
SIAM J. COMPUT. c© 2019 Society for Industrial and Applied Mathematics
Vol. 48, No. 4, pp. 1436–1480

HOPSETS WITH CONSTANT HOPBOUND, AND APPLICATIONS
TO APPROXIMATE SHORTEST PATHS∗

MICHAEL ELKIN† AND OFER NEIMAN†

Abstract. A (β, ε)-hopset for a weighted undirected n-vertex graph G = (V,E) is a set of edges,
whose addition to the graph guarantees that every pair of vertices has a path between them that
contains at most β edges, whose length is within 1 + ε of the shortest path. In her seminal paper,
Cohen [J. ACM, 47 (2000), pp. 132–166] introduced the notion of hopsets in the context of parallel
computation of approximate shortest paths, and since then it has found numerous applications
in various settings, such as dynamic graph algorithms, distributed computing, and the streaming
model. Cohen [J. ACM, 47 (2000), pp. 132–166] devised efficient algorithms for constructing hopsets
with polylogarithmic in n number of hops. Her constructions remain the state of the art since the
publication of her paper in the proceedings of STOC’94, i.e., for more than two decades. In this
paper we exhibit the first construction of sparse hopsets with a constant number of hops. We also
find efficient algorithms for hopsets in various computational settings, improving the best-known
constructions. Generally, our hopsets strictly outperform the hopsets of [J. ACM, 47 (2000), pp.
132–166] in terms of both their parameters and the resources required to construct them. We
demonstrate the applicability of our results for the fundamental problem of computing approximate
shortest paths from s sources. Our results improve the running time for this problem in the parallel,
distributed, and streaming models for a vast range of s.

Key words. hopset, shortest path, graph algorithms

AMS subject classification. 68W99

DOI. 10.1137/18M1166791

1. Introduction.

1.1. Hopsets, setting, and main results. We are given an n-vertex weighted
undirected graph G = (V,E, ω). Consider another graph GH = (V,H, ωH) on the
same vertex set V . Define the union graph G′ = G ∪ GH , that is, G′ = (V,E′ =
E ∪ H,ω′), where ω′(e) = ωH(e) for e ∈ H, and ω′(e) = ω(e) for e ∈ E \ H. For
a positive integer parameter β, and a pair u, v ∈ V of distinct vertices, a β-limited

distance between u and v in G′, denoted d
(β)
G′ (u, v), is the length of the shortest u-v

path in G′ that contains at most β edges (also known as hops). For a parameter ε > 0,
and a positive integer β as above, a graph GH = (V,H, ωH) is called a (β, ε)-hopset

for the graph G if for every pair u, v ∈ V of vertices, we have dG(u, v) ≤ d(β)
G′ (u, v) ≤

(1 + ε) · dG(u, v). (Here dG(u, v) stands for the distance between u and v in G.) We
often refer to the edge set H of GH as the hopset. The parameter β is called the
hopbound of the hopset.

Hopsets are a fundamental graph-algorithmic construct. They are extremely use-
ful for computing approximate shortest paths and distances and for routing problems
in numerous computational settings, in which computing shortest paths with a lim-
ited number of hops is significantly easier than computing shortest paths with no
limitation on the number of hops. A partial list of these settings includes distributed,

∗Received by the editors January 23, 2018; accepted for publication (in revised form) June 6, 2019;
published electronically August 29, 2019. A preliminary version of this paper [EN16a] appeared in
FOCS’16.

https://doi.org/10.1137/18M1166791
Funding: The first author was supported by ISF grant (724/15). The second author was

supported in part by ISF grant (523/12) and BSF grant 2015813.
†Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel (elkinm@cs.bgu.ac.il,

neimano@cs.bgu.ac.il).

1436

https://doi.org/10.1137/18M1166791
mailto:elkinm@cs.bgu.ac.il
mailto:neimano@cs.bgu.ac.il

HOPSETS WITH CONSTANT HOPBOUND 1437

parallel, streaming, and centralized dynamic models.
Hopsets were explicitly introduced in Cohen’s seminal paper [Coh00], which first

appeared in the proceedings of STOC’94. Implicit constructions of hopsets had al-
ready been given in the beginning of the 1990s by Ullman and Yannakakis [UY91],
Klein and Subramanian [KS97], Cohen [Coh97], and Shi and Spencer [SS99]. Cohen
[Coh00] showed that for any parameters ε > 0 and κ = 1, 2, . . . , and any n-vertex
graph G, there exists a (β, ε)-hopset H with |H| = Õ(n1+1/κ) edges,1 where the
hopbound β is polylogarithmic in n. Specifically, it is given by β = (logn

ε)O(log κ).
Algorithmically, she showed that given an additional parameter ρ > 0, (β, ε)-hopsets
with

(1) βCoh =

(
log n

ε

)O((log κ)/ρ)

can be computed in O(|E| · nρ) time in the centralized model of computation, and
in O(β) · polylog(n) PRAM time, with O(|E| · nρ) work. She used these hopsets’
constructions to devise efficient parallel algorithms for computing S × V (1 + ε)-
approximate shortest paths (henceforth, (1+ ε)-ASP). Until now, her results for these
problems were the state of the art in this context for over two decades.

Despite being a major breakthrough, Cohen’s hopsets leave much to be desired.
Indeed, until very recently, the only general lower bound applicable to them is that
of [CG06] (based on [Yao82, AS87]), asserting that there exist n-vertex graphs for

which any (β, ε)-hopset for 0 ≤ ε < 1 requires Ω(n · log(bβ/2c) n) edges, where log(t) n
stands for a t-iterated logarithm. Cohen [Coh00] herself wrote the following in the
introduction of her paper):

One intriguing issue is the existence question of sparse hopsets with
certain attributes. In addition, we would like to construct them effi-
ciently. [Italics in original.]

The same motif repeats itself in the concluding section of her paper, where she writes
as follows:

We find the existence of good hopsets to be an intriguing research
problem on its own right.

Following Cohen’s work, numerous additional applications of hopsets were discov-
ered, and some new constructions of hopsets were presented. Most notably, Bernstein
[Ber09] and Henzinger, Krinninger, and Nanongkai [HKN14] devised new construc-
tions of hopsets and used them for maintaining approximate shortest paths in dynamic
centralized setting. Nanongkai [Nan14] and Henzinger, Krinninger, and Nanongkai
[HKN16] used hopsets for computing approximate shortest paths in the distributed
and streaming settings. Lenzen and Patt-Shamir [LP15] and the authors of the current
paper (and its preliminary version [EN16a]) used them for compact routing. Miller
et al. [MPVX15] devised new constructions of hopsets and used them for approxi-
mate shortest paths in the PRAM setting. The (β, ε)-hopset of [Ber09] has hopbound
β = O((1/ε)κ · log n), and size O(κ · n1+1/κ · log Λ), for any integer parameter κ ≥ 1,
where Λ is the aspect ratio of the graph.2 The hopsets of [HKN14, HKN16] have hop-

bound 2Õε(
√

logn) and size n · 2Õ(
√

logn) · log Λ. The hopsets of Miller et al. [MPVX15]
have hopbound at least Ω(nα), for a constant α > 0, and linear size.

1The notation Õ(f(n)) stands for O(f(n) · logO(1) f(n)).
2The aspect ratio of a graph G is defined by the ratio of the largest distance to the smallest

distance in G.

1438 MICHAEL ELKIN AND OFER NEIMAN

Table 1
Comparison between (β, ε)-hopsets (neglecting the dependency on ε). We note that the hopsets

of [Ber09, HKN14, HKN16, MPVX15] were designed for certain computational models (i.e., dynamic,
streaming, distributed). The second row of our results follows from the first by setting κ = logn.

Reference Size Hopbound Run-time

[Ber09] O(κ · n1+1/κ · log Λ) O(2κ · logn)

[HKN14, HKN16] n · 2Õ(
√
logn) · log Λ 2Õ(

√
logn)

[MPVX15] O(n) nα, (α = Ω(1))

[Coh00] O(n1+ 1
κ · logn) (logn)

O(log κ
ρ

) |E| · nρ

This paper
O(n1+ 1

κ · logn)
(

log κ+ 1
ρ

)log κ+ 1
ρ
+O(1)

|E| · nρ

O(n logn) (log logn+ 1/ρ)log logn+O(1/ρ) |E| · nρ

We will discuss the results of [Ber09, HKN14, Nan14, HKN16, MPVX15] in
greater detail in what follows. However, all of these results fail to address the
fundamental challenge of Cohen [Coh00] concerning the existence and efficient con-
structability of hopsets that are strictly and substantially superior to those devised in
[Coh00]. In this paper we build such hopsets. Specifically, for any ε > 0, κ = 1, 2 . . . ,
and any n-vertex graph G = (V,E), we show that there exists a (β, ε)-hopset with
β = (log κ

ε)log κ, and O(n1+1/κ · log n) edges. Hence, these hopsets simultaneously
exhibit arbitrarily small constant approximation factor 1 + ε, arbitrarily close to 1
constant exponent 1 + 1/κ of the hopset’s size, and constant hopbound β. In all
previous hopsets’ constructions, the hopbound was at least polylogarithmic in n, in
all regimes. Moreover, we devise efficient algorithms to build our hopsets in various
computational models. Specifically, given a parameter ρ > 0 that controls the running
time, our centralized algorithm constructs a (β, ε)-hopset with O(n1+1/κ · log n) edges
in expected O(|E| · nρ) time, with

(2) β = O

(
1

ε
· (log κ+ 1/ρ)

)log κ+1/ρ+O(1)

.

Again, these hopsets simultaneously exhibit arbitrarily small constant approximation
1 + ε, arbitrarily close to 1 hopset’s size exponent 1 + 1/κ, arbitrarily close to O(|E|)
running time (in the sense of O(|E| · nρ) for an arbitrarily small constant ρ > 0), and
still the hopbound β of the constructed hopset remains constant!

After the publication of a preliminary version of this work, [ABP16] showed the
following lower bound. For any positive integer k and ε > 1/no(1), any (β, ε)-hopset

with n1+1/(2k−1)−δ edges, for δ > 0, has β = Ω(1/(2kε))k. Setting κ = 2k − 1, this
implies that the dependence on ε in our construction cannot be improved by more
than an O(1/k) term in the exponent.

As mentioned above, in [Coh00] (the previous state of the art), with the same
approximation factor, hopset size, and running time, the hopbound behaves as given
in (1). Hence our result is stronger than that of [Coh00] in a number of ways. First,
the hopbound βCoh is at least polylogarithmic, while ours is constant. Second, the
exponent O((log κ)/ρ) of βCoh is substantially larger than the exponent log κ+ 1/ρ+
O(1) in our β. The parameters of our hopset strictly dominate those of the hopsets
of [Ber09, HKN14, HKN16]. The hopset construction of [MPVX15] is incomparable
to ours, as our hopbound is much better than nΩ(1) of [MPVX15], but our hopset’s
size is at least Ω(n log n), while the hopset of [MPVX15] has linear size. See Table 1
for a concise comparison of existing hopsets’ constructions.

HOPSETS WITH CONSTANT HOPBOUND 1439

1.2. Hopsets in parallel, streaming, and distributed models. We also
devise efficient parallel, distributed, and streaming algorithms for constructing hopsets
with constant hopbound.

1.2.1. Hopsets in the streaming model. In the streaming model, the only
previously known algorithm for constructing hopsets was that of [HKN16]. Using

2Õε(
√

logn) · log Λ passes over the stream, and n ·2Õ(
√

logn) · log Λ space, their algorithm

produces a hopset with hopbound β = 2Õε(
√

logn) and size n · 2Õ(
√

logn) · log Λ. Our
streaming algorithm constructs a hopset using nO(ρ)β · log2 n passes over the stream,
with

(3) β = O

(
κ(log κ+ 1/ρ)

ε

)log κ+1/ρ

;

i.e., it is independent of n. The expected size of the hopset is O(n1+1/κ · log n), and

it uses space O(n1+1/κ · log2 n · β). Also, by setting κ = Θ(log n), ρ =
√

log logn
logn ,3

our result strictly dominates that of [HKN14, HKN16]; the hopbound and number of
passes are essentially the same, while our space usage and hopset size are significantly
better.

1.2.2. Hopsets in the PRAM model. In the PRAM model, multiple proces-
sors are connected to a single memory block, and the operations are performed in
parallel by these processors. We will be concerned mostly with the Exclusive Read
Exclusive Write (EREW) PRAM model, which allows only a single processor to access
any memory cell at any given round. The running time is measured by the number
of rounds, and the work is measured by the number of processors.

In this model, Klein and Subramanian [KS97] and Shi and Spencer [SS99] (im-
plicitly) devised algorithms for constructing exact (ε = 0) hopsets with hopbound
β = O(

√
n) of linear size O(n), with running time O(

√
n · log n), and with O(|E| ·

√
n)

work. Cohen [Coh00] constructed (β, ε)-hopsets with size n1+1/κ · (log n)O((log κ)/ρ),
with hopbound βCoh given by (1), in time (logn

ε)O((log κ)/ρ), using O(|E| · nρ) work.
Her κ and ρ are restricted by κ, 1/ρ = O(log log n), and thus the resulting hopset is

never sparser than n · 2O(logn
log logn).

Miller et al. [MPVX15] devised two constructions of linear-size (β, ε)-hopsets but

with very large β. One has β = Oε(n
4+α
4+2α), and running time given by the same

expression, and work O(|E| · log3+α n), for a parameter α ≥ 0. Another has β =
nα, for a constant α, and running time given by the same expression, and work
O(|E| · logO(1/α) n).

Our algorithm has two regimes. In the first regime it constructs (β, ε)-hopsets with
β=(logn

ε)log κ+1/ρ+O(1), with expected sizeO(n1+1/κ·log n), in time (logn
ε)log κ+1/ρ+O(1),

using O(|E| · nρ) work. This result strictly improves upon Cohen’s hopset [Coh00],
as the exponent of β and of the running time in the latter is O((log κ)/ρ), instead of
log κ+ 1/ρ+O(1) as in our case. Also, the size of our hopset is smaller than that of
[Coh00] by a factor of O(log n)O((log κ)/ρ).

In the second regime, our PRAM algorithm computes a hopset with constant (i.e.,
independent of n) hopbound β but in larger parallel time. See Table 2 for a concise
comparison of available PRAM algorithms.

3Note that for such a choice of ρ, it is best to take κ as large as possible to reduce the hopset
size, since it can only affect the constant factor in the exponent of β.

1440 MICHAEL ELKIN AND OFER NEIMAN

Table 2
Comparison between (β, ε)-hopsets in the PRAM model (neglecting the dependency on ε). The

hopsets of [KS97, SS99] provide exact distances. The third row of our results follows from the second
one by setting κ = logn.

Reference Size β = hopbound Time Work

[KS97, SS99] O(n) O(
√
n) O(

√
n logn) O(|E| ·

√
n)

[MPVX15]
O(n) O(n

4+α
4+2α) O(n

4+α
4+2α) O(|E| · log3+α n)

O(n) O(nα) (α ≥ Ω(1)) O(nα) O(|E| · logO(1/α) n)

[Coh00] n1+1/κ · (logn)
O(

log κ
ρ

)
(logn)

O(
log κ
ρ

)
(logn)

O(
log κ
ρ

)
O(|E| · nρ)

This paper
O(n

1+ 1
κ · logn) (logn)

log κ+ 1
ρ

+O(1)
(logn)

log κ+ 1
ρ

+O(1)
O(|E| · nρ)

O(n
1+ 1

κ · logn)

 log κ+ 1
ρ

ζ

log κ+O(1
ρ

)

O(nζ) · β O(|E| · nρ+ζ)

O(n · logn)

(
log logn+1/ρ

ζ

)log logn+O(1/ρ)
O(nζ) · β O(|E| · nρ+ζ)

1.3. Hopsets in distributed models. There are two distributed models in
which hopsets are studied in the literature [HKN14, Nan14, HKN16, LP15, EN16b].
These are the Congested Clique model and the CONGEST model. In both models
every vertex of an n-vertex graph G = (V,E) hosts a processor, and the processors
communicate with one another in discrete rounds via short messages. Each message is
allowed to contain the identity of a vertex or an edge, and an edge weight, or anything
else of no larger (up to a fixed constant factor) size.4 On each round each vertex can
send possibly different5 messages to its neighbors. The local computation is assumed
to require zero time, and we are interested in algorithms that run for as few rounds
as possible. (The number of rounds is called the running time.) In the Congested
Clique model, we assume that all vertices are interconnected via direct edges, but
there might be some other weighted undirected graph G′ = (V,E′, ω), E′ ⊆ E =

(
V
2

)
,

embedded in the clique G, for which we want to compute a hopset. In the CONGEST
model, every vertex can send messages only to its G-neighbors, but we also assume
that there is an embedded “virtual” graph G′ = (V ′, E′, ω), V ′ ⊆ V , known locally
to the vertices. (At the beginning of the computation, every vertex u ∈ V knows
whether u ∈ V ′, and if this is the case, then every vertex also knows the identities
of its G′-neighbors.) We remark that the assumption of embedded graph G′ in the
CONGEST model appears in previous papers on computing hopsets in distributed
setting, that is, in [HKN14, Nan14, HKN16, LP15, EN16b]. This assumption is
motivated by distributed applications of hopsets, i.e., approximate shortest paths
computation, distance estimation, and routing, which require a hopset for a virtual
graph embedded in the underlying network in the above way.

Henzinger, Krinninger, and Nanongkai [HKN16] devised an algorithm for con-
structing hopsets in the Congested Clique model. Their hopset has hopbound β =

2Õε(
√

logn) and size n · 2Õ(
√

logn) · log Λ, where Λ is the aspect ratio of the embedded

graph. The running time of their algorithm is 2Õε(
√

logn) · log Λ.
Our algorithm, for parameters ε > 0, ρ > 0, κ = 2, 3, . . . , computes a hopset with

(4) β = O

(
log κ+ 1/ρ

ε · ρ

)log κ+O(1/ρ)

,

4Typically, in the CONGEST model, only messages of size O(logn) bits are allowed, but edge
weights are restricted to be at most polynomial in n. Our definition is geared toward capturing a
more general situation, when there is no restriction on the aspect ratio. Hence results achieved in
our more general model are more general than previous ones.

5In the Broadcast Congested Clique and Broadcast CONGEST models, these messages must be
identical.

HOPSETS WITH CONSTANT HOPBOUND 1441

with expected size O(n1+1/κ · log n), in O(nρ · β2) rounds.6

Comparing our result to that of [HKN16], we first note that our hopset achieves
a constant (i.e., independent of n) hopbound. Second, by setting κ = Θ(log n),

ρ =
√

log logn
logn , we can have our hopbound and running time equal to 2Õε(

√
logn),

i.e., roughly the same as, but in fact slightly better than, the respective bounds of
[HKN16]. Our hopset’s size then becomes O(n · log n), i.e., much closer to linear than

n · 2Õ(
√

logn) of the hopset of [HKN16].
The situation is similar in the CONGEST model. Denote by m = |V ′| the size

of the vertex set of the embedded graph G′. The algorithm of [HKN16] computes
a hopset with the same hopbound and size as in the Congested Clique model (with

n replaced by m), and it does so in (D + m) · 2Õε(
√

logm) · log Λ time, where Λ is
the aspect ratio of G′, and D is the hop-diameter of G.7 Our algorithm computes
in O((D + m1+ρ) · β · mρ) time a hopset with a (constant) hopbound as given by
(4) and with expected size O(m1+1/κ · logm). (See Corollary 4.10, which in fact
gives stronger, but more complicated, bounds.) Again, our hopset can have constant

hopbound, while that of [HKN16] is 2Õε(
√

logm). Also, by setting κ = Θ(logm),

ρ =
√

log logm
logm , we obtain a result which strictly dominates that of [HKN16].8

1.4. Applications. Our algorithms for constructing hopsets also give rise to
improved algorithms for the problems of computing (1 + ε)-approximate shortest dis-
tances (henceforth, (1 + ε)-ASD) and paths (henceforth, (1 + ε)-ASP). In all settings,
we consider a subset S ⊆ V of origins, and we are interested in distance estimates or
in approximate shortest paths for pairs in S × V . Denote s = |S|.

Our PRAM algorithm for the (1 + ε)-ASP problem has running time
O(logn

ε)log κ+1/ρ+1 and uses O(|E| · (nρ + s)) work. Cohen’s algorithm [Coh00] for

the same problem has (parallel) running time O(logn
ε)O((log κ)/ρ) and has the same

work complexity as our algorithm. Hence, both our algorithm and Cohen’s algorithm
achieve polylogarithmic time and near-optimal work complexity, but the exponent
log κ+ 1/ρ+ 1 of the logarithm in our result is significantly smaller than in Cohen’s.
The latter is O((log κ)/ρ).

