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Abstract

We study the problem of embedding weighted graphs of pathwidth k into `p spaces. Our
main result is an O(kmin{1/p,1/2})-distortion embedding. For p = 1, this is a super-exponential
improvement over the best previous bound of Lee and Sidiropoulos. Our distortion bound is
asymptotically tight for any fixed p > 1.

Our result is obtained via a novel embedding technique that is based on low depth decompo-
sitions of a graph via shortest paths. The core new idea is that given a geodesic shortest path
P , we can probabilistically embed all points into 2 dimensions with respect to P . For p > 2 our
embedding also implies improved distortion on bounded treewidth graphs (O((k log n)1/p)). For
asymptotically large p, our results also implies improved distortion on graphs excluding a minor.

∗A full version of the paper can be found at https://www.cs.bgu.ac.il/~arnoldf/PathPaperFull.pdf

https://www.cs.bgu.ac.il/~arnoldf/PathPaperFull.pdf


1 Introduction

Low-distortion metric embeddings are a crucial component in the modern algorithmist toolkit. Indeed,
they have applications in approximation algorithms [LLR95], online algorithms [BBMN11], distributed
algorithms [KKM+12], and for solving linear systems and computing graph sparsifiers [ST04]. Given
a (finite) metric space (V, d), a map φ : V → RD, and a norm ‖ · ‖, the contraction and expansion of
the map φ are the smallest τ, ρ ≥ 1, respectively, such that for every pair x, y ∈ V ,

1

τ
≤ ‖φ(x)− φ(y)‖

d(x, y)
≤ ρ .

The distortion of the map is then τ · ρ In this paper we will investigate embeddings into `p norms;
the most prominent of which are the Euclidean norm `2 and the cut norm `1; the former for obvious
reasons, and the latter because of its close connection to graph partitioning problems, and in particular
the Sparsest Cut problem. Specifically, the ratio between the Sparsest Cut and the multicommodity
flow equals the distortion of the optimal embedding into `1 (see [LLR95, GNRS04] for more details).

We focus on embedding of metrics arising from certain graph families. Indeed, since general n-point
metrics require Ω(logn/p)-distortion to embed into `p-norms, much attention was given to embeddings
of restricted graph families that arise in practice. (Embedding an (edge-weighted) graph is short-hand
for embedding the shortest path metric of the graph generated by these edge-weights.) Since the class
of graphs embeddable with some distortion into some target normed space is closed under taking
minors, it is natural to focus on minor-closed graph families. A long-standing conjecture in this area
is that all non-trivial minor-closed families of graphs embed into `1 with distortion depending only on
the graph family and not the size n of the graph.

While this question remains unresolved in general, there has been some progress on special classes of
graphs. The class of outerplanar graphs (which exclude K2,3 and K4 as a minor) embeds isometrically
into `1; this follows from results of Okamura and Seymour [OS81]. Following [GNRS04], Chakrabarti
et al. [CJLV08] show that every graph with treewidth-2 (which excludes K4 as a minor) embeds into
`1 with distortion 2 (which is tight, as shown by [LR10]). Lee and Sidiropoulos [LS13] showed that
every graph with pathwidth k can be embedded into `1 with distortion (4k)k

3+1. See Section 1.3 for
additional results.

We note that `2 is a potentially more natural and useful target space than `1 (in particular, finite
subsets of `2 embed isometrically into `1). Alas, there are only few (natural) families of metrics that
admit constant distortion embedding into Euclidean space, such as “snowflakes” of a doubling metrics
[Ass83], doubling trees [GKL03] and graphs of bounded bandwidth [BCMN13]. All these families have
bounded doubling dimension. (For definitions, see Section 2.)

1.1 Our Results

In this paper we develop a new technique for embedding certain graph families into `p spaces with
constant distortion. Our main result is an improved embedding for bounded pathwidth graphs (see
Section 2 for the definition of pathwidth and other graph families).

Theorem 1 (Pathwidth Theorem). Any graph with pathwidth k embeds into `p with distortion O(k1/p).

Note that this is a super-exponential improvement over the best previous distortion bound of O(k)k
3
,

by Lee and Sidiropoulos. Their approach was based on probabilistic embedding into trees, which im-
plies embedding only into `1. Such an approach cannot yield distortion better than O(k), due to known
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lower bounds for the diamond graph [GNRS04], that has pathwidth k + 1. Our embedding holds for
any `p space, and we can overcome the barrier of O(k) (since finite subsets of `2 embed isometrically
into `p, the distortion of Theorem 1 is never larger than O(

√
k)). In particular, we obtain embeddings

of pathwidth-k graphs into both `2 and `1 with distortion O(
√
k). Moreover, an embedding with this

distortion can be found efficiently via semidefinite-programming; see, e.g., [LLR95], even without ac-
cess to the actual path decomposition (which is NP-hard even to approximate [BGHK92]). We remark
that graphs of bounded pathwidth can have arbitrarily large doubling dimension (exhibited by star
graphs that have pathwidth 1), and thus our result is a noteworthy example of a non-trivial Euclidean
embedding with constant distortion for a family of metrics with unbounded doubling dimension.

