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Abstract

The metric Ramsey problem asks for the largest subset S of a metric space that can be
embedded into an ultrametric (more generally into a Hilbert space) with a given distortion.
Study of this problem was motivated as a non-linear version of Dvoretzky theorem. Mendel
and Naor [MN07] devised the so called Ramsey Partitions to address this problem, and showed
the algorithmic applications of their techniques to approximate distance oracles and ranking
problems.

In this paper we study the natural extension of the metric Ramsey problem to graphs, and
introduce the notion of Ramsey Spanning Trees. We ask for the largest subset S ⊆ V of a given
graph G = (V,E), such that there exists a spanning tree of G that has small stretch for S.
Applied iteratively, this provides a small collection of spanning trees, such that each vertex has
a tree providing low stretch paths to all other vertices. The union of these trees serves as a
special type of spanner, a tree-padding spanner. We use this spanner to devise the first compact
stateless routing scheme with O(1) routing decision time, and labels which are much shorter
than in all currently existing schemes.

We first revisit the metric Ramsey problem, and provide a new deterministic construction.
We prove that for every k, any n-point metric space has a subset S of size at least n1−1/k which
embeds into an ultrametric with distortion 8k. We use this result to obtain the state-of-the-art
deterministic construction of a distance oracle. Building on this result, we prove that for every
k, any n-vertex graph G = (V,E) has a subset S of size at least n1−1/k, and a spanning tree of
G, that has stretch O(k log log n) between any point in S and any point in V .

1 Introduction

Inspired by the algorithmic success of Ramsey Type Theorems for metric spaces, in this paper
we study an analogue Ramsey Type Theorem in a graph setting. The classical Ramsey problem
for metric spaces was introduced in [BFM86], and is concerned with finding ”nice” structures in
arbitrary metric spaces. Following [BLMN03], [MN07] showed that every n-point metric (X, d) has
a subset M ⊆ X of size at least n1−1/k that embeds into an ultrametric (and thus also into Hilbert
space) with distortion at most O(k), for a parameter k ≥ 1. In fact, they construct an ultrametric
on X which has O(k) distortion for any pair in M × X. Additionally, [MN07] demonstrated the
applicability of their techniques, which they denoted Ramsey Partitions, to approximate distance
oracles and ranking problems.
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We introduce a new notion that we call Ramsey Spanning Trees, which is a natural extension
of the metric Ramsey problem to graphs. In this problem, we wish to find a large subset S ⊆ V ,
and a spanning tree of G that has small distortion for S × V . Let dist(u, v,G) denote the shortest
path distance in the graph G between the vertices u, v ∈ V , then our main result is the following.

Theorem 1. Let G = (V,E) be a weighted graph on n vertices, and fix a parameter k ≥ 1.
There is a polynomial time deterministic algorithm that finds a spanning tree T of G and a subset
S ⊆ V of vertices of size at least n1−1/k, such that for every v ∈ S and u ∈ V it holds that
dist(v, u, T ) ≤ O(k log log n) · dist(v, u,G).

We remark that the extra factor of log log n in the stretch comes from the state-of-the-art result
of O(log n log logn) for low stretch spanning trees [AN12]. It is quite plausible that if that result is
improved to the optimal O(log n), then the stretch in our result would be only O(k). By applying
Theorem 1 iteratively, we can obtain a small collection of trees so that each vertex has small stretch
to all other vertices in at least one of the trees.

Theorem 2. Let G = (V,E) be a weighted graph on n vertices, and fix a parameter k ≥ 1. There
is a polynomial time deterministic algorithm that finds a collection T of k · n1/k spanning trees of
G, and a mapping home : V → T , such that for every u, v ∈ V it holds that dist(v, u,home(v)) ≤
O(k log log n) · dist(v, u,G).

A spannerH with stretch t for a graphG, is a sparse spanning subgraph satisfying dist(v, u,H) ≤
t · dist(v, u,G). Spanners are a fundamental metric and graph-theoretic constructions; they are
very well-studied [PS89, ADDJ90, Coh93, EP04, BS03, TZ06, AB16], and have numerous applica-
tions [Awe84, ABCP93, Coh93, Elk01, GRTU16]. Theorem 2 can be viewed as providing a spanner
which is the union of k · n1/k spanning trees, such that every vertex has a tree with low stretch
paths to all other vertices. We call such a spanner a tree-padding spanner of order k · n1/k. To
the best of our knowledge, no previous construction of spanners can be viewed as a tree-padding
spanner of order o(n). Until now even the following weaker question was open: does there exist a
spanner which is a union of a sublinear in n number of trees, such that every pair of vertices has a
low stretch path in one of these trees.

Having a single tree that provides good stretch for any pair containing the vertex v, suggests
that routing messages to or from v could be done on this one tree. Our main application of Ramsey
spanning trees is a compact routing scheme that has constant routing decision time and improved
label size, see Section 1.1 for more details.

Deterministic Ramsey Partitions. As a first step towards our main result, which is of interest
in its own right, we provide a new deterministic Ramsey ultrametric construction. In particular,
we show a polynomial time deterministic algorithm, that given an n-point metric space (X, d) and
a parameter k ≥ 1, finds a set M ⊆ X of size at least n1−1/k and an ultrametric (M,ρ) with
distortion at most 8k − 2. That is, for each v, u ∈M ,

d(v, u) ≤ ρ(v, u) ≤ (8k − 2) · d(v, u) .

The first result of this flavor was by Bartal et al. [BBM06], who showed a deterministic construction
with distortion O(k log logn). This was improved by [BLMN03] to distortion O(k log k). Mendel
and Naor [MN07] developed the so called Ramsey partitions, which had distortion of 128k (using
a randomized algorithm). Blelloch et. al [BGS16] showed that the (randomized) algorithm of
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[FRT04] constructs an ultrametric with distortion 18.5k (they also provided a near-linear time
implementation of it). The best randomized algorithm is by Naor and Tao [NT12], who obtained
distortion 2ek. Their techniques are not based on Ramsey partitions, as is ours and other previous
works (see Section 3 for more details on Ramsey partitions). In fact, [NT12] declared that a Ramsey
partition with distortion better than 16k−2 seems not to be possible with their current techniques.
Moreover, [MN07] mention as a drawback that their solution is randomized (while [BLMN03] is
deterministic). A deterministic construction similar to ours was obtained by Bartal [Bar11].

An application of our improved deterministic Ramsey ultrametric construction is a new distance
oracle that has the best space-stretch-query time tradeoff among deterministic distance oracles. See
Section 1.1 below.

Techniques. Our construction of Ramsey ultrametrics uses the by-now-standard deterministic
ball growing approach, e.g. [Awe84, AKPW95, AP90, FRT04, Bar04]. In this paper we provide
tighter and more parameterized analysis of these multi-scale deterministic region growing tech-
niques. Our improved analysis of the deterministic ball growing technique of [FRT04, Bar04]
obtains a similar type of improvement as the one obtained by the analysis of Mendel and Naor
[MN07] on the randomized partition technique of [CKR04, FRT03].

Our construction of Ramsey spanning trees is based on combining ideas from our Ramsey
ultrametric construction, with the Petal Decomposition framework of [AN12]. The optimal multi-
scale partitions of [FRT04, Bar04] cannot be used in this petal decomposition framework, so we must
revert to partitions based on [Sey95, EEST05], which induce an additional factor of O(log log n)
to the stretch. In addition, the refined properties required by the Ramsey partition make it very
sensitive to constant factors (these constants can be ignored in the [EEST05] analysis of the average
stretch, say). In order to alleviate this issue, we consider two possible region growing schemes, and
choose between them according to the densities of points that can still be included in M . One of
these schemes is a standard one, while the other grows the region ”backwards”, in a sense that it
charges the remaining graph, rather than the cluster being created, for the cost of making a cut.
See Section 4.3 for more details.

