ d(x,y)α

29kθ
and that |T (i, u, v)| ≥ λ−1/kD/4 we get from Lemma 49 that

∥f(x)− f(y)∥pp = D−1
∑
t∈[D]

|f (t)(x)− f (t)(y)|p

≥ D−1
∑

t∈T (i,u,v)

(
∆α

i

8kθ

)p

≥ D−1|T (i, u, v)|
(
d(x, y)α

212k2θ

)p

≥ λ−1/k

(
d(x, y)α

214k2θ

)p

.

6.3.4 Proof of Lemma 48

Define for every (i, u, v) ∈M , i ≤ ℓ < i+ r and t ∈ [D] the event F(i,u,v,t,ℓ) as∣∣f (t)ℓ (u)− f
(t)
ℓ (v)

∣∣ ≥ ∆α
ℓ ∧

∣∣∑
j<ℓ

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∆α
ℓ

2

∨
(f (t)ℓ (u) = f

(t)
ℓ (v) = 0

)
∧
∣∣∑
j<ℓ

f
(t)
j (u)− f

(t)
j (v)

∣∣ > ∆α
ℓ

2

 .

Also define event Ê(i,u,v) as

∃S ⊆ [D], |S| ≥ λ−1/kD/4,∀t ∈ S, ∃i ≤ ℓ < i+ r : F(i,u,v,t,ℓ) holds.

Claim 51. For all (i, u, v) ∈M , Ê(i,u,v) implies E(i,u,v).

Proof. Let S ⊆ [D] be the subset of coordinates from the definition of Ê(i,u,v). For any t ∈ S, let
i ≤ ℓ(t) < i+ r be such that F(i,u,v,t,ℓ(t)) holds. Then for such t ∈ S:

∣∣ ∑
j≤ℓ(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆α
ℓ(t)

2
.

From Claim 45 it follows that∣∣ ∑
j>ℓ(t)

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∑
j>ℓ(t)

∆α
j = ∆α

ℓ(t)

∑
j>0

8−j = ∆α
ℓ(t)/7 .
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Which implies that ∣∣∑
j∈I

f
(t)
j (u)− f

(t)
j (v)

∣∣ ≥ ∆α
ℓ(t)

4
≥ ∆α

i

4kθ
,

as required.

Define a graph G = (V,E), where V = {Ê(i,u,v) | (i, u, v) ∈ M}, and the rating of a vertex

c(Ê(i,u,v)) = i. We say that a pair of vertices (Ê(i,u,v), Ê(i′,u′,v′)) ∈ E if

• d({u, v}, {u′, v′}) ≤ 4∆i, and
• i = i′.

Claim 52. The out-degree of G is bounded by λ(52+6 log k−2 log(1−α))/α.

Proof. Fix some Ê(i,u,v) ∈ V , we will see how many pairs u′, v′ ∈ Ni can exists such that

(Ê(i,u,v), Ê(i,u′,v′)) ∈ E.
Assume w.l.o.g d(u, u′) ≤ 4∆i, since d(u, v), d(u′, v′) ≤ 9∆i−r−2 follows u, v, u′, v′ ∈ B =

B(u,∆i−r−4). The number of pairs can be bounded by |Ni∩B|2. Since (X, d) is λ-doubling, the ball
B of radius r1 = (212kθ)1/α∆i can be covered by b = λ⌈log(r1/r2)⌉ balls of radius r2 = ∆i

(
1−α

214k1+θ

)1/α
,

where b ≤ λ(26+3 log k−log(1−α))/α, and each of these balls contains at most one point in the net Ni.
It follows that |Ni ∩B|2 ≤ b2 ≤ λ(52+6 log k−2 log(1−α))/α.

Notice that events Ê(i,u,v) do not depend on the choice of partitions for scales greater than i+ r.

Lemma 53.

Pr

¬Ê(i,u,v) | ∧
(i′,u′,v′)∈Q

Ê(i′,u′,v′)

 ≤ λ−(53+6 log k−2 log(1−α))/α,

for all Q ⊆
{
(i′, u′, v′) | i ≥ i′ ∧

(
Ê(i,u,v), Ê(i′,u′,v′)

)
/∈ E

}
.

Before we prove this lemma, let us see that it implies Lemma 48.
Apply Lemma 29 to the graph G we defined, by Claim 52 let d = λ(52+6 log k−2 log(1−α))/α and

by Lemma 53 we can let p = λ−(53+6 log k−2 log(1−α))/α satisfying the first condition of Lemma 29.
It is easy to see that the second condition also holds (since λ ≥ 2), hence

Pr[
∧

(i,u,v)∈M

Ê(i,u,v)] > 0.

By Claim 51 we have

Pr[E ] = Pr[
∧

(i,u,v)∈M

E(i,u,v)] > 0,

which concludes the proof of Lemma 48.

64



6.3.5 Proof of Lemma 53

In order to prove this lemma, we first show the following claim, a slight variation of a claim shown
in [ABN06].

Claim 54. Let (i, u, v) ∈M , t ∈ [D] and i ≤ ℓ < i+ r then Pr
[
F(i,u,v,t,ℓ)

]
≥ λ−1/k/4.

Proof. Let i ≤ ℓ < i+ r and consider the two cases in F(i,u,v,t,ℓ):

If it is the case that
∣∣∑

j<ℓ f
(t)
j (u)− f

(t)
j (v)

∣∣ ≤ ∆α
ℓ
2 then it is enough for the following to hold

• B(u, τ∆ℓ) ⊆ Pℓ(u).

• σ
(t)
ℓ (Pℓ(u)) = 1.

• σ
(t)
ℓ (Pℓ(v)) = 0.

The second and third events happen independently with probability at least 1/2, the first happens
with probability at least δ = λ−1/k, since Pℓ is (τ, δ)-padded. If all these events occur then

|f (t)ℓ (u)− f
(t)
ℓ (v)| ≥ ∆α−1

ℓ min{τ−1 · d(u,X \ Pℓ(u)),∆ℓ} ≥ ∆α
ℓ .

Similarly, if it is the case that
∣∣∑

j<ℓ f
(t)
j (u)− f

(t)
j (v)

∣∣ > ∆α
ℓ
2 then it is enough that

• σ
(t)
ℓ (Pℓ(u)) = σ

(t)
ℓ (Pℓ(v)) = 0.

Again there is probability 1/2 for each of these. So we have probability at least λ−1/k/4 for event
F(i,u,v,t,ℓ).

Claim 55. Let (i, u, v) ∈M , t ∈ [D] and i ≤ ℓ < i+ k. Then

Pr

¬F(i,u,v,t,ℓ) |
∧

(i′,u′,v′)∈Q

Ê(i′,u′,v′)

 ≤ 1− λ−1/k/4,

for all Q ⊆ {(i′, u′, v′) | i ≥ i′ ∧
(
Ê(i,u,v), Ê(i′,u′,v′)

)
/∈ E}.

Proof. First note that if i′ < i, then event Ê(i′,u′,v′) depend on events F(i′,u′,v′,t′,ℓ′), where by
definition ℓ′ < i′ + r ≤ i (recall that R contains only integers that divide by r), and these events
depend only on the choice of partition for scales at most ℓ′. Hence the padding probability for u, v
in scale ℓ and the choice of σℓ is independent of these events.

If it is the case that i′ = i, let (i, u′, v′) ∈ M such that
(
Ê(i,u,v), Ê(i,u′,v′)

)
/∈ E. We know by

the construction of G that u′, v′ /∈ B(u, 4∆i) and u
′, v′ /∈ B(v, 4∆i). Hence u′, v′ are far from u, v

and they fall into different clusters in every possible partition of scale ℓ. Moreover, the locality of
our partition suggests that the padding of u, v in scale ℓ, for all ℓ ∈ [i, i+ k), depends only on the
partition of their local neighborhoods, B(u, 2∆ℓ) ∪B(v, 2∆ℓ), which is disjoint from that of u′, v′.

Note that even though event F(i,u,v,t,ℓ) is defined with respect to scales ℓ′ ≥ ℓ, since the padding
probability and coloring by σ for u, v in scale ℓ will be as in Claim 54, no matter what happened
in scales ℓ′ < ℓ or “far away” in scale ℓ.

Now we are ready to prove the Lemma. For every coordinate t ∈ [D], we have r = ⌈(θ/3) log k⌉
possible values of ℓ. In each scale ℓ, by Claim 55 there is probability at most q = 1 − λ−1/k/4 to
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fail, this probability is unaffected by of all other scales ℓ′ < ℓ. Let Yℓ be the indicator event for
¬F(i,u,v,t,ℓ). The probability that we failed for all scales ℓ ∈ [i, i+ r) can be bounded by:

Pr

[
i+r−1∧
ℓ=i

Yℓ

]
=

i+r−1∏
ℓ=i

Pr

Yℓ |
ℓ−1∧
j=i

Yj

 ≤ q⌈(θ/3) log k⌉.

Let z = q⌈(θ/3) log k⌉.

Case 1: Assume first that (θ/48)λ−1/k log k ≥ 1, then let Zt be the event that we failed in the
t-th coordinate (i.e. , F(i,u,v,t,ℓ) does not hold for all ℓ ∈ [i, i + r)). Then Pr[Zt] ≤ z, and

Z =
∑

t∈D Zt. We know that E[Z] ≤ zD, let β ≥ 1 be such that E[Z] = zD
β . Using Chernoff’s

bound implies that

Pr[Z > qD] = Pr

[
Z >

(
qβ

z

)
E[Z]

]

≤

(
eqβ/z−1

(qβ/z)qβ/z

)zD/β

≤ (ez/q)qD.

Note that q ≥ q(θ/6) log k hence z/q ≤ z1/2. By the assumption we have that e ≤ e(θ/48)λ
−1/k log k ≤

z−1/4. Since q > 1/2, and q ≤ e−λ−1/k/4 as well, follows that

(ez/q)qD ≤ zD/8

≤ q(θ/24) log k·D

≤ e−λ−1/k/4·(θ/24) log k·c·λ1/k lnλ/(αθ)·(1−log(1−α)/ log k)

= λ−c/96·(log k−log(1−α))/α.

Taking c = 96 · 59 implies that Pr[Z > qD] ≤ λ−(53+6 log k−2 log(1−α))/α, as required.

Case 2: (θ/48)λ−1/k log k < 1 we consider Ẑt the event that for some ℓ ∈ [i, i+ r), event F(i,u,v,t,ℓ)

holds, we have that

Pr[Ẑt] ≥ 1−
(
1− λ−1/k/4

)(θ/3) log k
≥ 1− e−λ−1/k(θ/48) log k ≥ λ−1/k(θ/96) log k,

the last inequality holds since 1− e−x ≥ x/2 when 0 ≤ x ≤ 1. Let q′ = λ−1/k(θ/96) log k, and
let Ẑ =

∑
t∈D Ẑt. Obviously E[Ẑ] ≥ q′D, using Chernoff bound implies that

Pr[Ẑ ≤ λ−1/kD] ≤ Pr[Ẑ ≤ λ−1/kE[Ẑ]/q′]
= Pr[Ẑ ≤ 96E[Ẑ]/(θ log k)]

≤ e−E[Ẑ](1−96/(θ log k))2/2.

Since θ log k ≥ 192 we have that (1− 96/(θ log k))2 ≥ 1/4 hence

Pr[Ẑ ≤ λ−1/kD] ≤ e−q′D/4 ≤ e−λ−1/k(θ/96) log k·D.

Again taking c = 96 ·59 implies that Pr[Ẑ ≤ λ−1/kD] ≤ λ−(53+6 log k−2 log(1−α))/α, as required.
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7 Scaling Distortion for Decomposable Metric

In this section we extend the theorem of [KLMN04] stating that any τ -decomposable metric embeds
into lp with distortion O(τ1/p−1 · log1/p n), and give a version with scaling distortion to it.

