Beck’s three permutations conjecture: A counterexample and some consequences
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Abstract—Given three permutations on the integers 1 through
n, consider the set system consisting of each interval in each of the
three permutations. In 1982, Beck conjectured that the discrepancy
of this set system is O(1). In other words, the conjecture says that
each integer from 1 through n can be colored either red or blue so
that the number of red and blue integers in each interval of each
permutations differs only by a constant. (The discrepancy of a set
system based on two permutations is at most two.)

Our main result is a counterexample to this conjecture: for
any positive integer n = 3¥, we construct three permutations
whose corresponding set system has discrepancy Q(logn). Our
counterexample is based on a simple recursive construction, and
our proof of the discrepancy lower bound is by induction. This
construction also disproves a generalization of Beck’s conjecture
due to Spencer, Srinivasan and Tetali, who conjectured that a set
system corresponding to £ permutations has discrepancy O(v/€).

Our work was inspired by an intriguing paper from SODA 2011
by Eisenbrand, Palvolgyi and Rothvofl, who show a surprising
connection between the discrepancy of three permutations and the
bin packing problem: They show that Beck’s conjecture implies a
constant worst-case bound on the additive integrality gap for the
Gilmore-Gomory LP relaxation for bin packing in the special case
when all items have sizes strictly between 1/4 and 1/2, also known
as the three partition problem. Our counterexample shows that this
approach to bounding the additive integrality gap for bin packing
will not work. We can, however, prove an interesting implication of
our construction in the reverse direction: there are instances of bin
packing and corresponding optimal basic feasible solutions for the
Gilmore-Gomory LP relaxation such that any packing that contains
only patterns from the support of these solutions requires at least
opt + Q(logm) bins, where m is the number of items.

Finally, we discuss some implications that our construction has
for other areas of discrepancy theory.
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I. INTRODUCTION

Consider a set system S of M sets on n elements and con-
sider an assignment to the elements, y : [n] — {—1,+1}.
The value of a set S; € S with respect to a fixed assignment
X is | Y ies, X(9)|. The discrepancy of a set system S
is the maximum value over all sets, minimized over all
assignments. This quantity is sometimes referred to as the
red-blue discrepancy of a set system. A famous result of
Spencer shows that when M = O(n), the discrepancy of a
set system is at most O(/n) [Spe85]. Recently, Bansal gave
an efficient algorithm for finding such a low discrepancy
assignment or coloring [Banl0], and even more recently
Lovett and Meka gave an another efficient algorithm yielding
an independent proof of Spencer’s result [LM12].

Spencer’s result holds for general set systems. A well-
studied research topic in combinatorial discrepancy theory
is to determine the discrepancy of set systems with certain
restrictions, such as bounded VC-dimension or bounded
degree. In this paper, we consider set systems based on
permutations. Given a permutation on the integers 1 through
n, consider the set system consisting of each interval of
this permutation. Without loss of generality, we can assume
that this is the identity permutation. Thus, this set system
contains the set {1,2,3} and {3,4,5,6}, etc., but it does
not, for example, contain the set {2,4}. It is easy to see
that the discrepancy of this set system is one. When the set
system consists of all intervals from two permutations, each
on the integers from 1 through n, then the discrepancy is at
most two [Spe87].

What is the discrepancy of a set system based on three
permutations? Beck conjectured that the discrepancy of this
set system is O(1). In other words, he conjectured there is
always an assignment x : [n] — {—1,+1} such that the
value of any set in this set system is O(1). Another way to
view the problem is that each integer from 1 through n can
be colored either red or blue so that the number of red and
blue integers in each interval of each permutations differs
only by a constant.

Our main result is a counterexample to this conjecture. In
particular, for each integer £k > 0, we give an instance of
three permutations on the ground set 1 through 3* such that
the discrepancy is at least [k/3 + 1]. Setting n = 3%, this
yields a set of three permutations with discrepancy at least
[(logzm)/3 + 1] = Q(logn).

Background on Beck’s conjecture

Beck first stated this conjecture in 1982 [Bec11]. The ear-
liest written reference to this conjecture that we have found
is on page 42 of the 1987 edition of Spencer’s “Ten Lectures
on the Probabilistic Method” [Spe87]. Spencer describes a
clever proof that the discrepancy of two permutations is
at most two, states the conjecture for three permutations,
and offers $100 for its resolution. In the 1994 edition,
Spencer attributes this conjecture to Beck. In a more recent
book, MatouSek says (on page 126) that resolving Beck’s
conjecture “remains one of the most tantalizing questions in
combinatorial discrepancy” [Matl0].



Although it was not resolved until now, the conjecture
did receive some attention. Fishburn and Gehrlein give an
example of three permutations based on a geometric config-
uration of rectangles, for which if the coloring is restricted
so that no set corresponding to one of the permutations
has absolute value more than one, then the set system has
unbounded discrepancy [FG90]. Without this restriction on
the colorings, however, their construction has discrepancy
two.