In the Congested Clique model, Henzinger, Krinninger, and Nanongkai [HKN16]
used hopsets to design an algorithm that computes single-source (1 + ε)-ASP in

2Õ(
√

logn) time. Applying their algorithm separately from each source results in

time s · 2Õ(
√

logn). For a comparison, our algorithm computes S × V (1 + ε)-ASP
for s = nΩ(1), in s · (1/ε)O(1) time. We remark that an algorithm of Censor-Hillel
et al. [CKK+15] computes all-pairs ASP in O(n0.158) time. Hence our result here
improves the state of the art for the range nΩ(1) ≤ s ≤ o(n0.158).

In the distributed CONGEST model (see section 1.3 for its definition), the hopset-

based algorithm of [HKN16] computes single-source (1+ε)-ASP in (D+
√
n)·2Õ(

√
logn)·

6Our hopsets come in two different varieties. One variety consists of ordinary hopsets, and the
other consists of path-reporting hopsets. The latter are used in applications in which the actual paths,
and not just distance estimates, need to be reported. Generally, the parameters of path-reporting
hopsets are slightly worse than those of their ordinary counterparts. All bounds that we provide
in the introduction apply to both path-reporting and ordinary hopsets. Even stronger bounds for
ordinary hopsets are given in the technical part of the paper.

7The hop-diameter of a graph is the maximum hop-distance between two vertices. The hop-
distance between a pair u, v of vertices is the minimal number of hops in a path between them.

8Modulo some minor modifications (see section 4 for details), our results apply even in the more
restricted Broadcast Congested Clique and Broadcast CONGEST models.

1442 MICHAEL ELKIN AND OFER NEIMAN

log Λ time. Using it naively for S × V (1 + ε)-ASP results in a running time of

(D + s ·
√
n) · 2Õ(

√
logn) · log Λ. Using our hopsets we solve this problem in (D +√

n · s) · 2Õ(
√

logn) · log Λ time. Whenever s = nΩ(1), we use our hopset with different
parameters, and our running time becomes Õ(D +

√
n · s) · log Λ. We also remark

that if large messages of size nρ are allowed for some constant ρ > 0, then we can
compute single-source (1 + ε)-ASP in Õ(D +

√
n) · log Λ time, and in the Congested

Clique model we obtain single-source (1+ε)-ASP in polylog(n) · log Λ time. Also, with
minor modifications (see section 4 for details), these results apply to the Broadcast
Congested Clique and Broadcast CONGEST model.

In the streaming model, Henzinger, Krinninger, and Nanongkai [HKN16] devised

a single-source (1+ε)-ASP streaming algorithm with 2Õ(
√

logn) · log Λ passes that uses

n · 2Õ(
√

logn) · log Λ space. To the best of our knowledge, the best-known streaming
S × V (1 + ε)-ASP algorithm with this space requirement is to run the algorithm
of [HKN16] for each source separately, one after another. The resulting number of

passes is s · 2Õ(
√

logn) · log Λ. Our algorithm for this problem builds a hopset, whose
parameters depend on s. As a result, our algorithm has an improved number of
passes, particularly when s is large (we also avoid the dependence on Λ). Our space
usage is only Õ(n) for (1 + ε)-ASD. Alternatively, by allowing larger space we can get
O(s) passes for any fixed ε > 0 whenever s = nΩ(1). See Theorem 5.8 for the precise
results.

1.5. Subsequent work. After the publication of a preliminary version of our
paper [EN16a], Becker et al. [BKKL16], using a completely different approach, devised
an algorithm for single-source (1 + ε)-ASP in polylog(n) · log Λ time in the Broadcast
Congested Clique model, and in Õ(D+

√
n) · log Λ time in the Broadcast CONGEST

model, using short messages. They also devised a streaming single-source (1+ ε)-ASP
algorithm that uses Õ(n) · log Λ space and polylog(n) · log Λ passes.

In another development subsequent to the conference version of our current work
[EN16a], in [EN17] we, and, independently in [HP19], Huang and Pettie, devised im-
proved constructions of hopsets with constant hopbound. Our constructions in the
current paper are based on the superclustering-and-interconnection approach intro-
duced by Elkin and Peleg [EP01, EP04] for building near-additive spanners. On the
other hand, the subsequent constructions of [EN17, HP19] are based on Thorup and
Zwick’s constructions of near-additive spanners from [TZ06]. In particular, our hopset
has size Ω(n log n) for any setting of the parameters, while the hopsets of [EN17, HP19]
can achieve linear size.

1.6. Overview of techniques. In this section we sketch the main ideas used
in the hopsets’ constructions of [Coh00], in [Ber09, HKN14, HKN16], and in our
constructions.

Cohen’s algorithm [Coh00] starts with constructing a pairwise cover C of the input
graph [Coh93, ABCP93]. This is a collection of small-diameter clusters, with limited
intersections, and such that for any path π of length at most W , for a parameter
W , all vertices of π are clustered in the same cluster. For each cluster C ∈ C, the
algorithm inserts into the hopset a star {(rC , u) | u ∈ C} connecting the center rC of
C with every other vertex of C. In addition, it adds to the hopset edges connecting
centers of large clusters with one another, and it recurses on small clusters.

This powerful approach has a number of limitations. First, the collection of star
edges itself contains O(κ · n1+1/κ) edges, where κ is a parameter, which controls the
hopset’s size. Each level of the recursion increases the exponent of the number of

HOPSETS WITH CONSTANT HOPBOUND 1443

edges in the hopset by roughly a factor of κ · n1/κ, and as a result, the hopset of
[Coh00] cannot be very sparse. Second, each distance scale [2k, 2k+1], k = 0, 1, 2, . . . ,
requires a separate hopset, and as a result, a separate collection of covers. This
increases the hopset’s size even further, but in addition, a hopset of scale k + 1 in
Cohen’s algorithm is computed using hopsets of all the lower scales. This results in
accumulation of error; i.e., if the error incurred by each hopset computation is 1 + ε,
the approximation factor of the ultimate hopset becomes (1 + ε)log Λ. After rescaling
ε′ = ε log Λ, one obtains a hopbound of roughly (1/ε)` = O(log Λ

ε′)`, where ` is the
number of levels of the recursion. As a result, the hopbound in [Coh00] is at least
polylogarithmic in n.

Another line of works [Ber09, HKN14, HKN16] is based on the distance oracles
and emulators9 of Thorup and Zwick [TZ01, TZ06]. They build a hierarchy of sampled
sets V = A0 ⊃ A1 ⊃ · · · ⊃ Ak−1 ⊃ Ak = ∅, where for any i = 1, . . . , k − 1,
each vertex v ∈ Ai−1 joins Ai independently at random with probability n−1/k. For

each vertex v ∈ V , one can define the TZ cluster C(v) by C(v) =
⋃k−1
i=0 {u | u ∈

Ai, dG(u, v) < dG(u,Ai+1)}. Thorup and Zwick [TZ06] showed that for unweighted
graphs, H = {(v, u) | u ∈ C(v)} is a (1 + ε, β)-emulator with O(k · n1+1/k) edges,
and β = O(1/ε)k. (Observe that β here is the additive error of the emulator. We use
the same notation to emphasize a connection between constructions of hopsets and
emulators, where the emulator’s additive error corresponds to the hopbound of the
hopset.) Bernstein and others [Ber09, HKN14, HKN16] showed that a closely related
construction provides a hopset. Specifically, [Ber09] applied a truncated version of
this construction on all distances scales to obtain a (1 + ε, β)-hopset with the same
parameters as those of the emulator of [TZ06] (the size is multiplied by log Λ). In
the construction of [HKN16] (which required efficient distributed construction), the

authors set k = Θ(
√

log n) and build TZ clusters with respect to 2Õ(
√

logn)-limited
distances. This results in a so-called restricted hopset, i.e., a hopset H1 that handles

2Õ(
√

logn)-limited distances. Consequently, all nearly shortest paths with N hops in
G, for some N , now translate into nearly shortest paths (incurring an approximation
factor of 1 + ε of H1) with N

2Õ(
√

logn)
hops in G ∪H1. Nanongkai [Nan14] called this

operation a hop reduction, as this essentially reduces the maximum number of hops
from n − 1 to n/2

√
logn. Then the hop reduction is repeated

√
log n times until a

hopset for all distances is constructed.
This scheme appears to be incapable of providing very sparse hopsets, as just the

invocation of Thorup and Zwick’s algorithm with κ = Θ(
√

log n) gives n · 2Ω(
√

logn)

edges. In addition, the repetitive application of hop reduction blows up the hopbound
to 2Ω(

√
logn); i.e., the large hopbound appears to be inherent in this approach.

Our approach combines techniques from [EP04] for constructing (1+ε, β)-spanners
in unweighted graphs with those of [Coh00], and with a set of new ideas. To build
their spanners, Elkin and Peleg [EP04] start by constructing an Awerbuch–Peleg
partition P = {C1, . . . , Cq} [AP90] of the vertex set V into disjoint clusters of small
diameter. (This partition satisfies an additional property, which is irrelevant to this
discussion.) It then sets a distance threshold δ1 and a degree threshold deg1. Every
cluster C ∈ P that has at least deg1 unclustered clusters C ′ ∈ P in its δ1-vicinity
(i.e., the clusters of distance at most δ1 from C) creates a supercluster that contains
C and these clusters. (At the beginning all clusters are unclustered. Those that

9A graph G′ = (V ′, E′, ω′) is called a (1 + ε, β)-emulator of an unweighted graph G = (V,E),
if V ⊆ V ′, and for every pair of u, v ∈ V of vertices, it holds that dG′ (u, v) ≤ dG(u, v) ≤ (1 +
ε)dG(u, v) + β. If G′ is a subgraph of G, then G′ is called a (1 + ε, β)-spanner of G.

1444 MICHAEL ELKIN AND OFER NEIMAN

join a supercluster become clustered.) This superclustering step continues until no
additional superclusters can be formed. All remaining unclustered clusters that are at
pairwise distance at most δ1 are now interconnected by shortest paths in the spanner.
This is the interconnection step of the algorithm. Together the superclustering and
interconnection steps form a single phase of the algorithm. Once the first phase is
over, the same process (interleaving superclustering and interconnection) is repeated
with new distance and degree thresholds δ2 and deg2, respectively, on the set of
superclusters of the previous phase. The sequences δ1, δ2, . . . and deg1, deg2, . . . are
set carefully to optimize the parameters of the resulting spanner.

The basic variant of our hopset construction considers each distance scale [2k, 2k+1],
k = 0, 1, 2, . . . , separately (w.l.o.g we assume all weights are at least 1). Instead of
the Awerbuch–Peleg partition, we use the partition P = {{v} | v ∈ V } into single
vertices. We set the distance threshold δ1 to roughly 2k/β = 2k/(1/ε)`, where ` is the
number of phases of the algorithm, and raise it by a factor of 1/ε on every phase. The
degree thresholds are also set differently from the way they were set in [EP04]. This is
because, intuitively, the hopset contains fewer edges than the spanner, as the hopset
can use a single edge, while a spanner needs to use an entire path. Hence the degree
sequence that optimizes the hopset’s size is different from the one that optimizes the
spanner’s size.

The superclustering and interconnection steps are also implemented in a different
way than in [EP04] because of efficiency considerations. The algorithm of [EP04]
is not particularly efficient, and there are no known efficient streaming, distributed,
or parallel implementations of it.10 On a high level, our superclustering and inter-
connection steps are conducted as follows. On phase i we sample clusters C ∈ P
independently at random with probability 1/deg i. The sampled clusters create super-
clusters of radius δi around them. Then the unclustered clusters of P that are within
distance δi/2 from one another are interconnected by hopset edges. Note that here the
superclustering distance threshold and the interconnection distance thresholds differ
by a factor of 2. This ensures that all of these steps can be efficiently implemented.
We also show that the overhead introduced by this factor to the resulting parameters
of our hopset is insignificant.

Our superclustering-and-interconnection approach to constructing hopsets was
not previously used in the literature [Coh00, Ber09, HKN14, Nan14, HKN16]. Rather
it is adapted from [EP04]. The latter paper deals with nearly additive spanners
for unweighted graphs. We believe that our main technical contribution consists of
realizing that the technique of [EP04] can be instrumental for constructing drastically
improved hopsets, and adapting that technique from the context of near-additive
spanners for unweighted graphs to the context of hopsets for general graphs.

To construct a hopset for all scales, in the centralized setting we simply take
the union of the single-scale hopsets. In parallel, distributed, and streaming settings,
however, Dijkstra explorations for large scales could be too expensive. To remedy this,
we rely on lower-scale hopsets for computing the current scale, as in Cohen’s algorithm.
On the other hand, a naive application of this approach results in polylogarithmic
hopbound β. To achieve constant (i.e., independent of n) hopbound β, we compute

10The algorithms of [Elk01, EZ06] that construct (1 + ε, β)-spanners in distributed and streaming
settings are not based on the superclustering-and-interconnection technique. Rather they are based
on a completely different approach reminiscent of that in [Coh00], i.e., they build covers and recurse
in small clusters.

HOPSETS WITH CONSTANT HOPBOUND 1445

in parallel hopsets for many different scales, using the same lower-scale hopset for
distance computations. This results in a much smaller accumulation of error than in
Cohen’s scheme, but it requires a larger running time. (Roughly speaking, computing
a scale-t hopset using scale-s hopset, for t > s, requires time proportional to 2t−s.)
We carefully balance this increase in running time with other parameters to optimize
the attributes of our ultimate hopset.

Finally, we need to replace the logarithmic dependence on the aspect ratio Λ with
a logarithmic dependence on n. Cohen’s results [Coh00] do not have this dependence,
as they rely on a PRAM reduction of Klein and Subramanian [KS97] that replaces the
dependence on the aspect ratio Λ by n. However, Klein and Subramanian [KS97] (see
also [Coh97] for another analysis) analyzed this reduction for single-source distance
estimation, while in the hopset’s case we need to apply it to all pairs. The distrib-
uted and streaming hopsets’ constructions [Ber09, HKN14, HKN16, Nan14] all have
a dependence on log Λ.

We develop a new analysis of Klein and Subramanian reduction that applies to the
hopsets’ scenario (see section 4). We also show that the reduction can be efficiently
implemented in distributed and streaming settings.

1.7. Structure of the paper. Our main construction of hopsets, along with
the centralized algorithm implementing it, is given in section 3.1. Sections 3.2–3.6
provide implementations of this construction in various computational models. In
section 4 we eliminate the dependence on the aspect ratio from most of our bounds.
In section 5 we use our hopsets to devise faster algorithms for computing approximate
shortest paths and distances.

2. Preliminaries. Let G = (V,E) be a weighted graph on n vertices with di-
ameter Λ. We shall assume throughout that edge weights are positive integers. For
C ⊆ V , G(C) is the induced graph on C. Let dG be the shortest path metric on G,

and let d
(t)
G be the t-limited distance; that is, for u, v ∈ V , d

(t)
G (u, v) is the minimal

length of a path between u, v that contains at most t edges (set d
(t)
G (u, v) =∞ if there

is no such a path). Note that d
(t)
G is not a metric. Also, denote by ΓG(v) the set of

neighbors of v. If the graph G can be understood from the context, the subscript G
is omitted.

3. Hopsets.

3.1. A centralized construction. Let G = (V,E) be a weighted graph on n
vertices with diameter Λ; we assume throughout the paper that the minimal distance
in G is 1. Fix parameters κ ≥ 2, 0 < ε < 1/10, and 1/κ ≤ ρ ≤ 1/2. (For technical
reasons, if κ > log n/ log log n, we require that ρ < 1/3.) Recall that κ governs the
sparsity of our hopset, ε governs its stretch, and ρ governs the running time. The
parameter β, which governs the hopbound, will be determined later as a function of
n,Λ, κ, ρ, ε. We build separately a hopset Hk for every distance range (2k, 2k+1] for
k ≤ log Λ. We will call such a hopset Hk a single-scale hopset.

Denote R̂ = 2k+1. For R̂ ≤ β = (1/ε)`, where ` is the number of levels of the
construction (to be determined), an empty hopset Hk = ∅ suffices for pairs of distance

in (R̂/2, R̂]. (Indeed, for dG(u, v) ≤ R̂ ≤ β, we have d
(β)
G∪Hk(u, v) = d

(β)
G (u, v) =

dG(u, v) for Hk = ∅.) Hence we assume that k > log β − 1, i.e., R̂ > β.
The algorithm initializes the hopset Hk as an empty set and proceeds in phases.

It starts with setting P̂0 = {{v} | v ∈ V } to be the partition of V into singleton
clusters. The partition P̂0 is the input of phase 0 of our algorithm. More generally,
P̂i is the input of phase i, for every index i in a certain appropriate range, which we

1446 MICHAEL ELKIN AND OFER NEIMAN

Algorithm 1 Hk = Single-Scale Hopset(G = (V,E), κ, ρ, ε, k).

1: Hk = ∅;
2: P̂0 = {{v} | v ∈ V };
3: for v ∈ V do
4: r{v} = v;
5: end for
6: R0 = 0;

7: i0 = blog(κρ)c; i1 = i0 +
⌈
κ+1
κρ

⌉
− 2; ` = i1 + 1;

8: α = ε` · 2k+1;
9: for i = 0, 1, . . . , `− 1 do

10: δi = α/εi + 4Ri;
11: Ri+1 = Ri + δi;

12: deg i =

{
n2i/κ, i ≤ i0,
nρ otherwise;

13: (P̂i+1,Ui) = superclustering(G, P̂i, deg i, δi);
14: interconnection(G,Ui, δi);
15: end for
16: interconnection(G, P̂`, δ`);
17: return Hk;

Algorithm 2 (P,U) = superclustering(G, P̂, deg , δ).

1: U = ∅;
2: Create S by sampling each cluster in P̂ into S independently with probability

1/deg ;
3: for each C ∈ S do
4: Ĉ ← C;
5: rĈ = rC ;
6: end for
7: for each C ′ ∈ P̂ do
8: Let C ∈ S be the cluster minimizing dG(rC , rC′) (breaking ties arbitrarily);
9: if dG(rC , rC′) ≤ δ then

10: Hk ← Hk ∪ {(rC , rC′)};
11: Ĉ ← Ĉ ∪ C ′;
12: else
13: U ← U ∪ {C ′};
14: end if
15: end for
16: P = {Ĉ : C ∈ S};
17: return (P,U);

will specify in what follows.
Throughout the algorithm, all clusters C that we construct will be centered at des-

ignated centers rC . In particular, each singleton cluster C = {v} ∈ P̂0 is centered at v.
We define Rad(C) = max{dG(C)(rC , v) | v ∈ C} and Rad(P̂i) = maxC∈P̂i{Rad(C)}.

The algorithm for a single-scale hopset is succinctly described in Algorithm 1. The

HOPSETS WITH CONSTANT HOPBOUND 1447

Algorithm 3 interconnection(G,U , δ).
1: for any two clusters C,C ′ ∈ U such that dG(rC , rC′) ≤ δ/2 do
2: Hk ← Hk ∪ {(rC , rC′)};
3: end for

superclustering and interconnection steps appear in Algorithm 2 and Algorithm 3,
respectively.

All phases of our algorithm, except the last phase, consist of two steps. Specifi-
cally, these are the superclustering and the interconnection steps. The last phase con-
tains only the interconnection step, and the superclustering step is skipped. We also
partition the phases into two stages. The first stage consists of phases 0, 1, . . . , i0 =
blog(κρ)c, and the second stage consists of all the other phases i0 + 1, . . . , i1, where
i1 = i0 + dκ+1

κρ e − 2, except the last phase ` = i1 + 1. The last phase will be referred
to as the concluding phase.

Each phase i accepts as input two parameters: the distance threshold parameter
δi, which determines the range of the Dijkstra explorations, and the degree parameter
deg i, which determines the sampling probability. The Dijkstra explorations are used
to discover distances from the clusters’ centers. The difference between stages 1 and
2 is that in stage 1 the degree parameter grows exponentially, while in stage 2 it is
fixed. The distance threshold parameter grows at the same steady rate (increases by
a factor of 1/ε) throughout the algorithm.

The distance thresholds’ sequence is given by α = ε` ·R̂, δi = α(1/ε)i+4Ri, where
R0 = 0 and Ri+1 = δi + Ri = α(1/ε)i + 5Ri for i ≥ 0. It follows that R1 = α, and
by estimating the recurrence we obtain Ri ≤ 2 · α · (1/ε)i−1. The degree sequence in

the first stage of the algorithm is given by deg i = n2i/κ for i = 0, 1, . . . , i0. We then
use deg i = nρ in all subsequent phases i0 + 1, . . . , i1. Finally, in phase ` = i1 + 1 we
perform just the interconnection step. Note that ` ≥ 2 since ρ ≤ 1/2.