Theorem 18. Let 1 ≤ p ≤ ∞. For any n-point τ -decomposable metric space (X, d) there exists
an embedding f : X → lp with coarse scaling distortion O(min{(1/τ)1−1/p(log 2

ϵ )
1/p, log 2

ϵ}) and
dimension O(log2 n).

Proof overview: The embedding is similar to the one obtaining the O(log(2/ϵ)) scaling dis-
tortion result, with few important differences: In order to obtain improved distortion, which is
done by using the properties of the lp norm, we let the padding parameter appear in the embedding
definition with power 1/p. This definition implies that unlike the previous analysis, the padding
parameters of all the scales can not be summed up, hence a different coordinate should be assigned
for every scale (and hence we get the weaker dimension of O(log2 n)). In order to have only O(log n)
different scales for every point (and not O(log(diam(X))), we ignore those scales for which ξ = 0,
i.e. those that do not have sufficient local growth rate. For this reason we must use our hierarchical
probabilistic partitions, as those guarantee that points who share a cluster, also shared a cluster in
all previous scales, thus by the uniformity of the function ξ these points have the same ”coordinates
arrangement” up to the current scale.

Let D = c lnn for a constant c to be determined later. Let D′ = ⌈32 lnn⌉. We will define an
embedding f : X → lD

′D
p , by defining for each 1 ≤ t ≤ D, an embedding f (t) : X → lD

′
p and let

f = D−1/p
⊕

1≤t≤D f
(t).

Fix t, 1 ≤ t ≤ D. In what follows we define f (t). We construct a strong (η, 1/2)-uniformly
padded probabilistic 2-hierarchical partition Ĥ as in Lemma 10, and let ξ be as defined in the
lemma. Now fix a hierarchical partition H = {Pi}i∈I ∈ H. Let D(x) =

∑
0<i∈I ξP,i(x). Another

consequence of Lemma 10 is:

Claim 56. For any x ∈ X: D(x) ≤ D′.

Proof. Note that ηP,i(x) ≤ 2−9, it follows that

D(x) =
∑
0<i∈I

ξP,i(x) ≤
∑
0<i∈I

2−9ξP,i(x)ηP,i(x)
−1 ≤ 32 log n ≤ D′.

Let J = {1 ≤ j ≤ D′|j ∈ Z} the set of indexes of the coordinates, and for x ∈ X, let
J(x) = {1 ≤ j ≤ D(x)|j ∈ Z} and let J̄(x) = J \ J(x). For each x ∈ X and i ∈ I, let
ĵi(x) =

∑
0<i′≤i ξP,i′(x). For j ∈ J(x), let îj(x) be the smallest i such that ĵi(x) = j.

We have following important property:

Claim 57. If for some 0 < i ∈ I, we have that Pi(x) = Pi(y) then for all 1 ≤ j ≤ ĵi(x),
îj(x) = îj(y).

Proof. Since the partition is hierarchical we have that Pℓ(x) = Pℓ(y) for all 0 < ℓ ≤ i. Since
ξ is uniform with respect to H we have that ξP,ℓ(x) = ξP,ℓ(y). This implies that ĵℓ(x) = ĵℓ(y)
for all ℓ ≤ i. Let 1 ≤ j ≤ ĵi(x) and ℓ the smallest such that ĵℓ(x) = ĵℓ(y) = j, it follows that
îj(x) = îj(y) = ℓ.
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We define the embedding f (t) by defining the coordinates for each x ∈ X. For every i ∈ I let

σ
(t)
i : X → {0, 1} be a uniform function with respect to Pi defined by letting {σ(t)i (C)|C ∈ Pi, 0 <
i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli random variables. Let f (t) : X → lD

′
p be defined

as f (t) =
⊕

j∈[D′] ψ
(t)
j . For each j ∈ [D′] define ψ

(t)
j : X → R+ as

ψ
(t)
j (x) = σ

(t)
j (x) · φ(t)

j (x),

where φ
(t)
j : X → R+ is defined as

φ
(t)
j (x) =

{
min

{
ξP,i(x)

ηP,i(x)1/p
d (x,X \ Pi(x)) ,∆i

}
j ∈ J(x), i = îj(x)

0 j ∈ J̄(x)
(21)

Define g
(t)
i : X ×X → R+ as follows: g

(t)
i (x, y) = min

{
ξP,i(x)

ηP,i(x)1/p
· d(x, y),∆i

}
(Note that g

(t)
i is

nonsymmetric).

Claim 58. For any x, y ∈ X such that D(x) ≥ D(y):

• For any j ∈ J(x) ∩ J(y), let i = îj(x) and i
′ = îj(y), then

|ψ(t)
j (x)− ψ

(t)
j (y)| ≤ max{g(t)i (x, y), g

(t)
i′ (y, x)}.

• For any j ∈ J(x) \ J(y), let i = îj(x), then |ψ(t)
j (x)− ψ

(t)
j (y)| ≤ g

(t)
i (x, y).

Proof. Assume w.l.o.g j ∈ J(x), and first we prove the first bullet. We have two cases. In Case 1,
assume Pi(x) = Pi(y) then by Claim 57 we get that i′ = îj(y) = îj(x) = i. It follows that

|ψ(t)
j (x)− ψ

(t)
j (y)| = σ

(t)
i (Pi(x)) · |φ(t)

i (x)− φ
(t)
i (y)|.

We will show that φ
(t)
j (x) − φ

(t)
j (y) ≤ g

(t)
i (x, y). The bound φ

(t)
j (x) − φ

(t)
j (y) ≤ ∆i is immediate.

To prove φ
(t)
j (x)− φ

(t)
j (y) ≤ ξP,i(x)

ηP,i(x)1/p
· d(x, y) consider the value of φ

(t)
j (y). Assume first φ

(t)
j (y) =

ξP,i(y)

ηP,i(y)1/p
· d(y,X \ Pi(y)). From the uniform padding property of H we get that ξP,i(y) = ξP,i(x)

and ηP,i(y) = ηP,i(x) therefore

φ
(t)
j (x)− φ

(t)
j (y) ≤

ξP,i(x)

ηP,i(x)1/p
· (d(x,X \ Pi(x))− d(y,X \ Pi(x))) ≤

ξP,i(x)

ηP,i(x)1/p
· d(x, y).

In the second case φ
(t)
j (y) = ∆i and therefore φ

(t)
i (x) − φ

(t)
i (y) ≤ ∆i −∆i = 0. Thus proving the

claim in this case.
Next, consider Case 2 where Pi(x) ̸= Pi(y). In this case we have that d(x,X \ Pi(x)) ≤ d(x, y)

which implies that

ψ
(t)
j (x)− ψ

(t)
j (y) ≤ φ

(t)
j (x) ≤ gi(x, y). (22)

The bound g
(t)
i′ (y, x) is obtained by considering φ

(t)
j (y)− φ

(t)
j (x).

For the second bullet it must be that Pi(x) ̸= Pi(y) (otherwise we would get i′ = i which would

be a contradiction). Since j /∈ J(y) then ψ
(t)
j (y) = 0 and we are done by (22).
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Lemma 59. There exists a universal constant C1 > 0 such that for any ϵ > 0 and any (x, y) ∈ Ĝ(ϵ):

∥f (t)(x)− f (t)(y)∥pp ≤ ln(2/ϵ) · (C1 · d(x, y))p.

Proof. Assume w.l.o.g D(x) ≥ D(y). Claim 58 implies that

∥f (t)(x)− f (t)(y)∥pp =
∑
j∈J

|ψ(t)
j (x)− ψ

(t)
j (y)|p

≤
∑

j∈J(x)∩J(y)

max{g(t)
îj(x)

(x, y), g
(t)

îj(y)
(y, x)}p +

∑
j∈J(x)\J(y)

g
(t)

îj(x)
(x, y)p

≤
∑
0<i∈I

(
g
(t)
i (x, y)p + g

(t)
i (y, x)p

)
. (23)

Now, define ℓ to be largest such that ∆ℓ+4 ≥ d(x, y) ≥ max{rϵ/2(x), rϵ/2(y)}. If no such ℓ exists
then let ℓ = 0.

By Lemma 10 we have∑
0<i≤ℓ

g
(t)
i (x, y)p ≤

∑
0<i≤ℓ

ξP,i(x)

ηP,i(x)
· d(x, y)p

≤ 214 · ln
(

n

|B(x,∆ℓ+4)|

)
· d(x, y)p ≤ (214 ln(2/ϵ)) · d(x, y)p.

We also have that ∑
ℓ<i∈I

g
(t)
i (x, y)p ≤

∑
ℓ<i∈I

∆p
i ≤ ∆p

ℓ ≤ 25pd(x, y)p.

Therefore, using (23) we get

∥f (t)(x)− f (t)(y)∥pp =
∑
0<i∈I

(
g
(t)
i (x, y)p + g

(t)
i (y, x)p

)
≤ 2

(
214 ln(2/ϵ) + 25p

)
· d(x, y)p.

Lemma 60. There exists a universal constant C2 > 0 such that for any x, y ∈ X, with probability
at least 1/8:

∥f (t)(x)− f (t)(y)∥pp ≥ τp−1 · (C2 · d(x, y))p.

Proof. Let 0 < ℓ ∈ I be such that 8∆ℓ ≤ d(x, y) ≤ 16∆ℓ. By Claim 3 we have that
max{ρ̄(x, 2∆ℓ, γ1, γ2), ρ̄(y, 2∆ℓ, γ1, γ2)} ≥ 2. Assume w.l.o.g that ρ̄(x, 2∆ℓ, γ1, γ2) ≥ 2. It follows
from Lemma 10 that ξP,ℓ(x) = 1. As Ĥ is (η, 1/2)-padded we have the following bound

Pr[B(x, ηP,ℓ(x)∆ℓ) ⊆ Pℓ(x)] ≥ 1/2.

Therefore with probability at least 1/2:(
ξP,ℓ(x)

ηP,ℓ(x)1/p
· d(x,X \ Pℓ(x))

)p

≥ 1

ηP,ℓ(x)
· (ηP,ℓ(x)∆ℓ)

p = ηP,ℓ(x)
p−1∆p

ℓ ≥ (τ/8)p−1∆p
ℓ , (24)
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where the last inequality follows from the second property of Lemma 10.
Let j = ĵℓ(x). Note that since ξP,ℓ(x) = 1 we have that ℓ = îj(x). Since diam(Pℓ(x)) ≤ ∆ℓ <

d(x, y) we have that Pℓ(y) ̸= Pℓ(x). Now, if j /∈ J(y) then ψ
(t)
j (y) = 0 and with probability 1/2 we

have σℓ(Pℓ(x)) = 1 so that by (24) |ψ(t)
j (x)−ψ(t)

j (y)|p = min
{(

ξP,ℓ(x)

ηP,ℓ(x)1/p
· d(x,X \ Pℓ(x))

)p
,∆p

i

}
≥

(τ/8)p−1∆p
ℓ . Otherwise, if j ∈ J(y), then for ℓ′ = îj(y) we have Pℓ(x) ̸= Pℓ′(y). We get that there

is probability 1/4 that σℓ(Pℓ(x)) = 1 and σℓ′(Pℓ′(y)) = 0 so that |ψ(t)
j (x)−ψ

(t)
j (y)|p ≥ (τ/8)p−1∆p

ℓ .
We conclude that with probability at least 1/2 · 1/4 = 1/8:

∥f (t)(x)− f (t)(y)∥pp ≥ |(ψ(t)
j (x)− ψ

(t)
j (y))|p ≥ (τ/8)p−1∆p

ℓ ≥ (τ/8)p−12−4pd(x, y)p.