1.1 Applications

Distance Oracles. A distance oracle is a succinct data structure that (approximately) answers
distance queries. A landmark result of [TZ01a] states that any metric (or graph) with n points
has a distance oracle of size O(k · n1+1/k),1 that can report any distance in O(k) time with stretch
at most 2k − 1. A deterministic variant with the same parameters was given by [RTZ05], and
this was the state-of-the-art for deterministic constructions. The oracle of [MN07] has improved
size O(n1+1/k) and O(1) query time, but larger stretch 128k. This oracle was key for subsequent
improvements by [WN13, Che14, Che15], the latter gave a randomized construction of an oracle
with size O(n1+1/k), query time O(1) and stretch 2k−1 (which is asymptotically optimal assuming
Erdos’ girth conjecture).

Similarly to [MN07], our deterministic construction of Ramsey ultrametrics can provide a deter-
ministic construction of an approximate distance oracle. While the stretch of the oracle of [MN07]
is further increased by a large constant factor over the stretch of the Ramsey ultrametric, we use a

1We measure size in machine words, each word is Θ(logn) bits.
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careful analysis and a collection of oracles in various distance scales, in order to increase the stretch
by only a 1 + ε factor.

Theorem 3. For any metric space on n points, and any k > 1, 0 < ε < 1, there is an efficient
deterministic construction of a distance oracle of size O(n1+1/k), that has stretch 8(1 + ε)k and
query time O(1/ε).

This is the first deterministic construction of an approximate distance oracle with constant
query time and small size O(n1+1/k).

Moreover, our oracle is an essential ingredient towards de-randomizing the recent distance
oracles improvements [WN13, Che14, Che15]. Specifically, if we construct [Che14] by replacing
the distance oracle of Mendel and Naor [MN07] by our deterministic version, and replacing the
distance oracle of Thorup and Zwick [TZ01a] by the deterministic version of Roditty, Thorup, and
Zwick [RTZ05], we immediately get a deterministic distance oracle of O(k · n1+1/k) size, 2k − 1
stretch and O(1) query time. This is a strict improvement over [RTZ05]. In addition, our oracle
can be viewed as a first step towards de-randomizing the [Che15] oracle. A summary of all the
previous and current results in a table form can be found at Table 1.

Stateless Routing with Short Labels and Constant Decision Time. A routing scheme in
a network is a mechanism that allows packets to be delivered from any node to any other node.
The network is represented as a weighted undirected graph, and each node can forward incoming
data by using local information stored at the node, often called a routing table, and the (short)
packet’s header. The routing scheme has two main phases: in the preprocessing phase, each node
is assigned a routing table and a short label. In the routing phase, each node receiving a packet
should make a local decision, based on its own routing table and the packet’s header (which may
contain the label of the destination, or a part of it), where to send the packet. The routing decision
time is the time required for a node to make this local decision. The stretch of a routing scheme is
the worst ratio between the length of a path on which a packet is routed, to the shortest possible
path. A routing scheme is called stateless if the routing decision does not depend on the path
traversed so far.

The classical routing scheme of [TZ01b], for a graph on n vertices and integer parameters
k, b > 1, provides a scheme with routing tables of size O(k · b ·n1/k), labels of size (1 + o(1))k logb n,
stretch 4k − 5, and decision time O(1) (but the initial decision time is O(k)). The stretch was
improved recently to roughly 3.68k by [Che13], using a similar scheme as [TZ01b]. With Theorem 2,
we devise a stateless compact routing scheme with very short labels, of size only (1 + o(1)) logb n,
and with constant decision time, while the stretch increases to O(k log logn) (and with the same
table size as [TZ01b]).

We wish to point out that our construction of a routing scheme is simpler in some sense that
those of [TZ01b, Che13]. In both constructions there is a collection of trees built in the preprocessing
phase, such that every pair of vertices has a tree that guarantees small stretch. Routing is then
done in that tree. In our construction there are few trees, so every vertex can store information
about all of them, and in addition, every vertex v ∈ V knows its home tree, and routing towards
v from any other vertex on the tree home(v) has small stretch. In particular, the header in our
construction consists of only the label of the destination. In the [TZ01b] scheme, however, there
are n trees, and a certain process is used to find the appropriate tree to route on, which increases
the initial decision time, and also some information must be added to the header of the message
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after the tree is found. Finally, our routing scheme is stateless, as opposed to [TZ01b]. (We remark
that using ideas from [Che14], one can devise a stateless routing scheme based on [TZ01b], but this
scheme seems to suffer from larger header and decision time at each node.)

Theorem 4. Given a weighted graph G = (V,E) on n vertices and integer parameters k, b > 1, there
is a stateless routing scheme with stretch O(k log logn) that has routing tables of size O(k · b ·n1/k)
and labels of size (1 + o(1)) logb n. The decision time in each vertex is O(1).

Observe that choosing parameters 2k and b = n1/(2k) for Theorem 4 yields a routing scheme
with stretch O(k log logn) that has tables of size O(k · n1/k) and labels of size only O(k). Another
interesting choice of parameters is b = 2 and k = 100 logn

log logn , this provides a scheme with stretch

O(log n) that has tables of size O(log1.01 n) and labels of size O(log n). Compare this to the
[TZ01b] scheme, which for stretch O(log n) has tables of size O(log n) and labels of size O(log2 n).

1.2 Organization

In Section 3 we present our deterministic Ramsey partitions, that are used for Ramsey ultrametrics
and distance oracles. In Section 4 we show the Ramsey spanning trees, and the application to
routing. Each section can be read independently.

2 Preliminaries

Let G = (V,E) be a weighted undirected graph. We assume that the minimal weight of an edge is
1. For any Y ⊆ V and x, y ∈ Y , denote by dist(x, y, Y ) the shortest path distance in G[Y ] (the
graph induced on Y ). For v ∈ Y and r ≥ 0 let B(v, r, Y ) = {u ∈ Y | dist(v, u, Y ) ≤ r}, when
Y = V we simply write B(v, r). We may sometimes abuse notation and not distinguish between a
set of vertices and the graph induced by them.

An ultrametric (Z, d) is a metric space satisfying a strong form of the triangle inequality, that
is, for all x, y, z ∈ Z, d(x, z) ≤ max {d(x, y), d(y, z)}. The following definition is known to be an
equivalent one (see [BLMN05]).

Definition 1. An ultrametric is a metric space (Z, d) whose elements are the leaves of a rooted
labeled tree T . Each z ∈ T is associated with a label ` (z) ≥ 0 such that if q ∈ T is a descendant of
z then ` (q) ≤ ` (z) and ` (q) = 0 iff q is a leaf. The distance between leaves z, q ∈ Z is defined as
dT (z, q) = ` (lca (z, q)) where lca (z, q) is the least common ancestor of z and q in T .

3 Ramsey Partitions

Consider an undirected weighted graph G = (V,E), and a parameter k ≥ 1. Let D be the diameter
of the graph and let φ = dlog (D + 1)e. Let ρi = 2i/(4k). We start by presenting a construction
for a collection S of partial partitions Xi satisfying the following key properties.

For a set X, a partial-partition is a set of nonempty subsets of X such that every element
x ∈ X is in at most one of these subsets. For two partial partitions P1 and P2, we say that P1 is a
refinement of P2 if for every X1 ∈ P1 there is X2 ∈ P2 such that X1 ⊆ X2.

Definition 2. [(G,U, k)-Fully Padded Strong Diameter Hierarchical Partial Partition] Given a
graph G = (V,E), an index k and a set of nodes U ⊆ V , a (G,U, k)-Fully Padded Strong Diameter
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Hierarchical Partial Partition (FPSDHPP) is a collection {Xi}φi=0 of partial partitions of V where
each X ∈ Xi has a center r(X) ∈ V , such that the following properties hold.

(i) For every 0 ≤ i < φ, Xi is a refinement of Xi+1.

(ii) For every 0 ≤ i ≤ φ and every X ∈ Xi and every v ∈ X, dist(v, r(X), X) < 2i.

(iii) There exists a set V̂ ⊆ U such that |V̂ | ≥ |U |1−1/k and for every v ∈ V̂ and every i, there
exists a subset X ∈ Xi such that B(v, ρi) ⊆ X.

For a node v and index i, we say that v is i-padded in S, if there exists a subset X ∈ Xi such
that B(v, ρi) ⊆ X. We would like to maximize the number of nodes that are padded on all levels.
Note that we do not get to choose the set V̂ of padded vertices. Nevertheless, Definition 2 allows
us to specify a subset U ⊆ V such that the padded vertices will be chosen from U . In such a case,
a significant portion of the vertices in U will indeed be padded.