Next we take a closer look at the execution of phase i, i = 0, 1, 2, . . . , ` − 1. At
the beginning of the phase we have a collection P̂i of clusters, of radius 2α · (1/ε)i−1

for i ≥ 1, and radius 0 for i = 0. (It will be shown in Claim 3.1 that Rad(P̂i) ≤
Ri ≤ 2α · (1/ε)i−1 for all i = 0, 1, . . . , `.) Each of these clusters is now sampled
with probability 1/deg i, independently at random (iar). The resulting set of sampled
clusters is denoted Si. We then initiate a single Dijkstra exploration in G rooted at
the set Roots = {rC | C ∈ Si} of cluster centers of sampled clusters. The Dijkstra
exploration is conducted to depth δi. Let Fi denote the resulting forest.

Let C ′ ∈ P̂i \ Si be a cluster with center rC′ reached by the exploration, and let
rC , for some cluster C ∈ Si, be the cluster center such that rC′ belongs to the tree
of Fi rooted at rC . We then add an edge (rC , rC′) of weight ω(rC , rC′) = dG(rC , rC′)
into the hopset Hk, which we are now constructing. A supercluster Ĉ rooted at
rĈ = rC is now created. It contains all vertices of C and of clusters C ′ as above.

This completes the description of the superclustering step. The resulting set Ŝi of
superclusters becomes the next level partition P̂i+1, i.e., we set P̂i+1 ← Ŝi.

Claim 3.1. Fix any cluster C ∈ P̂i with center rC . Then for any u ∈ C there is
a path in Hk of at most i edges from rC to u of length at most Ri.

Proof. The proof is by induction on i. The base case i = 0 holds because C is
a singleton. Assume it holds for i, and fix any Ĉ ∈ P̂i+1 and u ∈ Ĉ. Recall that
Ĉ consists of a sampled cluster C ∈ Si, and clusters C ′ ∈ P̂i for which the Dijkstra

1448 MICHAEL ELKIN AND OFER NEIMAN

exploration to range δi from rC reached their center rC′ . Assume u ∈ C ′ (the case
where u ∈ C is simpler). Then by induction there is a path of length at most Ri from
rC′ to u in Hk of i hops, and by construction we added the edge (rC , rC′) of weight
dG(rC , rC′) into the hopset Hk. This implies a path of i+ 1 hops and length at most

δi +Ri = Ri+1 .

Let Ûi denote the set of P̂i clusters which were not superclustered into Ŝi clus-
ters. These clusters are involved in the interconnection step. Specifically, each of the
cluster centers rC , C ∈ Ûi, now initiates a separate Dijkstra exploration to depth
1
2δi = 1

2α · (1/ε)
i + 2Ri. All the vertices within distance 1

2δi from rC are visited by

this exploration. For any cluster center rC′ of a cluster C ′ ∈ Ûi such that rC′ was
discovered by an exploration originated at rC , we now insert an edge (rC , rC′) into the
hopset and assign it weight ω(rC , rC′) = dG(rC , rC′). This completes the description
of the interconnection step.

Lemma 3.2. For any vertex v ∈ V , the expected number of explorations that visit
v at the interconnection step of phase 0 ≤ i ≤ i1 is at most deg i.

Proof. For 0 ≤ i ≤ i1, assume that there are t clusters of P̂i within distance δi/2
from v. If at least one of them is sampled to Si, then no exploration will visit v (since
in the superclustering phase the sampled center will explore to distance δi, and thus
all these t clusters will be superclustered into some cluster of Ŝi). The probability that
none of them is sampled is (1−1/deg i)

t, in which case we get that t explorations visit
v, so the expectation is t · (1− 1/deg i)

t ≤ deg i for any l. (To see the last inequality,
note that t · (1− 1/deg i)

t ≤ t · e−t/degi , so it suffices to show that t/deg i · e−t/degi ≤ 1.
Taking log, it becomes ln(t/deg i)− t/deg i ≤ 0, which holds for all t, deg i.)

A similar argument yields the following lemma (which will be needed in later
sections).

Lemma 3.3. For any constant c > 1, with high probability (whp) at least 1 −
1/nc−1, for every vertex v ∈ V , at least one among the deg i · c · lnn closest cluster
centers rC′ with C ′ ∈ P̂i to v is sampled, i.e., satisfies C ′ ∈ Si.

We analyze the number of clusters in collections P̂i in the following lemma.

Lemma 3.4. Assuming nρ = ω(1), whp, for every i = 0, 1, . . . , i0 + 1 we have

(5) |P̂i| ≤ 2 · n1− 2i−1
κ ,

and for i = i0 + 2, . . . , i1 + 1,

|P̂i| ≤ 2 · n1+1/κ−(i−i0)ρ .

Proof. For the first assertion, the probability that a vertex v ∈ V will be a center
of a cluster in P̂i is

∏i−1
j=0 1/degj = n−(2i−1)/κ. Thus the expected size of P̂i is

n1−(2i−1)/κ, and as these choices are made independently, by the Chernoff bound,

IP[|P̂i| ≥ 2IE[|P̂i|]] ≤ exp{−Ω(IE[|P̂i|])} = exp{−Ω(n1− 2i−1
κ)} .

Since for ρ ≤ 1/2 and i ≤ i0 + 1 = blog ρκc+ 1, we have n1− 2i−1
κ ≥ n1−2ρ+1/κ =

ω(log n) (recall that when κ > log n/ log log n, then ρ < 1/3), we conclude that whp

for all 0 ≤ i ≤ i0 + 1, |P̂i| ≤ 2n1− 2i−1
κ . In particular, |P̂i0+1| = O(n1−ρ+1/κ).

HOPSETS WITH CONSTANT HOPBOUND 1449

For the second assertion, consider any i ∈ [i0 + 2, i1 + 1]; the expected size of P̂i
is

IE[|P̂i|] = n ·
i−1∏
j=0

1/degj ≤ n1+1/κ−ρ−(i−1−i0)ρ = n1+1/κ−(i−i0)ρ .

Since n1+1/κ−(i−i0)ρ ≥ nρ for any i ≤ i1, by Chernoff’s bound with probability at
least 1− exp{−Ω(nρ)} (which is 1− o(1) by our assumption on nρ), we have

|P̂i| ≤ 2 · n1+1/κ−(i−i0)ρ.

This lemma implies that whp,

(6) |P̂i1+1| ≤ O(n1+1/κ−(i1+1−i0)ρ) = O(n1+1/κ−(dκ+1
κρ e−1)ρ) = O(nρ) .

For the assumption of the lemma to hold, we will need to assume that ρ ≥ log logn
2 logn ,

say. We will soon show that this assumption is valid in our setting.
The running time required to implement the single Dijkstra exploration in the

superclustering of phase i is O(|E| + n log n), while in the interconnection step, by
Lemma 3.2 every vertex is expected to be visited by at most deg i explorations, so
the expected running time of phase 0 ≤ i ≤ i1 is O(|E| + n log n) · deg i. Recall that
in the last phase i1 + 1 there is no superclustering step, but as (6) implies, there are
whp only O(nρ) clusters, so each vertex will be visited at most O(nρ) times. Thus
the total expected running time is

O(|E|+ n log n) ·

(
`−1∑
i=0

(deg i) + nρ

)
= O(|E|+ n log n) ·

(
i0∑
i=0

(n2i/κ) + (i1 − i0)nρ

)
= O(|E|+ n log n) · (n2i0/κ + nρ/ρ)

= O(|E|+ n log n) · nρ/ρ .

The size of the hopset Hk that was constructed by this algorithm is dominated by
the number of edges inserted by the interconnection steps, since all the edges inserted
at superclustering steps induce a forest. Due to Lemma 3.2, the expected number
of edges inserted by the interconnection step of phase i is at most O(|P̂i| · deg i) =

O(n1+1/κ), for i ≤ i0, and
∑`+1
i=i0+1O(|P̂i| · deg i) = O(n1+1/κ) edges on the later

phases. Hence overall IE(|Hk|) = O(n1+1/κ · log κ). We remark that the factor log κ
can be eliminated from the hopset size by using a refined degree sequence, at the cost
of increasing the number of phases by 1 (this will increase the exponent of β by 1).
We elaborate on this in section 3.1.1. Then the number of edges contributed to the
hopset Hk by all interconnection steps becomes O(n1+1/κ).

Next we analyze the stretch and the hopbound of Hk. Write H = Hk. Observe
that, by Claim 3.1, Rad(Û0) = R0 = 0, and, for all i ∈ [1, `], Rad(Ûi) ≤ Rad(P̂i) ≤
Ri ≤ 2α(1/ε)i−1. Write c = 2. Note also that for any pair of distinct clusters
C,C ′ ∈ Ûi, for any i, which are at distance dG(C,C ′) ≤ 1

2α · (1/ε)
i, it holds that

dG(rC , rC′) ≤ dG(C,C ′) + 2Ri ≤ 1
2α(1/ε)i + 2 · Ri = 1

2δi. Hence for every pair of
clusters C,C ′ as above, an edge (rC , rC′) of weight ω(rC , rC′) = dG(rC , rC′) belongs
to the hopset.

Observe that Û =
⋃`
i=0 Ûi is a partition of G. This holds because the sets Ûi are

pairwise disjoint (when a cluster is not superclustered it joins some Ûi and ceases to
participate in the next steps) and because in the last step we take all the remaining

clusters to Û` =
ˆ̂P`. For any i, we denote Û (i) =

⋃i
j=0 Ûj .

1450 MICHAEL ELKIN AND OFER NEIMAN

Lemma 3.5. Let x, y be a pair of vertices with dG(x, y) ≤ 1
2α · (1/ε)

i and such

that all vertices of a shortest path π(x, y) in G between them are clustered in Û (i) for
some i ≤ `. Then it holds that

(7) d
(hi)
G∪H(x, y) ≤ dG(x, y)(1 + 16c(i− 1) · ε) + 8 · α · c · (1/ε)i−1 ,

with hi given by h0 = 1, and hi+1 = (hi + 1)(1/ε+ 2) + 2i+ 5.

Proof. The proof is by induction on i. The base case is the case i = 0.
Base case. We assume dG(x, y) ≤ 1

2α and all vertices of π(x, y) are clustered in

Û0; then there is an edge (x, y) in H with ω(x, y) = dG(x, y), and indeed,

d
(h0)
G∪H(x, y) = dG(x, y) ≤ dG(x, y)(1− 16c · ε) + 8 · α · c · (1/ε)−1 .

Inductive step. We assume the assertion of the lemma for some index i, and prove
it for i+ 1.

Consider first a pair u, v of vertices such that all vertices of π(u, v) are clustered
in Û (i), for a fixed i < `, without any restriction on dG(u, v).

We partition π(u, v) into segments L1, L2, . . . , of length roughly 1
2 ·α · (1/ε)

i each,
in the following way. The first segment L1 starts at u, i.e., we write u = u1. Given
a left endpoint up, p ≥ 1, of a segment Lp, we set the right endpoint vp of Lp to
be the farthest vertex of π(u, v) from up which is closer to v than up, and such that
dG(up, vp) ≤ 1

2 · α · (1/ε)
i (if it exists).

If vp does not exist, then the pth segment Lp is declared void, and we define
vp = up+1 to be the neighbor of up on π(u, v) which is closer to v. If vp does exist,
then up+1 is the “right” neighbor of vp on π(u, v), i.e., the neighbor of vp which is
closer to v than vp. (It may not exist only if vp = v.) Observe that in either case, if
up+1 exists, then dG(up, up+1) > 1

2 · α · (1/ε)
i (if it exists).

We also define extended segments L̂p in the following way. If Lp is a void segment,

then we define L̂p = Lp. Otherwise L̂p is the segment of π(u, v) connecting up with

up+1, if up+1 exists, and with vp otherwise. (This may be the case only if Lp = L̂p is
the last, i.e., the rightmost, segment of the path π(u, v).)

Observe that every nonvoid extended segment L̂p, except perhaps the last one,
has length at least 1

2 ·α · (1/ε)
i, and every segment Lp has length at most 1

2 ·α · (1/ε)
i.

Next we construct a path π′(u, v) in G∪H, which has roughly the same length as
π(u, v), but consists of much fewer hops. Consider a segment Lp, with left endpoint

up and right endpoint vp, and its extended segment L̂p with right endpoint up+1. We
define a substitute segment L′p in G ∪H, connecting up to up+1 with a few hops, and
of roughly the same length.

If Lp is a void segment, then L′p is just the single edge (up, up+1), taken from
E = E(G). Observe that for a void segment,

ω(L̂p) = ω(Lp) = ω(up, up+1) = dG(up, up+1) .

Otherwise, if Lp is not a void segment, then dG(up, vp) ≤ 1
2 · α · (1/ε)

i. Observe also

that since all vertices of π(u, v) are Û (i)-clustered, this is also the case for the subpath
π(up, vp). Hence the induction hypothesis is applicable to this subpath, and so there
exists a path π′(up, vp) in G ∪H with at most hi hops, such that

ω(π′(up, vp)) ≤ dG(up, vp) · (1 + 16 · c(i− 1) · ε) + 8 · α · c · (1/ε)i−1 .

HOPSETS WITH CONSTANT HOPBOUND 1451

We define L′p to be the concatenation of π′(up, vp) with the edge (vp, up+1). (This
edge is taken from G.) Since vp lies on a shortest path between up and up+1, it follows
that

ω(L′p) ≤ (1 + 16c · (i− 1)ε) · dG(up, up+1) + 8 · α · c · (1/ε)i−1 ,

and L′p contains up to hi + 1 hops.
Finally, our ultimate path π′(u, v) is the concatenation of all the substitute seg-

ments L′1 ◦L′2 ◦· · ·◦L′q, where π(u, v) = L̂1 ◦ L̂2 ◦· · ·◦ L̂q. Since each extended segment

has length at least 1
2α · (1/ε)

i−1, we conclude that

d
((hi+1)·d dG(u,v)

1
2
α(1/ε)i

e)

G∪H (u, v) ≤ dG(u, v)(1 + 16c(i− 1)ε) +

⌈
dG(u, v)
1
2α(1/ε)i

⌉
· 8αc · (1/ε)i−1

≤ dG(u, v)

(
1 + 16c(i− 1)ε+

8 · α · c(1/ε)i−1

1
2α · (1/ε)i

)
+ 8αc · (1/ε)i−1

= dG(u, v)(1 + 16c · i · ε) + 8 · αc · (1/ε)i−1 .(8)

Now consider x, y such that dG(x, y) ≤ 1
2α · (1/ε)

i+1 and such that π(x, y) is Û (i+1)-

clustered. Let z1 and z2 denote the leftmost and rightmost Ûi+1-clustered vertices
on this path, and denote by C1 and C2 their respective clusters. Denote also r1 =
rC1

, r2 = rC2
. (If z1 and z2 do not exist, then π(x, y) is Û (i)-clustered, and this case

was already taken care of.) Denote also by w1 (resp., w2) the neighbor of z1 (resp.,
z2) on the subpath π(x, z1) (resp., π(z2, y)) of π(x, y).

The path π′(x, y) in G∪H between x and y is constructed in the following way. By
(8), we can reach from x to w1 while incurring a multiplicative stretch of (1 + 16ci · ε)
and an additive error of 8 ·α · c · (1/ε)i−1, and using at most b1 = (hi + 1) · ddG(x,w1)

1
2α(1/ε)i

e
hops. The same is true for the pair w2, y, except that the required number of hops is

at most b2 = (hi + 1) · ddG(w2,y)
1
2α(1/ε)i

e. Finally, the path π′(x, y) connects w1 with w2 via

edges (w1, z1), (z2, w2) that belong to E(G), the edge (r1, r2) of the hopset H, and
the paths π(z1, r1), π(r2, z2) (each of i+ 1 hops) in H given by Claim 3.1. Hence,

d
(hi+1)
G∪H (x, y) ≤ d(b1)

G∪H(x,w1) + d
(1)
G (w1, z1) + d

(i+1)
G (z1, r1) + d

(1)
H (r1, r2)

+ d
(i+1)
G (r2, z2) + d

(1)
G (z2, w2) + d

(b2)
G∪H(w2, y)

≤ (1 + 16c · i · ε)dG(x,w1) + dG(w1, z1) +Ri+1 + (dG(z1, z2) + 2Ri+1)

+ Ri+1 + dG(z2, w2) + (1 + 16ci · ε)dG(w2, y) + 2 · (8αc · (1/ε)i−1)

≤ (1 + 16c · i · ε)dG(x, y) + 4 · αc(1/ε)i + 16αc · (1/ε)i−1

≤ (1 + 16c · i · ε)dG(x, y) + 8 · αc · (1/ε)i ,

where the required number of hops indeed satisfies

(hi + 1)

(⌈
dG(x,w1)
1
2α · (1/ε)i

⌉
+

⌈
dG(w2, y)
1
2α · (1/ε)i

⌉)
+ 2i+ 5

≤ (hi + 1)

(
dG(x, y)
1
2α(1/ε)i

+ 2

)
+ 2i+ 5

≤ (hi + 1)(1/ε+ 2) + 2i+ 5

= hi+1.(9)

The recursive equation hi+1 = (hi+1)(1/ε+2)+2i+5 solves to hi ≤ 3·(1/ε+2)i for
ε < 1/10, i.e., h` ≤ 3·(1/ε+2)`. Write ζ = 16c(`+1)·ε and β = 2h`+1 ≤ 6·(1/ε+2)`+1.

1452 MICHAEL ELKIN AND OFER NEIMAN

Corollary 3.6. Let x, y ∈ V be such that dG(x, y) ∈ (R̂/2, R̂]. Then,

d
(β)
G∪H(x, y) ≤ (1 + ζ) · dG(x, y) .

Proof. Let π(x, y) be the shortest path in G between x, y. By an argument
similar to (and simpler than) the one in Lemma 3.5, we can see that there exists an
edge (u, v) ∈ E such that both u, v are on π(x, y), and also that dG(x, u) ≤ R̂/2
and dG(y, v) ≤ R̂/2. Applying Lemma 3.5 on these pairs with i = `, recalling that
1
2α · (1/ε)

` = R̂/2 and that every vertex is clustered in Û (`), it follows that

d
(h`)
G∪H(x, u) ≤ dG(x, u)(1 + 16c(`− 1) · ε) + 8c · ε · R̂ .

Similarly, it also follows that

d
(h`)
G∪H(y, v) ≤ dG(x, u)(1 + 16c(`− 1) · ε) + 8c · ε · R̂ .

Since β = 2h` + 1 and (u, v) ∈ E, we obtain

d
(β)
G∪H(x, y) ≤ d(h`)

G∪H(x, u) + d
(1)
G (u, v) + d

(h`)
G∪H(y, v)

≤ (dG(x, u) + dG(u, v) + dG(v, y)) · (1 + 16c(`− 1) · ε) + 16c · ε · R̂
≤ dG(x, y) · (1 + 16c(`− 1) · ε) + 32c · ε · dG(x, y)

= dG(x, y) · (1 + ζ).

Recall that ` = blog(κρ)c+ dκ+1
ρκ e − 1 ≤ log(κρ) + d1/ρe is the number of phases

of the algorithm (for the sake of brevity, from now on we ignore the ceiling of 1/ρ).

When we rescale ε = ζ as the stretch factor, then β = O(`/ε)` = O(log κ+1/ρ
ε)log κ+1/ρ.

Our ultimate hopset H is created by H ←
⋃
k>log β−1Hk; i.e., H is the union of

up to dlog Λe hopsets, each of which takes care of its own distance range. As a result,
the number of edges in H is O(n1+1/κ · log κ · log Λ), and its expected construction
time is O((|E| + n log n) · nρ/ρ · log Λ). (The factor log κ in the hopset’s size will be
eliminated in section 3.1.1.) By executing the algorithm a number of times until the
first time that the number of edges in the hopset is at most some constant multiplied
by IE(|H|), one can ensure that the bound on |H| holds with probability 1, while the
expected running time grows only by a constant factor.

The following theorem summarizes this result.

Theorem 3.7. For any graph G = (V,E) with n vertices and diameter Λ, 2 ≤
κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, and 0 < ε ≤ 1, our algorithm constructs a (β, ε)-hopset
H with O(n1+1/κ · log Λ) edges, in expected time O((|E|+ n log n)(nρ/ρ · log Λ)), with

β = O(log κ+1/ρ
ε)log κ+1/ρ.

Moreover, the hopset consists of up to dlog Λe single-scale hopsets. Each of these
hopsets Hk has the same β, and its expected size is |Hk| = O(n1+1/κ). It can be
constructed in O((|E|+ n · log n)(nρ/ρ)) time.

In section 4 we will show how to remove the dependence on the aspect ratio Λ
and replace it with n, which yields the following.

Theorem 3.8. For any graph G = (V,E, ω) with n vertices, 2 ≤ κ ≤ (log n)/4,
1/2 ≥ ρ ≥ 1/κ, and 0 < ε ≤ 1, our algorithm constructs a (β, ε)-hopset H with
O(n1+1/κ · log n) edges, in expected time O((|E| + n log n)(nρ/ρ · log n)), with β =

O(log κ+1/ρ
ε)log κ+1/ρ.