Lemma 61. There exists a universal constants C ′
1, C

′
2 > 0 such that w.h.p for any ϵ > 0 and any

(x, y) ∈ Ĝ(ϵ):

C ′
2 · τ1−1/p · d(x, y) ≤ ∥f(x)− f(y)∥p ≤ C ′

1 (ln(1/ϵ))
1/p · d(x, y).

Proof. By definition

∥f(x)− f(y)∥pp = D−1
∑

1≤t≤D

∥f (t)(x)− f (t)(y)∥p.

Lemma 59 implies that

∥f(x)− f(y)∥pp ≤ ln(1/ϵ) (C1 · d(x, y))p .

For t ∈ [D] let Zt(x, y) be an indicator random variable for the event ∥f (t)(x) − f (t)(y)∥pp ≥(
(τ/8)1−1/pC2d(x, y)

)p
, and Z = Z(x, y) =

∑
t∈[D] Zt(x, y). By Lemma 60 we have that Pr[Zt(x, y)] ≥

1/8 thus E[Z] ≥ D/8 ≥ 16 lnn for a constant c ≥ 27. Applying Chernoff bounds

Pr[Z < E[Z]/2] ≤ e−E[Z]/8 ≤ 1/n2 .

Note that if Z ≥ E[Z]/2 then letting G(x, y) = {t ∈ [D] | Zt(x, y)}, then |G(x, y)| ≥ D/16 and
then

∥f(x)− f(y)∥pp ≥
1

D

∑
t∈G(x,y)

∥f (t)(x)− f (t)(y)∥pp ≥ (τ1−1/pC2 · d(x, y)/27)p.

The proof is complete by applying a union bound on all pairs.

8 Partial Embedding, Scaling Distortion and the ℓq-Distortion

In this section we show the relation between scaling distortion and the ℓq-distortion. The idea is to
consider the values of ϵ which are some exponentially decreasing series (like all powers of 1/2), then
in the formula for the ℓq-distortion, partition the pairs according to which Ĝ(ϵ) they belong to. We
show that this analysis is tight in Lemma 2. Recall the definition of Φ, Φ̂ is as in Definition 5.
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Lemma 1. Given an n-point metric space (X, dX) and a metric space (Y, dY ). If there exists an
embedding f : X → Y with scaling distortion α then for any distribution Π over

(
X
2

)
:22

dist(Π)
q (f) ≤

(
2

∫ 1

1
2(

n
2)

−1
Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)1/q

+ α(Φ̂(Π)−1).

Proof. We may restrict to the case Φ(Π) ≤
(
n
2

)
. Otherwise Φ̂(Π) >

(
n
2

)
and therefore dist

(Π)
q (f) ≤

dist(f) ≤ α(Φ̂(Π)−1). Recall that

dist(Π)
q (f) = EΠ[distf (u, v)

q]1/q.

Define for each ϵ ∈ (0, 1) the set G(ϵ) of the (1 − ϵ)
(
n
2

)
pairs u, v of smallest distortion distf (u, v)

over all pairs in
(
X
2

)
. Since f is a (1 − ϵ)-partial embedding for any ϵ ∈ (0, 1) we have that for

each {u, v} ∈ G(ϵ), distf (u, v) ≤ α(ϵ). Let Gi = G(2−iΦ̂(Π)−1) \ G(2−(i−1)Φ̂(Π)−1). Since α is a
monotonic non-increasing function, it follows that

EΠ[distf (u, v)
q] =

∑
u ̸=v∈X

π(u, v)distf (u, v)
q

≤
∑

{u,v}∈G(Φ̂(Π)−1)

π(u, v)α(Φ̂(Π)−1)q +

⌊log((n2)Φ̂(Π)−1)⌋∑
i=1

∑
{u,v}∈Gi

π(u, v)α(2−iΦ̂(Π)−1)q

≤
∑

u ̸=v∈X
π(u, v) · α(Φ̂(Π)−1)q +

⌊log((n2)Φ̂(Π)−1)⌋∑
i=1

|Gi| ·

 Φ̂(Π)(
n
2

) ∑
u̸=v∈X

π(u, v)

 · α(2−iΦ̂(Π)−1)q

≤ α(Φ̂(Π)−1)q +

⌊log((n2)Φ̂(Π)−1)⌋∑
i=1

2−i · α(2−iΦ̂(Π)−1)q

≤ α(Φ̂(Π)−1)q +

(
2

∫ 1

1
2(

n
2)

−1
Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)
.

Lemma 62 (Coarse Scaling Distortion vs. Distortion of ℓq-Norm). Given an n-point metric space
(X, dX) and a metric space (Y, dY ). If there exists an embedding f : X → Y with coarse scaling
distortion α then for any distribution Π over

(
X
2

)
:23

distnorm(Π)
q (f) ≤

(
2

∫ 1

1
2(

n
2)

−1
Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)1/q

+ α(Φ̂(Π)−1).

22Assuming the integral is defined. We note that lemma is stated using the integral for presentation reasons.
23Assuming the integral is defined.
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Proof. Wemay restrict to the case Φ(Π) ≤
(
n
2

)
. Otherwise Φ̂(Π) >

(
n
2

)
and therefore distnorm

(Π)
q (f) ≤

dist(f) ≤ α(Φ̂(Π)−1). Recall that

distnorm(Π)
q (f) =

EΠ[dY (f(u), f(v))
q]1/q

EΠ[dX(u, v)q]1/q
.

For ϵ ∈ (0, 1) recall that Ĝ(ϵ) = {{x, y} ∈
(
X
2

)
|d(x, y) ≥ max{rϵ/2(x), rϵ/2(y)}}. Since (f, Ĝ) is a

(1− ϵ)-partial embedding for any ϵ ∈ (0, 1) we have that for each {u, v} ∈ Ĝ(ϵ), distf (u, v) ≤ α(ϵ).

Let Ĝi = Ĝ(2−iΦ̂(Π)−1) \ Ĝ(2−(i−1)Φ̂(Π)−1). We first need to prove the following property:∑
{u,v}∈Ĝi

dX(u, v)q ≤ 2−iΦ̂(Π)−1
∑

u ̸=v∈X
dX(u, v)q.

To prove this fix some u ∈ X. Let S = {v|{u, v} /∈ Ĝ(2−(i−1)Φ̂(Π)−1)}. Then S = B(u, r2−iΦ̂(Π)−1(u)).

Thus, |S| = 2−iΦ̂(Π)−1n and for each v ∈ S, v′ ∈ S̄ we have d(u, v) ≤ d(u, v′). It follows that:∑
v;u ̸=v∈X

dX(u, v)q =
∑
v∈S

dX(u, v)q +
∑
v∈S̄

dX(u, v)q

≥ |S| ·
∑

v∈S dX(u, v)q

|S|
+ |S̄| ·

∑
v∈S dX(u, v)q

|S|
=

n

|S|
∑
v∈S

dX(u, v)q.
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Since α is a monotonic non-increasing function, it follows that

EΠ[dY (f(u), f(v))
q] =

∑
u̸=v∈X

π(u, v)dY (f(u), f(v))
q

=
∑

u̸=v∈X
π(u, v)dX(u, v)qdistf (u, v)

q

≤
∑

{u,v}∈Ĝ(Φ̂(Π)−1)

π(u, v)dX(u, v)qα(Φ̂(Π)−1)q +

⌊log((n2)Φ̂(Π)−1)⌋∑
i=1

∑
{u,v}∈Ĝi

π(u, v)dX(u, v)qα(2−iΦ̂(Π)−1)q

≤
∑

u̸=v∈X
π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q +

⌊log((n2)Φ̂(Π)−1)⌋∑
i=1

∑
{u,v}∈Ĝi

dX(u, v)q · Φ̂(Π) · min
w ̸=z∈X

π(w, z) · α(2−iΦ̂(Π)−1)q

≤
∑

u̸=v∈X
π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q +

⌊log((n2)Φ̂(Π)−1)⌋∑
i=1

∑
u̸=v∈X

2−idX(u, v)q · min
w ̸=z∈X

π(w, z) · α(2−iΦ̂(Π)−1)q

≤
∑

u̸=v∈X
π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q +

⌊log((n2)Φ̂(Π)−1)⌋∑
i=1

∑
u̸=v∈X

π(u, v)dX(u, v)q · 2−i · α(2−iΦ̂(Π)−1)q

≤ EΠ[dX(u, v)q] ·

[
α(Φ̂(Π)−1)q +

(
2

∫ 1

1
2(

n
2)

−1
Φ̂(Π)

α(xΦ̂(Π)−1)qdx

)]
.

8.1 Distortion of ℓq-Norm for Fixed q

Lemma 63. Let 1 ≤ q ≤ ∞. For any finite metric space (X, d), there exists an embedding f

from X into a star metric such that for any non-degenerate distribution Π: distnorm
(Π)
q (f) ≤

21/q(2q − 1)1/qΦ(Π)1/q. In particular: distnormq(f) ≤ 21/q(2q − 1)1/q ≤
√
6.

Proof. Let w ∈ X be the point that minimizes (
∑

x∈X d(w, x)q)1/q. Let Y = X ∪ {r}. Define a
star metric (Y, d′) where r is the center and for every x ∈ X: d′(r, x) = d(w, x). Thus d′(x, y) =
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d(w, x) + d(w, y). Then

EΠ[d
′(u, v)q] =

∑
u̸=v∈X

π(u, v)d′(u, v)q ≤
∑

u ̸=v∈X
π(u, v) (d(u,w) + d(w, v))q

≤ (2q − 1)
∑

u̸=v∈X
π(u, v) (d(u,w)q + d(w, v)q)

≤ (2q − 1)
∑

u̸=v∈X

(
Φ(Π) min

s ̸=t∈X
π(s, t)

)
· (d(u,w)q + d(w, v)q)

= (2q − 1) · Φ(Π) min
s ̸=t∈X

π(s, t) · n− 1

2

(∑
u∈X

d(u,w)q +
∑
v∈X

d(w, v)q

)

≤ (2q − 1) · Φ(Π) · (n− 1) · 1
n

∑
z∈X

∑
u∈X

min
s̸=t∈X

π(s, t) · d(u, z)q

≤ 2(2q − 1) · Φ(Π) ·
∑

u̸=v∈X
π(u, v) · d(u, v)q

= 2(2q − 1) · Φ(Π) · EΠ[d(u, v)
q].

9 Probabilistic Embedding with Scaling Distortion into Trees

In this section we prove Theorem 19.24

Theorem 19. For any n-point metric space (X, d) there exists a probabilistic embedding into a
distribution over ultrametrics with coarse scaling distortion O(log 2

ϵ ).

An ultrametric (X, d) is a metric space satisfying a strong form of the triangle inequality, that
is for all x, y, z ∈ X, d(x, z) ≤ max{d(x, y), d(y, z)}. The following definition is known to be
equivalent to the above definition.

Definition 23. An ultrametric (HST25) is a metric space whose elements are the leaves of a rooted
tree T . Each vertex u ∈ T is associated with a label ∆(u) ≥ 0 such that ∆(u) = 0 iff u is a leaf of
T . It is required that if a u is a child of a v then ∆(u) ≤ ∆(v) . The distance between two leaves
x, y ∈ T is defined as ∆(lca(x, y)), where lca(x, y) is the least common ancestor of x and y in T .

Proof of Theorem 19. Let ∆ = ∆(X). For every i ∈ N let Pi be a ∆2−i bounded probabilistic
partition given by Corollary 6, and let ηi be as in the corollary. We build an ultrametric U by
defining a labeled tree, in the following manner. For every i > 1 we iteratively alter Pi into P

′
i by

replacing each C ∈ Pi with the clusters {C ∩D | D ∈ Pi−1}. Each cluster C ∈ P ′
i defines a node

in the tree, its parent is the cluster in Pi−1 that contains it, and the label of every cluster in P ′
i is

∆2−i. The root has label ∆ and is connected to all the clusters in P1. Finally, leaves are formed
by clusters that contain only one node.