Since graphs of treewidth k have pathwidth O(k log n) (see, e.g., [GTW13]), Theorem 1 provides
an embedding of such graphs into `p with distortion O((k log n)1/p). This strictly improves the
best previously known bound, which follows from a theorem in [KLMN05] (who obtained distor-
tion O(k1−1/p log1/p n) ), for any p > 2, and matches it for 1 ≤ p ≤ 2. While [KK16] obtained recently
a distortion bound with improved dependence on k, their result O((log(k log n))1−1/p(log1/p n)) has
sub-optimal dependence on n.

A General Embedding Framework. The embedding of Theorem 1 follows as a special case of a more
general theorem: we devise embeddings for any graph family which admits “shortest path decompo-
sitions” (SPDs) of “low depth”. Every (weighted) path graph has an SPD of depth 1. A graph G has
an SPD of depth k if after removing some shortest path P , every connected component in G \ P has
an SPD of depth k− 1. (An alternative definition appears in Definition 1.) Our main technical result
is the following.

Theorem 2 (Embeddings for SPD Families). Let G = (V,E) be a weighted graph with an SPD of
depth k. Then there exists an embedding f : V → `p with distortion O(k1/p).

Since bounded-pathwidth graphs admit SPDs of low depth, we get Theorem 1 as a simple corollary
of Theorem 2. Moreover, we derive several other results, which are summarized in Figure 1.1; these
results either improve on the state-of-the-art, or provide matching bounds using a new approach.

Graph Family Our results. Previous results

Pathwidth k O(k1/p) (4k)k
3+1 into `1 [LS13]

Treewidth k O((k log n)1/p) O(k1−1/p · log1/p n) [KLMN05]

O((log(k log n))1−1/p(log1/p n)) [KK16]

Planar O(log
1/p n) O(log

1/p n) [Rao99]

H-minor-free O((g(H) log n)1/p) O(|H|1−1/p log
1/p n) [AGG+14]+[KLMN05]

Figure 1: Our and previous results for embedding certain graph families into `p. (For H-minor-free graphs,
g(H) is some function of |H|.)

Our result of Theorem 1 (and thus also Theorem 2) is asymptotically tight for any fixed p > 1. The
family exhibiting this fact is the diamond graphs.

Theorem 3 ([NR03, LN04, MN13]). For any fixed p > 1 and every k ≥ 1, there exists a graph
G = (V,E) with pathwidth-k, such that every embedding f : V → `p has distortion Ω(kmin{1/p,1/2}).

The bound in Theorem 3 was proven first for p = 2 in [NR03], generalized to 1 < p ≤ 2 in [LN04]
and for p ≥ 2 by [MN13] (see also [JS09, JLM11]). The proofs of [NR03, LN04] were done using the
diamond graph, while [MN13] used the Laakso graph. For completeness, we provide a proof of the
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case p ≥ 2 using the diamond graph in Appendix C. We note that for `1 only the trivial Ω(log k)
lower bound is known.

1.2 Technical Ideas

Many known embeddings [Bou85, Rao99, KLMN05, ABN11] are based on a collection of 1-dimensional
embeddings, where we embed each point to its distance from a given subset of points. We follow this
approach, but differ in two aspects. Firstly, the subset of points we use is not based on random
sampling or probabilistic clustering. Rather, inspired by the works of [And86] and [AGG+14], the
subset used is a geodesic shortest path. The second is that our embedding is not 1-dimensional but
2-dimensional: this seemingly small change crucially allows us to use the structure of the shortest
paths to our advantage.

The SPD induces a collection of shortest paths (each shortest path lies in some connected component).
A natural initial attempt is to embed a vertex v relative to a geodesic path P using two dimensions:1

• The first coordinate ∆1 is the distance to the path d(v, P ).

• The second coordinate ∆2 is the distance d(v, r) to the endpoint of the path, called its “root”.

v

r

∆1 = d(v, P )
∆2

= d(v, r
)

P

Unfortunately, this embedding may have unbounded expansion: If two vertices u, v are separated by
some shortest path, in future iterations v may have a large distance to the root of a path P in its
component, while u has zero in that coordinate (because it’s not in that component), incurring a large
stretch. The natural fix is to enforce a Lipschitz condition on every coordinate: for v in cluster X, we
truncate the value v can receive at O(dG(v, V \X)). I.e., a vertex close to the boundary of X cannot
get a large value. Using the fact that the SPD has depth k, each vertex will have only O(k) nonzero
coordinates, which implies expansion O(k1/p).