Finally, we note that our assumption that ρ > log log n/(2 log n) is justified;
otherwise we get β ≥ n, in which case an empty hopset will do. Also, ε ≤ 1 because
we rescaled it by a factor of 16c(`+ 1) > 10.

HOPSETS WITH CONSTANT HOPBOUND 1453

3.1.1. Improved hopset size. Here we show how to select a refined degree
sequence that will eliminate the term of log κ from the size of the hopset constructed
in section 3.1 by increasing the number of phases by 1 (and thus the exponent of β by

an additive 1). Specifically, one can set deg i = n2i/κ/22i−1 for each i = 0, 1, . . . , i0 =

blog(κρ)c. As a result we get that IE[|P̂i|] = n ·
∏i−1
j=0 1/degj = n1− 2i−1

κ · 22i−1−i, and
thus the expected number of edges inserted at phase i ≤ i0 is at most

O(IE[|P̂i|] · deg i) = O(n1+1/κ/2i) ,

and thus it is O(n1+1/κ) over all phases i = 0, 1, . . . , i0. When the first stage concludes,
we run the phase i0 + 1 with deg i0+1 = nρ/2 and run all subsequent phases with
deg i = nρ. To bound the expected number of edges added at phase i0 + 1 we need to

note that 22i0+1 ≤ 22κρ ≤ nρ/2 as long as κ ≤ (log n)/4. (The latter can be assumed
without affecting any of the parameters by more than a constant factor.) It follows

that IE[|P̂i0+1|]·deg i0+1 = n1− 2i0+1−1
κ ·22i0+1−1−(i0+1)·nρ/2 ≤ n1+1/κ. In the remaining

phases, IE[|P̂i0+i|] ≤ n1+1/κ−(i−1)ρ for i ≥ 2, and the contribution of these phases is
a converging sequence. In particular, at phase i0 + 2 we have IE[|P̂i0+2|] ≤ n1+1/κ−ρ.
We can take i1 = i0 + dκ+1

κρ e − 1, and finally IE[|P̂i1+1|] ≤ n1+1/κ−(i1+1−i0−1)ρ ≤ nρ,
as required to bound the running time of the final interconnection phase. The total
number of phases is now ` = i1 + 1 = blog(κρ)c+ dκ+1

κρ e, which might be larger by an
additive 1 than the bound claimed in Theorem 3.8. For the sake of brevity, we ignore
this small overhead.

3.2. Distributed implementation in Congested Clique model. In this
section we argue that our hopset construction admits an efficient implementation in
the distributed Congested Clique model, albeit with somewhat worse parameters.

A direct implementation of the algorithm from section 3.1 in this model requires
up to O(n) distributed time, because a Dijkstra algorithm invoked during the hopset’s
construction may explore paths with up to n hops. To overcome this issue we use the
following idea, which dates back to Cohen’s work [Coh00]. Specifically, we use hopsets⋃

log β−1<j≤k−1Hj to construct the hopset Hk. Indeed, the hopset Hk needs to take

care of vertex pairs u, v with dG(u, v) ∈ (2k, 2k+1], R̂(k) = 2k+1, while E ∪ H(k−1)

(with H(k−1) =
⋃
j≤k−1Hj) provides (1 + ε)-approximate shortest paths with up to

β hops for pairs u, v with dG(u, v) ≤ 2k. Denote E′(k−1) = E ∪H(k−1).
Consider a vertex pair u, v ∈ V , with dG(u, v) ∈ (2k, 2k+1], and let π(u, v) be

a shortest path between them. Let x ∈ V (π(u, v)) be the farthest vertex of π(u, v)
from u which is at distance no greater than 2k from u, and let y be its neighbor such
that dG(u, y) > 2k. Observe that the hopset H(k−1) provides (together with the edge
set E of the original graph) a (1 + ε)-approximate shortest u − v path with at most
2β+ 1 hops. This path π′(u, v) is a concatenation of a (1 + ε)-approximate u−x path
π′(u, x) in E′(k−1) with the edge (x, y) and with a (1 + ε)-approximate y − v path
π′(y, v) in E′(k−1).

Next we generalize this observation.

Lemma 3.9. For any index p, log β − 1 ≤ p ≤ k − 1, the hopset H(p−1) provides
(together with edges of E) (1+ε)-approximate shortest paths with at most 2k+2−p(β+1)
hops for pairs u,v, with dG(u, v) ∈ (2k, 2k+1].

Proof. Partition π(u, v) into segments (except void segments) of length at most
2p−1, (See the proof of Lemma 3.5 for the definition of void, extended, and substitute
segments.) For each nonvoid extended segment we use at most β + 1 hops of the

1454 MICHAEL ELKIN AND OFER NEIMAN

substitute segment in G∪H(p−1), and for each void extended segment we use just one
hop. Every extended segment has length at least 2p−1, and thus π(u, v) is partitioned
into at most 2k+2−p such segments. Hence the assertion of the lemma follows. (In
fact, in the last segment, β hops suffice, and thus the estimate can be refined to
2k+2−p(β + 1)− 1.)

The first variant of our distributed algorithm builds hopsetsHk0 , Hk0+1, Hk0+2, . . .
consecutively, where k0 is the largest integer such that R̂(k0) = 2k0+1 ≤ β. Suppose
that all hopsets Hj , j < k, were already built, and we are now building Hk. We only
need to describe how the superclustering and the interconnection steps on a phase i,
0 ≤ i ≤ `, are implemented. (On phase ` there is no superclustering step, and there
we only need to implement the interconnection step.)

Denote by ζ = ζk−1 the value such that E′(k−1) guarantees stretch 1 + ζ. We
slightly modify the sequence of distance thresholds δi; specifically, we multiply all of
them by a factor of 1 + ζ.

We define R′i = (1 + ζ)Ri and δ′i = (1 + ζ)δi for every i ∈ [0, `]. Here α = α(k) =
R̂(k)

(1/ε)`
, where R̂(k) = 2k+1. The distributed variant of our algorithm uses distance

thresholds (δ′i | 0 ≤ i ≤ `), and as a result upper bounds on the radii of i-level clusters
become R′i = Ri(1 + ζ).

The superclustering step of our centralized algorithm conducts a Dijkstra explo-
ration from the set Roots = {rc | C ∈ Si} in G to distance δi = α ·(1/ε)i+4Ri ≤ R̂(k).
In the distributed version we instead invoke the Bellman–Ford algorithm originated
in Roots over the edge set E′(k−1) = E ∪H(k−1) for 4β + 2 rounds.

Specifically, vertices rC ∈ Roots initialize their distance estimates d̂(rC) = 0, and
other vertices initialize them as∞. On every round, every vertex v sends its estimate
d̂(v) to all other vertices in the network. Every vertex u sets locally

d̂(u)← min

{
d̂(u),min

v∈V
{d̂(v) + ωE′(k−1)(v, u)}

}
.

This computation proceeds for 4β + 2 rounds.
As a result every vertex v computes its (4β + 2)-limited distance in E′(k−1) from

Roots. For v such that dG(Roots, v) ≤ 2k+1 = R̂(k), we have

dG(Roots, v) ≤ d
(4β+2)

E′(k−1)(Roots, v) ≤ d
(2β+1)

E′(k−1)(Roots, v) ≤ (1 + ζ)dG(Roots, v) .

For every i ∈ [0, `− 1],

δi ≤ δ`−1 = α · (1/ε)`−1 + 4R`−1 ≤ α · (1/ε)`−1 + 8α(1/ε)`−2

= α(1 + 8ε)(1/ε)`−1 ≤ α · (1/ε)` = R̂(k)

for ε ≤ 1/10. (Recall that on phase ` there is no superclustering step, and thus the
maximum exploration of any superclustering step is δ`−1.)

We conclude that for every v ∈ Ball(Roots, δi), its distance estimate d̂(v) satisfies

(10) dG(Roots, v) ≤ d̂(v) ≤ (1 + ζ) · dG(Roots, v) .

Moreover, execution of the Bellman–Ford algorithm also constructs a forest F rooted
at the centers Roots = {rC | C ∈ Si} of i-level selected clusters, and every vertex v

with d̂(v) <∞ knows the root rC of its tree in F .

For any cluster center rC′ , C
′ ∈ P̂i \ Si, such that d̂(rC′) ≤ δ′i = (1 + ζ)δi, the

algorithm connects rC with rC′ via a hopset edge e = (rC , rC′) (i.e., H ← H ∪ {e})

HOPSETS WITH CONSTANT HOPBOUND 1455

of weight ω(e) = d̂(rC′), where rC is the root of the tree of F to which rC′ belongs.
We also create a supercluster rooted at C (more specifically, at rC) which contains

all vertices of C ′ as above. Observe that (by (10)), if dG(rC , rC′) ≤ δi, then d̂(rC′) ≤
(1 + ζ)δi = δ′i. Then the edge (rC , rC′) will be added to the hopset, and the cluster
C ′ will be superclustered in an i-level cluster created around C. (See also inequality
(11) below.)

This completes the description of the superclustering step of phase i. The inter-
connection step is conducted in a similar way, but now the Bellman–Ford algorithm
is conducted from each cluster center in URoots = {rC | C ∈ Ûi} separately. (This is
in contrast to the superclustering step, in which the Bellman–Ford algorithm is con-
ducted from the set Roots.) Also, this version of Bellman–Ford is conducted to depth

2β + 1 rather than 4β + 2. As a result, every vertex v maintains estimates d̂(rC , v)

for cluster centers rC ∈ URoots. In each step, v sends all of its estimates d̂(rC , v)

which satisfy d̂(rC , v) ≤ 1
2δ
′
i to the entire network. Recall Lemma 3.3, which implies

that whp, no vertex v has more than O(deg i · log n) cluster centers {rC | C ∈ Ûi} at
(2β+1)-limited distance at most 1

2δ
′
i from it in E′(k−1). (Note that if v has c·deg i ·log n

cluster centers rC as above at (2β + 1)-limited distance at most 1
2δ
′
i from it for some

sufficiently large c, then each of these cluster centers is at (4β + 2)-limited distance
at most δ′i from all the others. Hence, with probability at least n−(c−O(1)), i.e., whp,

one of them is sampled, and none of the respective clusters C belongs to Ûi.) Hence,
in each step each vertex v needs to send O(deg i · log n) messages to the entire net-
work, and this requires O(deg i · log n) rounds (whp). Since deg i = O(nρ) for all i, we
conclude that the algorithm requires O(nρ · (1/ρ) log n · β) time whp. This is because
in each phase we perform O(β) steps, each of which lasts O(deg i · log n) rounds, whp.
We also remark that if large messages of size nρ log n are allowed, then the running
time becomes only O(β/ρ).

As a result, for every pair of clusters C,C ′ ∈ Ûi such that dG(rC , rC′) ≤ 1
2δi, the

edge (rC , rC′) is inserted into the hopset. Indeed, observe that

1

2
· δi ≤

1

2
· δ` ≤ α · (1/ε)`(1 + 8ε)/2 ≤ α · (1/ε)` = R̂(k)

for ε < 1/10. Hence dG(rC , rC′) ≤ R̂(k). Denote by d̂(rC , rC′) the estimate of
dG(rC , rC′) computed by rC′ . Then we have

(11) d̂(rC , rC′) = d
(2β+1)

E′(k−1)(rC , rC′) ≤ (1 + ζ)dG(rC , rC′) ≤
1

2
(1 + ζ)δi =

1

2
δ′i .

Next we analyze the properties of the resulting hopset H =
⋃
k≥k0

Hk. The size
of the hopset is the same as with the centralized algorithm, but in the stretch analysis
we incur additional overhead in comparison with the centralized algorithm. This
is because in the centralized construction, every pair of sufficiently close Ûi cluster
centers were interconnected via an edge of length exactly equal to the distance in G
between them, while now the length of this edge is equal to the distance between
them in E′(k−1), i.e., it is a (1 + ζ)-approximation of the distance in G between them.

The following lemma is a distributed analogue of Lemma 3.5.

Lemma 3.10. For x, y as in Lemma 3.5 it holds that

(12) d
(hi)
G∪Hk(x, y) ≤ dG(x, y)(1 + ζ)(1 + 16c(i− 1)ε) + (1 + ζ) · 8 · αc · (1/ε)i−1 ,

with hi+1 ≤ (hi + 1)(1/ε+ 2) + 2i+ 5.

1456 MICHAEL ELKIN AND OFER NEIMAN

Remark. Note that the hopset Hk alone suffices for approximating single-scale
distances; i.e., one does not need hopsets Hj with j < k for the inequality (12) to
hold.

Proof. Recall that the radius of an i-level cluster in the distributed variant of our
algorithm is at most R′i ≤ (1 + ζ)Ri, where Ri ≤ α · c · (1/ε)i−1. The proof is again
by an induction on i. The base case is i = 0.

Base case. If dG(x, y) ≤ 1
2α = 1

2δ0 and all vertices of π(x, y) are clustered in

Û0, then there is a hopset edge in Hk between x and y, and its weight is at most
(1 + ζ)dG(x, y), as required.

Inductive step. We follow closely the proof of Lemma 3.5. In inequality (8) we
get that for a pair u, v of vertices such that all vertices of π(u, v) are clustered in Û (i),
it holds that

d
(hi+1)·d dG(u,v)

1
2
α·(1/ε)i

e

G∪Hk (u, v) ≤ dG(u, v)(1 + ζ)(1 + 16c · i · ε) + 8 · αc · (1/ε)i−1 · (1 + ζ) .

Now we consider a pair of vertices x, y such that dG(x, y) ≤ 1
2α · (1/ε)

i+1 and

such that π(x, y) is Û (i+1)-clustered. Let w, z1, r1, r2, z2, w2, C1, and C2 be as in the
proof of Lemma 3.5. In an analogous way we conclude that

d
(hi+1)
G∪Hk (x, y) ≤ (1 + ζ)(1 + 16c · i · ε)dG(x, y) + (1 + ζ)8 · αc · (1/ε)i ,

with hi+1 ≤ (hi + 1)(1/ε + 2) + 2i + 5. For ε < 1/4, we have 16α · c · (1/ε)i−1 ≤
4 · α · c · (1/ε)i, and the assertion of the lemma follows.

For a pair of vertices u, v ∈ V with R̂(k)/2 < dG(u, v) ≤ R̂(k), R̂(k) = 2k+1, the
additive term of (1+ζ)8αc·(1/ε)`−1 in (12) can be incorporated into the multiplicative
stretch, i.e., we get

d
(h`)
G∪Hk(x,y) ≤ (1+ζ)

(
(1+16c(`−1)ε)dG(x,y)+8cR̂(k)·ε

)
≤ (1+ζ)(1+16c`·ε)dG(x,y) .

Set now ε′ = 16c · ` · ε ≤ 16c(log(κρ) + 1/ρ) · ε. We get β = O(log κ+1/ρ
ε)log κ+1/ρ and

stretch (1 + ζ)(1 + ε).
Recall that ζ = ζk−1 is the value such that E′k−1 provides stretch 1 + ζ. For the

largest k0 such that R̂(k0) = 2k0+1 ≤ β, we have ζk0
= 0. On the next scale we have

ζk0+1 = ε, and generally, 1 + ζk = (1 + ζk−1)(1 + ε), i.e., 1 + ζk = (1 + ε)k.
Hence the overall stretch of our hopset is (1 + ε)log Λ. By rescaling ε′′ = ε

2 log Λ ,

we get stretch (1 + ε′′)log Λ ≤ 1 + ε. The number of hops becomes

(13) β = O

(
log Λ

ε
· (log κ+ 1/ρ)

)log κ+1/ρ

.

The expected number of edges in the hopset is O(n1+1/κ · log Λ), and its construc-
tion time is, whp, O(nρ/ρ · log n · β · log Λ) rounds.

Theorem 3.11. For any graph G = (V,E, ω) with n vertices and diameter Λ,
2 ≤ κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, and 0 < ε < 1, our distributed algorithm for the
Congested Clique model computes a (β, ε)-hopset H with expected size O(n1+1/κ ·log Λ)
in O(nρ/ρ · log n · β · log Λ) rounds, whp, with β given by (13).11

11When messages of size nρ logn are allowed, the number of rounds is O(β · log Λ/ρ).

HOPSETS WITH CONSTANT HOPBOUND 1457

Moreover, a single-scale hopset Hk that provides stretch at most 1 + ε using at
most β hops for pairs u, v with dG(u, v) ∈ (2k, 2k+1], and expected size O(n1+1/κ),
can be computed in the same number of rounds.

Next we show that whenever Λ = poly(n), β can be made independent of Λ and
of n. In section 4 we remove this assumption on Λ.

Fix a parameter 1 ≤ t ≤ log Λ. We partition the set of at most log Λ indices k
for which we build hopsets Hk into at most (log Λ)/t + 1 groups, each consisting of
t consecutive indices. Consider a single group {k1, k1 + 1, . . . , k1 + t − 1} of indices.
(Except maybe one group which can contain less than t indices.) We will compute
all hopsets in this group using the hopset H(k1); i.e., when conducting a Bellman–
Ford exploration to depth at most δ ≤ 2k+1 for some index k in the group, we will
conduct this exploration in G ∪ H(k1) for O(β · 2k+2−k1) = O(β · 2t) rounds. (The
exploration depth of the superclustering step will still be two times larger than that
of the interconnection step, in terms of both distance and hop-distance.) As a result
we spend more time constructing each individual hopset Hk for k > k1 in the group,
but the hopsets that we compute provide a better approximation (because they rely
on (1 + ζk1

)-approximate distances that G∪H(k1) provides rather than on (1 + ζk−1)-
approximate distances that H(k−1) provides).

As a result the ultimate stretch of our hopset becomes just (1 + ε)(log Λ)/t. For
a sufficiently small ε, this stretch is at most 1 + O(ε · log Λ)/t. We now rescale
ε′ = (ε · log Λ)/t. Our β becomes

(14) β = O

(
(log κ+ 1/ρ) log Λ

ε · t

)log κ+1/ρ

.

Finally, the number of rounds becomes greater than it was in Theorem 3.11 by a
factor of 2t, i.e, it is now O(nρ/ρ · log n ·β · log Λ ·2t), and we have the following result.

Theorem 3.12. For any graph G = (V,E, ω) with n vertices and diameter Λ,
2 ≤ κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 1 ≤ t ≤ log Λ, and 0 < ε < 1, a variant of our
distributed algorithm for the Congested Clique model computes a (β, ε)-hopset H with
expected size O(n1+1/κ · log Λ) in O(nρ/ρ · log n ·β · log Λ ·2t) rounds whp, with β given
by (14).

Moreover, a single-scale hopset with expected size O(n1+1/κ) and with the same
β can also be constructed within this running time.

We note that our algorithm computes a single-scale hopset of expected size of just
O(n1+1/κ), because hopsets of previous scales are only used to compute (approximate)
distances, whereas the stretch analysis only uses the current scale edges and the graph
edges.

When t = 1 this recaptures Theorem 3.11. A useful assignment is t = ρ log n,
which increases the number of rounds by a factor of nρ. Rescaling ρ′ = 2ρ, we obtain
the same size and running time as in Theorem 3.11, with

(15) β = O

(
(log κ+ 1/ρ) log Λ

ε · ρ log n

)log κ+2/ρ

.

The constant factor 2 in the exponent can be made arbitrarily close to 1 at the expense
of increasing the constant hidden in the O-notation in the base of the exponent.
See also Theorem 3.15 for a result about constructing path-reporting (to be defined)
hopsets in the Congested Clique model.

1458 MICHAEL ELKIN AND OFER NEIMAN

3.3. Distributed implementation in CONGEST model. In this section we
consider a scenario where we have an underlying “backbone” n-vertex network G =
(V,E) of hop-diameter D, and a“virtual” weighted m-vertex network G̃ = (Ṽ , Ẽ, ω̃),
Ṽ ⊆ V . Our objective is to compute a hopset H for G̃. Observe that the hopset
H needs only to approximate distances in G̃, defined by the weight function ω̃. The
latter may have nothing to do with the distance function dG of G.

Constructing hopsets in this framework turns out to be particularly useful for
shortest paths computation and routing in the CONGEST model [Nan14, HKN16,
EN16b].

The algorithm itself is essentially the same as in the distributed Congested Clique
model, except that most of the communication is conducted via a BFS (breadth first
search) tree τ rooted at a vertex rt of the backbone network G. (The tree has hop-
diameter D, and it can be constructed in O(D) distributed time [Pel00].)