Citing Beck’s conjecture as motivation, Bohus shows that
a set system based on ¢ permutations always has discrepancy
O(¢logn) [Boh90]. This was later improved by Spencer,
Srinivasan and Tetali who show that such a set system actu-
ally has a coloring with discrepancy O(v/Zlogn) [SSTO1].
While Bohus gives an efficient algorithm to find a coloring
matching his upper bound, Spencer et al. leave open the
question of whether a coloring matching their bound can
be found efficiently. Since these latter results are via the
entropy method, it is possible that a constructive algorithm
can be obtained via the recent methods of Bansal, who
gives constructive algorithms for finding low discrepancy
colorings for general set systems [Ban10]. Our results show
that the bounds of Bohus and of Spencer et al. are tight
up to the factor containing the number of permutations,
¢, i.e. these upper bounds are tight for set systems based
on a fixed number of permutations. Spencer et al. also
generalize Beck’s conjecture positing that any set system
based on ¢ permutations has discrepancy O(v/¢) [SSTO1].
Our construction disproves this stronger conjecture as well.

We note that one possible reason that the conjecture
may have been believed to be true is because, prior to our
work, it appears that there were no constructions of three
permutations known to have discrepancy greater than two.

Consequences of Beck’s conjecture

Recently, Eisenbrand, Palvolgyi and Rothvo made a
surprising connection between Beck’s conjecture and the
additive integrality gap of a well-studied LP relaxation for
bin packing [EPR11]. In the bin packing problem we are
given an instance Z of m items where each item ¢ € Z has
a size s(i) € (0,1]. The objective is to pack the items into
the minimum number of capacity one bins. For a bin packing
instance Z denote by OPT(Z) the optimal solution, i.e. the
minimum number of bins necessary to pack all of the items.
A pattern p C 7 is legal if the items it contains fit into one
bin, that is, if >, s(i) < 1. Let P be the set of all legal
patterns. The following is known as the Gilmore-Gomory
LP relaxation for bin packing [Eis57], [GG61]:

min E Tp

S owy>1, Viel (LP)
pEP:iED
zp > 0.

Rounding this LP relaxation is a basic component of the
famous Karmarkar-Karp algorithm for bin packing, which
results in a packing with at most OPTp(Z) + O(log® m)
bins [KK82], where OPT.p(Z) is the optimal value of
the LP for a given instance Z. For the special case of bin
packing, called three partition, in which each item has a size
s(i) € (1/4,1/2), the Karmarkar-Karp algorithm results in
a packing with OPTp(Z) + O(log m) bins.

Let Z be an instance of three partition. Eisenbrand et al.
show that if Beck’s conjecture were true, then OPT(Z) <
OPTLp(Z) + O(1) [EPR11]. In other words, they would
be able to bound the additive integrality gap by a constant
in this special case of the bin packing problem! They
leave open the question of whether a reduction in the
other direction can be established: Does an upper bound of
OPTLp(Z)+O(1) on the size of an optimal integral solution
for three partition imply an O(1) upper bound on the dis-
crepancy of three permutations? In light of our results, such
a reduction would disprove the long-standing conjecture that
OPT(Z) is upper bounded by OPT.p(Z) + O(1).

Consequences of a disproof of Beck’s conjecture

Despite the fact that the approach of Eisenbrand et al.
for proving a constant additive integrality gap on the bin
packing LP will not work, we show that our construction
disproving Beck’s conjecture nevertheless has some inter-
esting implications for the bin packing problem: there are
instances of bin packing (instances of three partition, in fact)
and corresponding optimal basic feasible solutions for the
Gilmore-Gomory LP relaxation, such that any packing that
contains only patterns from the support of its corresponding
solution requires at least OPT(Z) + Q(logm) bins. This
implication is a lower bound on all algorithms that use
patterns from the support of a basic feasible solution to the
LP.

The additive factor is tight for the three partition problem
due to the Karmarkar-Karp algorithm, which can be slightly
modified to use only patterns from the LP support. Specifi-
cally, the algorithm proceeds in iterations. At each iteration,
it “discards” some items, uses the support to pack some
items, and recurses on the leftover items. In the case of three
partition, the total number of discarded items is O(logm).
Thus, we can easily pack these items using an additional
O(logm) patterns, yielding a packing that uses a total of
OPTLp(Z)+ O(log m) bins, each of which corresponds to
a pattern from the support.

We note that, independently, in an extended journal ver-
sion of their paper, Eisenbrand et al. use our construction to
make a similar observation: Roughly speaking, they show
that there are instances of bin packing and corresponding
optimal solutions (not necessarily basic) to the LP, for which
any set of at most OPT(Z) patterns from the support of
the LP solution leaves Q(log” m) items uncovered [EPR].



This matches the worst-case guarantee of the Karmarkar-
Karp algorithm for the general case of bin packing [KKS82].

Consequences for discrepancy theory

Another consequence of our lower bound is that it pro-
vides an alternate solution to a question posed by Soés,
which asks how large is the discrepancy of a union of
set systems when each set system has constant hereditary
discrepancy [LSV86], [Spe87]. In Section VII, we discuss
this and questions related to other notions of discrepancy.

Organization

In Section II, we give some basic definitions and no-
tation. In Section III, we define the construction of three
permutations that we will use to prove our main result. In
Section IV and Section V, we state and prove our main
theorem: the set system associated with prefixes of the three
permutations from Section III has discrepancy 2(logn). In
Section VI, we present the implications that our construction
has for the bin packing problem. Finally, in Section VII, we
discuss applications of our construction to other problems
in discrepancy.