Fully Padded Strong Diameter Hierarchical Partial Partition Construction: Let us now
turn to the construction of the collection S of partial partitions Xi given a set U .

In the beginning of the algorithm, all nodes in U are set as marked. The algorithm iteratively
unmarks some of the nodes. The nodes that will remain marked by the end of the process are the
nodes that are padded on all levels. For a given graph H, let BM (v, d,H) (M stands for marked)
be the set of marked nodes at distance at most d from v in H.

For a subgraph G′ and a node v ∈ V (G′), let Zi(v,G
′) = |BM (v, 2i, G′)|/|BM (v, 2i−1, G′)|. The

construction is given in Algorithm 1.

Algorithm 1 S = FPSDHPP(G,U)

1: Mark all the nodes in U .
2: Set Xφ = {V } to be the trivial partition. Set r(V ) ∈ V to be the vertex v with maximal
|BM (v, 2φ−1, G)|.

3: for i from φ− 1 to 0 do
4: for every subset X ∈ Xi+1 do
5: Set H to be the induced graph on X.
6: while H contains a marked vertex do
7: Pick a node v ∈ V (H) with maximal |BM (v, 2i−1, H)|.
8: Let j(v) ≥ 0 be the minimal integer such that

|BM (v, 2i−1 + 2(j(v) + 1)ρi, H)| ≤ |BM (v, 2i−1 + 2j(v)ρi, H)| · |Zi(v,H)|1/k.
9: Let X(v) = B

(
v, 2i−1 + (2j(v) + 1)ρi, H

)
.

10: Add X(v) to Xi.
11: Unmark the nodes in B(v, 2i−1 + 2(j(v) + 1)ρi, H) \ B(v, 2i−1 + 2j(v)ρi, H).
12: Remove all nodes in X(v) from H.
13: end while
14: end for
15: end for
16: set V̂ to be all nodes that remain marked.
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Let X(v) be a set constructed in Line 9 of Algorithm 1, when partitioning X ∈ Xi+1. We say
that X is the parent of X(v). Let H(X(v)) denote the graph in Algorithm 1 just before X(v) was
constructed (note that this is a graph induced on a subset of X). Similarly, let M(X(v)) denote the
set of marked vertices just before X(v) was constructed. (We can also use H(X ′),M(X ′) without
(v), if the set X ′ is clear). We say that B(v, 2i−1 + 2j(v)ρi, H(X(v))) is the interior part of X(v).
We also say that the set BM(X(v))(v, 2

i−1 + 2(j(v) + 1)ρi, H(X(v))) (from Line 8 in stage i of the
algorithm), is the responsibility set of X(v), hereafter referred to as Res(X(v)). Note that every
node u that was marked before the processing of X started , belongs to exactly one set Res(X(v))
for X(v) ∈ Xi.

We now define by induction the term i-surviving for 0 ≤ i ≤ φ: All nodes in U are φ-surviving.
We say that a node is i-surviving if it is (i+ 1)-surviving and it belongs to the interior part of some
subset in Xi, or equivalently if it remains marked after the construction of Xi. We denote by Si
the set of i-surviving vertices. Note that Sφ = U . Our goal in the analysis is to show that many

vertices are 0-surviving, which is exactly the set V̂ . For a subset X ∈ Xi, let Sur(X) be the set of
nodes in X that are 0-surviving, that is S0 ∩X. We now turn to the analysis.

The next auxiliary claim helps in showing that property (ii) holds.

Claim 1. Consider a subset X ∈ Xi centered at some node v = r(X). The index j(v) defined in
Line 8 of Algorithm 1, satisfies j(v) ≤ k − 1.

Proof. Seeking contradiction, assume that for every 0 ≤ j′ ≤ k − 1, |BM(X)(v, 2
i−1 + 2(j′ +

1)ρi, H(X))| > |BM(X)(v, 2
i−1 + 2j′ρi, H(X))| · |Zi(v,H(X))|1/k. Then applying this for j′ =

k − 1, k − 2, . . . , 0 we get

|BM(X)(v, 2
i, H(X))| = |BM(X)(v, 2

i−1 + 2kρi, H(X))|
> |BM(X)(v, 2

i−1 + 2(k − 1)ρi, H(X))| · |Zi(v,H(X))|1/k

> · · · > |BM(X)(v, 2
i−1, H(X))| · |Zi(v,H(X))|k/k

= |BM(X)(v, 2
i, H(X))| ,

a contradiction.

The next lemma shows that the collection S satisfies the basic properties of an FPSDHPP.

Lemma 2. S is a collection of partial partitions which satisfies properties (i) and (ii).

Proof. It is straightforward from Line 12 that S is a collection of partial partitions. Property (i)
holds as each X(v) is selected from the graph H(X(v)), which is an induced graph over a subset
of X (the parent of X(v)). Finally, property (ii) follows from Claim 1, as the radius of X(v) is
bounded by 2i−1 + (2(k − 1) + 1)ρi < 2i−1 + 2kρi = 2i.

Next we argue that if a vertex is 0-surviving, then it is padded in all the levels.

Lemma 3. Suppose x ∈ Sur(V ), then x is padded in all the levels.

Proof. Fix some x ∈ Sur(V ). To prove that x is i-padded, we assume inductively that x is j-padded
for all i < j ≤ φ (the base case i = φ follows as B(x, ρφ) ⊆ V ). Let X ∈ Xi+1 such that x ∈ X.
Set B = B(x, ρi). By the induction hypothesis B ⊆ B(x, ρi+1) ⊆ X. Let X(v) ∈ Xi such that
x ∈ X(v).

7



First we argue that B ⊆ H(X(v)). Seeking contradiction, let X(v′) ∈ Xi be the first created
cluster such that there is u ∈ B ∩X(v′). By the minimality of v′, it follows that B ⊆ H(X(v′)).
Thus dist(v, u,H(X(v′))) = dist(v, u,G) ≤ ρi. Let j(v′) the index chosen in Line 8 of Algo-
rithm 1. Then X(v′) = B

(
v′, 2i−1 + (2j(v′) + 1)ρi, H(X(v′))

)
. Using the triangle inequality

dist(x, v′, H(X(v′))) ≤ 2i−1 + (2j(v′) + 2)ρi. Therefore x was unmarked in Line 11, a contra-
diction.

It remains to show that B ⊆ X(v). Set j(v) s.t. X(v) = B
(
v, 2i−1 + (2j(v) + 1)ρi, H(X(v))

)
.

As x is part of the interior of X(v), it holds that dist(x, v,H(X(v))) ≤ 2i−1 + 2j(v)ρi. Therefore
B ⊆ B

(
v, 2i−1 + (2j(v) + 1)ρi, H(X(v))

)
= X(v).

The next lemma bounds the number of surviving nodes.

Lemma 4. For every index 0 ≤ i ≤ φ and every subset X = X(v) ∈ Xi, the 0-surviving nodes

satisfy |Sur(X)| ≥ |Si ∩X| /
∣∣BM(X)(r(X), 2i−1, H(X))

∣∣ 1k
Proof. We prove the lemma by induction on i. Consider first the base case where X = X(v) ∈ X0.
As the subsets in X0 contain a single node (their radius is less than 1), it holds that |Sur(X)| = 1 =
1
1 = |S0 ∩X| /

∣∣BM(X)(r(X), 1/2, H(X))
∣∣ 1k (observe that each cluster in Xi has at least 1 marked

node, for all 0 ≤ i ≤ φ). Assume the claim holds for every subset X ′ ∈ Xi, and consider X ∈ Xi+1.
Let v = r(X). Consider the children X1, ..., Xj′ of X. For every 1 ≤ h ≤ j′, set vh = r(Xh).

Note that by definition of j(vh) in Line 8 of Algorithm 1 and by the construction of Xh in Line 9,
we have that |Si ∩Xh| ≥ |Res(Xh)|/Zi(vh, H(Xh))1/k. Moreover, by the induction hypothesis we

have that |Sur(Xh)| ≥ |Si ∩X| /
∣∣BM(Xh)(vh, 2

i−1, H(Xh))
∣∣ 1k for every h.