Similarly to the Congested Clique model, we construct hopsets Hk0
, Hk0+1, . . . ,

Hdlog Λe consecutively, where k0 is the maximum integer k such that 2k+1 ≤ β. (Hk0

is set as ∅.) We consider a fixed phase i and describe how the superclustering and
interconnection steps of this phase are implemented. In the superclustering step, we
conduct the Bellman–Ford algorithm from the set Roots = {rC | C ∈ Si} to depth

4β + 2 in G̃ ∪H(k−1). Each vertex v ∈ Ṽ maintains an estimate d̂(v) initialized as 0
if v ∈ Roots, and ∞ otherwise. For each Bellman–Ford step, we collect all of the m
distance estimates at the root rt of τ via pipelined convergecast, and we broadcast all
estimates to the entire graph via pipelined broadcast over τ . This requires O(m+D)
time. Since we have O(β) such steps, overall the superclustering step of phase i, for
any i, requires O((m+D) · β) time.

Next, we implement the interconnection step. Here we need to conduct a Bellman–
Ford to hop-depth at most 2β + 1 and to weighted depth at most δ′i/2 = (1 + ζ)δi/2
in G′ ∪ H(k−1) from all vertices of URoots separately in parallel. As was argued in
the previous sections, each vertex v has to maintain O(deg i · logm) = O(mρ · logm)
distance estimates, whp. (In fact, in expectation the total number of these estimates
is O(m · deg i) = O(m1+ρ). Note that only estimates less than or equal to δ′i/2 are
broadcasted.)

This broadcast is also implemented via pipelined convergecast and broadcast, and
it requires O(D+m1+ρ · logm) time, whp. Since we implement it for O(β) steps, we
obtain an overall time of O((D + m1+ρ · logm) · β) for implementing a single step,
and an overall time of O((D+m1+ρ · logm) · β/ρ) for all steps. (The steps of stage 2
require this much time, while the running time of interconnection steps of stage 1 is
dominated by this expression.)

Similarly to the Congested Clique model, we can decrease the β here too by
grouping the log Λ scales into groups of size t. (Note that we can compute all hopsets
within the same group in parallel. This multiplies the number of messages broadcast
in each step by t, but the number of steps becomes smaller by the same factor.) We
summarize the result in the following theorem.

Theorem 3.13. For any graph G = (V,E, ω) with diameter Λ and hop-diameter
D, any m-vertex weighted graph G̃ = (Ṽ , Ẽ, ω̃) embedded in G, and any 2 ≤ κ ≤
(logm)/4, 1/2 ≥ ρ ≥ 1/κ, 1 ≤ t ≤ log Λ, 0 < ε < 1, our distributed algorithm in
the CONGEST model computes a (β, ε)-hopset H for G̃ with expected size O(m1+1/κ ·
log Λ) in O((D+m1+ρ · logm · t)β/ρ · log Λ · 2t/t) rounds whp,12 with β given by (14).

12When messages of sizemρ·logm·t are allowed, the number of rounds isO((D+m)β/ρ·log Λ·2t/t).

HOPSETS WITH CONSTANT HOPBOUND 1459

3.4. Path-reporting hopsets in distributed models. Next we introduce a
property of distributed hopset construction which we call awareness, and we argue
that our distributed construction satisfies this property. This property is useful for
certain distributed applications of hopsets, such as in constructions of routing tables
and sketches; cf. [EN16b].

This section focuses on the distributed CONGEST model; cf. section 3.3. At the
end of this section we also indicate how these results apply to the Congested Clique
model.

The awareness property stipulates that for every hopset edge (u, v) ∈ H, there
exists a path π(u, v) in G between u and v of weight ωG(π(u, v)) = ωH(u, v), and
moreover, every vertex x on this path is aware that it lies on π(u, v) and knows its
distances dπ(u,v)(u, x) and dπ(u,v)(x, v) to u and to v on this path, respectively, and
its two G-neighbors u′ and v′ that lie on π(u, v) along with the orientation. (That
is, x knows that u′ (resp., v′) is its π(u, v)-neighbor that leads to u (resp., v).) Note
that x may belong to multiple such paths. We also call a hopset with this property a
path-reporting hopset, because it can be used to report approximate shortest paths.

Next we adapt our algorithm for constructing hopsets in the CONGEST model
so that the awareness property will hold. Assume inductively that the property holds
for hopsets

⋃
j≤k−1Hj , and we will now show how to make it hold for Hk. (The

induction base case holds vacuously, because for the maximum value k0 such that
R̂(k0) = 2k0+1 ≤ β, the hopset Hk0

= ∅.)
The first modification to the algorithm that we introduce is that Bellman–Ford

executions will propagate not only distance estimates but also the actual paths that
implement these estimates. First, consider the variant of our algorithm that provides
(relatively) large β, i.e., the β given by (13). Since all of our Bellman-Ford invoca-
tions in this variant are O(β)-limited, these paths are of length up to O(β), and the
algorithm incurs a slowdown by only a factor of O(β) as a result of this modification.
Specifically, the Bellman–Ford invocations now require O((D + βm1+ρ · logm) · β/ρ)
overall time (whp) rather than O((D + m1+ρ · logm) · β/ρ) time, which we had in
section 3.3. Also, if messages of size b′ = O(β · mρ · logm) are allowed, then these
invocations can be implemented in O((D +m)β/ρ) time.

With this modification, when a vertex rC′ decides to add an edge (rC , rC′) to the
hopset, it knows the entire path πk−1(rC , rC′) in E′(k−1) which implements this edge.
(Note that |πk−1(rC , rC′)| = O(β).) After the construction of the hopset Hk is over,
all vertices v ∈ Ṽ broadcast all hopset edges (of Hk) along with their respective paths
to the entire graph. We will refer to this broadcast as the paths’ broadcast. Since
in expectation |Hk| = O(m1+1/κ), it follows that this broadcast requires expected
O(m1+1/κ ·β+D) time. Using messages of size b′, this expected time can be reduced
to O(D +m).

For an edge e = (rC , rC′) ∈ Hk, every vertex v ∈ Ṽ (πk−1(rC , rC′)) hears this
broadcast of e and of πk−1(rC , rC′) and records to itself that it (i.e., the vertex v)
belongs to Ṽ (πk−1(rC , rC′)), calculates its distances to the endpoints rC and rC′ ,
and computes its neighbors u and u′ on πk−1(rC , rC′) in the direction of rC and rC′ ,
respectively.

Now vertex x involved in a path π̂(v, u) ⊆ Ẽ that implements an edge (v, u) of
πk−1(rC , rC′) needs also to record that it belongs to the path π̂(rC , rC′) which imple-
ments the Hk-edge e = (rC , rC′) via edges of Ẽ. (This is in contrast to πk−1(rC , rC′),
which implements the same Hk-edge (rC , rC′) via edges of E′(k−1).) Since x hears of
the edge (v, u) ∈ π̂(rC , rC′), and since v stores the distances to v and u, it can infer
from π̂(rC , rC′) the distances to rC , rC′ (e.g., if v is the endpoint closer to rC , then

1460 MICHAEL ELKIN AND OFER NEIMAN

the distance to rC that x stores is dπ(rC ,rC′)
(rC , v) + dπ(v,u)(v, x)). The appropriate

neighbors of x are the same as those it stores for the edge (v, u).
To summarize, this modification of the algorithm ensures that our hopset con-

structing algorithm satisfies the awareness property. It does so by having its running
time increased to O((m1+1/ρ · logm · β + D)β/ρ log Λ) rounds, whp. (The time to
broadcast O(m1+1/κβ) messages is dominated by m1+ρ · logm · β here.) For the vari-
ant in which we group t scales together, each path may consist of O(β · 2t) hops, so
we pay this factor in the number of messages sent.

Theorem 3.14. For any graph G = (V,E, ω) with diameter Λ and hop-diameter
D, 2 ≤ κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 1 ≤ t ≤ log Λ, 0 < ε ≤ 1, and any m-
vertex weighted graph G̃ = (Ṽ , Ẽ, ω̃) embedded in G, our distributed algorithm in the
CONGEST model computes a path-reporting (β, ε)-hopset H for G̃ with expected size
O(m1+1/κ · log Λ) in O((D+m1+ρ · logm · t · β · 2t)β/ρ · log Λ · 2t/t) rounds whp, with
β given by (14). Using messages of size O(β · 2t · t ·mρ · logm), the running time can
be reduced to O((D +m)β/ρ · log Λ · 2t/t).

Moreover, a single-scale hopset with expected O(m1+1/κ) edges and with the same
β can also be constructed within this running time.

A similar adaptation enables us to construct path-reporting hopsets in the
Congested Clique model, again by transmitting entire paths rather than distance
estimates. As paths are of length at most β · 2t, this incurs such a factor in the
number of rounds or in the message size. Specifically, we obtain the following result.

Theorem 3.15. For any graph G = (V,E, ω) with n vertices and diameter Λ,
2 ≤ κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 1 ≤ t ≤ log Λ, and 0 < ε ≤ 1, a variant of
our distributed algorithm for the Congested Clique model computes a path-reporting
(β, ε)-hopset H with expected size O(n1+1/κ · log Λ) in O(nρ/ρ · log n · β2 · log Λ · 22t)
rounds whp, with β given by (14). If messages of size O(nρ ·ρ · log n ·β ·2t) are allowed,
then the running time reduces to O(β · 2t · log Λ).

Moreover, a single-scale hopset with expected size O(n1+1/κ) and with the same
β can also be constructed within this running time.

Particularly useful settings of the parameter t are t = log(mρ) in the CONGEST
model and t = log(nρ/2) in the Congested Clique model. Then in Theorem 3.14 we
obtain running time O((D +m1+2ρ · log2m · βρ)β/ρ2 ·mρ), and

(16) β = O

(
log κ+ 1/ρ

ε · ρ

)log κ+1/ρ

,

assuming Λ ≤ poly(m).
In Theorem 3.15 we obtain running time O(n2ρ/ρ · log2 n ·β2) with the same value

of β as in (16), assuming Λ ≤ poly(n). One can also rescale ρ′ = 2ρ and get running
time O(nρ/ρ · log2 n · β2), with

β = O

(
log κ+ 1/ρ

ε · ρ

)log κ+2/ρ

.

The constant factor 2 in the exponent can be made arbitrarily close to 1 at the
expense of increasing a constant factor hidden in the O-notation in the base of the
exponent. Also the assumption that Λ ≤ poly(n) will be removed in section 4. We
also remark that the distributed algorithms for constructing the hopsets described so
far can be seamlessly implemented in the Broadcast Congested Clique and Broadcast
CONGEST models.

HOPSETS WITH CONSTANT HOPBOUND 1461

3.5. Streaming model. Our implementation of the hopset constructing algo-
rithm in the streaming model follows closely our implementation from section 3.2 of
the algorithm in the Congested Clique model.

Here too we construct the hopsets Hk0 , Hk0+1, . . . ,Hdlog Λe consecutively. The
hopset Hk0 = ∅. Next we describe how to construct a hopset Hk (for distances in the
range (2k, 2k+1], 2k+1 = R̂(k)), assuming that the hopsets Hj , j ≤ k−1, were already
constructed.

We describe the streaming implementation in two regimes. In the first regime the
space will be Õ(n1+ρ), and the number of passes will be polylog(n) ·β. (In fact, in this
section it will be polylog(Λ) · β, but in section 4 we will replace the dependence on Λ
by a similar dependence on n.) In the second regime we use O(n1+1/κ · log Λ) space,
but the number of passes is much larger. (Specifically, it is O(nρ · β · log n · log Λ).)

To conduct the superclustering step of a phase i, in every pass over the stream E of
edges of G we update distance estimates d̂(v) of the distances dG(Roots, v). After each
pass we also read again the hopset H(k−1) and adjust distance estimates according
to hopset edges. As a result of 4β + 2 such passes we implement a (4β + 2)-limited
Bellman–Ford algorithm in E′(k−1) = E ∪H(k−1) which originated at Roots. As was
argued above, this provides us with (1+ζk−1)-approximate distances dG(Roots, v) for
all v such that dG(Roots, v) ≤ δi. This completes the description of the superclustering
step. The space required for it is the space needed to keep the hopset, i.e., expected
O(n1+1/κ · log Λ), and O(n) space for distance estimates.

For the interconnection step, we conduct a similar (2β+ 1)-limited Bellman–Ford

exploration, but to depth at most δ′i/2 = δi(1+ζk−1)
2 , and from all cluster centers

URoots separately in parallel. This necessitates that each vertex maintains in expec-
tation O(deg i) = O(nρ) estimates, so we will use O(n1+ρ/ρ) space to guarantee (with
constant probability) that none of the 1/ρ phases of stage 2 overflows (note that in
stage 1, deg i is much smaller than nρ). This completes the description of the stream-
ing algorithm in the first regime. The space required is O(n1+ρ/ρ + n1+1/κ · log Λ),
and the number of passes is O(β · log Λ).

For applications in which we use hopsets to provide approximate paths rather than
distances, we can store actual paths in E′(k−1) for every edge of Hk that we create.
Recall that a hopset appended with this information is a path-reporting hopset. Since
every edge ofHk is implemented using at most 2β+1 edges of E′(k−1), we can construct
the path-reporting variant of the above hopset using spaceO(n1+ρ/ρ+n1+1/κ·β·log Λ),
and the same number of passes as above.

Next, consider the regime where we allow (a much more limited) space O(n1+1/κ ·
log Λ). The superclustering steps can be implemented in the same way as described
above. The interconnection steps, however, require a certain adaptation. Specifically,
partition the interconnection step of phase i to c·deg i ·log n subphases for a sufficiently
large constant c. On each subphase each exploration source, which was not sampled
on previous subphases, samples itself iar with probability 1/deg i. Then the sampled
exploration sources conduct the δ′i/2-distance-bounded (2β+1)-limited Bellman–Ford
explorations. Recall Lemma 3.3, which asserts whp that every vertex is visited by
at most O(deg i · log n) explorations in each phase. Since in each subphase every
exploration happens with probability 1/deg i, the Chernoff bound implies that whp
no vertex is visited by more than O(log n) explorations. We conclude that it suffices
to use O(n · log n) memory for all phases to maintain distance estimates. Here we also
take a union-bound on all of the log Λ different scales, assuming that log Λ ≤ poly(n).
After c · deg i · log n subphases, whp, each exploration source is sampled on at least

1462 MICHAEL ELKIN AND OFER NEIMAN

one of the subphases, and thus the algorithm performs all the required explorations.
So we have spaceO(n1+1/κ·log Λ), and the number of passes isO(nρ·log n·β·log Λ).

The size, stretch, and hopbound analysis of the resulting hopset is identical to that
for the distributed Congested Clique model.

We can reduce the value of β by employing the idea used for the proof of The-
orem 3.12. (See the discussion right before Theorem 3.12.) Specifically, fix some
integer t ≥ 1. The set of at most log Λ indices k for which we build hopsets Hk

is partitioned into at most (log Λ)/t + 1 groups, each consisting of t consecutive in-
dices (except maybe one which can consist of less than t indices). In a single group
{k1, k1 + 1, . . . , k1 + t − 1} of indices, each hopset Hk from the group is computed
using hopset H(k1) rather than H(k−1).

As a result, we now conduct Bellman–Ford explorations to depth O(β ·2t), rather
than just O(β), and hence the number of passes increases by a factor of 2t. Hopsets
in the same group can be computed“in parallel,” so the space increases by a factor of
t. (Recall that in the path-reporting setting, we need to store paths of length β · 2t,
which increases the space needed to store the hopset by this factor.) The hopbound
β improves to the value in (14). We summarize this discussion in the next theorem.

Theorem 3.16. For any n-vertex graph G = (V,E, ω) of diameter Λ, any 2 ≤
κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 0 < ε ≤ 1, and any 1 ≤ t ≤ log Λ, our stream-
ing algorithm computes a (β, ε)-hopset with β given by (14) and with expected size
O(n1+1/κ log Λ). The resource usage is either

1. space O(t·n1+ρ/ρ+n1+1/κ·log Λ) (resp., space O(t·n1+ρ/ρ+n1+1/κ·β·2t·log Λ)
for path-reporting), in expectation, and O(β log Λ · 2t) passes; or

2. space O(n1+1/κ · log Λ) (resp., O(n1+1/κ · β · 2t · log Λ) for path-reporting) in
expectation, and O(nρ · β · log n · log Λ · 2t) passes.13

Moreover, a single-scale hopset Hk with expected size O(n1+1/κ) can be computed
within the space and pass complexities stated above.

In item 2 of Theorem 3.16 in the path-reporting case, it makes sense to set
t = log(n1/κ). As a result we obtain space O(n1+2/κ · β · log Λ), in expectation, and
O(nρ+1/κ · log Λ) passes, and β is given by (16). One can also rescale κ′ = κ/2 and get

expected spaceO(n1+1/κ·β·log Λ), O(nρ+
1

2κ) passes, and β = O((log κ+1/ρ)κ
ε)log κ+1/ρ+1.

3.6. PRAM model. We construct hopsets Hk0
, Hk0+1, . . . ,Hλ, λ = dlog Λe,

consecutively. Suppose that the hopset H(k−1) =
⋃k−1
j=k0

Hj has already been con-

structed. We now construct the hopset Hk for distances in the range (2k, 2k+1],
2k+1 = R̂(k).

We designate a set Pv = {pv,1, . . . , pv,∆} of ∆ = c · nρ · log n processors for
every vertex v ∈ V , and a set Pe = {pe,1, . . . , pe,∆} of ∆ processors for every edge
e ∈ E′(k−1) = E ∪H(k−1).

Next, we describe how to implement the superclustering step of a phase i, and
later we will explain how the interconnection step is implemented.

For the superclustering step, we use just one processor pv ∈ Pv for each vertex
v ∈ V , and one processor pe ∈ Pe for each edge e ∈ E′(k−1). In the superclustering
step we run a (2β + 1)-limited Bellman–Ford algorithm in E′(k−1) which originated
at Roots. At the beginning of an iteration of the Bellman–Ford algorithm, for every
vertex v ∈ V , its processor pv maintains an estimate d̃(v) of its distance from Roots,
and if d̃(v) <∞, then pv also stores the identity of a root rC ∈ Roots, such that d̃(v)

13Here we assume Λ ≤ 2poly(n).

HOPSETS WITH CONSTANT HOPBOUND 1463

reflects the length of a path from rC to v.14 In the path-reporting case, pv also stores
an edge (u, v) through which v acquired this estimate.

To implement the iteration, for each edge e = (u, v) ∈ E′(k−1) incident on v, the
processor pe computes d̃(u) +ω(e). (Toward this end, all processors {pe | u ∈ e} need
to read d̃(u) concurrently. This, however, can be implemented in the EREW model
in O(log n) time; cf. [JaJ92, Theorem 10.1].) The minimum min{d̃(u) + ω(u, v) | u ∈
Γ(v)} can now be computed by the processors {pe | v ∈ e} in O(log n) parallel time.
If this minimum is smaller than the current value of d̃(v), then the estimate d̃(v) is
updated to be equal to this minimum. Hence the total EREW parallel time for one
iteration of Bellman–Ford is O(log n), and the overall time for the superclustering
step is, therefore, O(β · log n).

Now, we turn to implementing the interconnection step. Here we implement a
(2β + 1)-limited Bellman–Ford exploration, to depth at most δ′i/2, from all cluster
centers URoots separately, in parallel.

Consider a single iteration of the Bellman–Ford algorithm. At the beginning
of the iteration, every vertex v maintains estimates {d̃(v, x) | x ∈ URoots} for all
x ∈ URoots that it heard from. Other estimates are (implicitly) set to ∞. For every
edge e = (u, v) ∈ E′(k−1), incident on v, whp, there are at most ∆ = c · nρ · log n
Bellman–Ford explorations that traverse this edge. Recall that we we have ∆ proces-
sors {pe,1, . . . , pe,∆} = Pe designated to this edge. We designate a separate processor
from Pe to each exploration that traverses e. With some notational ambiguity, we
will denote by pe,x the processor from Pe designated to the exploration originated at
a vertex x, traversing the edge e.

All processors {pe,x | e = (v, u), for some u} read the value d̃(u, x). (This concur-
rent read can be implemented in O(log n) time in EREW PRAM.) They also calculate
the value d̃(u, x) +ω(u, v), and the minimum of these values over all neighbors u of v
(separately for each x) is computed within additional O(log n) EREW PRAM time.
If this minimum is smaller than the current d̃(v, x), and if it is no greater than δ′i/2,
then the value d̃(v, x) is updated (by the processor pv,x, designated to handle at v the
exploration originated at x) to the new value.

To summarize, one iteration of Bellman–Ford explorations in an interconnection
step can also be implemented in O(log n) EREW PRAM time. Hence, overall, the
superclustering and the interconnection steps of a given phase require O(β · log n)
EREW PRAM time. Therefore, the total parallel time for computing a single-scale
hopset Hk is O(β · ` · log n) = O(β · (log κ + 1/ρ) · log n). Computing hopsets for
all of the dlog Λe scales requires O(β · (log κ + 1/ρ) · log n · log Λ) parallel time. The
number of processors is O(|E′(λ)| · nρ · log n) = O((|E| + |H(λ)|) · nρ · log n), and
IE(|H(λ)|) = O(n1+1/κ · λ). Each single-scale hopset has size O(n1+1/κ · log n), whp,
i.e., H(λ) has size O(n1+1/κ · log n · log Λ), whp.