II. BASIC DEFINITIONS AND NOTATION

Recall that for a set system S = {51, Sa,S3,...Sy}, the

discrepancy of the set system is:

disc(S) = IIl)(anIg[E]l\;[(] | Z x(2)].
€s;

Let [n] denote the set of integers from 1 through n, and
let [z,y] (where z < y) denote all integers from x through
y. For a coloring x : [n] — {-1,+1}, if § C [n], let
X(S) = > jes x(j). We will use n to denote the length
of the permutations, i.e. n = 3 for some specified integer
k> 0.

For some fixed k, the corresponding three permutations
described in Section IIT will be denoted by 7¥, 75 and 75%.
Let af(z) denote the elements in positions 1 through = in
the permutation 7%, where = € [0, n]. In other words, o (x)
is a prefix of 7F of length x. Note that a¥(0) represents
the empty set. Given the three permutations 75, 75 and 7%,
the set system Sy, consists of all sets af(x) for z € [3*].
In other words, S is the set system of all prefixes of the
three permutations, 7f, 75 and 75. Note that if we prove a
lower bound on the set system Sy, the same lower bound
holds on the set system containing all intervals of each of
the permutations.

We will also use the notion of sets corresponding to
suffixes of the permutations, even though these sets do not
appear in our set systems. Let w¥(x) denote the elements
in positions x through 3* in the permutation 7F, where
x € [3F + 1]. In other words, w¥(x) is a suffix of 7F of
length 3% — z + 1. We define w¥(3% + 1) to be the empty
suffix.

III. RECURSIVE CONSTRUCTION

We give a construction for three permutations on the
integers 1 through n, where n = 3% for some integer k& > 0.
Consider the following recursive construction of three lists:

A B C
¢ A B
B C A,

where A represents the interval [1,n/3], B the interval
[n/3 + 1,2n/3], and C the interval[2n/3 + 1,n]. Each
of the three copies of A (and B and C, respectively) is
divided further into three equal sized blocks of consecutive
elements, and these three blocks are permuted as in the
above construction. This process of dividing the blocks into
three equal sized blocks and permuting them according to
the above construction is iterated &k times. To illustrate these
actions, when k£ = 2 (and n = 9), this construction results
in the following three permutations:

1 2 3 4 5 6 7 8 9
9 7 8 3 1 2 6 4 5
5 6 4 8 9 7 2 3 1

For k = 3, see Table I for the construction.

One useful observation about this construction pertains to
the symmetry of these three permutations. If we consider
the set of permutations 75, 745 and 7%, then the three
permutations induced by {7%} on the set of integers [1, 3*~!]
are isomorphic to the permutations {7 ~*}. This also holds
for the permutations induced by {7¥} on [3F=141,2.3%71]
and to the permutations induced by {7¥} on [2-3k=1+1, 3%].

Fact 1. Given permutations {r¥}, the three permutations
induced on [1,3%71] (and on [3¥=1 4+1,2.3F71], [2.3F—1 4
1,3%), respectively) are isomorphic to the permutations
{m 71},

IV. MAIN THEOREM

Let Sy refer to the set system consisting of all prefixes
of the three permutations, 7%, 7% and 7%, on n = 3*
elements described in Section III. Note that the set of all
prefixes of the permutations is a subset of all intervals of the
permutations. Since we are proving a lower bound, it suffices
to consider the set system consisting only of prefixes. Our

main theorem is:
Theorem 1. disc(Sy) > [% +1] = [ 4 1].

V. PROOF OF MAIN THEOREM

In our construction, as k increases by 1, it is not necessar-
ily the case that the discrepancy increases by 1. If this were
true, then we could prove a lower bound of logs n rather
than logs; n/3. However, one of our key ideas—roughly
speaking—is that the sum of the discrepancies of the set
systems, each corresponding to one of the permutations,
increases by 1 as k increases by 1. We will use the



1 2 3 4 5 6 7 8 9 10 11 12 13
27 25 26 21 19 20 24 22 23 9 7 8 3
4 15 13 17 18 16 11 12 10 23 24 22 26

15 16 17 18 19 20 21 22 23 24 25 26 27
2 6 4 5 8 16 17 12 10 11 15 13 14
25 20 21 19 5 6 4 8 9 7 2 3 1

Table 1
Permutations for £ = 3 (and n = 27).

following definitions, which denote the maximum/minimum
sum of the prefixes of the set systems corresponding to each
permutation for a fixed coloring x:

disc+ (x) ==

L e (x(a(2)) + x(a5(y)) + x(a5(2))) ,
discF_ (x) :=

;,;,y,rzrg[%gk] (X(Oé]f(ﬂﬂ)) + x(a5(y)) + X(O‘é(z))) - (D

Although our set systems do not contain suffixes, we will
also use the following definitions:

discf (x) :=

max
z,y,2€[1,3k+1]

disck_ (y) :=

Lo (@) + b)) + @ :).