24A similar theorem was independently given in [CDG+09].
25A k-HST [Bar96] is defined similarly while requiring that ∆(u) ≤ ∆(v)/k. Any ultrametric k-embeds [Bar98]

and O(k/ log k)-probabilistically embeds [BCR01] in a k-HST.
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For any u, v ∈ G(ϵ) let t be the integer such that ∆2−(t+1) ≤ d(u, v) < ∆2−t. Let ρi(u) =

ρ(u, 2∆2−i, 2, 1/32). Choose for each 1 ≤ i ≤ t − 6, δi = exp{−26d(u,v) ln ρi(u)
∆2−i } and note that

δi ≤ 1. Recall that in Corollary 6 ηi(u) = min
{

ln(1/δi)
26 ln ρi(u)

, 2−6
}
= d(u,v)

∆2−i (because d(u,v)
∆2−i ≤ 2−6, and

if ln(ρi(u)) = 0 we define ηi(u) in a continuous manner as d(u,v)
∆2−i ).

If it is the case that δi ≥ 1/2 we may use the padding property shown in Corollary 6 and argue
that for any 1 ≤ i ≤ t− 6

Pr[B(u, d(u, v)) * Pi(u)] = Pr[B(u, ηi(u)∆2−i) * Pi(u)] ≤ 1− δ ≤ 26d(u, v) ln ρi(u)

∆2−i
,

however if δ < 1/2 it will imply that ∆2−i < 26d(u, v)(ln ρi(u))/ ln 2 ≤ 27d(u, v) ln ρi(u) and we
will use that Pr[B(u, d(u, v)) * Pi(u)] ≤ 1. Finally write

E[dU (u, v)] ≤
t∑

i=1

Pr[B(u, d(u, v)) * Pi(u)]∆2−i

≤
t∑

i=t−5

∆2−i +

t−6∑
i=1

27d(u, v) ln ρi(u)

≤ 27d(u, v) + 210 ln

(
n

|B(u,∆2−t)|

)
· d(u, v)

= O

(
ln

2

ϵ

)
· d(u, v) ,

where the third inequality follows by a telescopic sum argument.

10 Partial Embedding

In this section we prove theorems on partial embedding. In particular we show that practically any
embedding of a finite metric space (X, d) into lp can be converted to a (1− ϵ) partial embedding,
where the dependence of the distortion on the cardinality of X is replaced with 2/ϵ.26

10.1 Partial Embedding into lp

Definition 24. We say that a family of metric spaces X is subset-closed, if for any X ∈ X every
sub-metric Y ⊆ X is also in X .

Theorem 24 (Partial Embedding Upper Bound). Let X be a subset-closed family of finite metric
spaces. If for any m ≥ 1 and any m-point metric space from X there exists an embedding into lp
with distortion α(m) and dimension β(m). Then there exists is a universal constant C > 0, such
that for any X ∈ X and for any ϵ ∈ (0, 1) there exists a (1 − ϵ) partial embedding into lp with

distortion α(C log(2/ϵ)
ϵ ) and dimension β(C log(2/ϵ)

ϵ ) +O(log(2/ϵ)).

26Results similar to those appearing in the section have been independently shown in [CDG+09].
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Proof. The idea of the proof is to choose a constant set of beacons, embed them, then embed all the
other points according to the nearest beacon, and add some auxiliary coordinates. Formally, given
ϵ > 0 let ϵ̂ = ϵ/20, and t = ⌈100 log

(
1
ϵ̂

)
⌉. Let B be a uniformly distributed random set of t

ϵ̂ points
in X (the beacons). Let g be an embedding from B into lp with distortion α( tϵ̂) and dimension
β( tϵ̂), which exists since B ∈ X . Let {σj(u) | u ∈ X, 1 ≤ j ≤ t} be i.i.d symmetric {0, 1}-valued
Bernoulli random variables. Define the following functions:

∀u ∈ X, 1 ≤ j ≤ t hj(u) = σj(u)rϵ̂(u)t
−1/p

∀u ∈ X f(u) = g(b) where b ∈ B such that dX(u, b) = dX(u,B)

The embedding will be φ = f ⊕ h. Let G′ =
(
X
2

)
\ (D1 ∪ D2) where D1 = {(u, v) | dX(u, v) ≤

max {rϵ̂(u), rϵ̂(v)}} and D2 = {(u, v) | dX(u,B) ≥ rϵ̂(u), dX(v,B) ≥ rϵ̂(v)}. Observe that |D1| ≤
ϵ̂n2. For any u ∈ X Pr[dX(u,B) ≥ rϵ̂(u)] ≤ (1− t/(nϵ̂))ϵ̂n ≤ e−t ≤ ϵ̂ so by Markov inequality with
probability at least 1/2, |D2| ≤ 2ϵ̂n2. We begin with an upper bound on φ for all (x, y) ∈ G′:∥∥∥φ(u)− φ(v)

∥∥∥p
p

= ∥f(u)− f(v)∥pp +
t∑

j=1

|hj(u)− hj(v)|p

≤ (3dX(u, v))p +

t∑
j=1

∣∣∣t−1/pmax{rϵ̂(u), rϵ̂(v)} − 0
∣∣∣p

≤ (3p + 1) (dX(u, v))p .

We now partition G′ into two sets G1 = {(u, v) ∈ G′ | max {rϵ̂(u), rϵ̂(v)} ≥ dX(u, v)/4} and
G2 = G′ \G1. For any (u, v) ∈ G1, 1 ≤ j ≤ t, assume w.l.o.g that rϵ̂(u) ≥ rϵ̂(v), and let Ej(u, v) be
the event

Ej(u, v) = {hj(u) =
rϵ̂(u)

t1/p
∧ hj(v) = 0}.

Then Pr [Ej(u, v)] = 1
4 . Let A(u, v) =

∑t
j=1 1Ej(u,v), then E[A(u, v)] = t/4, using Chernoff’s bound

we can bound the probability that A(u, v) is smaller than half it’s expectation:

Pr [A(u, v) ≤ t/8] ≤ e−t/50 ≤ ϵ̂.

Let D3 = {(u, v) ∈ G1 | A(u, v) ≤ t/8} so by Markov inequality with probability at least 1/2,
|D3| ≤ 2ϵ̂n2. Therefore, for any (u, v) ∈ G1 \D3 we lower bound the contribution.∥∥∥φ(u)− φ(v)

∥∥∥p
p
≥

t∑
j=1

|hj(u)− hj(v)|p ≥ (t/8)
(
rϵ̂(u)t

−1/p
)p

≥ 1/8(dX(u, v)/4)p.

For any (u, v) ∈ G2 let bu, bv be the beacons such that f(u) = g(bu), f(v) = g(bv). Due to the
definition of D2 and G2 and from the triangle inequality follows

dX(bu, bv) ≥ dX(u, v)− dX(u, bu)− dX(v, bv) ≥ dX(u, v)− dX(u, v)

2
=
dX(u, v)

2
.

Therefore, we lower bound the contribution of (u, v) ∈ G2.∥∥∥φ(u)− φ(v)
∥∥∥p
p
≥
∥∥∥f(u)− f(v)

∥∥∥p
p
=
∥∥∥g(bu)− g(bv)

∥∥∥p
p

≥ 1

α( tϵ̂)
dX(bu, bv) ≥

dX(u, v)

2α( tϵ̂)
.
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Finally we note that G =
(
X
2

)
\ (D1 ∪ D2 ∪ D3) so with probability at least 1/4 we have |G| ≥(

n
2

)
− 5ϵ̂n2 ≥

(
n
2

)
− ϵn/4 ≥ (1− ϵ)

(
n
2

)
as required.

Corollary 64 (Partial Embedding Upper Bounds). For any ϵ ∈ (0, 1):

1. Any finite metric space has a (1 − ϵ) partial embedding into lp with distortion O(log 1
ϵ ) and

dimension O(log 1
ϵ ).

2. Any finite metric space has a (1− ϵ) partial embedding into lp with distortion O(⌈(log 2
ϵ )/p⌉)

and dimension eO(p) log 1
ϵ .

3. Any negative type metric (in particular l1 metrics) has a (1 − ϵ) partial embedding into ℓ2

with distortion O
(√

log 1
ϵ log log

1
ϵ

)
and dimension O(log 1

ϵ ).

4. Any tree metric has a (1 − ϵ) partial embedding into ℓ2 with distortion O
(√

log log 1
ϵ

)
and

dimension O(log 1
ϵ ).

This follows from known upper bounds. (1) and (2) from [Bou85, Mat90] with dimension bound
due to Theorem 10, (3) from [ALN05], and (4) from [Bou86, Mat99].

10.2 Coarse Partial Embedding into lp

We now consider the coarse version of partial embedding into lp. The trade off in getting a coarse
(1− ϵ) partial embedding is in higher dimension and stronger requirements.

Definition 25 (Strongly non-expansive). Let f is an embedding from X into lkp , where f =

(η1f1, . . . , ηkfk) and
∑k

i=1 η
p
i = 1, we say that f is strongly non-expansive if it is non-expansive

and
∀u, v ∈ X, i = 1 . . . k, |fi(u)− fi(v)| ≤ d(u, v).

Notice that the requirement of strongly non-expansion is not so restricting, since almost every
known embedding can be converted to a strongly non-expansive one. In particular any generalized
Fréchet embedding is strongly non-expansive.

Theorem 25. Consider a fixed space lp, p ≥ 1. Let X be a subset-closed family of finite metric
spaces such that for any n ≥ 1 and any n-point metric space X ∈ X there exists a strongly non-
expansive embedding ϕX : X → lp with distortion α(n) and dimension β(n). Then there exists a
universal constant C > 0 such that for any metric space X ∈ X and any ϵ > 0 we have a coarse
(1− ϵ) partial embedding into lp, with distortion O(α(Cϵ )) and dimension β(Cϵ ) ·O(log n).

Proof. This embedding is quite similar to the previous one, only this time we choose O(log n) sets of
beacons in order to succeed in some events with high probability - depending on n instead of ϵ. This
makes the proof more complex, and we need to embed each point according to the ”best” beacon
in each coordinate. Given ϵ > 0 let ϵ̂ = ϵ/4, let τ = ⌈100 log n⌉ and denote T = {t ∈ N | 1 ≤ t ≤ τ}.
Letm = ⌈1ϵ̂ ⌉. For each t ∈ T , let Bt be an independent uniformly distributed random set ofm points

in X. For each t ∈ T let ϕ⃗(t) = (η
(t)
1 ϕ

(t)
1 , . . . , η

(t)
β(m)ϕ

(t)
β(m)) be a strongly non-expansive embedding

from Bt into lp with distortion α(m) and dimension β(m). Let I = {i ∈ N | 1 ≤ i ≤ β(m)}. When
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clear from the context we omit the ϕ⃗(t) superscript and simply write ϕ⃗. Let {σt(u) | u ∈ X, t ∈ T}
be i.i.d symmetric {0, 1}-valued Bernoulli random variables. Define the following functions:

∀u ∈ X, t ∈ T h(t)(u) = σt(u)rϵ̂(u)τ
−1/p

∀u ∈ X, i ∈ I, t ∈ T f
(t)
i (u) = η

(t)
i min

b∈Bt

{d(u, b) + ϕ
(t)
i (b)}τ−1/p

Let f (t) = (f
(t)
1 , . . . , f

(t)
β(m)), f = (f (1), . . . , f (τ)), and h = (h(1), . . . , h(τ)), the final embedding will

be φ = f ⊕ h. Let D = {(u, v) | d(u, v) ≤ max{rϵ̂(u), rϵ̂(v)}} and G =
(
X
2

)
\D, as in Theorem 24

before: |D| ≤ ϵ̂n2. We begin by an upper bound for all (u, v) ∈ G: For any t ∈ T, i ∈ I let bti ∈ Bt

be the beacon that minimizes f
(t)
i (v):∥∥∥φ(u)− φ(v)

∥∥∥p
p

=
∥∥∥f(u)− f(v)

∥∥∥p
p
+
∥∥∥h(u)− h(v)

∥∥∥p
p

≤
∑
t∈T

∑
i∈I

∣∣∣f (t)i (u)− f
(t)
i (v)

∣∣∣p +∑
t∈T

(
τ−1/pmax{rϵ̂(u), rϵ̂(v)}

)p
≤

∑
t∈T

τ−1
∑
i∈I

∣∣∣η(t)i min
b∈Bt

{d(u, b) + ϕ
(t)
i (b)} − η

(t)
i min

b∈Bt

{d(v, b) + ϕ
(t)
i (b)}

∣∣∣p + d(u, v)p

≤
∑
t∈T

τ−1
∑
i∈I

η
(t)
i

p∣∣∣(d(u, bti) + ϕ
(t)
i (bti)− d(v, bti)− ϕ

(t)
i (bti)

)∣∣∣p + d(u, v)p

≤
∑
t∈T

τ−1
∑
i∈I

η
(t)
i

p
d(u, v)p + d(u, v)p

≤ 2d(u, v)p.