Theorem 3.17. For any n-vertex graph G = (V,E, ω) of diameter Λ, and any
2 ≤ κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 0 < ε ≤ 1, our parallel algorithm computes a (β, ε)-
hopset with β given by (13), and with expected size O(n1+1/κ · log Λ), in O(β · (log κ+
1/ρ) · log n · log Λ) EREW PRAM time, using O((|E|+n1+1/κ · log n · log Λ) ·nρ log n)
processors, whp.

More generally, we can also group scales into dλt e groups, of size t each (except
maybe one of them, which can be smaller) for a parameter t. We then compute all

14When we say that a processor p stores a value of a variable x, we mean that there is a memory
location x, designated to the processor p, from which p can read the value of x. Other processors
can also read from and write to this location.

1464 MICHAEL ELKIN AND OFER NEIMAN

hopsets in a group via explorations in the lowest-scale hopset of that group. As a
result, the explorations become O(2t · β)-limited, instead of (2β + 1)-limited, but β
decreases. (β is now given by (14).) The number of processors grows by a factor of t,
because all hopsets in the same group are now computed in parallel.

Theorem 3.18. For any n-vertex graph G = (V,E, ω) of diameter Λ, any 2 ≤
κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 0 < ε ≤ 1, and any 1 ≤ t ≤ log Λ, our parallel algorithm
computes a (β, ε)-hopset with β given by (14) and with expected size O(n1+1/κ · log Λ),
in O(β · (log κ + 1/ρ) · log n · 2t · log Λ

t) EREW PRAM time, using O((|E| + n1+1/κ ·
log n · log Λ) · nρ log n · t) processors, whp.

Moreover, a single-scale hopset of expected size O(n1+1/κ) can be computed using
the same resources.

Naturally, Theorem 3.18 can be made path-reporting by keeping for every hopset
edge a path (of length O(2t ·β)) of lower-scale hopset edges that implement the hopset
edge.

4. Eliminating dependence on the aspect ratio. In this section, we show a
general reduction that removes the dependence on the aspect ratio of the graph from
both the running time and the hopset size. This reduction is based on a classical
reduction of [KS97]. The latter reduction, however, applies just to shortest paths
computation, not to computation of hopsets. Also, the reduction of [KS97] was devised
for the PRAM setting (see also [MPVX15]), while our reduction is applicable in the
Congested Clique, CONGEST, and streaming models as well.

Assume, without loss of generality, that the minimal distance in the graph G =
(V,E) is 1. Fix a parameter 0 < ε < 1/2. For any scale index k ≥ 1, we define a
graph Gk that contains the edges of weight at most 2k+2, and in which every edge
of weight less than (ε/n) · 2k is contracted. By contraction we mean identifying the
edge endpoints while keeping the shortest edge among parallel edges. We refer to the
vertices of Gk as nodes, where each node is a subset of V . The weight of an edge
(X,Y) ∈ E(Gk) is set to be

(17) W(X,Y) = ω(x, y) + (ε/n) · 2k · (|X|+ |Y |) ,

where x ∈ X, y ∈ Y , and the edge (x, y) ∈ E is the shortest edge between a vertex
of X to a vertex of Y . (The purpose of the additional term (ε/n) · 2k · (|X|+ |Y |) is
to guarantee that distances in Gk are no shorter than those in G, while ensuring that
for pairs of distance ≥ 2k, the distance in Gk does not increase by too much.)

In order to guarantee a small number of hops even for contracted vertices, we add
an additional set of edges S to the hopset. We refer to the edges of S as star edges.
Every node U in Gk has a designated center u ∈ U , and we add edges from u to every
vertex in U to the hopset. Consider a contraction of an edge (x′, y′), x′ ∈ X, y′ ∈ Y ,
connecting nodes X,Y , with centers x ∈ X and y ∈ Y . Assuming |X| ≥ |Y |, x is
declared the center of U = X ∪ Y , and we add to S edges from x to every vertex of
Y . The weight of the edge (x, z) for each z ∈ Y is set as

(18) W(x, z) = (ε/n) · 2k · |U | .

This value dominates dG(x, z), as there exists a path in G from x to z consisting of
at most |U | − 1 edges, each of weight at most (ε/n) · 2k.

Claim 4.1. |S| ≤ n log n.

HOPSETS WITH CONSTANT HOPBOUND 1465

Proof. Assume inductively that every node U of size s = |U | has at most s log s
internal edges added to the hopset by the above process. This holds for singletons
|U | = 1, which have 0 internal edges. When we combine X and Y of sizes s1, s2

(respectively), we add at most s2 = min{s1, s2} edges. By induction there were
already at most s1 log s1 + s2 log s2 edges, so the total number of edges in S between
vertices of U is at most

s1 log s1 + s2 log s2 + s2 = s1 log s1 + s2 log(2s2)

≤ s1 log(s1 + s2) + s2 log(s1 + s2) = (s1 + s2) log(s1 + s2) .

When the scale index k is sufficiently large we have at a certain point a graph with
a single node V , and at this point we added at most n log n edges throughout the
process.

Claim 4.2. Let x, y ∈ V such that dG(x, y) ∈ (2k, 2k+1], and let X,Y ∈ V (Gk)
be the two nodes containing x, y (respectively) in Gk; then

dG(x, y) ≤ dGk(X,Y) ≤ (1 + 2ε)dG(x, y) .

Proof. We start with the right-hand-side inequality. Let x = x0, . . . , xq = y be
the shortest path P in G between x and y. Let X = X0, X1, . . . , Xq = Y be the
corresponding nodes in Gk (that is, xj ∈ Xj), and let X = X0, . . . , Xp = Y be that
path with all repetitions and loops removed. For 0 ≤ j ≤ p, denote by s(j) (resp.,
t(j)) the index of the first (resp., last) vertex of P that Xj contains. Since by (17)
the weight of each edge (Xj−1, Xj) for 1 ≤ j ≤ p in Gk is defined using the shortest
weight edge, we have W(Xj−1, Xj) ≤ ω(xt(j−1), xs(j)) + (ε/n) · 2k · (|Xj−1| + |Xj |).
As each term |Xj | appears at most twice, and

∑p
j=0 |Xj | ≤ n, we obtain that

dGk(X,Y) ≤
p∑
j=1

W(Xj−1, Xj)

≤
p∑
j=1

(ω(xt(j−1), xs(j)) + (ε/n) · 2k · (|Xj−1|+ |Xj |))

≤ dG(x, y) + 2ε · 2k

≤ (1 + 2ε) · dG(x, y) .

We now turn to prove the left-hand-side inequality. Let X = Y0, . . . , Yr = Y be the
shortest path in Gk from X to Y . For each 1 ≤ j ≤ r, denote by (yj−1, zj) ∈ E the
edge of minimal weight connecting Yj−1 and Yj , with yj−1 ∈ Yj−1 and zj ∈ Yj . Since
each Yj consists of |Yj |−1 edges that were contracted, each of weight at most (ε/n)·2k,
we have that dG(zj , yj) ≤ diam(Yj) ≤ (ε/n) · 2k · |Yj |. Moreover, this inequality holds
for every pair z′j , y

′
j of vertices in Yj . Hence,

dGk(X,Y) =

r∑
j=1

W(Yj−1, Yj)

(17)
=

r∑
j=1

[
ω(yj−1, zj) + (ε/n) · 2k · (|Yj−1|+ |Yj |)

]
≥

r∑
j=1

[dG(yj−1, zj) + dG(zj , yj)] + dG(x, y0) + dG(zr, y)

≥ dG(x, y).

1466 MICHAEL ELKIN AND OFER NEIMAN

Some of the scales k are redundant—define K to be the set of scales k so that
there exists an edge of weight in the range [2k/n, 2k+1]. We will refer to the scales
in K as relevant scales. Observe that if there is no edge in this range, then there is
no pair of vertices whose distance in G is in the range (2k, 2k+1], so we do not need
a hopset for this scale. We can see that |K| ≤ Õ(|E|), as every edge can induce a
logarithmic number of scales to K.

For every k ∈ K and every connected component of Gk, we will execute the algo-
rithm for constructing a single-scale (β, ε)-hopset Hk as in Theorem 3.7. Whenever
we add a hopset edge between two nodes X,Y , we put the same hopset edge between
their centers.

Lemma 4.3. The set H = S ∪
⋃
k∈K Hk is a (6β + 5, 6ε)-hopset for G.

Proof. Fix x, y ∈ V , and let k ∈ K be the scale such that dG(x, y) ∈ (2k, 2k+1].
Let X,Y ∈ V (Gk) so that x ∈ X and y ∈ Y . Since Hk is a (β, ε)-hopset for the
range (2k, 2k+1] in Gk, it is also a (2β + 1, ε)-hopset for the range (2k, 2k+2], and by
Claim 4.2 we have that, indeed, 2k < dGk(X,Y) ≤ (1 + 2ε)2k+1 < 2k+2. It follows
that there exists a path (X = X0, X1, . . . , Xp = Y) in Gk ∪Hk containing p ≤ 2β+ 1
edges of length at most (1+ ε)dGk(X,Y). For every Xj , denote by uj its center. Note
that each edge (Xj−1, Xj) could be either a hopset edge or an edge of Gk. In the
latter case there are vertices yj−1 ∈ Xj−1 and xj ∈ Xj so that (yj−1, xj) ∈ E, and the
weight of the edge by (17) is ω̂(Xj−1, Xj) = ω(yj−1, xj) + (ε/n) · 2k · (|Xj−1|+ |Xj |).
For ease of notation, in the former case (a hopset edge) we write yj−1 = uj−1 and
xj = uj , and we let ω̂(yj−1, xj) denote the weight of the hopset edge (recall that this
edge indeed connects nodes’ centers uj−1, uj). Then the following is a path from x to
y in G ∪H:

P = (x = x0, u0, y0, x1, u1, y1, x2, u2, y2, . . . , xp, up, yp = y) .

First, note that the path contains at most 2(p+ 1) star edges (i.e., edges of S) and p
edges between nodes. Since p ≤ 2β+ 1, this path has at most 6β+ 5 edges. Next, we
bound the stretch. We have that the total weight of the edges in P ∩ S is

p∑
j=0

(ω̂(xj , uj) + ω̂(yj , uj))
(18)
= 2

p∑
j=0

(ε/n) · 2k · |Xj | ≤ (ε/n) · 2k+1 · n ≤ 2ε · dG(x, y) .

We note that the length of the path X0, X1, . . . , Xp is

p∑
j=1

ω̂(yj−1, xj) ≤ (1 + ε)dGk(X,Y) ≤ (1 + ε)(1 + 2ε)dG(x, y) ,

where the last inequality is by Claim 4.2. Combining these inequalities implies that
the length of P is at most

2ε · dG(x, y) + (1 + 4ε)dG(x, y) = (1 + 6ε)dG(x, y) .

We say that a node U in the graph Gk is active if it has degree at least 1, and we
denote by nk the number of active nodes in Gk. The nodes of the graphs {Gk}k∈K
induce a laminar family L on V , which contains at most 2n− 1 distinct sets. We will
refer to L as the laminar family of the algorithm.

Claim 4.4.
∑
k∈K nk = O(n log n).

HOPSETS WITH CONSTANT HOPBOUND 1467

Proof. In order to bound the total number of active nodes in all of these graphs,
it suffices to show that each node can be active in at most log(n/ε) + 2 scales. To
this end, consider a node U that is active for the first time in Gk, so U has an edge
containing U of weight at most 2k+2. (That is, k is the smallest scale such that U is
active in Gk.) After q = log(n/ε) + 2 scales, in Gk+q, this edge will be of weight at
most (ε/n) · 2k+q. Thus it will be contracted, and the node U will merge with some
other node and never appear again in Gk′ for k′ ≥ k + q.

Corollary 4.5. |H| = O(n1+1/κ · log n), in expectation.

Proof. By Claim 4.1, we have that |S| ≤ n log n. For each k ∈ K, by Theorem 3.7,

the expected size of the single-scale hopset Hk is at most O(n
1+1/κ
k) (observe that

isolated nodes do not participate in the hopset). We conclude by Claim 4.4 that

|H| ≤ |S|+
∑
k∈K

|Hk| ≤ n log n+
∑
k∈K

O(n
1+1/κ
k)

≤ n log n+ n1/κ
∑
k∈K

O(nk) = O(n1+1/κ · log n).

4.1. Implementation in the centralized model. Computing the graphs Gk
can be done in Õ(|E|) time in a straightforward manner. First, sort the edges by
weight, add all edges of weight at most 2 to obtain G0, and create Gk from Gk−1 by
adding edges of weight in the range of (2k, 2k+1] and contracting edges of weight in
range of (ε/n) · (2k−1, 2k]. Adding the star edges of S is also straightforward.

Note that for any k ∈ K, the aspect ratio of Gk is O(n/ε). By Theorem 3.7,
the expected running time for computing the hopset Hk is O(|E(Gk)| + nk log n) ·
nρ/ρ. Observe that each edge participates in at most log(n/ε) + 2 scales. We have∑
k∈K |E(Gk)| ≤ O(|E| · log n). Also, we spend time only on relevant scales, and the

number of relevant scales is at most K = O(|E| · log n). By Claim 4.4, we conclude
that the total expected running time is∑

k∈K

O(|E(Gk)|+ nk · log n) · nρ/ρ = O(|E|+ n log n) · nρ/ρ · log n .

We thus have the following theorem.

Theorem 4.6. For any graph G = (V,E, ω) with n vertices, 2 ≤ κ ≤ (log n)/4,
1/2 ≥ ρ ≥ 1/κ, and 0 < ε < 1/2, our algorithm constructs a (β, ε)-hopset H with
O(n1+1/κ · log n) edges in expectation, in expected time O((|E|+n log n)(nρ/ρ · log n)),

with β = O
(

log κ+1/ρ
ε

)log κ+1/ρ

.

4.2. Implementation in the Congested Clique model. In this model, the
computation of the nodes of the graphs {Gk}k∈K can be done in O(log n) rounds.
Recall our assumption that any polynomial combination of edge weights can be sent
in a single message. To compute the vertices of {Gk}, we use a variant of computing
in a distributed manner a minimum spanning tree (MST). Consider a single iteration
of Boruvka’s algorithm for computing the MST [CLRS09]. Boruvka’s algorithm starts
from a collection of MST fragments. We assume that at the beginning of the iteration
every vertex v knows the entire current partition of G into MST fragments (subtrees
of the MST). This assumption holds at the beginning of the first iteration, where the
fragments are singleton vertices. (Every vertex v sends a message with its identity
to every other vertex in G, and then the assumption holds at the beginning of the

1468 MICHAEL ELKIN AND OFER NEIMAN

first iteration.) Generally, in every Boruvka iteration every vertex v sends to all other
vertices of G a message containing its identity, the identity of its fragment Fv, and
the lightest cross-fragment edge e, along with its weight, incident to v.

Every vertex x ∈ V hears all of these messages and computes locally the Boruvka
forest of fragments. In particular, as a result of this computation x knows which
edges incident on it cross between different fragments on the next iteration. Let F ′x
be the fragment containing x in the next iteration. F ′x can be viewed as a connected
component of the Boruvka forest. Vertices of the Boruvka forest are fragments of the
current iteration, and its edges are minimum weight outgoing (or crossing) edges of
these fragments. We will refer to them as MWOEs.

To build node sets of graphs {Gk}, the vertex x processes these MWOEs in order
of increasing scale index. Let k be the smallest scale index of MWOEs in F ′x, and
let F ′x(k) be the subgraph of F ′x obtained by leaving only the scale-k MWOEs and

removing all other MWOEs. We write F ′
(0)
x = F ′x(k), k = k(0). The connected

components of F ′x(k) are now locally merged by x into nodes of Gk. The vertex
x records these nodes and updates the (initially empty) lists L(x). Each of these

components/nodes is now contracted, and we obtain F ′
(1)
x . The same procedure is

now repeated locally with the second smallest scale k(1), such that an MWOE of scale

k(1) appears in F ′x (in other words, the smallest scale of an edge of F ′
(1)
x). Then it is

performed with the third smallest scale index, the fourth smallest, etc.
It is easy to verify that as a result of this procedure, within O(log n) time (i.e.,

the time required for computing MST by this algorithm), the node sets of all graphs
Gk are computed and are known to all vertices.

Finally, the root will appoint a coordinator vertex c(U) ∈ U for every node
U , who will be in charge of communications for that node. We require that every
vertex participates at most once as a coordinator for a nontrivial node (a node of
size > 1). Note that when we create a new node U by combining two others X, Y ,
we can maintain the property that there will be a vertex u ∈ U that never was a
coordinator—this holds by induction for x ∈ X and y ∈ Y , so we can simply set x
as the coordinator for U, and u = y will be the “free” vertex. (We do not use the
center as coordinator, since the same vertex can be a center in numerous scales.) This
computation can be performed in the Broadcast Congested Clique model.

Similarly to the case of the streaming model, we run the hopset algorithm of
section 3.2 for all graphs Gk in parallel. Let us briefly review how to implement each
step in the algorithm. Recall that the main ingredients are Bellman–Ford explorations,
in every iteration of which every vertex sends its current estimate to all of its neighbors.
In the graph Gk, for every node U the coordinator c(U) will send the appropriate

estimate d̂ (along with the scale k of the node U) to all the vertices in the graph.
Every vertex u ∈ V that receives this message, sends to its coordinator at level k the
updated estimate d̂ + ω̂, where ω̂ is the shortest length of an edge (given by (17))
connecting u to a vertex in U . (Recall that each vertex knows the entire laminar
family L of sets, and hence can compute locally the nodes of Gk.) The coordinator of
each node will keep the shortest of these as the estimate for its node. Thus, for each
step of Bellman–Ford, we need two rounds in which all communication is over edges
containing a coordinator.

We now analyze the required number of rounds. We charge the cost of each
exploration step to the coordinators of the nodes. The point is that every vertex
can be a coordinator in at most log(n/ε) + 2 different scales k ∈ K, because once
a node is active, after so many scales it must be merged with another node, which

HOPSETS WITH CONSTANT HOPBOUND 1469

will necessarily have a different coordinator. We conclude that the load on any edge,
arising from its participation in many different graphs, is only O(log n). Hence the
number of rounds as a result of this simulation grows only by a factor of O(log n) in
the Congested Clique model. In the Broadcast Congested Clique model, however, a
vertex v cannot within the same round send distinct messages to all coordinators of
nodes that contain it. Instead, O(log Λ) rounds will be required for this. Also, recall
that the aspect ratio of each Gk is O(n/ε). By applying the single-scale versions of
Theorems 3.12 and 3.15 on each Gk, we conclude with the following.

Theorem 4.7. For any graph G = (V,E, ω) with n vertices, 2 ≤ κ ≤ (log n)/4,
1/2 ≥ ρ ≥ 1/κ, 1 ≤ t ≤ log n, and 0 < ε < 1/2, our distributed algorithm for the
Congested Clique model computes a (β, ε)-hopset H with expected size O(n1+1/κ ·log n)
in O(nρ/ρ · log3 n · β · 2t) rounds whp,15 with β given by (22). For a path-reporting
hopset, the number of rounds becomes larger by a factor of β · 2t. In the Broadcast
Congested Clique model, the respective running times are larger by a factor of logn Λ.

To get a hopset with β independent of n, we set t = log nµρ for an arbitrarily
small constant µ > 0. We then rescale ρ′ = (1 + µ)ρ. As a result, we obtain

(19) β = O

(
1

ε · ρ
(log κ+ 1/ρ)

)log κ+ 1+µ
ρ

.

The O-notation in (19) hides a (constant) factor of 1/µ in the base of the exponent.
The number of rounds becomes, whp, O(nρ/ρ · log3 n ·β). In the path-reporting case,
we set t = log n(µ/2)ρ and rescale in the same way as above. As a result, the running
time becomes O(nρ/ρ · log3 n · β2), whp. The hopbound and the hopset size are the
same as in the non–path-reporting case.

Corollary 4.8. For any graph G = (V,E, ω) with n vertices, 2 ≤ κ ≤ (log n)/4,
1/2 ≥ ρ ≥ 1/κ, and 0 < ε < 1/2, and any constant µ > 0, our distributed algorithm for
the Congested Clique model computes a (β, ε)-hopset H with expected size O(n1+1/κ ·
log n) in O(nρ/ρ · log3 n · β) rounds whp, with β given by (19). For a path-reporting
hopset, the number of rounds is O(nρ/ρ · log3 n ·β2), whp. In the Broadcast Congested
Clique model, the respective running times are larger by a factor of logn Λ.