We claim that |BM(X)(v, 2
i, H(X))| ≥ |BM(Xh)(vh, 2

i, H(Xh))| for every 1 ≤ h ≤ j′. To see
this, note that v is the node with maximal |BM(X)(v, 2

i, H(X))|, hence |BM(X)(v, 2
i, H(X))| ≥

|BM(X)(vh, 2
i, H(X))|. In addition, note that H(Xh) ⊆ H(X) and M(Xh) ⊆ M(X), hence

|BM(X)M(vh, 2
i, H(X))| ≥ |BM(Xh)(vh, 2

i, H(Xh))|.
It follows that |BM(X)(v, 2

i, H(X))| ≥ |BM(Xh)(vh, 2
i, H(Xh))|. Therefore the number of 0-

surviving nodes in Xh is at least

|Sur(Xh)| ≥ |Si ∩Xh|∣∣BM(Xh)(vh, 2i−1, H(Xh))
∣∣ 1k

≥ |Res(Xh)| / |Zi(vh, H(Xh))| 1k∣∣BM(Xh)(vh, 2i−1, H(Xh))
∣∣ 1k

=
|Res(Xh)|∣∣BM(Xh)(vh, 2i, H(Xh))

∣∣ 1k ·
∣∣BM(Xh)(vh, 2

i−1, H(Xh))
∣∣ 1k∣∣BM(Xh)(vh, 2i−1, H(Xh))
∣∣ 1k

≥ |Res(Xh)|∣∣BM(X)(v, 2i, H(X))
∣∣ 1k ,
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we conclude that

|Sur(X)| =
j′∑
h=1

|Sur(Xh)|

≥
j′∑
h=1

|Res(Xh)|∣∣BM(X)(v, 2i, H(X))
∣∣ 1k

=
|Si+1 ∩X|∣∣BM(X)(v, 2i, H(X))

∣∣ 1k .

Using Lemma 4 on V with i = φ we have |Sur(X)| ≥ |Sφ ∩X| / |U |
1
k = |U |1− 1

k . Combined
with Lemma 3, property (iii) follows.

Lemma 5. The number of marked nodes V̂ by the end of Algorithm 1 is at least |U |1−1/k. Moreover,
for every v ∈ V̂ and every i, there exists a subset X ∈ Xi such that B(v, ρi) ⊆ X.

Theorem 5. For every n-point metric space and k ≥ 1, there exists a subset of size n1−1/k that
can be embedded into an ultrametric with distortion 8k − 2.

Proof. The hierarchical partial partition S = {Xi} naturally induces an ultrametric on V̂ . The
singleton sets of V̂ are the leaves, and each X ∈ Xi for 0 ≤ i < φ will be a tree-node which is
connected to its parent. Each set in Xi for i ≥ 1 will receive the label 2i+1(1 − 1/(4k)), while the
leaves in X0 receive the label 0 (recall Definition 1).

Consider two nodes u, v ∈ V̂ . Assume the least common ancestor of u, v is X ∈ Xi, for some
1 ≤ i ≤ φ. Hence dist(u, v,G) ≤ 2 · (2i − 2i/4k) (they are both in the interior of X - a ball with
radius ≤ 2i − 2ρi). Since this is the label of X, we conclude that distances in the ultrametric are
no smaller than those in G.

Next we argue that distances increase by a factor of at most 8k − 2. Consider any u, v as

above, and seeking a contradiction, assume that dist(v, u,G) < 2i+1(1−1/(4k))
8k−2 = ρi. Let P be the

shortest path from v to u in G. As v was padded in X, necessarily P ⊆ X. Consider the first
time a vertex z ∈ P was added to a cluster X ′ ∈ Xi−1, then P ⊆ H(X ′). Let j be such that
X ′ = B(r(X ′), 2i−2 + (2j + 1)ρi−1, H(X ′)). Since P is a shortest path, at least one of u, v must
be within distance less than ρi/2 = ρi−1 from z, w.l.o.g assume dist(v, z,H(X ′)) ≤ ρi−1. This
implies that v ∈ Res(X ′) = B(r(X ′), 2i−2 + (2j + 2)ρi−1, H(X ′)), and as v is marked it must lie in
the interior of X ′, which is B(r(X ′), 2i−2 + 2jρi−1, H(X ′)). But then the triangle inequality yields
that u ∈ Res(X ′). Yet u and v belong to different clusters of Xi−1, and so u /∈ X ′, which is a
contradiction to the fact that u ∈ V̂ .

3.1 Deterministic Construction of Distance Oracles

We show a distance oracle with O(n1+1/k) size, (8 + ε)k worst case stretch and O(1/ε) query time
(which is O(1) for any fixed epsilon). For simplicity we start by showing a construction similar to
the [MN07] oracle, with O(k · n1+1/k) size, 16k stretch and O(1) query time. We will later see how
to reduce the size and stretch. Let D be the diameter of the graph.

Our distance oracle is constructed as follows.
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1. Set U ← V .
2. Construct the collection of partial partitions S(U) = FPSDHPP(G,U) on the graph G and

the set U . Remove from U the set of nodes V̂ that were padded in all levels in S(U). Continue
this process as long as U 6= ∅.

3. Let M be the set of all collections S(U) that were constructed by this process.
4. For every S ∈ M construct a cluster X(S) as follows.
5. Let S = {X0, ...,Xφ}. All nodes V are the leaves (recall that only nodes in V̂ are in X0). For

every index i and every set X ∈ Xi, add an intermediate node. Connect X to its parent set.
Connect every node v ∈ V to the set X ∈ Xi of minimal i such that v ∈ X. This completes
the construction of X(S).

6. In addition, we preprocess X(S) so that least common ancestor (LCA) queries could be done
in constant time. In order to do that we invoke any scheme that takes a tree and preprocess
it in linear time so that LCA queries can be answered in constant time (see [HT84, BFC00]).

7. Finally, note that for every node v there exists a collection S ∈ M, where v is padded in all
levels. Denote this collection by home(v).

The query phase is done as follows. Given two nodes s and t. Let S = home(s) and let
S = {Xi | 1 ≤ i ≤ φ}. Find the least common ancestor of s and t in X(S) and let i be its level.
Namely, let µ ∈ X(S) be the least common ancestor of s and t and let X be the cluster µ represents,
the index i is the index such that X ∈ Xi. Return 2i+1 (denoted by ˆdist(s, t)).

Lemma 6. dist(s, t) ≤ ˆdist(s, t) < 16k · dist(s, t).

Proof. Let d = dist(s, t,G) and let j be the index such that 2j−1 < d ≤ 2j . Let Xi ∈ Xi ∈ S =
home(s) be the i level subset such that s ∈ Xi. Recall that s is padded in all the subsets Xi for
0 ≤ i ≤ φ.

Note that Xi has diameter smaller than 2 · 2i (follows from property (iii)). Therefore t ∈ Xi

implies that dist(s, t,G) < 2 · 2i = 2i+1. In particular, t /∈ Xi for every i < j − 1. Hence the least
common ancestor is at least at level j − 1. Hence the minimal distance returned by the algorithm
is ˆdist(s, t) ≥ 2j ≥ d.

It remains to show that ˆdist(s, t) ≤ 16k ·d. Let i be the level of s and t’s least common ancestor.
Note that t /∈ Xi−1. Also recall that s is padded in Xi−1 and thus B(s, ρi−1) ⊆ Xi−1, which implies
d ≥ ρi−1 = 2i−1/(4k) = ˆdist(s, t)/(16k).

Let Ui be the set U after constructing the first i collections. Note that |Ui+1| ≤ |Ui|− |Ui|1−1/k.
By resolving this recurrence relation one can show that the number of phases is O(kn1/k) (see
[MN07, Lemma 4.2]) . Notice that for every S ∈ M, T (S) is of size O(n). Hence, the size of our
data structure is O(kn1+1/k).

Reducing the size of the data structure: We now show how to reduce the size of the data
structure to O(n1+1/k). We only outline the modifications to the algorithm and the analysis and
omit the full details.