For a coloring x : [3F] — {—1,+1}, let ¥ = x([3%]). If
3 > 1, then our goal is to show the following:

(x(@l (@) + x (w5 (¥) + x (W (2))) ,

discf+ (x) > k+3. 2)
Alternatively, if X < —1, then we want to show:
discf_(x) < —k-—3. 3)

If we can show the appropriate inequality for every coloring
X, then this would imply our main theorem, as one of the
three set systems must then have discrepancy at least [|(k+
3)/3|1. However, we do not see how to directly use (2) and
(3) as an inductive hypothesis. Thus, we need a stronger
inductive hypothesis, which is stated in the following lemma
and corollary.

Lemma 1. Let & = x([3%]). If £ > 1, then:
discy+ (x), disch+(x) > k+X+2.
If ¥ < —1, then:
discf - (x), disck_(x) < —k+X—2.

Note that Lemma | implies our stated goal in (2) and (3)
and, therefore, our Main Theorem. Indeed, since 3% is odd,
it must be the case for any coloring x : [3¥] — {—1,+1}
that [3| > 1 and the theorem follows. Before we prove
Lemma 1, we show that Lemma 1 implies the following
corollary, which will be useful in our inductive proof.

Corollary 2. Let ¥ = x([3%]). If £ < —1, then:
discl ; (x), dischi(x) >k + 2% + 2.
Ifx>1
discy_ (x), disch_(x) < —k + 2% — 2.

Proof: Let us first consider the case in which 3 < —1.
Note that for each 7%, it is the case that for each z € [0, 3¥],
x(a¥(z))+x(wk(x+1)) = 2. Therefore, for some coloring
X, consider an = € [0,3"] that maximizes x(a¥(z)). Then
y = x + 1 is a value of y € [1,3% + 1] that minimizes

x(w¥(y)). Thus, we have:

3 =
3% — disc— (x).

disch (x) +discf (x) =
discf+ (x) =
By Lemma 1, we have:

discF (x) > 39 +k-%42
k+2¥+2.
An analogous argument works to give the same lower bound

on disc§+ when ¥ < —1. Now consider the case in which
> > 1. We have:

3N =
3% — disch i (x).

discf+ (x) + disc— (x)
discf- (x) =
By Lemma 1, we have:
3X-k-X -2
—k+2¥ -2

discf- (x) <

The argument for the upper bound on discﬁ, when X > 1
is symmetric. [ ]

Proof of Lemma 1

Now we will prove Lemma 1 using induction. Note that
in our inductive hypothesis, we will assume Lemma 1 for
k — 1. This will allow us to also assume the bounds stated
in Corollary 2, since we have shown that, for a given value
of k, Lemma 1 implies Corollary 2.

Base Case: k = 1: Suppose that ¥ = x([3]) > 1. Let
1 = (a,b,c), 73 = (c,a,b) and 71 = (b,c,a). Without
loss of generality, there are only two possibilities for such
colorings:

(1) x(2) x(3) 1 -1 1 111
x3) x(1) x@2)|=11 1 —1]or|1 1 1
x(2) x(3) x(1) -1 1 1 11 1



Suppose ¥ = x([3]) = 1. The only way to achieve such a
coloring is to have two of the elements be colored ‘41’ and
one element be colored ‘—1’. Without loss of generality, in
the above case, we have assigned —1 to element 2. Then
one of the permutations has a prefix (suffix) with value
two, while each of the other two permutations have prefixes
(suffixes) with value one. Specifically, in this case, ﬂ% has a
prefix of value two and both other permutations have prefixes
with value one. Thus, we have: disciJr (x), discllﬁ (x)=42>
k+ % + 2 = 4. Now suppose that ¥ = x([3]) = 3. In this
case, each permutation has a prefix (suffix) with value three.
Thus, disc{ + (x),discg+(x) = 9 > k + ¥ 4+ 2 = 6. Thus,
Lemma 1 holds for ¥ > 1 when k = 1.

When ¥ = x([3]) = —1, the same arguments can
be used to show that disc;—(x),discy-(x) = —4 <
—k— X —2 = —4. Similarly, when £ = x([3]) = -3,
disc; — (x), disci— (x) = —9 < —6. This concludes the proof
of the base case.

Inductive step: Now we assume that Lemma 1 and thus
its Corollary 2 are true for k£ — 1 and prove the Lemma (and
thus, the Corollary) true for k.

For some fixed x : [3¥] — {—1,+1}, let & = x([3%)).
Let a, b and ¢ denote the values of the three blocks of
3k=1 consecutive integers in the recursive construction, i.e.
X([L,3571), x([3*7 1 +1,2-3*71]) and x([2-3* 1 +1,3%)),
although not necessarily in this order. We always assume
that ¢ > b > ¢, i.e. the value of the block with the
largest value is denoted by a, etc. Note that a,b and c
are each odd numbers, because they always represent the
values of intervals with odd length. Each permutation in
{7k} corresponds to some permutation of a,b and ¢ and the
elements within. Without changing the discrepancy, we can
re-order or re-label the three permutations to form one of the
following two configurations, in which each row corresponds
to one of the three permutations in {7%}.

b

= a
c

b

IS

b
D a . (ID
C

[SCYES
QT O
SIS e
0
>
Q0

c
a

First we consider the case in which ¥ = x([3%]) > 1.

This implies that a + b 4+ ¢ > 1. There are two subcases:
i) a>b>1(andc>1orc<-1),
(i) a>land c <b< —1.