To bound the contraction, for each pair u, v we consider the first path P in the SPD that lies “close”
to {u, v} or separates them to different connected components. Then we show that at least one of the
two coordinates should give sufficient contribution.

C1

C2

P

vu

(a)

C1

C2

P

v

u

(b)

C1

C2

P
v

u

(c)r rr

Figure 2: A shortest path P , rooted at r, partitions cluster X into clusters C1 and C2. In cases (a) and (b),
the first coordinate (the distance to P ) provides sufficient contribution. In case (c) the second coordinate (the
distance to root r) provides the contribution.

1In fact, we use different dimensions for each connected components.
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But what about the effect of truncation on contraction? A careful recursive argument shows that the
contribution to u, v from the first coordinate (the distance from the path P ) is essentially not affected
by this truncation. Hence the argument in cases (a) and (b) of Figure 2 still works. However, the
argument using the distance to the root of P , case (c), can be ruined. Solving this issue requires some
new non-trivial ideas. Our solution is to introduce a probabilistic sawtooth function that replaces the
simple truncation. The main technical part of the paper is devoted to showing that a collection of
these functions for all possible distance scales, with appropriate random shifts, suffices to control the
expected contraction in case (c), for all relevant pairs simultaneously.

1.3 Other Related Work

There has been work on embedding several other graph families into normed spaces: Chekuri et
al. [CGN+06] extend the Okamura and Seymour bound for outerplanar graphs to k-outerplanar
graphs, and showed that these embed into `1 with distortion 2O(k). Rao [Rao99] (see also [KLMN05])
embed planar graphs into `p with distortion O(log1/p n). For graphs with genus g, [LS10] showed an
embedding into Euclidean space with distortion O(log g +

√
log n). Finally, for H-minor-free graphs,

combining the results of [AGG+14, KLMN05] give `p-embeddings with O(|H|1−1/p log1/p n) distortion.

Following [And86, Mil86], the idea of using geodesic shortest paths to decompose the graph has been
used for many algorithmic tasks: MPLS routing [GKR04], directed connectivity, distance labels and
compact routing [Tho04], object location [AG06], and nearest neighbor search [ACKW15]. However, to
the best of our knowledge, this is the first time it has been used directly for low-distortion embeddings
into normed spaces.

2 Preliminaries and Notation

For k ∈ Z, let [k] := {1, . . . , k}. For p ≥ 1, the `p-norm of a vector x = (x1, . . . , xd) ∈ Rd is

‖x‖p := (
∑d

i=1 |xi|p)1/p, where ‖x‖∞ := maxi |xi|.
Doubling dimension. The doubling dimension of a metric is a measure of its local “growth rate”.
Formally, a metric space (X, d) has doubling dimension λX if for every x ∈ X and radius r, the ball
B(x, r) can be covered by 2λX balls of radius r

2 . A family is doubling if the doubling dimension of all
metrics in it is bounded by some universal constant.

Graphs. We consider connected undirected graphs G = (V,E) with edge weights w : E → R>0. Let
dG denote the shortest path metric in G; we drop subscripts when there is no ambiguity. For a vertex
x ∈ V and a set A ⊆ V , let dG(x,A) := mina∈A d(x, a), where dG(x, ∅) :=∞. For a subset of vertices
A ⊆ V , let G[A] denote the induced graph on A, and let dA := dG[A] be the shortest path metric in
the induced graph. Let G \A := G[V \A] be the graph after deleting the vertex set A from G.

Special graph families. Given a graph G = (V,E), a tree decomposition of G is a tree T with nodes
B1, . . . , Bs (called bags) where each Bi is a subset of V such that the following properties hold:

• For every edge {u, v} ∈ E, there is a bag Bi containing both u and v.
• For every vertex v ∈ V , the set of bags containing v form a connected subtree of T .

The width of a tree decomposition is maxi{|Bi| − 1}. The treewidth of G is the minimal width of a
tree decomposition of G.

A path decomposition of G is a special kind of tree decomposition where the underlying tree is a path.
The pathwidth of G is the minimal width of a path decomposition of G.
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A graph H is a minor of a graph G if we can obtain H from G by edge deletions/contractions, and
vertex deletions. A graph family G is H-minor-free if no graph G ∈ G has H as a minor.

2.1 The Sawtooth function

Another component in our embeddings will be the following sawtooth function. For t ∈ N, we define
gt : R+ → R the sawtooth function w.r.t. 2t as follows. For x ≥ 0, if qx := bx/2t+1c then

gt(x) = 2t −
∣∣x− (qx · 2t+1 + 2t

)∣∣ .
2t

0 2t+1 2 · 2t+1 3 · 2t+1 4 · 2t+1 5 · 2t+1

x1

x2

x3

Figure 3: The graph of the “sawtooth” function gt. The points x1 = 5 · 2t−1 and x3 = 15 · 2t−1 are mapped
to 2t−1, while x2 = 10 · 2t−1 is mapped to 2t.