Here we will use only the metric structure of the graph G, while ignoring the structure induced
by the edges. Specifically, in line (2) of the algorithm, instead of the graph G, we will use the
graph GU which is the complete graph over U , where the weight of each edge {u, v} is equal to
dist(u, v,G). This change allows us to remove the nodes V̂ from GU after each iteration.
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The query algorithm, given two nodes s and t is as follows. Let Ss = home(s) and St =
home(t), and assume w.l.o.g. that Ss was constructed before St. Find the least common ancestor
of s and t in X(Ss) and let i be its level. Return 2i+1.

Following the analysis of the previous construction we can show that properties (i) − (iv) are
satisfied and that the stretch is bound by 16k. The size of the data structure is bounded by
O(n1+1/k) (see [MN07], Lemma 4.2.

Reducing the stretch to 8(1+ε)k: We now explain how to reduce the stretch to 8(1+ε)k. Note
that we lose a factor of 2 in the stretch since we look on distances in multiplies of two. Recall that
in the algorithm, for a pair of vertices s, t at distance d, we looked on the minimal index j such that
d ≤ 2j . It may happen that d is only slightly larger than 2j−1. Note that by just considering all
distances (1 + ε)i rather than all distances 2i, we get that the number of nodes that are padded in
all levels is a fraction of 1/n1/(εk) rather than 1/n1/k, which is dissatisfying. So instead we construct
O(1/ε) different copies of our data structure, one for each 1 + `ε for 0 ≤ ` < 1/ε. In the copy `
of the data structure we consider distances (1 + `ε)2i for every 0 ≤ i ≤ φ. Specifically, i-clusters
have radius bounded by (1 + `ε)2i, while the padding parameter is ρ`,i = (1 + `ε)ρi. We denote by
home`(s) the collection S, created for the `’s distance oracle, where s is padded in all levels. The
distance estimation of the `’s copy (denoted by ˆdist`(s, t)), will be (1 + (`+ 1)ε)2i` , where i` is the
level of the least common ancestor of s and t in home`(s).

Set d = dist(s, t). For every `, we have

d > ρ`,i`−1 =
(1 + `ε)2i`−1

4k
=

(1 + `ε)

(1 + (`+ 1)ε)
·

ˆdist`(s, t)

8k
≥

ˆdist`(s, t)

8(1 + ε)k
. (1)

On the other hand, there exist indices `′, j such that (1 + `′ε)2j−1 < d ≤ (1 + (`′ + 1)ε)2j−1.
Following the analysis above, as t is not separated from s at level i`′ , it holds that i`′ ≥ j − 1.
Therefore

ˆdist`′(s, t) = (1 + (`+ 1)ε)2i`′ ≥ (1 + (`+ 1)ε)2j−1 ≥ d . (2)

In the query phase we iterate over all O(1/ε) copies, invoke the query algorithm in each copy and
return the largest distance. By equations (1) and (2), the stretch is 8(1 + ε)k rather than 16k. The
query time is O(1/ε) which is O(1) for every fixed ε.

4 Ramsey Spanning Trees

In this section we describe the construction of Ramsey spanning trees, each tree will be built using
the petal decomposition framework of [AN12]. Roughly speaking, the petal decomposition is an
iterative method to build a spanning tree of a given graph. In each level, the current graph is
partitioned into smaller diameter pieces, called petals, and a single central piece, which are then
connected by edges in a tree structure. Each of the petals is a ball in a certain metric. The main
advantage of this framework is that it produces a spanning tree whose diameter is proportional
to the diameter of the graph, while allowing large freedom for the choice of radii of the petals.
Specifically, if the graph diameter is ∆, the spanning tree diameter will be O(∆), and each radius
can be chosen in an interval of length ≈ ∆. For the specific choice of radii that will ensure a
sufficient number of vertices are fully padded, we use a region growing technique based on ideas
from [Sey95, EEST05].
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x0

y
∆

∆/ρ

A
A′G

Figure 1: A is a subset of vertices in the graph G with center x0. The radius of A (w.r.t x0) is ∆. A′ is a
subset of A (denoted by the dashed line). As B(y,∆/ρ,G) ⊆ A′, we say that the vertex y is padded by A′.

4.1 Preliminaries

For subset S ⊆ G and a center vertex x0 ∈ S, the radius2 of S w.r.t x0, ∆x0(S), is the minimal
∆ such that B(x0,∆, S) = S. (If for every ∆, B(x0,∆, S) 6= S, (this can happen iff S is not
connected) we say that ∆x0(S) =∞.) When the center x0 is clear from context or is not relevant,
we will omit it.

Definition 3. Given a graph G = (V,E), a Strong Diameter Hierarchical Partition (SDHP) is
a collection {Ai}i∈[Φ] of partitions of V , where each cluster X ∈ Xi contains a center r(X) ∈ Xi ,
such that:

• AΦ = {V } (i.e., the first partition is the trivial one).

• A1 = {{v}v∈V } (i.e., in the last partition every cluster is a singleton).

• For every 1 ≤ i < Φ and A ∈ Ai, there is A′ ∈ Ai+1 such that A ⊆ A′ (i.e., Ai is a refinement
of Ai+1). Moreover, ∆(A) ≤ ∆(A′).

Definition 4 (Padded, Fully Padded). Given a graph G = (V,E) and a subset A ⊆ V , we say that
a vertex y ∈ A is ρ-padded by a subset A′ ⊆ A (w.r.t A) if B(y,∆(A)/ρ,G) ⊆ A′. See Figure 1 for
illustration.
We say that x ∈ V is ρ-fully-padded in the SDHP {Ai}i∈[Φ], if for every 2 ≤ i ≤ Φ and A ∈ Ai
such that x ∈ A, there exists A′ ∈ Ai−1 such that x is ρ-padded by A′ (w.r.t A).

4.2 Petal Decomposition

Here we will give a concise description of the Petal decomposition algorithm, focusing on the main
properties we will use. For proofs and further details we refer to [AN12].

The hierarchical-petal-decomposition (see Algorithm 2) is a recursive algorithm. The
input is G[X] (a graph G = (V,E) induced over a set of vertices X ⊆ V ), a center x0 ∈ X, a target
t ∈ X, and the radius ∆ = ∆x0(X).3 The algorithm invokes petal-decomposition to partition

2In the literature, this notion is sometimes called the eccentricity of x0.
3Rather than inferring ∆ = ∆x0(X) from G[X] and x0 as in [AN12], we can think of ∆ as part of the input. We

shall allow any ∆ ≥ ∆x0(X). We stress that in fact in the algorithm we always use ∆x0(X), and consider this degree
of freedom only in the analysis.
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X into X0, X1, . . . , Xs (for some integer s), and also provides a set of edges {(x1, y1), . . . , (xs, ys)}
and targets t0, t1, . . . , ts. The Hierarchical-petal-decomposition algorithm now recurses on
each (G[Xj ], xj , tj ,∆xj (Xj)) for 0 ≤ j ≤ s, to get trees {Tj}0≤j≤s, which are then connected by
the edges {(xj , yj)}1≤j≤s to form a spanning tree T for G[X] (the recursion ends when Xj is a
singleton). See Figure 2 for illustration.

Algorithm 2 T =
hierarchical-petal-decomposition(G[X], x0, t,∆)

1: if |X| = 1 then
2: return G[X].
3: end if
4: Let

(
{Xj , xj , tj ,∆j}sj=0 , {(yj , xj)}

s
j=1

)
= petal-decomposition(G[X], x0, t,∆);

5: for each j ∈ [0, . . . , s] do
6: Tj = hierarchical-petal-decomposition (G[Xj ], xj , tj ,∆j);
7: end for
8: Let T be the tree formed by connecting T0, . . . , Ts using the edges {y1, x1}, . . . , {ys, xs};

Next we describe the petal-decomposition procedure, see Algorithm 3. Initially it sets Y0 =
X, and for j = 1, 2, . . . , s it carves out the petal Xj from the graph induced on Yj−1, and sets Yj =
Yj−1 \Xj (in order to control the radius increase, the first petal is cut using different parameters).
The definition of petal guarantees that ∆x0(Yj) is non-increasing (see [AN12, Claim 1]), and when
at step s it becomes at most 3∆/4, define X0 = Ys and then the petal-decomposition routine
ends. In carving of the petal Xj ⊆ Yj−1, the algorithm chooses an arbitrary target tj ∈ Yj−1 (at
distance at least 3∆/4 from x0) and a range [lo, hi] of size hi− lo ∈ {∆/8,∆/4} which are provided
to the sub-routine create-petal.