Now we consider case (i) and configuration (I). If we
look at a permutation of the rows so that the blocks with
value b are on the diagonal (as shown), then in configuration
(D), the value of the blocks below the diagonal are positive
(which is desirable). Thus, we can consider the three prefixes
corresponding to the permutations of the block with value b.
Suppose, without loss of generality (and for ease of notation)
that the block with value b is [1,3*71]. In this case, the
permutations on the diagonal are 77’1“_1, 7r§_1 and 7r§_1. By
the inductive assumption, for any x : [3*71] — {—1,+1},

there are three corresponding prefixes o~ (z1), o' ()
and o ! (x3), for some integers x1, 2o, x3 € [0, 3*1], such
that:

discf:l(x) = x(F (21)) + x(ah 7 (x2)) + x(ab " (23))
>k-1)+b+2. “4)

Note that if either the block [3¥~1 +1,2-3%1] or the block
[2-3%~1 +1, 3% had value b, and therefore appeared on the
diagonal of configuration (I), then by Fact 1, we see that
these permutations are isomorphic to {7*~'}. This allows
us to use the inductive hypothesis in these cases as well, and
to draw the same conclusion as we drew in (4).

Now we consider some y : [3*] — {-—1,+1}. This
coloring induces a coloring on [3*~1!] for which the above
assumption in (4) holds. Suppose that 71'571, wf ~1and ’/T;fil,
for h,j,£ € {1,2,3}, correspond to the permutations of
block [3%~1] that appear in the first, second and third rows of
the configuration, respectively. For the fixed coloring x on
[3], our goal is to show that there are three prefixes of the
three permutations {7*} such that we can lower bound the
value of the sum of these prefixes with respect to the fixed
coloring x. The prefix of the permutation corresponding
to the first row of the configuration is af '(x). For
the permutation corresponding to the second row of the
configuration, we add the block with value a to the front
of a;?*l (x;). For the permutation corresponding to the third
row of the configuration, we add the block with value a to
the front of a¥~*(x;) preceded by the block with value c.
Thus, by the inductive hypothesis, we have that:

discr+ (x) = x(ap " (zn)) + (a + x(af " (5))) +
(c+a+x(a) " (z0)))
= discf:l(x) +2a+c
>k-1)+b+2+2a+c
>k+X+1+a
>k+X+2

The last inequality follows from the fact that in case (i), a >
1. Thus, the inductive step holds for case (i), configuration
.

Now let us consider configuration (II). In this case, we
consider a permutation of the rows so that the blocks with
value a occupy the diagonal. By the same reasoning as
discussed previously and by induction, we have:

discf+ (x) > discf;l(x) +2b+c
>(k—1)+a+2+2b+c
>k+X+b+1
> kY42

Since in case (i), b > 1, the inductive step holds for case
(i), configuration (II).



Now we consider case (ii), when ¢ > 1 and ¢ < b < —1.
In this case, we again have the above two configurations:

a b c b ¢ a
M c a bl=]a b c]|,
b ¢ a c a b
a ¢ b c b a
am b a cl=1a ¢ b
c b a b a c

Note that in case (ii), for both configurations (I) and (II),
we use Corollary 2. We consider configuration (I) first.

discF, () > discfjl(x) +2a+c
>(k—-1)+20+2+2a+c
>k+YX+a+b+1
>k+X+2

Since we have a +b+c¢ > 1, it follows that a+b > 1—¢ >
2. Thus, case (ii) holds for configuration (I). Now let us
consider configuration (II). We have:

discfs (y) > discfj1 +2a+b
>k—-1)+2c+2+2a+0b
>k+X+a+c+1
>k+Y+2.

Since we have a+b+c¢ > 1, it follows that a+c > 1—b > 2.
Thus, case (ii) holds for configuration (II).

The proof of the lower bound on disc]’§+ (x) is symmetric
to the one we have just given for discl: (x). Instead of
adding the blocks whose values lie in the lower left hand
triangle to form the new prefixes, we use the blocks whose
values lie in the upper right hand triangle.

Finally, we need to show that if ¥ = x([3*]) < —1, then:

disck(x), disck—(x) < —k+X—2. 5)

Note that this follows from our proof of the first part of
Lemma I, namely that when X = x([3¥]) > 1, then:

disc+ (x), disch+(x) > k+ X +2. (6)

If we consider a coloring y : [3¥] — {—1,+1} such that
x([3%]) < —1, and it is the case that (5) does not hold, then
consider xy~ = —y, i.e. the negation of x. It follows that
x~([3%]) > 1, but (6) does not hold for coloring x~, which
is a contradiction. This concludes the proof of Lemma 1.

VI. CONSEQUENCES FOR BIN PACKING LP

The main result of this section is the following:

Theorem 3. For infinitely many integers m, there exists a
bin packing instance T on m items, and an optimal basic
feasible solution x to (LP), such that any integral solution
y to (LP) satisfying supp(y) C supp(z) has value at least
OPT(Z) + Q(log m).

m 12 34 56 78 90
m 97 83 12 64 50
3 56 48 97 23 10

Figure 1. The construction of the bin packing instance for k£ = 2, each
underlined pair corresponds to an item. The items in p; are in bold font.