(recall that for any t ∈ T ,
∑

i∈I η
(t)
i

p
= 1) We now partition G into two sets G1 = {(u, v) ∈ G |

max {rϵ̂(u), rϵ̂(v)} ≥ d(u,v)
16α(m) and G2 = G \ G1. For any (u, v) ∈ G1, t ∈ T , assume w.l.o.g that

rϵ̂(u) ≥ rϵ̂(v), and let Et(u, v) be the event

Et(u, v) = {h(t)(u) = rϵ̂(u) ∧ h(t)(v) = 0}.

Then Pr [Et(u, v)] = 1
4 . Let A(u, v) =

∑
t∈T 1Et(u,v), then E[A(u, v)] = τ/4, using Chernoff bound

we can bound the probability that A(u, v) is smaller than half it’s expectation:

Pr [A(u, v) ≤ τ/8] ≤ e−τ/50 ≤ 1/n2.

Therefore with probability greater than 1/2, for any (u, v) ∈ G1, A(u, v) ≥ τ/8. Assume that this
happens, then we can lower bound the contribution for any (u, v) ∈ G1 :∥∥∥φ(u)− φ(v)

∥∥∥p
p
≥
∑
t∈T

∣∣∣h(t)(u)− h(t)(v)
∣∣∣p ≥ (τ/8) (rϵ̂(u))

p ≥ τ

8

(
d(u, v)

16α(m)

)p

.

For any (u, v) ∈ G2, t ∈ T let bu, bv ∈ Bt the nearest beacons to u, v respectively. Let

Ft(u, v) = {bu ∈ B
(
u, rϵ̂(u)

)
∧ bv ∈ B

(
v, rϵ̂(v)

)
}.
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Then Pr [Ft(u, v)] ≥ 1−2/e > 1/4, since for any u ∈ X, Pr[d(u,Bt) > rϵ̂(u)] = (1− ϵ̂)1/ϵ̂ ≤ e−1. Let
Z(u, v) =

∑
t∈T 1Ft(u,v), then E[Z(u, v)] ≥ τ/4, using Chernoff bound we can bound the probability

that Z(u, v) is smaller than half it’s expectation:

Pr [Z(u, v) ≤ τ/8] ≤ e−τ/50 ≤ 1/n2

Therefore with probability greater than 1/2 for any (u, v) ∈ G2, Z(u, v) ≥ τ/8, assume from now
on that this is the case. Fix a t ∈ T such that Ft(u, v) happened. We have

max
{
d(u, bu), d(v, bv)

}
≤ d(u, v)

16α(m)
.

Claim 65.
τ1/pη−1

i |fi(u)− fi(v)| ≥
∣∣∣|ϕi(bu)− ϕi(bv)| − (d(u, bu) + d(v, bv))

∣∣∣.
Proof. W.l.o.g assume that fi(u) ≥ fi(v), then let bi ∈ Bt be the beacon minimizing fi(u). Since
for every i ∈ I, ϕi(bu)− ϕi(bi) ≤ d(bu, bi) we get

τ1/pη−1
i fi(u) = d(u, bi) + ϕi(bi) ≥ d(u, bi) + ϕi(bu)− d(bu, bi) ≥ ϕi(bu)− d(u, bu)

and
τ1/pη−1

i fi(v) ≤ d(v, bv) + ϕi(bv).

Let J = {i ∈ I | |ϕi(bu) − ϕi(bv)| ≥ d(u,v)
4α(m)}. We claim that

∑
i∈J η

p
i |ϕi(bu)− ϕi(bv)|p ≥[

d(u,v)
4α(m)

]p
. Assume by contradiction that it is not the case, then∥∥∥ϕ⃗(bu)− ϕ⃗(bv)

∥∥∥p
p

=
∑
i∈J

ηpi

∣∣∣ϕi(bu)− ϕi(bv)
∣∣∣p +∑

i/∈J

ηpi

∣∣∣ϕi(bu)− ϕi(bv)
∣∣∣p

<

[
d(u, v)

4α(m)

]p
+
∑
i/∈J

ηpi

[
d(u, v)

4α(m)

]p
≤ 2

[
d(u, v)

4α(m)

]p
<

[
d(bu, bv)

α(m)

]p
.

The last inequality follows since d(bu, bv) ≥ d(u, v)− 2 d(u,v)
16α(m) ≥

7
8d(u, v).
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Thus contradicting the fact that ϕ⃗ has distortion α(m) on Bt. Now∥∥∥f (t)(u)− f (t)(v)
∥∥∥p
p

=
∑
i∈I

∣∣∣f (t)i (u)− f
(t)
i (v)

∣∣∣p
≥ τ−1

∑
i∈J

ηpi

∣∣∣ϕi(bu)− d(u, bu)− d(v, bv)− ϕi(bv)
∣∣∣p

≥ τ−1
∑
i∈J

ηpi

∣∣∣|ϕi(bu)− ϕi(bv)| − |d(u, bu) + d(v, bv)|
∣∣∣p

≥ τ−1
∑
i∈J

ηpi

∣∣∣∣∣ϕi(bu)− ϕi(bv)
∣∣− 2max{d(u, bu), d(v, bv)}

∣∣∣p
≥ τ−1

∑
i∈J

ηpi

∣∣∣∣∣ϕi(bu)− ϕi(bv)
∣∣− 2

4

d(u, v)

4α(m)

∣∣∣p
≥ τ−1

∑
i∈J

ηpi

∣∣∣∣∣ϕi(bu)− ϕi(bv)
∣∣− 1

2

∣∣ϕi(bu)− ϕi(bv)
∣∣∣∣∣p

≥ τ−1

(
d(u, v)

8α(m)

)p

.

Since we assumed that Ft(u, v) happened for at least τ/8 indexes from T we have the lower bound∥∥∥φ(u)− φ(v)
∥∥∥p
p

≥
∑
t∈T

∥∥∥f (t)(u)− f (t)(v)
∥∥∥p
p

≥ 1/8

(
d(u, v)

8α(m)

)p

.

10.3 Low Degree k-HST and Embeddings of Ultrametrics

In this section we study partial embedding of ultrametrics into low degree HSTs and into lp.

Claim 66. Let 0 < ϵ < 1. Given a set |X| = n and a partition of X into pair-wise disjoint sets
(X1, . . . , Xk) such that |Xi| ≤ ϵn for all 1 ≤ i ≤ k then

k∑
i=1

(
|Xi|
2

)
≤ ϵ

(
n

2

)
.

Proof.
k∑

i=1

(
|Xi|
2

)
=

k∑
i=1

|Xi|(|Xi| − 1)

2
≤ ϵn− 1

2

k∑
i=1

|Xi| =
ϵn− 1

2
n = ϵ

(
n

2

)
.

A k-HST is special type of ultrametric defined in [Bar96], which is an ultrametric T as defined
in Definition 23, and has the additional requirement that if u ∈ T is a descendant of v then
∆(u) ≤ ∆(v)/k.
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Lemma 67. Any ultrametric has a coarse (1 − ϵ)-partial embedding into a 6-HST, such that the
internal nodes’ maximum degree is O(1/ϵ), with distortion O(1).

Proof. First we apply a lemma from [Bar96] and create a 6-HST by distorting any distance by no
more than 6. Let r be the root, denote the weight of a node as the number of leaves in the tree
below it. Let b1, . . . , bm be all the children of r such that weight(bj) <

ϵn
2 . Do the following process

recursively: create a cluster Ci, while weight(Ci) <
ϵn
2 insert any bj into the cluster. when the

cluster is big enough, start filling another until all bj are clustered. We create sets C1, . . . , Ck, that
will replace b1, . . . , bm as children of r. note that the weight of each Ci and each remaining child
is at least ϵn

2 (except for maybe one), therefore we have at most 2
ϵ + 1 degree of internal node in

the HST. Observe that distances between any clusters Ci, Cj are preserved, only distances inside
clusters are discarded. By construction, the weight of each Ci is at most ϵn, therefore by Claim 66
there are less than 2ϵ

(
n
2

)
such distances, and we have a 6-HST with the desired distortion.

The next step is to apply the following lemma [BLMN05c]

Lemma 68. For any k > 5, any k-HST can be
(
k+1
k−5

)
-embedded in lhp where h = ⌈C(1 +

k/p)2 logD⌉, where D is maximal out degree of a vertex in the tree defining the k-HST, and C > 0
is a universal constant.

Corollary 69. Any ultrametric has a (1 − ϵ)-partial embedding into lp with O(1) distortion and
O(log(1/ϵ)) dimension.

Proof. We first embed the ultrametric in a 6-HST of degree O(1/ϵ). Choosing ϵ̂ = ϵ/4 for this
embedding then further embedding into lp we discard at most ϵ

(
n
2

)
distances.

11 Lower Bounds

11.1 Lower Bound on Dimension

The following theorem will show that the bound given in Theorem 5 is tight up to constant factors.27

Theorem 13. For any 1 ≤ p < ∞ and any θ > 0, if the metric of an n-node constant de-
gree expander embeds into lp with distortion O(log1+θ n) then the dimension of the embedding is
Ω(log n/⌈log(min{p, log n}) + θ log log n⌉).

Proof. Let G = (V,E) be a 3-regular expander graph on n vertices and let (X, d) denote the shortest
path metric on G. W.l.o.g let θ > 1/ log log n and assume that f : X → lp is a non-expansive
embedding with distortion C log1+θ n for a constant C. Note that 1

|E|
∑

(u,v)∈E ∥f(u)− f(v)∥pp ≤ 1.

Matoušek [Mat97] extended a theorem of [LLR94] and showed that there exists a number c =
O(min{p, log n})p where the constant in the big O notation depends only on the expansion of G,
such that 1

(n2)

∑
u ̸=v ∥f(u)− f(v)∥pp ≤ c.

Define a graph H on X where two vertices are connected iff ∥f(u)− f(v)∥pp ≤ 2c. There must
be a vertex u with degree at least n/2, as otherwise the average of all pairs will be larger than c.
Denote the set of u and its neighbors in H by M .