(One may notice that in Line 15 of the petal-decomposition procedure, the weight of some
edges is changed by a factor of 2. This can happen at most once for every edge throughout the
hierarchical-petal-decomposition execution, thus it may affect the padding parameter by a
factor of at most 2. This re-weighting is ignored for simplicity.)

Both hierarchical-petal-decomposition and petal-decomposition are essentially the al-
gorithms that appeared in [AN12]. The main difference from their work lies in the create-petal

procedure, depicted in Algorithm 4. It carefully selects a radius r ∈ [lo, hi], which determines the
petal Xj together with a connecting edge (xj , yj) ∈ E, where xj ∈ Xj is the center of Xj and
yj ∈ Yj . It is important to note that the target t0 ∈ X0 of the central cluster X0 is determined
during the creation of the first petal X1. It uses an alternative metric on the graph, known as
cone-metric:

Definition 5 (Cone-metric). Given a graph G = (V,E), a subset X ⊆ V and points x, y ∈ X, define
the cone-metric ρ = ρ(X,x, y) : X2 → R+ as ρ(u, v) = |(dX(x, u)− dX(y, u))− (dX(x, v)− dX(y, v))|.

(The cone-metric is in fact a pseudo-metric, i.e., distances between distinct points are allowed to
be 0.) The ball B(X,ρ)(y, r) in the cone-metric ρ = ρ(X,x, y), contains all vertices u whose shortest
path to x is increased (additively) by at most r if forced to go through y.

In the create-petal algorithm, while working in a subgraph G[Y ] with two specified vertices: a

center x0 and a target t, we define Wr (Y, x0, t) =
⋃
p∈Px0t: dY (p,t)≤r B(Y,ρ(Y,x0,p))(p,

r−dY (p,t)
2 ) which
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Algorithm 3
(
{Xj , xj , tj ,∆j}sj=0 , {(yj , xj)}

s
j=1

)
= petal-decomposition(G[X], x0, t,∆)

1: Let Y0 = X; Set j = 1;
2: if dX(x0, t) ≥ ∆/2 then
3: Let X1 = create-petal

(G[Y0], [dX(x0, t)−∆/2, dX(x0, t)−∆/4], x0, t);
4: Y1 = Y0 \X1;
5: Let {x1, y1} be the unique edge on the shortest path Px0t from x0 to t in Y0, where x1 ∈ X1

and y1 ∈ Y1.
6: Set t0 = y1, t1 = t; j = 2;
7: else
8: set t0 = t.
9: end if

10: while Yj−1 \BX(x0,
3
4∆) 6= ∅ do

11: Let tj ∈ Yj−1 be an arbitrary vertex satisfying dX(x0, tj) >
3
4∆;

12: Let Xj = create-petal(G[Yj ], [0,∆/8], x0, tj);
13: Yj = Yj−1 \Xj ;
14: Let {xj , yj} be the unique edge on the shortest path Pxjtj from x0 to tj in Yj−1, where

xj ∈ Xj and yj ∈ Yj .
15: For each edge e ∈ Pxjtj , set its weight to be w(e)/2;
16: Let j = j + 1;
17: end while
18: Let s = j − 1;
19: Let X0 = Ys;

20: return
({
Xj , xj , tj ,∆xj (Xj)

}s
j=0

, {(yj , xj)}sj=1

)
;

is union of balls in the cone-metric, where any vertex p in the shortest path from x0 to t of distance
at most r from t is a center of a ball with radius r−dY (p,t)

2 .
The following facts are from [AN12].

Fact 1. Running Hierarchical-petal-decomposition on input (G[X], x0, t,∆x0(X)) will provide
a spanning tree T satisfying

∆x0(T ) ≤ 4∆x0(X).

Fact 2. If the petal-decomposition partitions X with center x0 into X0, . . . , Xs with centers
x0, . . . , xs, then for any 0 ≤ j ≤ s we have
∆xj (Xj) ≤ (3/4) ·∆x0(X).

We will need the following observation. Roughly speaking, it says that when the
petal-decomposition algorithm is carving out Xj+1, it is oblivious to the past petals X1, . . . , Xj ,
edges and targets – it only cares about Yj and the original diameter ∆.

Observation 7. Assume that petal-decomposition on input (G [X] , x0, t,∆x0(X)) returns as
output (X0, X1, . . . , Xs, {y1, x1} , . . . , {ys, xs} , t0, . . . , ts). Then running petal-decomposition

on input (G [Yj ] , x0, t0,∆x0(X)) will output (X0, Xj+1 . . . , Xs, {yj+1, xj+1} , . . . , {ys, xs} ,
t0, tj+1 . . . , ts).
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Figure 2: A schematic depiction of a partition done by the petal-decomposition algorithm. The
dotted ball contain the vertices within 3∆/4 from the center x0. The algorithm iteratively picks a
target tj outside this ball, and builds a petal Xj , that will be connected to the rest of the graph
by the edge (xj , yj). The dotted lines represent the trees created recursively in each Xj .

4.3 Choosing a Radius

Fix some 1 ≤ j ≤ s, and consider carving the petal Xj from the graph induced on Y = Yj−1

(i.e. Line 12 in the petal-decomposition algorithm). While the algorithm of [AN12] described a
specific way to choose the radius, we require a somewhat more refined choice. The properties of
the petal decomposition described above (in Subsection 4.2) together with Fact 2 and Fact 1, hold
for any radius picked from a given interval. We will now describe the method to select a radius
that suits our needs. The petal-decomposition algorithm provides an interval [lo, hi] of size at
least ∆/8, and for each r ∈ [lo, hi] let Wr(Y, x0, t) ⊆ Y denote the petal of radius r (usually we will
omit (Y, x0, t)). The following fact demonstrates that petals are similar to balls.

Fact 3. For every y ∈Wr and l ≥ 0, B(y, l, Y ) ⊆Wr+4l.

Note that Fact 3 implies that Wr is monotone in r, i.e., for r ≤ r′ it holds that Wr ⊆Wr′ .
Our algorithm will maintain a set of marked vertices M ⊆ V , and will update it in any petal

creation. Roughly speaking, the marked vertices are those that are fully padded in the (partial)
hierarchical partition generated so far by the algorithm. If initially |M | = m, we want that at the
end of the process at least m1−1/k vertices will remain marked. In the partition of X to X0, . . . , Xs,
some of the marked vertices will be ρ-padded by a petal Xj (w.r.t. X), and some of the others
will be unmarked, by the following rule. Fact 3 implies that if we choose a radius r when creating
some petal Xj = Wr, then all marked vertices in Wr−4∆/ρ will be ρ-padded by Xj , and thus remain
marked. All the marked vertices in Wr+4∆/ρ \Wr−4∆/ρ are considered unmarked from now on,
since their ∆/ρ ball may intersect more than one cluster in the current partition (note that some
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of these vertices can be outside Xj).
Our algorithm to select a radius is based on region growing techniques, similar to those in

Algorithm 1, but rather more involved. Since in the petal decomposition framework we cannot
pick as center a vertex maximizing the ”small ball”, we first choose an appropriate range that
mimics that choice (see e.g. Line 9 in the algorithm below) – this is the reason for the extra factor
of log log n. The basic idea in region growing is to charge the number of marked vertices whose ball
is cut by the partition (those in Wr+4∆/ρ \Wr−4∆/ρ), to those that are saved (in Wr−4∆/ρ). In our
setting we are very sensitive to constant factors in this charging scheme (as opposed to the average
stretch considered in [EEST05]), because these constants are multiplied throughout the recursion.
In particular, we must avoid a range in [lo, hi] that contains more than half of the marked vertices,
a constraint which did not exist in previous manifestation of this region growing scheme. To this
end, if the first half [lo,mid] (with mid = (hi+ lo)/2) is not suitable, we must ”cut backwards” in
the regime [mid, hi], and charge the marked vertices that were removed from M to the remaining
graph Yj , rather than to those saved in the created cluster Xj .