We actually prove a slightly stronger statement in Re-
mark 1. The replacement property allows an algorithm to
replace item of size s by any item of size s’ < s in any legal
pattern. We show that our lower bound on the size of any
integral solution y to (LP) with supp(y) C supp(z), holds
when allowing replacements. Using an observation made by
[EPR], we can even allow the integral solution to use the
same pattern multiple times.

The Construction

The instance is very simple in the sense that all the sizes
are numbers in the interval [1/4,1/3], so that any pattern
containing at most three items is legal. The more challenging
part is to construct a basic feasible solution with the required
property.

Fix any integer £k > 0, and recall that the three per-
mutations 75, 75, 7% are permutations on the first n = 3*
positive integers (we omit the superscript when k is clear
by the context). We shall append the number O at the end
of each permutation (that is, define 7;(0) = n + 1 for
i = 1,2,3). Let m = 3(n + 1)/2 and define an instance
Z = I(k) of m items. Each item corresponds to a pair of
consecutive numbers in one of the permutations, that is, for
each ¢ € [3] and j € [(n + 1)/2] we have an item (i, j),
this item corresponds to the pair (m;(2j — 1), m;(25)) and
has size 1/3 — (¢ + 2j/(n + 1))/48. See Figure 1 for the
definition of items in the case k = 2. Define a set P C P
of n + 1 patterns P = {pg, p1,--.,Pn}, Where the pattern
p, contains the three items that correspond to the number
r. More formally, the pattern p, contains the items (1, j1),
(2,72 (3, j3), where j; is such that 7; ' (r) € {24; —1,2j;}
for ¢ € [3]. See Figure 2 for the incidence matrix of items
and patterns for k = 2.

Observation 1. Each item is contained in exactly two
patterns, and each pattern contains exactly three items.

Observation 2. The item sizes are all in [1/4,1/3] and are
strictly decreasing (ordered lexicographically by (i, 7)).

The Proof

The proof of Theorem 3 will use the discrepancy of
permutations established in the previous section. A coloring
X : [n] = {—1,1} naturally corresponds to an integral
solution of the bin packing instance we defined, where



110 0 0 0 0 0 0 O
001 10O0O0O0TO0F©O
0000110000
0 000O0OO0OT1T1TO0FPO0
0000O0OO0OO0OTO0T171
0000O0O0OT1TO0T1@P0
001 00O0OO0OT1TO0O0
110 0 0 0 0 0 0 O
0001010000
00 001O0O0O0O01
0000110000
0001 0O0O0OT1O00O0
00 00O0OO0OT1TO0T10
01 1.00000O0°O00O0
100 0 00 O0O0OO1

Figure 2. The incidence matrix A for the case k = 2. The rows correspond
to items, in each block of (n+1)/2 = 5 rows are the items defined by one
of the permutations. The n + 1 = 10 columns correspond to the patterns.

pattern p,. is taken if and only if x(r) = 1 (pattern pg does
not correspond to a coloring, but it changes the cost of the
solution by at most additive 1, so we may assume it is always
taken).

Lemma 2. Let k > 8 be an integer. Any feasible integral
solution y € {0,1}"*! to the instance I(k) such that
supp(y) C P, satisfies |supp(y)| > n/2 + k/16.

Proof: Seeking contradiction, assume that |supp(y)| <
n/2 + k/16, and we will show that y cannot be feasible.
Consider the coloring x : [n] — {—1,1} defined by x(j) =
2y; — 1. Observe that ¥ = x([n]) = |{j € [n] Yy =
=1 € n] + g5 = —1}] < (n/2+k/16)— (n/2—k/16—
1) = k/8+ 1. Clearly we may assume [supp(y)| > n/2+1
(since adding more patterns will make it more likely that y
is feasible), so that x([n]) > 0. By Corollary 2,

disch (x) < —k+2% -2 < —3k/4 .

Recall the definition of disck () in (1), which suggests
that there exists an ¢ € [3] and a prefix w € [n] for which

x(af(w)) < —k/4 < -2 ©)

We conclude that there must be an item (¢,7) for some
integer 0 < j < w/2 and i € [3], such that x(m;(2j — 1)) =

Xx(m;(27)) = —1, meaning the item is not covered by any
pattern of y. This contradicts the fact that y is a feasible
solution. [ |

Remark 1. The proof of Lemma 2 holds even when allowing
replacements and using patterns multiple times.

Proof: Observe that in (7) we have i € [3] and a prefix
w € [n] for which the discrepancy is at most —k/4, in
other words |{j € [w] Yr() = 1} < |w/2 — k/8].
There are |w/2] items corresponding to this prefix, so in

fact there are at least k/8 items that are not covered by any
pattern chosen by y. In a setting that allows replacements,
we may place such an uncovered item in available spots
of other patterns, provided that the spot was intended for
an item of greater size. By Observation 2 we have that
these items cannot take the place of items corresponding
to pairs (¢/,5") with (¢/,5") > (i, ) (lexicographically), and
as these uncovered items correspond to a prefix of m;, the
only option is to take the place of items corresponding to
pairs (i, j') with i < i. However, by our assumption on
y, that |supp(y)| < n/2 + k/16, there are less than k/16
available spots in each permutation i’ (obviously taking out
larger items to create space is not helpful). As there are at
most two values of i’ < ¢, we have that there is no sufficient
place for all the k/8 items.