4.3. Implementation in the CONGEST model. In this model we are given
a “virtual” graph G̃ = (Ṽ , Ẽ, ω̃), where Ṽ ⊆ V , |Ṽ | = m, on which we wish to compute
a hopset. For each scale k, we construct a virtual graph G̃k = (Ṽk, Ẽk), whose nodes
are subsets of Ṽ . To construct the node sets of the graphs G̃k, we do essentially the
same as we did in the Congested Clique model. Specifically, in the Congested Clique
model a vertex v sent a message to other vertices. In the CONGEST model we do the
same via a broadcast over a BFS tree T of the entire graph. For every scale k, in each
iteration of the Bellman–Ford algorithm in G̃k, we send O(|Ṽk|) messages. So the
total number of messages sent is M = O(

∑
k∈K |Ṽk|) = O(|Ṽ | logm) = O(m · logm).

These M messages can be convergecasted and broadcasted over the BFS tree T of G
in O(M +D) = O(D +m · logm) rounds, where D is the hop-diameter of G.

The hopset algorithm from section 3.3 will require a subtle modification: When a
coordinator broadcasts a distance estimate d̂, we cannot afford to have every vertex in
every node notify its coordinator of its own estimate. Instead, we conduct a pipelined

15When messages of size nρ log2 n are allowed, the number of rounds is O(logn ·β · 2t/ρ). For the
path-reporting hopset, we can have the same number of rounds if messages of size nρ · log2 n · β · 2t
are allowed.

1470 MICHAEL ELKIN AND OFER NEIMAN

convergecast on the global BFS tree T while computing the minimum estimate among
estimates within each node U . Then the root broadcasts the updated distance esti-
mates to all of the coordinators. Since the total number of computed minimums is
M , this computation requires only O(M +D) rounds. See, e.g., [Pel00, Lemma 3.4.6]
for a detailed analysis of pipelined convergecast.

By Theorems 3.13 and 3.14, the number of rounds required for computing all t
hopsets of a given group of scales is O((D+m1+ρ · logm · t)β/ρ · 2t) in the non–path-
reporting case and is O((D+m1+ρ · logm · t ·β ·2t)β/ρ ·2t) in the path-reporting case.
(Both bounds are whp.) To get a hopset for all scales, this expression was multiplied by
the number of groups, i.e., d log Λ

t e. When computing the hopsetsHk ofGk, the number

of groups is d logO(m/ε)
t e = O(logm

t), because the aspect ratio of each Gk is O(m/ε).
The number of messages convergecasted and broadcasted over the BFS tree τ of the
entire network in each iteration of the Bellman–Ford algorithm (which is executed
now in parallel in all graphs G̃k) is

∑
k∈K O(m1+ρ

k logmk · t) = O(m1+ρ · log2m · t),
whp, in the non–path-reporting case, and is

∑
k∈K O(m1+ρ

k · logmk · t · β · 2t) =

O(m1+ρ · log2m · t · β · 2t), whp, in the path-reporting case. When messages of size b
are allowed, for a parameter b, pipelined convergecast and broadcast of M messages
can be performed in O(D + M/b) time. We also note that this algorithm can be
seamlessly implemented in the Broadcast CONGEST model.

We summarize this discussion with the following theorem.

Theorem 4.9. For any graph G = (V,E) with hop-diameter D, any m-vertex
weighted graph G̃ = (Ṽ , Ẽ, ω̃) embedded in G, and any 2 ≤ κ ≤ (logm)/4, 1/2 ≥
ρ ≥ 1/κ, 1 ≤ t ≤ logm, 0 < ε < 1/2, our distributed algorithm in the Broadcast
CONGEST model computes a (β, ε)-hopset H for G̃ with expected size O(m1+1/κ ·
logm), in O((D + m1+ρ · log2m · t) · β/ρ · logm · 2t/t) rounds whp,16 with β given
by (22), with n replaced by m. For a path-reporting hopset, the number of rounds
becomes O((D +m1+ρ · log2m · t · β · 2t) · β/ρ · logm · 2t/t).

To get β independent of m, we set t = logmµρ. As a result we get

(20) β = O

(
1

ερ
(log κ+ 1/ρ)

)log κ+ 1
ρ

.

The running time is O((D + m1+ρ · log3m · ρ) · β/ρ2 ·mµρ), whp, in the non–path-
reporting case.

In the path-reporting case we get time O((D+mρ(1+µ) · log3m · ρ · β) · βρ2 ·mµρ),

whp. By rescaling ρ′ = ρ(1 + µ), we get

(21) β = O

(
1

ερ
(log κ+ 1/ρ)

)log κ+ 1+µ
ρ

,

and the running time is O((D +mρ · log3m · ρ · β) · βρ2 ·mµρ), whp.

Corollary 4.10. For any graph G = (V,E) with hop-diameter D, any m-vertex
weighted graph G̃ = (Ṽ , Ẽ, ω̃) embedded in G, any 2 ≤ κ ≤ (logm)/4, 1/2 ≥ ρ ≥ 1/κ,
and 0 < ε < 1/2, and any constant µ > 0, our distributed algorithm for the Broadcast
CONGEST model computes a (β, ε)-hopset H for G̃ with expected size O(m1+1/κ ·

16When messages of size mρ log2m · t are allowed, the number of rounds is O((D + m) · β/ρ ·
logm · 2t/t). For the path-reporting case, we can have the same number of rounds with messages of
size mρ · log2m · t · β · 2t.

HOPSETS WITH CONSTANT HOPBOUND 1471

logm), in O((D + m1+ρ · log3m · ρ) · β/ρ2 ·mµρ) rounds whp, with β given by (20).
For a path-reporting hopset, β is given by (21), and the number of rounds becomes
O((D +m1+ρ · log3m · β · ρ) ·mρµ · β/ρ2).

4.4. Implementation in the streaming model. We assign O(n log n) words
of memory for storing a data structure for nodes of the graphs {Gk}k∈K . The main
observation is that whenever we contract an edge between nodes X,Y with |X| ≥ |Y |,
only the vertices of Y get a new center, but the size of the node containing them is at
least doubled. This implies that each vertex changes the center of the node containing
it at most log n times. Every x ∈ V stores a list L(x) of pairs, where a pair (i, v) ∈ L(x)
indicates that at scale i ∈ K the node containing x was merged with a larger node
centered at v. Initially, (0, x) ∈ L(x). The lists Lists = {L(v) | v ∈ V } that our
algorithm maintains enable us to maintain a part L′ of the laminar family L that
was constructed so far. Observe that L′ can be viewed as a forest of sets, and this
forest is partial to the tree L. The nodes of each Gk can be reproduced from the lists
{L(x)}x∈V . (Specifically, to compute the nodes of Gk, for each vertex x ∈ V find the
maximum index i ≤ k, for which there is an entry (i, v) ∈ L(x), and x will be a part
of a Gk-node centered at v.)

Therefore, the algorithm does not really need to store the list of the edges that
it has seen so far. Rather, the information stored in Lists, along with the new edge
e = (x, y), which the algorithm processes in the current stage, is sufficient for up-
dating the set Lists, and the latter is sufficient for deducing the node sets of graphs
{Gk}k∈K . More concretely, given the set Listsh, which was constructed from a se-
quence (e1, e2, . . . , eh) of edges, for some positive integer h and a newly arriving edge
e = eh+1 of weight ω = ω(e), the algorithm constructs the set Listsh+1, which reflects
the appended edge sequence (e1, e2, . . . , eh+1), in the following way. It processes the
scales k = 0, 1, 2, . . . consecutively from the bottom up. (Recall that we are not lim-
ited in processing time but rather only in memory.) Initially, Listsh+1 is empty. In
each scale k, the algorithm processes all scale-k merges recorded in Listsh, and, if the
newly arrived edge e causes a k-scale merge, then the algorithm processes this new
edge as well. We also recompute the set Sh+1 of hopset edges in each iteration. For
every node Z, these edges connect the node center z with every other vertex v ∈ Z.
That is, the previous set S = Sh is discarded, and the new set S = Sh+1 is computed
from scratch.

This completes the description of the first pass of our algorithm, i.e., of the pass
that computes the set Lists, and as a result, the node sets of graphs Gk, for all relevant
scales k. The space required for this computation is proportional to the maximum
size of the data structure Lists, which is, by Claim 4.4, at most O(n · log n).

The correctness of this procedure hinges on the observation that if two nodes
X,Y merge on scale k, it is immaterial which of the edges from (X × Y) ∩ E caused
this merge. Moreover, the weight ω(e) of this edge is also immaterial. (By the very
fact that the merge occurred, we know that ω(e) < ε

n · 2
k.)

Let us now review the execution of the hopset algorithm in the consequent passes
over the stream. We compute single-scale hopsets Hk in parallel for all k ∈ K.
For each k ∈ K we run the hopset construction given by Theorem 3.16. Initially, the
vertices of each Gk can be derived from the data structure we store. Whenever an edge
(x, y) ∈ E of weight ω(x, y) is read from the stream, we know it is active in at most
log(n/ε)+2 different scales. For each such scale k ∈ K with (ε/n)·2k ≤ ω(x, y) < 2k+2,
we use the data structure to find the centers of nodes containing x, y in Gk, and we
execute the hopset algorithm as if an edge connecting these centers (of weight given
by (17)) were just read from the stream.

1472 MICHAEL ELKIN AND OFER NEIMAN

Table 3
Summary of results for (β, ε)-hopsets in the streaming model; all are with expected size

O(n1+1/κ logn) and stretch 1 + ε. The space bounds are in expectation, the bounds on the number
of passes hold whp, and the bounds on β hold deterministically. The last column indicates whether
the hopset is path-reporting.

Space # of passes The hopbound β Paths

O(n1+ρ logn/ρ+ n1/κ log2 n) O(β logn) O
(

logn
ε

(log(ρκ) + 1
ρ
)
)log(ρκ)+ 1

ρ
No

O(n1+ρ logn/ρ+ n1+ 1
κ β log2 n) O(β logn) O

(
logn
ε

(log(ρκ) + 1
ρ
)
)log(ρκ)+ 1

ρ
Yes

O(n1+ 1
κ · log2 n) O(nρ · β · log2 n) O

(
logn
ε

(log(ρκ) + 1
ρ
)
)log(ρκ)+ 1

ρ
No

O(n1+ 1
κ · log2 n · β) O(nρ · β · log2 n) O

(
logn
ε

(log(ρκ) + 1
ρ
)
)log(ρκ)+ 1

ρ
Yes

O(n1+ 1
κ · log2 n) O(nρ · β · log2 n) O

(
1
ε·ρ (log(ρκ) +

1
ρ
)
)log(ρκ)+ 1+µ

ρ
No

O(n1+ 1
κ · log2 n · β) O(n

µ
κ
+ρβ log2 n) O

(
κ
ε
(log(ρκ) + 1

ρ
)
)log(ρκ)+ 1

ρ
Yes

We have two possible trade-offs between space and number of passes for given
parameters κ, ε, ρ, and t. Since we run in parallel in all scales, the fact that there
are many graphs does not affect the number of passes. The size of each Hk is only

O(n
1+1/κ
k). Using the fact that each Gk has aspect ratio at most Λk = O(n/ε), we can

essentially replace log Λ by log(n/ε) = O(log n) in Theorem 3.16. The total space used

by the algorithm in the second regime of Theorem 3.16 is
∑
k∈K n

1+1/κ
k · log(n/ε) ≤

O(n1+1/κ log2 n) rather than O(n1+1/κ log Λ). The calculation for the first regime is
analogous. Formally, we derive the following theorem.

Theorem 4.11. For any graph G = (V,E, ω) with n vertices, any 2 ≤ κ ≤
(log n)/4, 1/2 ≥ ρ ≥ 1/κ, 0 < ε < 1/2, and any 1 ≤ t ≤ O(log n), our streaming
algorithm computes a (β, ε)-hopset with expected size O(n1+1/κ · log n) and with β
given by

(22) β = O

(
(log κ+ 1/ρ) log n

ε · t

)log κ+1/ρ

.

The resource usage is either
1. expected space O(t · n1+ρ · log n/ρ+ n1+1/κ · log2 n) (resp., space O(t · n1+ρ ·

log n/ρ+n1+1/κ ·β · 2t · log2 n) for path-reporting) and O(β · log n · 2t) passes,
whp; or

2. expected space O(n1+1/κ · log2 n) (resp., O(n1+1/κ · β · 2t · log2 n) for path-
reporting) and O(nρ · β · log2 n · 2t) passes, whp.

A few possible trade-offs are summarized in Table 3. The first four results in the
table are obtained by choosing t = 1 in Theorem 4.11. The first two follow from the
first item, and the following two from the second item. The fifth and sixth results
also follow from the second item of Theorem 4.11 but have an improved β (i.e., a
constant independent of n). In the fifth one we set t = µ · ρ · log n for an arbitrarily
small constant µ > 0. Then we rescale ρ′ = (1 +µ) · ρ. This induces the term of 1 +µ
in the exponent of β. To get the path-reporting version of this bound, in the sixth
result we set a smaller t = µ · (log n)/k and rescale κ′ = κ

1+µ . The O-notation of the

β-column in the fifth and sixth rows of Table 3 hides a (constant) factor of 1/µ in the
base of the exponent.

HOPSETS WITH CONSTANT HOPBOUND 1473

The following corollary summarizes the fifth and sixth rows of Table 3, which
provide efficient (requiring roughly Õ(nρ) time) streaming algorithms for constructing
(β, ε)-hopsets with Õ(n1+1/κ) edges, and with β = β(ε, κ, ρ) independent of n. All
four parameters ε, 1/κ, ρ, and µ can simultaneously be made arbitrarily close to 0
constants while still having constant β.

Corollary 4.12. For any graph G = (V,E, ω) with n vertices, any 2 ≤ κ ≤
(log n)/4, 1/2 ≥ ρ ≥ 1/κ, 0 < ε < 1/2, and any arbitrarily small constant µ >
0, our streaming algorithm computes a (β, ε)-hopset (resp., path-reporting hopset)

with expected size O(n1+1/κ · log n), and with β = O(1
ε·ρ (log(ρκ) + 1

ρ))log(ρκ)+ 1+µ
ρ

(resp., β = O(κε (log(ρκ) + 1
ρ))log(ρκ)+ 1

ρ) and expected space O(n1+ 1
κ · log2 n) (resp.,

O(n1+ 1
κ · log2 n · β)) in O(nρ · β · log2 n) passes (resp., O(nρ+

µ
κ · β · log2 n)), whp.

4.5. PRAM model. Klein and Subramanian [KS93] (see also [Coh97]) showed
that the graphs G1, G2, . . . , Gλ, λ = dlog Λe, can be computed in the EREW PRAM
model in O(log2 n) time, using O(|E|) processors. We next compute hopsets Hk, for
all k ∈ K, in parallel. The overall expected size of the resulting hopset is, by Theorem

3.18, IE(|H|) =
∑
k∈K n

1+1/κ
k = O(n1+1/κ · log n). The aspect ratio of each graph Gk

is O(n/ε), and thus the number of processors used is

O

(∑
k∈K

(|E(Gk)|+n1+1/κ
k ·log2n)·nρ·logn·t

)
=O(nρ·logn·t·(|E|·logn+n1+1/κ·log3n)) .

We summarize with the following.

Theorem 4.13. For any n-vertex graph G = (V,E, ω) of diameter Λ, any 2 ≤
κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 0 < ε < 1/2, and any 1 ≤ t ≤ log Λ, our parallel
algorithm computes a (β, ε)-hopset with O(n1+1/κ · log n) edges in expectation, and
with β given by

β = O

(
(log κ+ 1/ρ) · log n

ε · t

)log κ+1/ρ

in O(β · (log κ+ 1/ρ) · log2 n · 2t

t) EREW PRAM time, using O((|E|+n1+1/κ · log2 n) ·
nρ · log2 n · t) processors, whp.

In particular, by setting t = 1 we get

(23) β = O

(
(log κ+ 1/ρ) · log n

ε

)log κ+1/ρ

in O(β · (log κ + 1/ρ) · log2 n) EREW PRAM time, using O((|E| + n1+1/κ · log2 n) ·
nρ · log2 n) processors. One can also set t = log nζ , for a parameter ζ > 0, and get
O(β · (log κ+ 1/ρ) · log n · nζ/ζ) time, with

β = O

(
log κ+ 1/ρ

ε · ζ

)log κ+1/ρ

.

Note that β becomes independent of n, i.e., it is constant whenever ρ, ε, ζ, and 1/κ
are. So one can compute a (β, ε)-hopset, with arbitrarily small constant ε > 0, in
EREW PRAM time O(nζ), for an arbitrarily small constant ζ > 0, using O((|E| +
n1+1/κ · log2 n) · nρ · log3 n) processors, for arbitrarily small constants ρ, 1/κ > 0, and
still have a constant hopbound β.

1474 MICHAEL ELKIN AND OFER NEIMAN

5. Applications. In this section we describe applications of our improved con-
structions of hopsets to compute approximate shortest paths for a set S×V of vertex
pairs for a subset S ⊆ V of designated sources. Let G = (V,E, ω) be a weighted graph
with n vertices, 0 < ε < 1/2, and let S ⊆ V be a set of s = |S| sources.

5.1. Congested Clique model. In order to compute shortest paths from every
vertex in S to every vertex in V , we first apply Corollary 4.8 to the graph with
parameters κ = logs n and ρ = 1/κ (we assume s ≥ 16 for the bound on κ to hold).
We use µ = 0.01. This yields a (β, ε)-hopset H with β = O((logs n)/ε)2.02·logs n. Now
each of the S sources (in parallel) conducts β iterations of Bellman–Ford exploration
in G ∪H, and as a result obtains 1 + ε approximate distance estimations to all other
vertices.

The number of rounds to compute the hopset is

O(nρ · log4 n · β) = s ·O((logs n)/ε)2.02·logs n · log4 n

whp, and the number of rounds to conduct s Bellman–Ford explorations to range β
is at most O(s · β) (see, e.g., section 3.2). We conclude that the total number of
rounds is s ·O((logs n)/ε)2.02·logs n · log4 n. In the case when s = nΩ(1), we can in fact
set κ = logs/ lg4 n n, which yields β = (1/ε)O(1), and the number of rounds will be

essentially linear in s, specifically, s · (1/ε)O(1). In the case when s ≤ 2
√

logn log logn,

it is more beneficial to choose κ =
√

logn
log logn . This yields

(24) β = (1/ε)
O(
√

logn
log logn) · 2O(

√
logn·log logn)

in Õ(nρ · β) = O(1/ε)

√
logn

log logn · 2O(
√

logn log logn) rounds.
If we are interested in the actual paths, rather than just distances, then we employ

our path-reporting variant of hopsets. This increases the number of rounds by an
additional factor of β.

Theorem 5.1. For any graph G = (V,E, ω) with n vertices, a parameter 0 < ε <
1/2, and S ⊆ V of size s, there is an algorithm in the Congested Clique model that whp
computes (1 + ε)-approximate S×V shortest paths in s ·O((logs n)/ε)2.02·logs n · log4 n
rounds. In the case s = nΩ(1) we can achieve s · (1/ε)O(1) rounds, and in the case s ≤

2
√

logn log logn the number of rounds can be set as s ·(1/ε)O(
√

logn
log logn) ·2O(

√
logn log logn).

We also have the following result for approximate single-source shortest paths
from some u ∈ V , assuming messages of size nρ are allowed, for some ρ > 0. By
applying Theorem 4.7 with κ = 1/ρ and t = 1, we get a hopset H with β = O(logn

ε·ρ2)2/ρ

in O(log3 n · β/ρ) rounds. Conducting β iterations of Bellman–Ford exploration from
u in G ∪H yields (1 + ε)-approximate distance estimations to all other vertices.

Corollary 5.2. For any graph G = (V,E, ω) with n vertices, parameters 0 <
ρ, ε < 1/2, and a vertex u ∈ V , there is an algorithm in the Congested Clique model
with message size nρ that whp computes (1 + ε)-approximate shortest paths from u in
(logn

ε)O(1/ρ) rounds.

The results of Theorem 5.1 and Corollary 5.2 apply also to the Broadcast Con-
gested Clique model, except that the respective running times become larger by a
factor of logn Λ.

HOPSETS WITH CONSTANT HOPBOUND 1475

5.2. CONGEST model. Computing approximate shortest paths in the
CONGEST model using hopsets is somewhat more involved. We follow the method
of [HKN16] and give full details for completeness. First, we use a lemma of [Nan14],
which efficiently computes hop-limited distances from a given set of sources.