The following observation is straightforward.

Observation 1. The Sawtooth function gt is 1-Lipschitz, bounded by 2t, periodic with period 2t+1.

The proof of the following lemma appears in Appendix E.

Lemma 2 (Sawtooth Lemma). Let x, y ∈ R+. Let α ∈ [0, 1], β ∈ [0, 4] be drawn uniformly and
independently. The following properties hold:

1. Eα,β
[
gt(βx+ α · 2t+1)

]
= 2t−1.

2. If |x− y| ≤ 2t−1, then Eα,β
[∣∣gt(βx+ α · 2t+1)− gt(βy + α · 2t+1)

∣∣] = Ω(|x− y|).

3. If |x− y| > 2t−1, then Eα,β
[∣∣gt(βx+ α · 2t+1)− gt(βy + α · 2t+1)

∣∣] = Ω(2t).

3 Shortest Path Decompositions

Our embeddings will crucially depend on the notion of shortest path decompositions. In the intro-
duction we provided a recursive definition for SPD. Here we show an equivalent definition which will
be more suitable for our purposes.

Definition 1 (Shortest Path Decomposition (SPD)). Given a weighted graph G = (V,E,w), a SPD
of depth k is a pair {X ,P}, where X is a collection X1, . . . ,Xk of partial partitions of V 2, and P is
a collection of sets of paths P1, . . . ,Pk, where X1 = {V }, Xk = Pk, and the following properties hold:

1. For every 1 ≤ i ≤ k and every subset X ∈ Xi, there exist a unique path PX ∈ Pi such that PX
is a shortest path in G[X].

2i.e. for every X ∈ Xi, X ⊆ V , and for every different subsets X,X ′ ∈ Xi, X ∩X ′ = ∅.
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2. For every 2 ≤ i ≤ k, Xi consists of all connected components of G[X \ PX ] over all X ∈ Xi−1.

In other words,
⋃k
i=1 Pk is a partition of V into paths, where each path PX is a shortest path in the

component X it belongs to at the point it is deleted.

For a given graph G let SPDdepth(G) be the minimum k such that G admits an SPD of depth k. For
a given family of graphs G let SPDdepth(G) := maxG∈G{SPDdepth(G)}. In the following we consider
the SPDdepth of some graph families.

3.1 The SPD Depth for Various Graph Families

One advantage of defining the shortest path decomposition is that several well-known graph families
have bounded depth SPD.

• Pathwidth. Every graph G = (V,E,w) with pathwidth k has an SPDdepth of k + 1. Indeed, let
T = 〈B1, . . . ,Bs〉 be a path decomposition of G, where B1,Bs are the two bags at the end of this
path. Choose arbitrary vertices x ∈ B1 and y ∈ Bs, and let P be a shortest path in G from x to
y. By the definition of a path decomposition, the path P contains at least one vertex from every
bag Bi. Hence, deleting the vertices of P would reduce the size of each bag by one; consequently
each connected component of G\P has pathwidth k−1, and by induction SPDdepth k. Finally,
a connected component of pathwidth 0 is necessarily a singleton, which has SPDdepth 1.

• Treewidth. Since every tree has pathwidth O(log n), we can show that an n-vertex treewidth-k
graph has pathwidth O(k log n). Hence, treewidth-k graphs have SPDdepth O(k log n).

• Planar. Using cycle separators [Mil86] as in [Tho04, GKR04], every planar graph has SPDdepth
O(log n); this follows as each cycle separator can be constructed as union of two shortest paths.

• Minor-free. Finally, every H-minor-free graph admits a balanced separator consisting of g(H)
shortest paths (for some function g) [AG06], and hence has an SPDdepth O(g(H) · log n).

Combining these observation with Theorem 2, we get the following set of results:

Corollary 1. Consider an n-vertex weighted graph G, Theorem 2 implies the following:

• If G has pathwidth k, it embeds into `p with distortion O(k1/p).
• If G has treewidth k, it embeds into `p with distortion O((k log n)1/p).

• If G is planar, it embeds into `p with distortion O(log
1/p n).

• For every fixed H, if G excludes H as a minor, it embeds into `p with distortion O(log
1/p n),

where the constant in the big-O depends on H.

As mentioned in Section 1, we get a substantial improvement for the pathwidth case. Our result
for treewidth improves upon that from [KLMN05] for p > 2; they got O(k1−1/p(log n)1/p) distortion
compared to our O((k log n)1/p). Our result appears to be closer to the truth, since the distortion
tends to O(1) as p→∞.

Finally, our results for planar graphs match the current state-of-the-art.