27We thank an anonymous referee for providing us with the idea for this theorem.
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We claim that there exists a subset M ′ ⊆ M of cardinality at least
√
n/2 such that for any

x, y ∈ M ′ we have d(x, y) ≥ (1/2) log3 n. To see this, greedily choose some point x ∈ M , add x
to M ′, and remove all points z ∈ M such that d(x, z) < (1/2) log3 n (note that there are at most√
n such points). Continue while M ̸= ∅. Since there are at least n/2 points in M we must have

chosen at least
√
n/2 points before M was exhausted.

Note that for any x, y ∈M ′, it must be that (log−θ n)/(4C) < ∥f(x)− f(y)∥p. This holds since
d(x, y) > (log n)/4, so it cannot be contracted by the embedding to less than (log−θ n)/(4C).

Now a volume argument suggests that having the points ofM ′ in lp space requires dimension at

least Ω( logn
θ log log n), by the following reasoning. Assume we embed into D dimensions, then for all x ∈

M ′, by definition of M we have that f(x) ∈ Blp(f(u), (2c)
1/p), let α = (2c)1/p = O(min{p, log n}).

The ball Blp(f(u), α) can be covered by 2O(D·log(8Cα/ log−θ n)) balls of radius (log−θ n)/(8C), each of
the small balls contains no more than a single image of a point in M ′. As |M ′| ≥

√
n/2 it follows

that 2O(D(logα+θ log logn)) ≥
√
n/2, or D ≥ Ω( logn

logα+θ log log n).

For 1 ≤ p ≤ O(logθ n) the dimension required is at least Ω
(

logn
θ log log n

)
, which implies that the

trade-off between distortion and dimension given in Theorem 5 is tight up to constant factors.

11.2 Lower Bound for Weighted Average distortion

In this section we show that the upper bound on weighted average distortion from Theorem 10 is
tight up to a constant factor.

Theorem 14. For any p ≥ 1 and any large enough n ∈ N there exists a metric space (X, d) on n
points, and non-degenerate probability distributions Π,Π′ on

(
X
2

)
with Φ(Π) = n and Φ(Π′) = n2,

such that any embedding f of X into lp will have dist
(Π)
p (f) ≥ Ω(log(Φ(Π))/p), and distnorm

(Π′)
p (f) ≥

Ω(log(Φ(Π′))/p).

Proof. Let G = (V,E) be a 3-regular expander graph on n vertices, i.e. the second eigenvalue
λ of the Laplace matrix of G is bounded below by a constant independent of n, let (X, d) be
the usual shortest path metric on G. Let F =

(
V
2

)
\ E. We define Π as Z/n on all pairs in

E and Z/n2 on all pairs in F , where Z = n
2(n−1) ≥ 1

2 is some normalizing factor. It follows

that log(Φ(Π)) = logn. It is an easy fact that at least 1/2 of the distances in F are at least
⌊log3(n/2)⌋, hence

∑
(u,v)∈F d(u, v) ≥ |F |(log n)/4 ≥ n2(log n)/16 (for n large enough), and of

course
∑

(u,v)∈E d(u, v) = 3n/2. By [Mat97] (which generalized the proof of [LLR94] for lp), we know

that if β is such that
∑

(u,v)∈E ∥f(u)−f(v)∥pp = β, then 1
n

∑
(u,v)∈F ∥f(u)−f(v)∥pp ≤ O(λβpp). Note

that since f is a non-contractive embedding we have that
∑

(u,v)∈F ∥f(u) − f(v)∥pp ≥ Ω(n2 logp n)
thus β ≥ Ω((n logp n)/pp).

dist(Π)
q (f)p =

∑
u,v∈X

Π(u, v)
∥f(u)− f(v)∥pp

d(u, v)p

=
∑

(u,v)∈E

Z∥f(u)− f(v)∥pp
n

+
∑

(u,v)∈F

Z∥f(u)− f(v)∥pp
n2 · d(u, v)p

≥ Zβ

n
≥ Ω((log n)/p)p.
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For the distortion of ℓp-norm we use the following distribution Π′ which is Z ′ on edges and Z ′/n2

on (u, v) ∈ F , for some normalizing factor Z ′. In this case log(Φ(Π′)) = 2 logn. Then

distnorm(Π′)
p (f)p =

∑
u,v∈X Π′(u, v)∥f(u)− f(v)∥pp∑

u,v∈X Π′(u, v)d(u, v)p

=

∑
(u,v)∈E Π′(u, v)∥f(u)− f(v)∥pp +

∑
(u,v)∈F Π′(u, v)∥f(u)− f(v)∥pp∑

(u,v)∈E Π′(u, v) +
∑

(u,v)∈F Π′(u, v)d(u, v)p

=

∑
(u,v)∈E ∥f(u)− f(v)∥pp + (1/n2)

∑
(u,v)∈F ∥f(u)− f(v)∥pp∑

(u,v)∈E 1 + (1/n2)
∑

(u,v)∈F d(u, v)
p

≥
∑

(u,v)∈E ∥f(u)− f(v)∥pp
2
∑

(u,v)∈E 1

≥ β

6n
≥ Ω((log n)/p)p.

In the third equality the normalizing factor Z ′ cancels out, and the first inequality: first note that
there exist a constant c = c(λ) such that for all (u, v) ∈ E, d(u, v) ≤ c log n, and if n is large enough
so that p ≤ log n/(log c+log log n) then (1/n2)

∑
(u,v)∈F d(u, v)

p ≤ (c log n)p ≤ n ≤
∑

(u,v)∈E 1.

11.3 Partial Embedding Lower Bounds

Recall the definition of metric composition Definition 9 and composition closure Definition 10. The
theorem we prove shows a tight relation between lower bounds on the distortion and lower bounds
for partial distortion.28

Theorem 15. Let Y be a target metric space, let X be a family of metric spaces nearly closed
under composition. If for any k > 1, there is Z ∈ X of size k such that any embedding of Z into Y
has distortion at least α(k), then for all n > 1 and 1

n ≤ ϵ ≤ 1 there is a metric space X ∈ X on n

points such that the distortion of any (1−ϵ) partial embedding of X into Y is at least α
(
⌈ 1
4
√
ϵ
⌉
)
/2.

Proof. Given ϵ, let Z be a metric space on k = ⌈ 1
4
√
ϵ
⌉ points satisfying the assumptions of

Theorem 15, choose m = ⌈4
√
ϵn⌉ for n large enough, so that m is strictly bigger than 2k, let

C = {Cx}x∈Z where each Cx ∈ X with size m, and let X = Cβ [Z] be its β-composition space for β

satisfying that X can be embedded into some X̂ ∈ X with distortion 2.
Recall that a family of sets F is called almost disjoint if for any A,B ∈ F |A

∩
B| ≤ 1.

Let H = {(x1, . . . , xk) : ∀i, xi ∈ Ci}, we shall use the following basic lemma, similar arguments can
be found in [BLMN05b].

Lemma 70. For any integer k let S1, . . . , Sk be disjoint sets of size m, where m/2 > k. Then there
is a family F of representatives, i.e. a family of almost disjoint sets of size k containing a single
element from each Si, such that |F| ≥ (m/2)2.

Proof. Let p be a prime satisfying m/2 < p ≤ m Assume any p elements in each Si are numbered
0, 1, 2 . . . p− 1 (we ignore the others). denote xij the j-th element in the set Si.
for each a, b ∈ Zp let

Aa,b = {xij : 1 ≤ i ≤ k, j = b+ ai (mod p)} .
28A similar theorem was independently given in [CDG+09].

83



Aa,b is indeed a set of representatives - there is a unique 0 ≤ j ≤ p − 1 for each i satisfying the
condition. Then take F = {Aa,b : a, b ∈ Zp}, |F| = p2.
Assume by contradiction that for Aa,b ̸= Aa′,b′ we have |Aa,b

∩
Aa′,b′ | > 1, then there must be

xji, xj′i′ ∈ Aa,b
∩
Aa′,b′ , then j = b+ai (mod p) = b′+a′i (mod p) and j′ = b+ai′ (mod p) = b′+a′i′

(mod p). Now if a = a′ we have b = b′ (since p is prime), contradiction.
otherwise w.l.o.g assume a′ > a

b+ ai = b′ + a′i (mod p)

b = b′ + (a′ − a)i (mod p)(
b′ + (a′ − a)i

)
+ ai′ = b′ + a′i′ (mod p)

(a′ − a)i = (a′ − a)i′ (mod p)

and since a ̸= a′ we have i = i′ - contradiction.

Consider a (1−ϵ) partial embedding of X in Y . By the lemma there is an almost disjoint family
F ⊆ H of size at least (m/2)2 > 2ϵn2, each pair (u, v) ∈ X belongs to at most one set in F .

Since
∣∣∣(X2 ) \G∣∣∣ < ϵn2, let Z ′ ∈ F be a set such that for all u, v ∈ Z ′, (u, v) ∈ G. up to scaling,

Z ′ is isomorphic to Z, therefore the (1 − ϵ) partial embedding of X into Y must incur distortion
at least α(|Z|), and since X can be embedded into some X̂ ∈ X with distortion 2, (1− ϵ) partially
embedding X̂ into Y requires distortion at least α(|Z|)/2 = α(⌈ 1

4
√
ϵ
⌉)/2.

Notice that if we are dealing with probabilistic embedding into a set of metric spaces S, the claim
hold for embedding into every Y ∈ S, and the theorem follows from our definition of probabilistic
(1− ϵ) partial embedding.

The next Lemma gives an improved lower bound for coarse partial embeddings.

Lemma 71. Let Y be a target metric space, let X be a family of metric spaces nearly closed under
composition. If for any k > 1, there is Z ∈ X of size k such that any embedding of Z into Y has
distortion at least α(k), then for all n > 1 and 1

n ≤ ϵ ≤ 1 there is a metric space X ∈ X on n points
such that the distortion of any coarse (1− ϵ) partial embedding of X into Y is at least α

(
⌈ 1
2ϵ⌉
)
/2.

The proof is immediate using the same method of metric composition. Let Z be a metric space
on k = ⌈ 1

2ϵ⌉ points, and m = ⌈2ϵn⌉ be the composition sets’ size. Then from the coarse property
only distances inside each Cx can be discarded, so many isomorphic Z ′ have for all u, v ∈ Z ′,
(u, v) ∈ G.

Corollary 72. For any n > 1 and 1/n < ϵ < 1:

1. There exists a metric space (X, d) on n points that requires Ω

(
log( 1

ϵ )
p

)
distortion for (1− ϵ)

partial embedding into lp.

2. There exists a metric space (X, d) on n points for which any (1 − ϵ) partial embedding with
distortion α into lp requires dimension Ω(logα

1
ϵ ).

3. There exists a metric space (X, d) on n points that requires Ω( 1√
ϵ
) distortion for (1−ϵ) partial

embedding into trees.
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4. There exists a metric space (X, d) on n points that requires Ω(1ϵ ) distortion for coarse (1− ϵ)
partial embedding into trees.

5. There exists a metric space (X, d) on n points that requires Ω
(
log
(
1
ϵ

))
distortion for any

probabilistic (1− ϵ) partial embedding to trees.

6. There exists an n point subset of L1 that requires Ω(
√

log(2/ϵ)) distortion for (1− ϵ) partial
embedding into L2.

7. There exists a tree metric on n points that requires Ω(
√

log log(2/ϵ)) distortion for (1 − ϵ)
partial embedding into L2.

8. There exists a metric space (X, d) on n points that requires Ω(min{q, log n}/p) q-norm of the
distortion in an embedding into lp.

9. There exists a metric space (X, d) on n points that requires Ω(min{q, log n}) q-norm of ex-
pected distortion in any probabilistic embedding into trees.