When allowing replacements, it is also natural to allow
multiple uses of the same pattern in the integral solution, that
is, y € N"*1 Since in Lemma 2 we defined y € {0,1}" "1,
this is inherently not allowed. However, an observation made
in [EPR], that the proof of Theorem 1 holds even for
coloring with odd integers, in fact enables multiple uses of
the same pattern. This is because the coloring is defined as
X(j) = 2y; — 1, which is always odd. Replacing [supp(y)|
by Zj y; in the proof of Lemma 2, we will still have a prefix
with large negative discrepancy, so the same argument holds.

|

Lemma 3. The solution x, = 1/2 for all p € P, and x), =
0 otherwise, is an optimal basic feasible solution of cost
(n+1)/2.

Proof: By Observation 1 x is a feasible solution, and
its cost is (n + 1)/2 because there are n + 1 patterns in P.
This is clearly an optimal solution, since any bin can contain
at most 3 items, so the number of required bins is at least
m/3=(n+1)/2.

In order to prove that x is a basic solution, we need
to exhibit |P| linearly independent tight constraints. As
|[supp(z)| = n + 1, there are |P| — (n + 1) tight constraints
of the form x, = 0, and it remains to show that there
are n + 1 linearly independent constraints of the form
ZpEP:iEp xp, = 1. Since every item appears in exactly two
patterns, all these constraints are in fact tight. The proof will
follow once we establish the fact that there are n+1 linearly
independent such constraints. Let A be the incidence matrix
of the items in the patterns of P, which has m = 3(n+1)/2
rows and n + 1 columns (see Figure 2). In what follows we
prove that A has full rank. Abusing notation slightly, let
pr be the r-th column vector of A. Seeking contradiction,
assume that there are coefficients «ag,aq...,a,, not all
equal to 0, such that

Z aypr = 0. 3
r=0

We will prove the following claims.



Claim 1. If (8) holds, then there is some o > 0 such that
|| = a for every 0 < r < n.

Claim 2. There are three numbers 1 < i1 < i9 < 13 <9,
such that there are three items corresponding to the pairs
(i1,42), (i2,13), (i1,43).

Let us now conclude by showing a contradiction. By
Claim 1 the absolute value of all coefficients is o > 0.
Let 1 <141 <19 < i3 <9 be as in Claim 2. Note that at
least two of the coefficients of i1, 9,73 must have the same
sign, say w.l.o.g 71, %2. Since there is an item corresponding
to (i1,12), the absolute value of the appropriate entry in the
vector Y _"'_ ap, Will be 2c # 0, a contradiction. [

It remains to prove the claims stated above.

Proof of Claim 1: The basic idea is the following:
By Observation 1 every item is contained in exactly two
patterns, so that if (8) is to hold, the two patterns containing
the item must have coefficients whose sum is 0. Roughly
speaking, if we have a nonzero coefficient o for some
pattern, any item it contains appears in one more pattern,
which must have coefficient —«. This pattern contain more
items, which will force coefficient « for yet other patterns,
and so on. Finally, we will have that all patterns have +«
coefficient. Next we prove this formally.

For the sake of analysis, we ignore the number 0 appended
at each permutation end (if the nonzero coefficient is «y,
then the items containing 0 will also induce nonzero coeffi-
cients for some pattern i > 0). As k grows, the position of
blocks of numbers in some of the permutations may shift,
and thus affect the pairing of numbers into items. Since we
aim at an inductive proof, we need to consider all possible
locations of a block, and in what follows we define the
possible ways of pairing the numbers into items. Observe
that there are two ways to create pairs from consecutive
numbers in each of the permutations: starting at the first or
second position. For example when k& = 2, w5 can be paired
into items as

or as

Nej
\]
(%)
w
—
o
=
N
&)

Consider the 8 possible pairing schemes of the three per-
mutations. A pairing scheme may be defined by the set
C = {1,2}3, where each symbol indicates from which
position to start pairing in each permutation. For example
(122) means the following pairing scheme (for k& = 2)

123456789 C))
978312645
564897231

For every pairing scheme ¢ € C let G,(CC) = (V,E) be a
graph where V = [3*] and (u,v) € E iff there is an item

corresponding to the pair of integers (u,v) in one of the
m; with the pairing scheme c. An edge (u,v) indicates that
the patterns p,, p, must have opposite coefficients, so the
connectivity of the graph suggests that all coefficients are
+a, as required. We will prove by induction on £ that for
any possible pairing scheme ¢ € C, G,(CC) is connected. The
base case when k£ = 1 holds,

N W —
W - N
— N W

because every permutation has one pair, and note that it
cannot be that all the three pairs are the same, thus we
have one number which is connected to the other two. For
the induction step, assume the assertion holds for k, and
prove for k£ 4 1. By Fact 1 we have that the permutations
induced on the three blocks [1,3], [3¥ + 1,2 - 3¥] and
[2 - 3k + 1,3%+1] are isomorphic to the permutations of
[3%]. Fix any pairing scheme of the three permutations,
which induces a pairing scheme on each of the three blocks.
Let G1,G2,G3 be the three graphs induced by the pairing
scheme of the permutations of each block. By the induction
hypothesis, all three graphs are connected. It remains to see
that these graphs are connected to each other. To see this,
note that any block will be in the middle section in one of the
three permutations. Now, since it contains an odd number of
elements, one of its numbers will be paired with a number
from another block, establishing the connection to the graph
of another block. Thus fo) is connected, which concludes
the proof. [ ]