Our results for minor-free graphs depend on the Robertson-Seymour decomposition, and hence are
currently better only for large values of p. (It remains an open question to improve the SPDdepth of
H-minor-free graphs to have a poly(|H|) log n dependence, perhaps using the ideas from [AGG+14].)
In general, we hope that our results will be useful in getting other embedding results, and will spur
further work on understanding shortest path separators.
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4 The Embedding Algorithm

Let G = (V,E) be a weighted graph, and let {X ,P} = {{X1, , . . . ,Xk} , {P1, . . . ,Pk}} be an SPD of
depth k for G. By scaling, we can assume that the minimum weight of an edge is 1; let M ∈ N be
the minimal such that the diameter of G is strictly bounded by 2M . Pick α ∈ [0, 1] and β ∈ [0, 4]
uniformly and independently.

For every i ∈ [k], and X ∈ Xi, we now construct an embedding fX : V → RD (for some number of
dimensions D ∈ N). This map fX consists of two parts.

First coordinate: Distance to the Path. The first coordinate of the embedding implements the distance
to the path PX , and is denoted by fpath

X . Let X1, . . . , Xs ∈ Xi+1 be the connected components of
G [X \ PX ] (note that it is also possible that s = 0). We use a separate coordinate for each Xj , and

hence fpath
X : V → Rs. Moreover, for v ∈ X we truncate at 2 dG(v, V \ X) in order to guarantee

Lipschitz-ness. In particular, the coordinate corresponding to Xj is set to

(
fpath
X

)
Xj

(v) =

{
min {dX(v, PX), 2dG(v, V \X)} if v ∈ Xj ,

0 otherwise.

See Figure 5 (in Appendix A) for an illustration.

Second coordinate: Distance to the Root. The second part is denoted f root
X , which is intended to cap-

ture the distance from the root r of the path. Again, to get the Lipschitz-ness, we would like to
truncate the value at 2 dG(v, V \X) as we did for fpath

X . However, a problem with this idea is that the
root r can be arbitrarily far from some pair u, v that needs contribution from this coordinate. And
hence, even if |dG(u, r)− dG(v, r)| ≈ dG(u, v), there may be no contribution after the truncation. So
we use the sawtooth function.

Specifically, we replace the ideal contribution dG(v, r) by the sawtooth function gt(dG(v, r)), where
the scale t for the function is chosen such that 2t ≈ dG(v, V \ X). To avoid the case that two
nearby points use two different scales (and hence to guarantee Lipschitz-ness), we take an appropriate
linear combination of the two distance scales closest to 2 dG(v, V \ X). Recall that the sawtooth
function does not guarantee contribution for u, v due to its periodicity: we may be unlucky and
have gt(dG(v, r)) = gt(dG(u, r)) even when dG(v, r) and dG(u, r) are very different. To guarantee a
large enough contribution for all relevant pairs simultaneously, we add a random shift α, and apply a
random “stretch” β to dG(v, r) before feeding it to gt. Lemma 2 then shows that many of the choices
of α and β give substantially different values for u, v.

Formally, the mapping is as follows. The function f root
X consists of M + 1 coordinates, one for each

distance scale t ∈ {0, 1, . . . ,M}. The coordinate corresponding to t is denoted by f root
X,t . Let r be an

arbitrary endpoint of PX ; we will call r the “root” of PX . Let tv ∈ N be such that 2 dG(v, V \X) ∈
[2tv , 2tv+1). Set λv = 2 dG(v,V \X)−2tv

2tv . Note that 0 ≤ λv < 1. For v ∈ X, we define

f root
X,t (v) =


λv · gt(β · dX(v, r) + α · 2t+1) if t = tv + 1,

(1− λv) · gt(β · dX(v, r) + α · 2t+1) if t = tv,

0 otherwise.

(1)

For all nodes v /∈ X, we set f root
X (v) = ~0.
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Define the map fX = fpath
X ⊕ f root

X , and the final embedding is

f =

k⊕
i=1

⊕
X∈Xi

fX ,

i.e., the concatenation of all the constructed embeddings. Before we start the analysis, let us record
some simple observations.

Observation 3. For the map f defined above, the following hold:

• The number of coordinates in f does not depend on α, β.
• For every X ∈ Xi and v /∈ X, the map fX(v) is the constant vector ~0.
• For every X ∈ Xi and v ∈ X, the map fX is nonzero in at most 3 coordinates.

Hence, since Xi is a partial partition of V and the depth of the SPD is k, we get that f(v) is nonzero
in at most 3k coordinates for each v ∈ V .

5 The Analysis

The main technical lemmas now show that the per-coordinate expansion is constant, and that for
every pair, there exists a coordinate for which the expected contraction is constant.