Algorithm 4 X = create-petal(G[Y ], [lo, hi], x0, t)

1: Let m = |Y ∩M |;
2: L = d1 + log logme;
3: R = hi− lo; mid = (lo+ hi)/2 = lo+R/2;
4: For every r, denote Wr = Wr(Y, x0, t), wr = |M ∩Wr|;
5: if wmid ≤ m

2 then
6: if wlo+ R

2L
= 0 then

7: Set r = lo+ R
4L ;

8: else
9: Choose [a, b] ⊆ [lo,mid] such that b− a = R

2L and wa ≥ w2
b/m; {see Lemma 11}

10: Pick r ∈ [a, b] such that wr+ b−a
2k
≤ wr− b−a

2k
·
(
wb
wa

) 1
k
; {see Lemma 12}

11: end if
12: else
13: For every r ∈ [lo, hi], denote qr = |(Y \Wr) ∩M |;
14: if qhi− R

2L
= 0 then

15: Set r = hi− R
4L ;

16: else
17: Choose [b, a] ⊆ [mid, hi] such that a− b = R

2L and qa ≥ q2
b/m; {see Lemma 13}

18: Pick r ∈ [b, a] such that qr−a−b
2k
≤ qr+a−b

2k
·
(
qb
qa

) 1
k
; {see Lemma 14}

19: end if
20: end if
21: M ←M \ (Wr+ R

4Lk
\Wr− R

4Lk
)

22: return Wr;
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4.4 Proof of Correctness

Let z ∈ V be an arbitrary vertex, given a set M ⊆ V , let T be the tree returned by calling
Hierarchical-petal-decomposition on (G[V ], z, z,∆z(V )) and marked vertices M . There is a
natural Strong Diameter Hierarchical Partition (SDHP) X = {Xi}Φi=1 associated with the tree T ,
where Xi consists of all the clusters created in level Φ−i of the recursion (and XΦ = {V }). By Fact 2,
the radius is always non-increasing. Hence X is indeed a SDHP. Denote by Sur(M) ⊆M the set of
vertices that remained marked throughout the execution of Hierarchical-petal-decomposition.

Lemma 8. Suppose x ∈ Sur(M), then x is ρ-fully-padded in X .

Proof. Fix any 2 ≤ i ≤ Φ. Let X ∈ Xi be the cluster containing x in the (Φ − i)-th level of the
recursion with ∆ = ∆(X). Assume X was partitioned by petal-decomposition into X0, . . . , Xs,
and let Xj ⊆ X be the cluster containing x ∈ Xj . Assuming (inductively) that x was ρ-padded by
X, we need to show that it is also ρ-padded by Xj , that is, B = B(x,∆/ρ,G) ⊆ Xj . (Note that
B ⊆ X since the radii are non-increasing, so x is padded in all higher levels.)

First we argue that none of the petals X1, . . . , Xj−1 intersects B. Seeking contradiction, assume
it is not the case, and let 1 ≤ j′ < j be the minimal such that there exists y ∈ Xj′ ∩ B. By the
minimality of j′ it follows that B ⊆ Y ′ = Yj′−1, and thus dist(x, y, Y ′) = dist(x, y,G) ≤ ∆/ρ. Let
r′ be the radius chosen when creating the petal Xj′ = W ′r′ , and Fact 3 implies that

x ∈ B(y,∆/ρ, Y ′) ⊆W ′r′+4∆/ρ = W ′r′+R/(4Lk) ,

where we recall that ∆ = 8R and ρ = 27Lk. This is a contradiction to the fact that x ∈ Sur(X):
clearly x /∈ W ′r′−R/(4Lk) since it is not included in Xj′ = W ′r′ (and using the monotonicity of W ′r),

so it should have been removed from M when creating Xj′ (in Line 21 of the algorithm).
For the case j = 0 the same reasoning shows B does not intersect any petal X1, . . . , Xs and we

are done. For j > 0, it remains to show that B ⊆ Xj , but this follows by a similar calculation. Let
r be the radius chosen for creating the petal Xj = Wr, and Y = Yj−1. We have B ⊆ Y , and since
x ∈ Sur(X) it must be that x ∈Wr−R/(4Lk). Again by Fact 3 we have

B = B(x,∆/ρ,G) = B(x,∆/ρ, Y )

⊆Wr−R/(4Lk)+4∆/ρ = Wr = Xj .

Lemma 9. Consider a vertex v ∈ Sur(M), then for every u ∈ V , dist(v, u, T ) ≤ 8ρ ·dist(v, u,G).

Proof. Let X = {Xi}Φi=1 be the SDHP associated with T , and for 1 ≤ i ≤ Φ let Ai ∈ Xi be
the cluster containing v. Take the minimal 2 ≤ i ≤ Φ such that u ∈ Ai (there exists such an
i since u ∈ AΦ = V and u /∈ A1 = {v}). By Lemma 8 v is ρ-fully-padded, so we have that
B(v,∆/ρ,G) ⊆ Ai−1, where ∆ = ∆(Ai). But as u /∈ Ai−1, it must be that dist(u, v,G) > ∆/ρ.
Since both u, v ∈ Ai, Fact 1 implies that the radius of the tree created for Ai is at most 4∆, so that

dist(u, v, T ) ≤ 2 · 4∆ ≤ 8ρ · dist(u, v,G) .

Lemma 10. |Sur(M)| ≥ |M |1−1/k.
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Proof. We prove by induction on |X| that if a cluster X ∈ Xi (for some 1 ≤ i ≤ Φ) has currently
m marked vertices, then at the end of the process at least m1−1/k of them will remain marked.

The base case when X is a singleton is trivial. For the inductive step, assume we call
petal-decomposition on (G[X], x0, t,∆) with ∆ ≥ ∆x0(X) and the current marked vertices M̂ .
Assume that the petal-decomposition algorithm does a non-trivial partition of X to X0, . . . , Xs

(if it is the case that all vertices are sufficiently close to x0, then no petals will be created, and the
hierarchical-petal-decomposition will simply recurse on (G[X], x0, t,∆x0(X)), so we can ig-
nore this case). Denote by Mj the marked vertices that remain in Xj (just before the recursive
call on Xj), and recall that Sur(Xj) is the set of vertices of Mj that remain marked until the end
of the hierarchical-petal-decomposition algorithm. Then Sur(X) =

⋃
0≤j≤s Sur(Xj), and we

want to prove that |Sur(X)| ≥ m1−1/k.
Let X1 = Wr be the first petal created by the petal-decomposition algorithm, and Y1 =

X\X1. Denote by Res(X1) = Wr+R/(4Lk)∩M̂ the responsibility set for X1 (i.e. the marked vertices

that are either in M1 or were removed from M̂ when X1 was created). Define M ′ = M̂ \Res(X1),
the set of marked vertices that remain in Y1. By Observation 7, we can consider the remaining
execution of petal-decomposition on Y1 as a new recursive call of petal-decomposition with
input (G[Y1], x0, t0,∆) and marked vertices M ′. Since |X1|, |Y1| < |X|, the induction hypothesis
implies that |Sur(X1)| ≥ |M1|1−1/k and |Sur(Y1)| ≥ |M ′|1−1/k.

We now do a case analysis according to the choice of radius in Algorithm 4.

1. Case 1: wmid ≤ m/2 and wlo+R/(2L) = 0. In this case we set r = lo + R/(4L). Note that

wr+R/(4Lk) ≤ wlo+R/(2L) = 0, so M ′ = M̂ , and by the induction hypothesis on Y1, the number

of fully padded vertices is |Sur(X)| = |Sur(Y1)| ≥ |M̂ |1−1/k = m1−1/k, as required.