Proof of Claim 2: By Fact 1, the block [9] appears
consecutively in each of the permutations, ordered exactly
as depicted in Figure 1. As in the proof of Claim 1, we need
to consider all the possible pairing schemes of items in each
permutation, and there are 8 cases to inspect!. By a simple
case analysis one can check that there are three numbers
satisfying the assertion of the claim, no matter which pairing
scheme of C' is chosen. For instance, in the pairing scheme
(122) depicted in (9), the numbers 4, 5, 6 satisfy the claim, in
the pairing scheme (111) depicted in Figure 1, the numbers
3,4, 8 satisfy it. The following is a matching between the 8

In fact there are less cases, because in 71 the block [9] never shifts.



possible pairings and the numbers i1, o, ¢3.

|

Proof of Theorem 3: Combining Lemmata 2, 3, and
noting that k = logsn = Q(logm), yields the proof of the
theorem. ]

VII. CONSEQUENCES FOR DISCREPANCY THEORY

A topic of interest in the field of combinatorial discrep-
ancy theory is the worst-case relationships between various
definitions of discrepancy. In this section, we discuss how
our lower bound may be useful in studying the gaps between
these different quantities.

Union of set systems with low hereditary discrepancy

Let S = {S1,...,Sn} be aset system on [n]. Given a set
W C [n], we define the trace of S on W as the set system
Slw = {S1NW,..., SpyNW L. The hereditary discrepancy
of S is defined as

herdisc(S) = Ii/nca[x] disc(S|w). (10)

Hereditary discrepancy is in some sense a more robust
measure of the complexity of a set system than discrepancy.
An intriguing question, raised by Sdés [LSV86], [Spe87],
concerns quantifying the robustness of hereditary discrep-
ancy: given set systems 7 and U, each with hereditary
discrepancy one, how large can the hereditary discrepancy
of 7 UU be as a function of n? A clever example due to
Hoffmann shows that the hereditary discrepancy of 7 U U
is Q(logn/loglogn) [Spe87]. More recently, Matousek
showed an upper bound of O(log (M - n)y/logn) [Matl1].
Furthermore, Matousek presented a construction due to
Palvogyi, which improves on Hoffmann’s example: there
exist 7 and U each with hereditary discrepancy one, where
herdiscT U U is Q(logn). Palvogyi’s construction was
originally presented geometrically in the context of cover-
decomposable planar sets [Pal10].

Here, we provide another example of two set systems with
hereditary discrepancy one whose union has discrepancy
Q(logn). Let S;, be the set system consisting of the prefix

intervals {af(z)}?_, of 7}, and let S}/ be the set system

consisting of the prefix intervals {4 (z)}7_, U{a%(z)}?

rx=1

of 75, w5, We have,
herdisc(S;,) = 1, (11)
herdisc(Sy) = 1, (12)

herdisc(S), US}) = herdisc(Sk) = Q(logn). (13)

Equation (11) follows from the fact that the discrepancy
of one permutation is one. Equation (12) follows by the
fact that any set system consisting of the prefix intervals of
two permutations has discrepancy at most one. Note that the
discrepancy of the set system based on all intervals of two
permutations is at most two [Spe87]. Equation (13) follows
from Theorem 1.

Vector discrepancy of permutations

Another notion that has proven useful in studying dis-
crepancy, especially from an algorithmic perspective is a
relaxation of discrepancy called vector discrepancy. The
vector discrepancy of a set system S is defined as

vecedise(S) = min  max E ||
ui,...,Un S]’GS 4
1€S; 9
where uj,...,u, ranges over unit length vectors in R”.

We define hereditary vector discrepancy analogously to
hereditary discrepancy:

hervecdisc(S) = VrVnCa[x] vecdise(S|w).

The best currently known upper bound on the gap between
the discrepancy and the hereditary vector discrepancy is
O(log M - n), due to Bansal [Ban10].

Via the determinant lower bound of Lovasz, Spencer, and
Vesztergombi [LSV86], Matousek recently proved that if 7
and U are set systems with constant hereditary discrepancy,
then hervecdisc(7 UU) < O(y/logn) [Matl1]. Combining
this theorem with our observations in Section VII, we see
that the hereditary vector discrepancy of the set system
consisting of the intervals of any three permutations is
O(y/logn). In light of our lower bound on the discrepancy
of three permutations, an improved upper bound on the
hereditary vector discrepancy of three permutations would
disprove a conjecture of MatouSek that hereditary discrep-
ancy is at most a factor of O(/logn) higher than hereditary
vector discrepancy [Matl1].

Thus, we conclude with an open problem. Let wg, w; and
wo be the third roots of unity. In our construction, we can
assign the vector w; to each element equivalent to ¢ (mod
3). This coloring suffices to show that vecdisc (S;) < 1.
What is the value of hervecdisc (Si)? More generally, what
is the worst-case vector discrepancy of three permutations?
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