Lemma 4 (Expansion Bound). For any vertices u, v, every coordinate j, and every choice of α, β,

|fj(v)− fj(u)| = O(dG(u, v)).

Lemma 5 (Contraction Bound). For any vertices u, v, there exists some coordinate j such that

Eα,β [|fj(v)− fj(u)|] = Ω(dG(u, v)).

Given these two lemmas, we can combine them together to show that the entire embedding has small
distortion. (Proof of the composition lemma can be found in Appendix D.)

Lemma 6 (Composition Lemma). Let (X, d) be a metric space. Suppose that there are constants ρ, τ
and a function f : X → Rs, drawn from some probability space such that:

1. For every u, v ∈ X and every j ∈ [s], |fj(v)− fj(u)| ≤ ρ · d(v, u).

2. For every u, v ∈ X, there exists j ∈ [s] such that E[ |fj(v)− fj(u)| ] ≥ 1
τ · d(v, u).

3. For every v ∈ X, there is a subset of indices Iv ⊆ [s] of size |Iv| ≤ k, such that for every j /∈ Iv,
fj(v) = 0. In other words, for every v ∈ X, f(v) has support of size at most k.

Then, for every p ≥ 1, there is an embedding of (X, d) into `p with distortion O(k1/p). Moreover,
if there is an efficient algorithm for sampling such an f , then there is a randomized algorithm that
constructs the embedding efficiently (in expectation).

Now Theorem 2, our embedding for graphs with low depth SPDs, immediately follows by applying
the Composition Lemma (Lemma 6) to Lemma 4, Lemma 5, and Observation 3.

We defer the proof of Lemma 4 to Appendix B, and now give the proof of Lemma 5.
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5.1 Bounding the Contraction: Proof of Lemma 5

Recall that we want to prove that for any pair u, v of vertices, the embedding has a large contribution
between them. A natural proof idea is to show that vertices u, v would eventually be separated by the
recursive procedure. When they are separated, either one of u, v is far from the separating path P ,
or they both lie close to the path. In the former case, the distance d(v, P ) gives a large contribution
to the embedding distance, and in the latter case the distance from one end of the path (the “root”)
gives a large contribution.

However, there’s a catch: the value of the v’s embedding in any single coordinate cannot be more than
v’s distance to the boundary, and this causes problems. Indeed, if u, v fall very close to the path P at
some step of the algorithm, they must get most of their contribution at this level, since future levels
will not give much contribution. How can we do it, without assigning large values? This is where we
use the sawtooth function: it gives a good contribution between points without assigning any vertex
too large a value in any coordinate.

Formally, to bound the contraction and prove Lemma 5, for nodes u, v we need to show that there
exists a coordinate j such that Eα,β[|fj(v)− fj(u)|] = Ω(dG(u, v)). For brevity, define

∆uv := dG(u, v). (2)

Fix c = 12. Let i be the minimal index such that there exists X ∈ Xi with u, v ∈ X, and at least one
of the following holds:

1. min {dX(v, PX), dX(u, PX)} ≤ ∆uv/c (i.e., we choose a path close to {v, u}).

2. v and u are in different components of X \ PX .

Note that such an index i indeed exists: if v and u are separated by the SPD then condition (2)
holds. The only other possibility that v and u are never separated is when at least one of them
lies on one of the shortest paths. In such a case, surely condition (1) holds. By the minimality of
i, for every X ′ ∈ Xi′ such that i′ < i and u, v ∈ X ′, necessarily min{dX′(v, PX′), dX′(u, PX′)} >
∆uv/c. Therefore, the ball with radius ∆uv/c around each of v, u is contained in X. In particular,
min {dG(v, V \X), dG(u, V \X)} > ∆uv/c.

Suppose first that (2) occurs but not (1). Let j be the coordinate in fpath
X created for the connected

component of v in X \ PX . Then∣∣∣(fpath
X )j(v)− (fpath

X )j(u)
∣∣∣ = min {dX (v, PX) , 2dG (v, V \X)} − 0 ≥ min

{
∆uv

c
, 2

∆uv

c

}
=

∆uv

c
.

Next assume that (1) occurs. W.l.o.g., dX(v, PX) ≤ dX(u, PX), so that dX(v, PX) ≤ ∆uv/c. Suppose

first that dX(u, PX) ≥ 2∆uv/c. Then in the coordinate j in fpath
X created for the connected component

of u in X \ PX , we have∣∣∣(fpath
X )j(v)− (fpath

X )j(u)
∣∣∣ ≥ |min {dX (u, PX) , 2dG (u, V \X)} −min {dX (v, PX) , 2dG (v, V \X)}|

≥ min

{
2

∆uv

c
, 2

∆uv

c

}
− ∆uv

c
=

∆uv

c
.