This follows from known lower bounds: (1) from [Mat97], (2) from equilateral dimension con-
siderations, (3) and (4) from [RR98a], (5) from [Bar96], (6) from [Enf69] and with (7) also from the
fact shown in [BLMN05c] that every normed space and trees are almost closed under composition,
(7) also from [Bou86], (8) and (9) from Lemma 2.

Lemma 2. Let Y be a target metric space, let X be a family of metric spaces. If for any ϵ ∈ (0, 1),
there is a lower bound of α(ϵ) on the distortion of (1 − ϵ) partial embedding of metric spaces in
X into Y , then for any 1 ≤ q ≤ ∞, there is a lower bound of 1

2α(2
−q) on the ℓq-distortion of

embedding metric spaces in X into Y .

Proof. For any 1 ≤ q ≤ ∞ set ϵ = 2−q and let X ∈ X be a metric space such that any (1 − ϵ)
partial embedding into Y has distortion at least α(ϵ). Now, let f be an embedding of X into Y . It
follows that there are at least ϵ

(
n
2

)
pairs (u, v) ∈

(
X
2

)
such that distf (u, v) ≥ α(ϵ). Therefore:

(E [distf (u, v)
q])1/q ≥ (ϵα(ϵ)q)1/q ≥

(
2−qα

(
2−q
)q)1/q

=
1

2
α
(
2−q
)
.

12 Applications

Consider an optimization problem defined with respect to weights c(u, v) in a graph or in a metric
space, where the solution involves minimizing the sum over distances weighted according to c:∑

u,v c(u, v)d(u, v). It is common for many optimization problem that such a term appears either
in the objective function or alternatively it may come up in the linear programming relaxation of
the problem.

These weights can be normalized to define the distribution Π where π(u, v) = c(u,v)∑
x,y c(x,y) so

that the goal translates into minimizing the expected distance according to the distribution Π.
We can now use our results to construct embeddings with small distortion of average provided in
Theorem 10, Theorem 20 and Theorem 21. Thus we get embeddings f into lp and into ultrametrics
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with distavg(Π)(f) = O(log Φ̂(Π)). In some of these applications it is crucial that the result holds
for all such distributions Π (Theorems 10 and 20).

Define Φ(c) = Φ(Π) and Φ̂(c) = Φ̂(Π) . Note that if for all u ̸= v, c(u, v) > 0 then Φ(c) =
maxu,v c(u,v)
minu,v c(u,v) . Using this paradigm we obtain O(log Φ̂(c)) = O(min{log(Φ(c)), log n}) approximation

algorithms.
This lemma below summarizes the specific propositions which will be useful in most of the

applications in the sequel:

Lemma 73. Let X be a metric space. For a weight function on the pairs c :
(
X
2

)
→ R+ . Then:

1. There exists an embedding f : X → lp such that for any weight function c:∑
{u,v}∈(X2 )

c(u, v)∥f(u)− f(v)∥p ≤ O(log Φ̂(c))
∑

{u,v}∈(X2 )

c(u, v)dX(u, v).

2. There is a set of ultrametrics S and a probabilistic embedding F̂ of X into S such that for
any weight function c:

Ef∼F̂

 ∑
{u,v}∈(X2 )

c(u, v)dY (f(u), f(v))

 ≤ O(log Φ̂(c))
∑

{u,v}∈(X2 )

c(u, v)dX(u, v).

3. For any given weight function c, there exists an ultrametric (Y, dY ) and an embedding f :
X → Y such that∑

{u,v}∈(X2 )

c(u, v)dY (f(u), f(v)) ≤ O(log Φ̂(c))
∑

{u,v}∈(X2 )

c(u, v)dX(u, v).

Note that our result are particularly strong when the weights are uniform or close to uniform.

12.1 Sparsest cut

We show an approximation for the sparsest cut problem for complete weighted graphs, i.e., for the
following problem:

Given a complete graph G(V,E) on n vertices with capacities c(u, v) : E → R+ and demands
D(u, v) : E → R+. Define the weight of a cut (S, S) as∑

u∈S,v∈S c(u, v)∑
u∈S,v∈S D(u, v)

.

We seek a subset S ⊆ V minimizing the weight of the cut.
The uniform demand case of the problem was first given an approximation algorithm of O(log n)

by Leighton and Rao [LR99]. For the general case O(log n) approximation algorithms were given
by Aumann and Rabani [AR98] and London, Linial and Rabinovich [LLR94] via embeddings into
l1 of Bourgain. Recently Arora, Rao and Vazirani improved the uniform case bound to O(

√
log n)
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and subsequently Arora, Lee and Naor gave an O(
√
log n log log n) approximation for the general

demand case based on embedding of negative-type metrics into l1.
We show an O(log Φ̂(c)) approximation. We apply the method of [LLR94]: build the following

linear program:

min
τ

∑
u,v

c(u, v)τ(u, v)

subject to:
∑
u,v

D(u, v)τ(u, v) ≥ 1

for all x, y, z : τ(x, y) ≤ τ(x, z) + τ(y, z)

τ ≥ 0

If the solution would yield a cut metric it would be the optimal solution. We solve the relaxed
program for all metrics, obtaining a metric (V, τ), then embed (V, τ) into ℓ1, using assertion (1.) of
Lemma 73. Since the embedding f is non-contractive τ(u, v) ≤ ∥f(u)− f(v)∥1, hence∑

u,v c(u, v)∥f(u)− f(v)∥1∑
u,vD(u, v)∥f(u)− f(v)∥1

≤ O(log Φ̂(c))

∑
u,v c(u, v)τ(u, v)∑
u,vD(u, v)τ(u, v)

.

Following [LLR94], we can obtain a cut that provides a O(log Φ̂(c)) approximation.

12.2 Multicut

The multicut problem is: given a complete graph G(V,E) with weights c(u, v) : E → R+, and k
set of pairs (si, ti) ⊆ V ×V i = 1, . . . , k find a minimal weight subset E′ ⊆ E, such that removing
every edge in E′ disconnects every pair (si, ti).

The best approximation algorithm for this problem is due to Garg, Vazirani and Yannakakis
[GVY93] has performance O(log k).

We show a O(log Φ̂(c)) approximation. We slightly change the methods of [GVY93], create a
linear program:

min
τ

∑
(u,v)∈(V2)

c(u, v)τ(u, v)

subject to: ∀i, j
∑

(u,v)∈pji

τ(u, v) ≥ 1

for all x, y, z : τ(x, y) ≤ τ(x, z) + τ(y, z)

τ ≥ 0

where pji is the j-th path from si to ti. Now solve the relaxed version obtaining metric space
(V, τ). Using (3.) of Lemma 73 we get an embedding f : V → Y into an HST (Y, dY ) satisfying∑

(u,v)∈(V2)

c(u, v)dY (u, v) ≤ O(log Φ̂(c))
∑

(u,v)∈(V2)

c(u, v)τ(u, v) .

We use this metric to partition the graph instead of the region growing method introduced by
[GVY93].
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We build a multicut E′: for every pair (si, ti) find their lca(si, ti) = ri, and create two clusters
containing all the vertices under each child: insert into E′ all the edges between the points in each
subtree and the rest of the graph. Since we have the constraint that

∑
(u,v)∈pji

τ(u, v) ≥ 1, we

get from the fact that f is non-contractive that ∆(ri) = dY (si, ti) ≥ 1. It follows that if an edge
(u, v) ∈ E′ then d(u, v) ≥ 1. It follows that∑

(u,v)∈E′

c(u, v) ≤
∑

(u,v)∈(V2)

c(u, v)dY (u, v) ≤ O(log Φ̂(c))OPT.

12.3 Minimum Linear Arrangement

The same idea can be used in the minimum linear arrangement problem, where we have an undi-
rected graph G(V,E) with capacities c(e) for every e ∈ E, we wish to find a one to one arrangement
of vertices h : V → {1, . . . , |V |}, minimizing the total edge length:

∑
(u,v)∈E c(u, v)|h(u)− h(v)|.

This problem was first given an O(log n log log n) approximation by Even, Naor, Rao and
Schieber [ENRS00], which was subsequently improved by Rao and Richa [RR98b] to O(log n).

As shown in [ENRS00], this can be done using the following LP:

min
∑

u ̸=v∈V
c(u, v)d(u, v)

s.t. ∀U ⊆ V, ∀v ∈ U :
∑
u∈U

d(u, v) ≥ 1

4
(|U |2 − 1)

∀(u, v) : d(u, v) ≥ 0

which is proven there to be a lower bound to the optimal solution. Even et. al [ENRS00] use
this LP formulation to define a spreading metric which they use to recursively solve the problem
in a divide-and-conquer approach. Their method can be in fact viewed as an embedding into an
ultrametric (HST) (the argument is similar to the one given for the special case of the multicut
problem) and so by using assertion (3.) of Lemma 73 we obtain an O(log Φ̂(c)) approximation.

The problem of embedding in d-dimensional meshes is basically an expansion of h to d dimen-
sions, and can be solved in the same manner.

12.4 Multiple sequence alignment

Multiple sequence alignments are important tools in highlighting similar patterns in a set of genetic
or molecular sequences.

Given n strings over a small character set, the goal is to insert gaps in each string as to
minimize the total number of different characters between all pairs of strings, when the cost of gap
is considered 0.

In their paper, [WLB+99] showed an approximation algorithm for the generalized version, where
each pair of string has an importance parameter c(u, v), they phrased the problem as finding a
minimum communication cost spanning tree, i.e. finding a tree that minimizes

∑
u,v c(u, v)d(u, v),

where d is the edit distance. They apply probabilistic embedding into trees to bound the cost of
such a tree. This gives an approximation ratio of O(log n).

Using assertion (3.)29 of Lemma 73 we get an O(log Φ̂(c)) approximation.

29We could use assertion (2.) here but since the parameter c(u, v) is fixed assertion (3.) suffices.
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12.5 Uncapacitated quadratic assignment

The uncapacitated quadratic assignment problem is one of the main studied problems in operations
research (see the survey [PRW94]) and is once of the main applications of metric labeling [KT02].
Given three n× n input matrices C,D, F , such that C is symmetric with 0 in the diagonal, D is a
metric and all matrices are non-negative. The objective is to minimize

min
σ∈Sn

∑
i,j

C(i, j)D (σ(i), σ(j)) +
∑
i

F (i, σ(i))

where Sn is the set of all permutations over n elements.
One of the major applications of uncapacitated quadratic assignment is in location theory: where
C(i, j) is the material flow from facility i to j, D (σ(i), σ(j)) is their distance after locating them
and F (i, σ(i)) is the cost for positioning facility i at location σ(i).

Unlike the previous applications here C is not a fixed weight function on the metric D, but the
actual weights depend on σ which is determined by the algorithm. Hence we require the probabilistic
embedding given by assertion (2.) of Lemma 73 which is oblivious to the weight function C.
Kleinberg and Tardos [KT02] gave an approximation algorithm based on probabilistic embedding
into ultrametrics. They give an O(1) approximation algorithm for an ultrametric (they in fact use
a 3-HST). This implies an O(log k) approximation for general metrics, where k is the number of
labels.

As uncapacitated quadratic assignment is a special case of metric labeling it can be solved in the
same manner, yielding a O(log Φ̂(C)) approximation ratio by applying assertion (2.) of Lemma 73
together with the O(1) approximation for ultrametrics of [KT02].

12.6 Min-sum k-clustering

Recall the min-sum k-clustering problem, where one has to partition a graph H to k clusters
C1, . . . , Ck as to minimize

k∑
i=1

∑
u,v∈Ci

dH(u, v).

[BCR01] showed a dynamic programming algorithm that gives a constant approximation factor for
graphs that can be represented as HST. Then they used probabilistic embedding into a family of
HST to give approximation with a factor of O

(
1
ϵ (log n)

1+ϵ
)
for general graphs H, with running

time nO(1/ϵ). Let Φ = Φ(d).