Lemma 5.3 ([Nan14]). Given a weighted graph G = (V,E, ω) of hop-diameter
D and diameter Λ, a set Ṽ ⊆ V , and parameters t ≥ 1 and 0 < ε < 1/2, there is a
distributed algorithm in the Broadcast CONGEST model that whp runs in Õ((|Ṽ | +
t+D) · log Λ)/ε rounds, so that every u ∈ V will know values {d̃(u, v)}v∈Ṽ satisfying17

(25) dG(u, v) ≤ d̃(u, v) ≤ (1 + ε)d
(t)
G (u, v) .

Remark 5.4. While not explicitly stated in [Nan14], the proof also yields that
each v ∈ V knows, for every u ∈ Ṽ , a parent p = pu(v) which is a neighbor of v
satisfying

(26) d̃(v, u) ≤ ω(v, p) + d̃(p, u) .

Let Ṽ ⊆ V be a random set of vertices, such that each v ∈ V is included in Ṽ
independently with probability 1/

√
sn. Note that whp |Ṽ | ≤

√
n/s · lnn, so that

s · |Ṽ | = Õ(
√
ns). The following claim argues that the random sample Ṽ hits every

shortest path somewhere in its first Õ(
√
sn) vertices.

Claim 5.5. The following holds whp: For every x, y ∈ V , there exists u ∈ Ṽ ∪{y}
on the shortest path from x to y in G, such that d

(4
√
sn·lnn)

G (x, u) = dG(x, u).

Proof. Fix some x, y ∈ V . If it is the case that the shortest path π(x, y) between
them in G is comprised of at most 4

√
sn · lnn vertices, then we can take u = y.

Otherwise, the probability that none of the first 4
√
sn · lnn vertices on π(x, y) is

sampled to Ṽ is bounded by (1 − 1/
√
sn)4

√
sn·lnn ≤ n−4. Taking a union-bound on

the O(n2) pairs concludes the proof.

Let G̃ = (Ṽ , Ẽ) be the graph on the vertex set Ṽ of size m = |Ṽ |, with edge
weights d̃(u, v) given by applying Lemma 5.3 on G with parameters t = 4

√
sn · lnn

and ε. This will take Õ((D +
√
sn) · log Λ)/ε rounds. Next, construct a (β, ε)-hopset

H for G̃ (embedded in G) as in Corollary 4.10, with κ =
√

logm/ log logm, ρ = 1/κ
(and, say µ = 0.01). This results in

(27) β = (1/ε)
O(
√

logm
log logm) · 2O(

√
logm·log logm) ,

and the number of rounds required is (D+m)·(1/ε)O(
√

logm/ log logm)·2O(
√

logm·log logm).
Now, for each s ∈ S, each u ∈ Ṽ holds an initial estimate d̃(u, s) given by Lemma 5.3.
We conduct β iterations of Bellman–Ford explorations in G̃∪H for each of the vertices
of S. That is, in every iteration, every u ∈ Ṽ sends s messages containing its current
distance estimate for each s ∈ S and updates its estimates according to the messages
of other vertices. This requires additional O(D + ms) · β rounds. As a result, for

every pair s ∈ S and u ∈ Ṽ , the vertex u holds an estimate d̂(s, u). We broadcast all
of these values to the entire graph in O(D + sm) rounds.

Finally, for each v ∈ V and s ∈ S, the vertex v computes the value d̂(v, s) =

minu∈Ṽ {d̃(v, u) + d̂(u, s)} as its approximate distance to s. The total number of

17The computed values are symmetric, that is, d̃(u, v) = d̃(v, u) whenever u, v ∈ Ṽ .

1476 MICHAEL ELKIN AND OFER NEIMAN

rounds required is (D+
√
ns) · [(1/ε)O(

√
logm

log logm) · 2O(
√

logm·log logm) +O(log Λ)/ε]. As
above, whenever s = nΩ(1) it is better to set κ = logs1−µ/ log4 n n and ρ = 1/κ. Then

β = (1/ε)O(1), and the number of rounds will be (D +
√
ns) · (1/ε)O(1) · log Λ.

If we are interested in the actual paths, then we use Remark 5.4 to trace down
the parents, and the actual approximate path from any v ∈ V to any u ∈ Ṽ can be
derived. Also, we use the path-reporting version of our hopset. This introduces an
additional factor of β to the number of rounds and enables every vertex in the graph
to find out the actual paths that implement every hopset edge (for every hopset edge,
we broadcast also the path of length at most β that implements it). In particular, v

will be able to infer the paths for both d̃(v, u) and d̂(u, s).
It remains to prove the correctness of the algorithm. First, consider any y ∈ Ṽ

and s ∈ S. Let u ∈ Ṽ be the vertex on π(s, y) guaranteed by Claim 5.5 (it could be
that u = y). By Lemma 5.3,

(28) d̃(s, u) ≤ (1 + ε)d
(t)
G (s, u) = (1 + ε)dG(s, u) .

We also have that

(29) dG̃(y, u) ≤ (1 + ε)dG(y, u) ,

where (29) holds because every edge along the shortest path from y to u was stretched
in G̃ by at most 1 + ε. Finally, the property of hopsets suggests that

(30) d
(β)

G̃∪H(y, u) ≤ (1 + ε)dG̃(y, u)
(29)

≤ (1 + ε)2dG(y, u) .

Note that in the Bellman–Ford iterations, the vertex y could have heard the estimate
from u using a path of length β in G̃ ∪H. Combining (28) and (30) yields that
(31)

d̂(y, s) ≤ d(β)

G̃∪H(y, u) + d̃(s, u) ≤ (1 + 3ε)dG(y, u) + (1 + ε)dG(s, u) ≤ (1 + 3ε)dG(y, s) .

Consider now some arbitrary v ∈ V and s ∈ S. By Claim 5.5, there exists

u ∈ Ṽ ∪ {s} on the shortest path from v to s in G with d
(t)
G (v, u) = dG(v, u). By

Lemma 5.3,

d̂(v, s) ≤ d̃(v, u) + d̂(u, s)
(31)

≤ (1 + ε)dG(v, u) + (1 + 3ε)dG(u, s) ≤ (1 + 3ε)dG(v, s) .

We summarize with the following theorem.

Theorem 5.6. For any graph G = (V,E, ω) with n vertices and hop-diameter D,
a parameter 0 < ε < 1/2, and S ⊆ V of size s, there is an algorithm in the Broadcast
CONGEST model that whp computes (1 + ε)-approximate S × V shortest paths in

(D +
√
ns) ·

[
(1/ε)

O(
√

logn
log logn) · 2O(

√
logn·log logn) +O(log Λ)/ε

]
rounds. Whenever s = nΩ(1), we have only Õ(D +

√
ns) · (1/ε)O(1) · log Λ rounds.

We also have the following result for approximate single-source shortest paths
from some u ∈ V , assuming messages of size nρ are allowed, for some ρ > 0. By
computing G̃ as above with Ṽ being a random sample of m ≈

√
n vertices, and

applying Theorem 4.9 with κ = 1/ρ and t = 1, we get a hopset H for G̃ with
β = O(logn

ε·ρ2)2/ρ in O((D + m · log2m) · β/ρ · logm) rounds. Conducting the same

computation as above for G̃ with S = {u} and extending to G, we obtain 1 + ε
approximate distance estimations from u to all other vertices.

HOPSETS WITH CONSTANT HOPBOUND 1477

Corollary 5.7. For any graph G = (V,E, ω) with n vertices, parameters 0 <
ρ, ε < 1/2, and a vertex u ∈ V , there is an algorithm in the Broadcast CONGEST
model with message size nρ that whp computes (1+ε)-approximate shortest paths from
u in (D +

√
n) · (logn

ε)O(1/ρ) rounds.

5.3. Streaming model. Similarly to the Congested Clique model, we first com-
pute a (β, ε)-hopset H for G, and then using additional O(s·β) passes over the stream,
conduct β iterations of Bellman–Ford exploration in G∪H separately for each of the s
sources. Note that each exploration requires linear in n space, plus the space required
to store the hopset. The latter space will be sublinear in the output size, so we need
to assume that after computing distances (or paths) from a certain source, we may
output the result and erase it to free up memory.

In the case of the path-reporting hopset, for each edge e of the hopset, the hopset
stores a path with at most β edges e1, . . . , eβ of a subhopset of lower scale that
implements it. The same is true for each of the edges e1, . . . , eβ , recursively. So the
paths can be retrieved given our path-reporting hopset.

We use the hopset given by Corollary 4.12 with parameter κ = (log n)/4. Thus
β = ((log log n + 1/ρ)/ε)O(log logn+1/ρ), while for the path-reporting case, βpath =
((log n)/ε)O(log logn+1/ρ). The space requirement is O(n log2 n) (for path-reporting it
is larger by a factor of βpath), and the number of passes required isO(s·β+nρ·β·log2 n).

We consider several possible regimes. Whenever s > n1/ log logn we set ρ =
1/ log log n, when 2

√
logn log logn < s ≤ n1/ log logn we take ρ = log s

logn , and for s ≤
2
√

logn log logn we choose ρ =
√

log log n/ log n. The resulting algorithms are described
in the following theorem.

Theorem 5.8. For any graph G = (V,E, ω) with n vertices, a parameter 0 <
ε < 1/2, and S ⊆ V of size s, there is an algorithm in the streaming model that whp
computes (1 + ε)-approximate S × V shortest paths, with the following resources:

• Whenever s > n1/ log logn, the algorithm performs s · (log n)O(log(3) n+log 1/ε)

passes over the stream and uses O(n log2 n) space. For path-reporting the
number of passes is s · (log n)O(log logn+log 1/ε), while the space increases to
n · (log n)O(log logn+log 1/ε).

• Whenever 2
√

logn log logn < s ≤ n1/ log logn, the algorithm makes
s · nO(log logn+log 1/ε)/ log s passes, and the space requirement is O(n log2 n)
(or n1+O(log logn+log 1/ε)/ log s space for path-reporting).

• Whenever s ≤ 2
√

logn log logn, the algorithm uses 2O(
√

logn log logn) passes, and
the space is O(n log2 n) (or n · 2O(

√
logn log logn) space for path-reporting).

We also remark that whenever s = nΩ(1), one can also choose a smaller κ =
O(1), increasing the space to O(n1+1/κ · log2 n), while setting ρ = 1/κ so that β is
a constant. This will yield near-optimal s · (1/ε)O(1) passes over the stream (also for
path-reporting).

5.4. PRAM model. We use Theorem 4.13 with t = 1 to construct a (β, ε)-
hopset H of expected size O(n1+1/κ · log n), with β given by (23), in O(β · (log κ +
1/ρ) · log2 n) parallel time, using O((|E|+ n1+1/κ · log2 n) · nρ · log2 n) processors.

To compute (1 + ε)-approximate shortest distances (or paths) for S×V , for some
subset S ⊆ V of vertices, we now conduct β-limited Bellman–Ford explorations, in
parallel, separately from each of the |S| origins, in G ∪H. We use s = |S| processors
pv,1, . . . , pv,s for every vertex v ∈ V , and s processors pe,1, . . . , pe,s for every edge
e ∈ G ∪ H. As argued in section 3.6, these explorations can now be completed in
O(β · log n) EREW PRAM time.

1478 MICHAEL ELKIN AND OFER NEIMAN

If we are interested in paths (rather than distance estimates), then we use a path-
reporting hopset. As a result, for every pair (s, v) ∈ S × V , we obtain a path π(s, v)
with at most β edges, some of which may belong to G, and others belong to the hopset
H. For each edge e ∈ π(s, v) ∩H, we store a path with at most β other edges e′ of
G ∪ H, and the same is true for each hopset edge e′, recursively. The depth of the
induced tree of edges is bounded by logO(n/ε), that is, by the aspect ratio of each of
the graphs Gk for which single-scale hopsets are constructed.

Hence, the entire path can be retrieved in O(log n) parallel time, using processors
that were used for conducting the Bellman–Ford explorations from vertices of S. We
cannot, however, retrieve all the paths simultaneously within these resource bounds.
So our algorithm provides an implicit solution for the (1 + ε)-approximate shortest
paths problem; i.e., it returns a data structure from which each of the S×V approxi-
mate shortest paths can be efficiently extracted. Though not stated explicitly, to the
best of our knowledge, this is also the case with Cohen’s parallel (1 + ε)-approximate
shortest paths algorithm [Coh00].

Theorem 5.9. For any n-vertex graph G = (V,E, ω) of diameter Λ, a set S ⊆ V ,
and any 2 ≤ κ ≤ (log n)/4, 1/2 ≥ ρ ≥ 1/κ, 0 < ε ≤ 1, our parallel algorithm
computes (1 + ε)-approximate shortest distances (and implicit (1 + ε)-approximate

shortest paths; see above) in O((log κ+1/ρ)·logn
ε)log κ+1/ρ+1 · log2 n EREW PRAM time,

using O((|E|+ n1+1/κ · log2 n) · (nρ · log2 n+ |S|)) processors, whp.

Since ρ ≥ 1/κ, the number of processors in Theorem 5.9 can be written as O(|E| ·
nρ · log4 n+ |E| · |S| · log2 n), while incurring a term 2/ρ instead of 1/ρ in the exponent
of the running time. (This increase occurs as a result of rescaling ρ′ = 2ρ.)

When κ, ρ, and ε are constant, this running time is polylogarithmic in n. In
Cohen’s result [Coh00, Theorem 1.1], the running time is polylogarithmic as well,
but the exponent is roughly O(1

ρ · log κ), rather than 1
ρ + log κ + O(1) as in our

Theorem 5.9.

Acknowledgments. We are grateful to the anonymous reviewers of FOCS’16
and SICOMP for extensive comments that improved the presentation of this paper.

REFERENCES

[ABCP93] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg, Near-linear cost sequential and
distributed constructions of sparse neighborhood covers, in Proceedings of the 34th
Annual IEEE Symposium on Foundations of Computer Science, Palo Alto, CA,
1993, pp. 638–647.

[ABP16] A. Abboud, G. Bodwin, and S. Pettie, A hierarchy of lower bounds for sub-
linear additive spanners, in Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, Barcelona, Spain, 2017, pp. 568–576,
https://doi.org/10.1137/1.9781611974782.36.

[AP90] B. Awerbuch and D. Peleg, Sparse Partitions (extended abstract), in Proceedings
of the 31st Annual Symposium on Foundations of Computer Science, Vol. II, St.
Louis, MO, 1990, pp. 503–513.

[AS87] N. Alon and B. Schieber, Optimal Preprocessing for Answering On-Line Product
Queries, Technical report, School of Mathematical Sciences, Tel Aviv University,
1987.

[Ber09] A. Bernstein, Fully dynamic (2 + ε) approximate all-pairs shortest paths with fast
query and close to linear update time, in Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2009), Atlanta, GA, 2009,
pp. 693–702.

https://doi.org/10.1137/1.9781611974782.36

HOPSETS WITH CONSTANT HOPBOUND 1479

[BKKL16] R. Becker, A. Karrenbauer, S. Krinninger, and C. Lenzen, Approximate Undi-
rected Transshipment and Shortest Paths via Gradient Descent, preprint, https:
//arxiv.org/abs/1607.05127v1, 2016.

[CG06] T-H. H. Chan and A. Gupta, Small hop-diameter sparse spanners for doubling met-
rics, Discrete Comput. Geom., 41 (2009), pp. 28–44.

[CKK+15] K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen, A. Paz, and J. Suomela,
Algebraic methods in the congested clique, in Proceedings of the 2015 ACM Sym-
posium on Principles of Distributed Computing (PODC 2015), Donostia-San Se-
bastián, Spain, 2015, pp. 143–152.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 3rd ed., The MIT Press, 2009.

[Coh93] E. Cohen, Fast algorithms for constructing t-spanners and paths with stretch t, in
Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer
Science, Palo Alto, CA, 1993, pp. 648–658.

[Coh97] E. Cohen, Using selective path-doubling for parallel shortest-path computations, J.
Algorithms, 22 (1997), pp. 30–56.

[Coh00] E. Cohen, Polylog-time and near-linear work approximation scheme for undirected
shortest paths, J. ACM, 47 (2000), pp. 132–166.

[Elk01] M. Elkin, Computing almost shortest paths, ACM Trans. Algorithms, 1 (2005), pp.
283–323.

[EN16a] M. Elkin and O. Neiman, Hopsets with constant hopbound, and applications to ap-
proximate shortest paths, in Proceedings of the 57th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2016), New Brunswick, NJ, 2016, pp.
128–137.

[EN16b] M. Elkin and O. Neiman, On efficient distributed construction of near optimal rout-
ing schemes: Extended abstract, in Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing (PODC ’16), New York, NY, 2016, pp.
235–244.

[EN17] M. Elkin and O. Neiman, Linear-Size Hopsets with Small Hopbound, and Distributed
Routing with Low Memory, preprint, https://arxiv.org/abs/1704.08468, 2017.

[EP01] M. Elkin and D. Peleg, (1+epsilon, beta)-spanner constructions for general graphs,
in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
Hersonissos, Greece, 2001, pp. 173–182.

[EP04] M. Elkin and D. Peleg, (1 + ε, β)-spanner constructions for general graphs, SIAM
J. Comput., 33 (2004), pp. 608–631, https://doi.org/10.1137/S0097539701393384.

[EZ06] M. Elkin and J. Zhang, Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models, Distrib. Comput., 18 (2006), pp. 375–385.

[HKN14] M. Henzinger, S. Krinninger, and D. Nanongkai, Decremental single-source short-
est paths on undirected graphs in near-linear total update time, in Proceedings of
the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2014), Philadelphia, PA, 2014, pp. 146–155.

[HKN16] M. Henzinger, S. Krinninger, and D. Nanongkai, A deterministic almost-tight dis-
tributed algorithm for approximating single-source shortest paths, in Proceedings
of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC
’16), Cambridge, MA, 2016, ACM, pp. 489–498.

[HP19] S.-En Huang and S. Pettie, Thorup-Zwick emulators are universally optimal hopsets,
Inform. Process. Lett., 142 (2019), pp. 9–13.

[JaJ92] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley Publishing Company,
1992.

[KS93] P. N. Klein and S. Subramanian, A linear-processor polylog-time algorithm for short-
est paths in planar graphs, in Proceedings of the 34th Annual Symposium on
Foundations of Computer Science, Palo Alto, CA, 1993, pp. 259–270.

[KS97] P. N. Klein and S. Subramanian, A randomized parallel algorithm for single-source
shortest paths, J. Algorithms, 25 (1997), pp. 205–220.

[LP15] C. Lenzen and B. Patt-Shamir, Fast partial distance estimation and applications, in
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing
(PODC 2015), Donostia-San Sebastián, Spain, 2015, pp. 153–162.

[MPVX15] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu, Improved parallel algorithms for
spanners and hopsets, in Proceedings of the 27th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’15), Portland, OR, 2015, pp. 192–201.

https://arxiv.org/abs/1607.05127v1
https://arxiv.org/abs/1607.05127v1
https://arxiv.org/abs/1704.08468
https://doi.org/10.1137/S0097539701393384

1480 MICHAEL ELKIN AND OFER NEIMAN

[Nan14] D. Nanongkai, Distributed approximation algorithms for weighted shortest paths, in
Proceedings of the Symposium on Theory of Computing, STOC 2014, New York,
NY, 2014, pp. 565–573.

[Pel00] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, Discrete Math.
Appl. 5, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719772.

[SS99] H. Shi and T. H. Spencer, Time–work tradeoffs of the single-source shortest paths
problem, J. Algorithms, 30 (1999), pp. 19–32.

[TZ01] M. Thorup and U. Zwick, Approximate distance oracles, in Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, 2001, pp.
183–192.

[TZ06] M. Thorup and U. Zwick, Spanners and emulators with sublinear distance errors,
in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Miami, FL, 2006, pp. 802–809.

[UY91] J. D. Ullman and M. Yannakakis, High-probability parallel transitive-closure al-
gorithms, SIAM J. Comput., 20 (1991), pp. 100–125, https://doi.org/10.1137/
0220006.

[Yao82] A. C.-C. Yao, Space-time tradeoff for answering range queries (extended abstract), in
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, San
Francisco, CA, 1982, pp. 128–136.

https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/0220006
https://doi.org/10.1137/0220006

	Introduction
	Hopsets, setting, and main results
	Hopsets in parallel, streaming, and distributed models
	Hopsets in the streaming model
	Hopsets in the PRAM model

	Hopsets in distributed models
	Applications
	Subsequent work
	Overview of techniques
	Structure of the paper

	Preliminaries
	Hopsets
	A centralized construction
	Improved hopset size

	Distributed implementation in Congested Clique model
	Distributed implementation in CONGEST model
	Path-reporting hopsets in distributed models
	Streaming model
	PRAM model

	Eliminating dependence on the aspect ratio
	Implementation in the centralized model
	Implementation in the Congested Clique model
	Implementation in the CONGEST model
	Implementation in the streaming model
	PRAM model

	Applications
	Congested Clique model
	CONGEST model
	Streaming model
	PRAM model

	References