(It does not matter whether v, u are in the same connected component or not.) Thus it remains to
consider the case dX(u, PX) < 2∆uv/c. Let r be the root of PX . Let v′ (resp. u′) be the closest vertex
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on PX to v (resp. u) in G[X]. Then by the triangle inequality

dX(v′, u′) ≥ dX(v, u)− dX(v, v′)− dX(u, u′) ≥ c− 3

c
∆uv .

In particular,

|dX(v, r)− dX(u, r)| ≥
∣∣dX(v′, r)− dX(u′, r)

∣∣− dX(v, v′)− dX(u, u′) ≥ c− 6

c
∆uv =

1

2
∆uv , (3)

where we used that PX is a shortest path in G[X] (implying |dX(v′, r)− dX(u′, r)| = dX(v′, u′)).
See Figure 4 for illustration.

r

u

u′

v

v′
PX

∆uv2∆uv

c ≥ ∆uv

c ≥

Figure 4: PX is a shortest path with root r. v (resp. u) is at distance at most ∆uv

c (resp. 2∆uv

c ) from v′

(resp u′), it’s closest vertex on PX . By triangle inequality dX(v′, u′) ≥ (1 − 3
c )∆uv. As u′, v′ lay on the same

shortest path starting at r, |dX(v′, r)− dX(u′, r)| = dX(v′, u′). Using the triangle inequality again we conclude
|dX(v, r)− dX(u, r)| ≥ |dX(v′, r)− dX(u′, r)| − 3

c∆uv ≥ (1− 6
c )∆uv.

Set x = dX(v, r) and y = dX(u, r). Assume first that dG (v, V \X) ≥ dG (u, V \X). In particular,
tv ≥ tu. By the definition of tv, 2dG (v, V \X) ≤ 2tv+1. Thus

2tv ≥ ∆uv

c
= Ω(∆uv) (4)

Claim 1. Let t ≥ tv, then there is a constant φ such that

Eα,β
[∣∣gt(β · x+ α · 2t+1)− gt(β · y + α · 2t+1)

∣∣] ≥ ∆uv/φ.

Proof. If |x− y| ≤ 2t−1, then using Property 2 of Lemma 2

Eα,β
[∣∣gt(β · x+ α · 2t+1)− gt(β · y + α · 2t+1)

∣∣] = Ω (|x− y|) (3)
= Ω(∆uv) .

Otherwise, using Property 3 of Lemma 2

Eα,β
[∣∣gt(β · x+ α · 2t+1)− gt(β · y + α · 2t+1)

∣∣] = Ω
(
2t
) (4)

≥ Ω(∆uv) .

Set S = max
{

8φ, 8c
2

}
. We consider two cases:

• If for some t ∈ {0, 1, . . . ,M}, |pt − qt| · 2t > ∆uv
S , then

Eα,β
[∣∣f root

X,t (v)− f root
X,t (u)

∣∣] = Eα,β
[∣∣pt · gt(β · x+ α · 2t+1)− qt · gt(β · y + α · 2t+1)

∣∣]
≥
∣∣pt · Eα,β [gt(β · x+ α · 2t+1)

]
− qt · Eα,β

[
gt(β · y + α · 2t+1)

]∣∣
= |pt − qt| · 2t = Ω(∆uv) .

Where the equality follows by Property 1 of Lemma 2.

10



• The other case is that for every t, |pt − qt| · 2t ≤ ∆uv
S . Note that ptv + ptv+1 = (1−λv) +λv = 1.

Let t ∈ {tv, tv + 1} be such that pt ≥ 1
2 . Using (4), qt ≥ pt − ∆uv

2tv ·S ≥ 1
2 − 2c

2∆uv
· ∆uv

S ≥ 1
4 . In

particular,

Eα,β
[∣∣f root

X,t (v)− f root
X,t (u)

∣∣] = Eα,β
[∣∣pt · gt(β · x+ α · 2t+1)− qt · gt(β · y + α · 2t+1)

∣∣]
≥ min {pt, qt} · Eα,β

[∣∣gt(β · x+ α · 2t+1)− gt(β · y + α · 2t+1)
∣∣]− |pt − qt| · 2t

≥ 1

4
· ∆uv

φ
− ∆uv

S
= Ω(∆uv) ,

where in the first inequality we used Property 1 of Lemma 2, and in the second inequality we
used Claim 1.

Finally, recall that we assumed dG (v, V \X) ≥ dG (u, V \X) for the proof above. The other case
(dG (v, V \X) < dG (u, V \X)) is completely symmetric.

6 Conclusions

In this paper we introduced the notion of shortest path decompositions with low depth. We showed
how these can be used to give embeddings into `p spaces. Our techniques give optimal embeddings
of bounded pathwidth graphs into `2, and also new embeddings for graphs with bounded treewidth,
as well as planar and excluded-minor families of graphs. Our embedding into `p admits a tight lower
bound for fixed p > 1. We hope that our techniques will be useful for other embedding results.