Lemma 74. For a graph H equipped with the shortest path metric, there is a logO(log Φ) n time
algorithm that gives O (log(kΦ)) approximation for min-sum k-clustering problem.

Proof. Denote by OPT the optimum solution for the problem with clusters COPT
i , and OPTT the

optimum solution for an HST T with clusters COPTT
i . Also denote ALG for the result of [BCR01]

algorithm with clusters CALGT
i .

By Theorem 24 there exists a probabilistic (1− ϵ) partial embedding of H into a family of HST
T . Recall that G is the set of pairs distorted by at most O(log 1

ϵ ). Note that edges e ∈ G are
expanded by O(log 1

ϵ ) and for e /∈ G the maximum expansion is Φ (no distance is contracted),
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therefore choosing ϵ = 1
k2Φ

yields:

E[ALG] =
∑
T∈T

Pr[T ]

k∑
i=1

∑
u,v∈CALGT

i

dH(u, v)

≤
∑
T∈T

Pr[T ]

k∑
i=1

∑
u,v∈CALGT

i

dT (u, v)

≤ O(1)
∑
T∈T

Pr[T ]
k∑

i=1

∑
u,v∈COPTT

i

dT (u, v)

≤ O(1)
∑
T∈T

Pr[T ]
k∑

i=1

∑
u,v∈COPT

i

dT (u, v)

≤ O(1)

 k∑
i=1

∑
u,v∈COPT

i ∩G

∑
T∈T

Pr[T ]dT (u, v) +
k∑

i=1

∑
u,v∈COPT

i \G

∑
T∈T

Pr[T ]dT (u, v)


≤ O(1)

 k∑
i=1

∑
u,v∈COPT

i ∩G

O (log (1/ϵ)) dH(u, v) +

k∑
i=1

∑
u,v∈COPT

i \G

Φ


≤ O((log (1/ϵ))OPT + kϵn2Φ

= O (log(kΦ))OPT + n2/k = O (log(kΦ))OPT ,

the last equation follows from the fact that n2

2k ≤ OPT (assuming we scaled the distances such that
minu̸=v∈H dH(u, v) ≥ 1), in what follows we show this fact. Let the clusters of the optimal solution

be of sizes a1, . . . , ak, naturally
∑k

i=1 ai = n, and there are at least
∑k

i=1 a
2
i /2 pairs of distance 1

inside clusters. Let b = (1, 1, . . . , 1) ∈ Rk. From Cauchy-Schwartz we get(
k∑

i=1

ai

)2

= (⟨a, b⟩)2 ≤ ∥a∥2∥b∥2 =
∑
i

(a2i )k,

and therefore
∑

i(a
2
i ) ≥ n2

k , meaning OPT ≥ n2

2k .

The running time of the algorithm is shown in [BCR01] to be logL n, where L is the maximal
number of levels in the HST family T . and this is at most O(logO(log Φ) n+ n2) (which is nO(1) for

Φ ≤ 2
logn

log logn ), (see [BCR01] for details).

13 Distance Oracles

A distance oracle for a metric space (X, d), |X| = n is a data structure that given any pair returns
an estimate of their distance. In this section we study scaling distance oracles and partial distance
oracles.

Let us begin by recalling the following consequence of Theorem 17:
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Theorem 23. Let (X, d) be a finite metric space. Let k = O(lnn) be a parameter. The metric space

can be preprocessed in polynomial time, producing a data structure of size O(n · λ
log k
k log λ log2 k) ,

such that distance queries can be answered in O(λ
log k
k log λ log2 k) time, with worst case distortion

O(k).

13.1 Distance oracles with scaling distortion

Given a distance oracle with O(n1/k) bits, the worst case stretch can indeed be 2k − 1 for some
pairs in some graphs. However we prove the existence of distance oracles with a scaling stretch
property. For these distance oracles, the average stretch over all pairs is only O(1).

We repeat the same preprocessing and distance query algorithm of Thorup and Zwick [TZ05]
with sampling probability 3n−1/k lnn for the first set and n−1/k thereafter.

Given (X, d) and parameter k:
A0 := X ; Ak = ∅ ;
for i = 1 to k − 1
let Ai contain each element of Ai−1,

independently with probability

{
3n−1/k lnn i = 1

n−1/k i > 1
;

for every x ∈ X
for i = 0 to k − 1

let pi(x) be the nearest node in Ai,
so d(x,Ai) = d(x, pi(x));
let Bi(x) := {y ∈ Ai \Ai+1 | d(x, y) < d(x,Ai+1)};

Figure 1: Preprocessing algorithm.

Given x, y ∈ X:
z := x ; i := 0 ;
while z ̸∈ Bi(y)

i := i+ 1;
(x, y) := (y, x);
z := pi(x);

return d(x, z) + d(z, y);

Figure 2: Distance query algorithm.

Theorem 26. Let (X, d) be a finite metric space. Let k = O(lnn) be a parameter. The metric
space can be preprocessed in polynomial time, producing a data structure of O(n1+1/k log n) size,
such that distance queries can be answered in O(k) time. The distance oracle has coarse scaling

distortion bounded by
(
2
⌈
log(2/ϵ)k

logn

⌉
+ 1
)
.

Proof. For an integer 0 ≤ i < k let Ei(x) be the event that

B(x, rn(i−k)/k(x)) ∩Ai = ∅ .
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Note that as |B(x, rn(i−k)/k(x))| ≥ ni/k it follows that Pr[Ei(x)] ≤ (1 − 3n−i/k lnn)n
i/k ≤ 1/n3,

hence by the union bound there is high probability that none of the bad events Ei(x) happen for
any x ∈ X and 0 ≤ i < k, so from now on assume it is so.

Fix ϵ ∈ (0, 1), and x, y ∈ Ĝ(ϵ). Let j be the integer such that nj/k ≤ ϵn/2 < n(j+1)/k. We prove
by induction that at the end of the ℓth iteration of the while loop of the distance query algorithm:

1. d(x, z) ≤ d(x, y)max{1, ℓ− j}

2. d(z, y) ≤ d(x, y)max{2, ℓ− j + 1}.

First note that (1.) holds for any ℓ < j since we assume that Eℓ(x) did not happen, so pℓ(x) ∈
B(x, rn(ℓ−k)/k(x)), which suggests that d(x, pℓ(x)) ≤ rn(ℓ−k)/k(x) ≤ rnj/k−1(x) ≤ rϵ/2(x) ≤ d(x, y)
and (2.) follows from (1.) and the triangle inequality. For ℓ ≥ j, from the induction hypothesis, at
the beginning of the ℓth iteration, d(z′, y) ≤ d(x, y)max{1, ℓ− j}, where z′ = pℓ(x), z

′ ∈ Aℓ. Since
z′ ̸∈ Bℓ(y) then after the swap (the line (x, y) := (y, x)) we have

d(x, z) = d(x, pℓ+1(x)) ≤ d(x, y)max{1, ℓ− j}

and d(z, y) ≤ d(x, y)max{2, ℓ − j + 1} follows from the triangle inequality. This competes the
inductive argument. Since pk−1(x) ∈ Ak−1 = Bk−1(y) then ℓ ≤ k − 1 and therefore the stretch of

the response is bounded by 2(k − j)− 1 ≤ 2
⌈
log(2/ϵ)k

logn

⌉
+ 1.

We note that a similar argument showing scaling stretch can be given for variation of Thorup
and Zwick’s compact routing scheme [TZ01].

13.2 Partial distance oracles

We construct a distance oracle with linear memory that guarantees stretch to 1− ϵ fraction of the
pairs. Recall the definition of Ĝ(ϵ) given in Definition 6.

Theorem 27. Let (X, d) be a finite metric space. Let 0 < ϵ < 1 be a parameter. Let k ≤ O(log 2
ϵ ).

The metric space can be preprocessed in polynomial time, producing data structure with either one
of the following properties:

1. Either with O

(
n log(2/ϵ) + k

(
log(2/ϵ)

ϵ

)1+1/k
)

size, O(k) query time and stretch 6k − 1 for

some set G ⊆
(
X
2

)
, |G| ≥ (1− ϵ)

(
n
2

)
.

2. Or, with O
(
n logn log(2/ϵ) + k log n(1/ϵ)1+1/k

)
size, O(k logn) query time and stretch 6k−1

for the set Ĝ(ϵ).

Proof. We begin with a proof of (1.). Let b = ⌈(8/ϵ) ln(16/ϵ)⌉. Let B be a set of b beacons chosen
uniformly at random. Construct a distance oracle of [TZ05] on the subspace (B, d) with parameter
k ≤ log b yielding stretch 2k − 1 and using O(kb1+1/k) storage. For every x ∈ X we store p(x),
which is the closest node to x in B. The resulting data structure’s size is O(n log b)+O(kb1+1/k) =
O(n log b + kb1+1/k). Queries are processed as follows: given two nodes x, y ∈ X let r be the
response of the distance oracle on the beacons p(x), p(y) then return d(x, p(x)) + r + d(p(y), y).

Observe that from triangle inequality the response is at least d(x, y). Let Ex for any x ∈ X be
the event

Ex = {d(x,B) > rϵ/8(x)} .
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Then Pr[Ex] ≤ (1− b/n)ϵn/8 ≤ ϵ/16 and so by Markov inequality, Pr[|{Ex | x ∈ X}| ≤ ϵn/8] ≥ 1/2.
In such a case let

G = {(x, y) ∈
(
X

2

)
| ¬Ex ∧ ¬Ey ∧ d(x, y) ≥ max{rϵ/8(x), rϵ/8(y)}} .

We bound the size of G. For every point x ∈ X at most ϵn/8 pairs (x, z) are removed due
to Ez occurring and at most ϵn/8 pairs (x, z) are removed because z ∈ B(x, rϵ/8(x)), so |G| ≥
(1− ϵ/4)n2 ≥ (1− ϵ)

(
X
2

)
. For (x, y) ∈ G, we have d(p(x), p(y)) ≤ d(p(x), x) + d(x, y) + d(p(y), y) ≤

d(x, y)+ rϵ/8(x)+ rϵ/8(y) ≤ 3d(x, y) so from the distance oracle r ≤ (6k− 3)d(x, y) and in addition
max{d(x, p(x)), d(y, p(y))} ≤ d(x, y) so the stretch is bounded by 6k − 1.

The proof of (2.) is a slight modification of the above procedure. Let m = ⌈3 lnn⌉. Let
B1, . . . , Bm be sets each containing b = ⌈16/ϵ⌉ beacons, chosen independently and uniformly at
random. Let DOi be the distance oracle on (Bi, d). For every x ∈ X we store p1(x), . . . , pm(x)
where pi(x) is the closest node in Bi. The resulting data structure’s size is O(n log b lnn) +
O(kb1+1/k lnn) = O(n log b lnn + kb1+1/k lnn). Queries are processed as follows: given two nodes
x, y ∈ X let ri be the response of the distance oracle DOi on the beacons pi(x), pi(y) then return
min1≤i≤m d(x, pi(x)) + ri + d(pi(y), y).

For every (x, y) ∈
(
X
2

)
, 1 ≤ i ≤ m define the event E i

x,y = {d(x,Bi) > rϵ/8(x) ∨ d(y,Bi) >

rϵ/8(y)}. Then Pr[E i
x,y] ≤ 2(1 − b/n)ϵn/8 ≤ 1/e, by independency Pr[∀i, E i

x,y] ≤ 1/em ≤ 1/n3, and
so by the union bound, Pr[∀x, y ∈ X, ∃i | ¬E i

x,y] ≥ 1/n.
By a similar argument as in (1.) above, the stretch of d(x, pi(x)) + ri + d(pi(y), y) is at most

6k − 1.
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