2. Case 2: wmid ≤ m/2 and wlo+R/(2L) > 0. In this case we pick a, b ∈ [lo, hi] so that
b− a = R/(2L) and

wa > w2
b/m , (3)

and also choose r ∈ [a, b] such that wr+ b−a
2k
≤ wr− b−a

2k
·
(
wb
wa

)1/k
. As b−a

2k = R
4Lk and |M1| =

wr−R/(4Lk) we have that

|M1| ≥ Res(X1) ·
(
wa
wb

)1/k

. (4)

By the induction hypothesis on X1 we have that

|Sur(X1)| ≥ |M1|
|M1|1/k

(4)

≥ |Res(X1)| ·
(

wa
|M1| · wb

)1/k

(3)

≥ |Res(X1)| ·
(

wb
m · |M1|

)1/k

≥ |Res(X1)|
m1/k

,
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where in the last inequality we use that |M1| = wr−(b−a)/(2k) ≤ wb. Now by the induction
hypothesis on Y1 we get

|Sur(X)| = |Sur(Y1)|+ |Sur(X1)|

≥ |M ′|1−1/k +
|Res(X1)|
m1/k

≥ |M
′|+ |Res(X1)|

m1/k
=
|M̂ |
m1/k

= m1−1/k .

3. Case 3: wmid > m/2 and qhi−R/(2L) = 0. In this case we set r = hi − R/(4L). Note that

qr−R/(4Lk) ≤ qhi−R/(2L) = 0 (recall that qr is non-increasing in r, by Fact 3), so M1 = M̂ ,

and by the induction hypothesis on X1, |Sur(X)| = |Sur(X1)| ≥ |M1|1−1/k = m1−1/k, as
required.

4. Case 4: wmid > m/2 and qhi−R/(2L) > 0. In this case we pick a, b ∈ [lo, hi] so that
a− b = R/(2L) and

qa > q2
b/m , (5)

and also choose r ∈ [b, a] such that qr− b−a
2k
≤ qr+ b−a

2k
·
(
qb
qa

)1/k
. In this case when we cut

”backwards”, we shift the responsibility for the vertices unmarked by the creation of X1 to Y1.
This is captured by defining Res(Y1) = M̂ \M1. Since |M ′| = qr+a−b

2k
and |Res(Y1)| = qr−a−b

2k

we have

|M ′| ≥ |Res(Y1)| ·
(
qa
qb

)1/k

. (6)

By the induction hypothesis on Y1 we have that

|Sur(Y1)| ≥ |M ′|
|M ′|1/k

(6)

≥ |Res(Y1)| ·
(

qa
|M ′| · qb

)1/k

(5)

≥ |Res(Y1)| ·
(

qb
m · |M ′|

)1/k

≥ |Res(Y1)|
m1/k

,

where in the last inequality we use that |M ′| = qr+(a−b)/(2k) ≤ qb. Now by the induction
hypothesis on X1 we get

|Sur(X)| = |Sur(Y1)|+ |Sur(X1)|

≥ |Res(Y1)|
m1/k

+ |M1|1−1/k

≥ |Res(Y1)|+ |M1|
m1/k

=
|M̂ |
m1/k

= m1−1/k .

From Lemma 9 and Lemma 10 we derive the following theorem.
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Theorem 6. Let G = (V,E) be a weighted graph, fix a set M ⊆ V of size m and a parameter k ≥ 1.
There exists a spanning tree T of G, and a set Sur(M) ⊆M of size at least m1−1/k, such that for
every v ∈ Sur(M) and every u ∈ V it holds that dist(v, u, T ) ≤ O(k log logm) · dist(v, u,G).

We conclude with the proof of our main results.

Proof of Theorem 1. The theorem follows directly from Theorem 6 by choosing M = V .

Proof of Theorem 2. Let M1 = V , and for i ≥ 1 define Mi+1 = Mi \ Sur(Mi). We shall apply
Theorem 6 iteratively, where Mi is the set of vertices given as input to the i-th iteration, that has
size |Mi| = mi. Let Ti be the tree created in iteration i. By Theorem 6 the sizes m1,m2, . . . obey

the recurrence m1 = n and mi+1 ≤ mi − m1−1/k
i , which implies that after k · n1/k iterations we

will have mk·n1/k+1 < 1 (see [MN07, Lemma 4.2]), and thus every vertex is in Sur(Mi) for some

1 ≤ i ≤ k · n1/k. For each v ∈ V , let home(v) be the tree Ti such that v ∈ Sur(Mi).

4.5 Routing with Short Labels

In this section we prove Theorem 4. We first use a result of [TZ01b] concerning routing in trees.

Theorem 7 ([TZ01b]). For any tree T = (V,E) (where |V | = n), and integer parameter b, there is
a routing scheme with stretch 1 that has routing tables of size O(b) and labels of size (1+o(1)) logb n.
The decision time in each vertex is O(1).

Combining Theorem 2 and Theorem 7 we can construct a routing scheme. Let T be the set of
trees from Theorem 2. Each tree T ∈ T is associated with a routing scheme given by Theorem 7.
Set LT (x) be the label of the vertex x in the routing scheme of the tree T .

In our scheme, the routing table of each vertex will be the collection of its routing tables in all
the trees in T . Hence the table size is O(b) · |T | = O(k · b · n1/k). The label of each x ∈ V will be
(home(x), Lhome(x)(x)), i.e., the name of the home tree of x and the label of x in that tree. The

label size is 1 + (1 + o(1)) logb n = (1 + o(1)) logb n.
The routing is done in a straightforward manner, to route from y to x, we extract home(x)

from the given label of x, and simply use the routing scheme of the tree home(x). Note that this
process takes O(1) time, and is independent of the routing path traversed so far. Since all vertices
store in their routing table the appropriate routing information for home(x), the routing can be
completed.
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Distance Oracle Stretch Size Query time Is deterministic?

[TZ01a] 2k − 1 O(k · n1+1/k) O(k) no

[MN07] 128k O(n1+1/k) O(1) no

[WN13] (2 + ε)k O(k · n1+1/k) O(1/ε) no

[Che14] 2k − 1 O(k · n1+1/k) O(1) no

[Che15] 2k − 1 O(n1+1/k) O(1) no

[RTZ05] 2k − 1 O(k · n1+1/k) O(k) yes

[WN13] 2k − 1 O(k · n1+1/k) O(log k) yes

This paper 8(1 + ε)k O(n1+1/k) O(1/ε) yes

This paper 2k − 1 O(k · n1+1/k) O(1) yes

Table 1: Different distance oracles

A Proof of Correctness for Algorithm 4

In this section we prove that the choices made in the create-petal procedure are all legal. In all
the Lemmas that follow, we shall use the notation in Algorithm 4.

Lemma 11. If wmid ≤ m
2 and wlo+ R

2L
≥ 1, then there is [a, b] ⊆ [lo,mid] such that b− a = R

2L and

wa ≥ w2
b/m.

Proof. Seeking contradiction, assume that for every such a, b with b − a = R
2L it holds that wb >√

m · wa. Applying this on b = mid − iR
2L and a = mid − (i+1)R

2L for every i = 0, 1, . . . , L − 2, we
have that

wmid > m1/2 · w1/2

mid− R
2L

> · · · > m1−2−(L−1) · w2−(L−1)

mid− (L−1)R
2L

≥ m · 2−1 · w1/(2 logm)

lo+ R
2L

≥ m

2
,

where we used that 1 + log logm ≤ L ≤ 2 + log logm and mid = lo + R/2. In the last inequality
we also used that wa ≥ 1, which follows since b = a+ R

2L ≥ lo+ R
2L , thus wb ≥ 1, and in particular

wa ≥ w2
b/m > 0. The contradiction follows.

Lemma 12. There is r ∈ [a, b] such that wr+ b−a
2k
≤ wr− b−a

2k
·
(
wb
wa

) 1
k

.

Proof. Seeking contradiction, assume there is no such choice of r, then applying this for r =
b− (i+ 1/2) · b−ak for i = 0, 1, . . . , k − 1 we get

wb > wb− b−a
k
·
(
wb
wa

)1/k

> · · · > wb−k· b−a
k
·
(
wb
wa

)k/k
= wa ·

wb
wa

= wb ,

a contradiction.

The following two lemmas are symmetric to the two lemmas above.

Lemma 13. If wmid >
m
2 (implies qmid ≤ m

2 ) and qhi− R
2L
≥ 1, then there is [b, a] ⊆ [mid, hi] such

that a− b = R
2L and qa ≥ q2

b/m.

Lemma 14. There is r ∈ [b, a] such that qr−a−b
2k
≤ qr+a−b

2k
·
(
qb
qa

)1/k
.
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