Our work raises several open questions. While our embeddings are tight for fixed p > 1, can we
improve the bounds for `1 embedding of bounded pathwidth graphs? Can we give better results for
the SPDdepth ofH-minor-free graphs? Our approach gives aO(

√
log n)-distortion embedding of planar

graphs into `1, which is quite different from the previous known results via padded decompositions:
can these ideas be used to make progress towards the planar graph embedding conjecture?
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A An Illustation of the Embedding

3 27
3

2

X1

X2

PX

(0, 0)

(6, 0)

(0, 0)

(0, 0)

(7, 0)

(2, 0)

(0, 3)
(0, 4)

(0, 0)

Figure 5: The set X ∈ Xi surrounded by a closed curve. The path PX partitions X into X1, X2 ∈ Xi+1. The
embedding fpath

X consists of two coordinates, and represented in the figure by a horizontal vector next to each
vertex, where the first entry is w.r.t. X1 and the second w.r.t. X2. Each point on PX , or not in X maps to 0
in both the coordinates. Each point in X1 maps to min {dX (v, PX) , 2dG (v, V \X)} in the first coordinate and
to 0 in the second.

B Proof of Lemma 4

In this section we bound the expansion of any coordinate in our embedding. Recall that the embedding
of v lying in some component X consists of two sets of coordinates: its distance from the path, and
its distance from the root. As mentioned in the introduction, since points outside X are mapped to
zero, maintaining Lipschitz-ness requires us to truncate the contribution of v of any coordinate to its
distance from the boundary. This truncation (either via taking a minimum with dG(v, V \X), or via
the sawtooth function), means that our proofs of expansion require more care. Let us now give the
details.

Consider any level i, any set X ∈ Xi, and any pair of vertices u, v. It suffices to show that ‖fX(v)−
fX(u)‖∞ = O(dG(u, v)). To begin, we may assume that both u, v ∈ X. Indeed, if both u, v /∈ X, then
fX(v) = fX(u) = ~0 and we are done. If one of them, say v belongs to X while the other u /∈ X, then
fX(u) = ~0 while fX(v) is bounded by 2tv+1 ≤ 4dG (v, V \X) ≤ 4 dG(u, v) in each coordinate.

Moreover, we may also assume that the shortest u-v path in G contains only vertices from X. Indeed,
suppose their shortest path in G uses vertices from V \X, then dG(u, V \X)+dG(v, V \X) ≤ dG(u, v).
But since both fX(v), fX(u) are bounded in each coordinate by 4 ·max {dG(u, V \X), dG(v, V \X)},
we have constant expansion. Henceforth, we can assume that dG(u, v) = dX(u, v). We now bound the
expansion in each of the two parts of fX separately.

Expansion of fpath
X . Let Xv, Xu be the connected components in G [X \ PX ] such that v ∈ Xv and

u ∈ Xu. Consider the first case Xv 6= Xu, then PX intersects the shortest path between v and u. In
particular,

‖fpath
X (v)− fpath

X (u)‖∞ ≤ min {dX (v, PX) , 2dG (v, V \X)}+ min {dX (u, PX) , 2dG (u, V \X)}
≤ dX (v, PX) + dX (u, PX) ≤ dX(v, u) = dG(v, u) .

Otherwise, Xv = Xu and the two vertices lie in the same component. Now ‖fpath
X (v) − fpath

X (u)‖∞
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equals ∣∣min {dX (v, PX) , 2dG (v, V \X)} −min {dX (u, PX) , 2dG (u, V \X)}
∣∣

Assuming (without loss of generality) that the first term is at least the second, we can drop the
absolute value signs. Now the bound on the expansion follows from a simple case analysis. Indeed,
suppose dX (u, PX) ≤ 2dG (u, V \X). Then we get

‖fpath
X (v)− fpath

X (u)‖∞ = min {dX (v, PX) , 2dG (v, V \X)} − dX (u, PX)

≤ dX (v, PX)− dX (u, PX) ≤ dX(u, v) = dG(u, v).

The other case is that dX (u, PX) > 2dG (u, V \X), and then

‖fpath
X (v)− fpath

X (u)‖∞ = min {dX (v, PX) , 2dG (v, V \X)} − 2dG (u, V \X)

≤ 2dG (v, V \X)− 2dG (u, V \X) ≤ 2dG(u, v).

Hence the expansion is bounded by 2.

Expansion of f root
X . Let r be the root of PX . For t ∈ {0, 1, . . . ,M}, let pt (respectively, qt)

be the “weight” of v (respectively, u) on gt—in other words, pt is the constant in (1) such that
f root
X,t (v) = pt · gt(β · dX(v, r) +α · 2t+1). Note that pt ∈ {0, λv, 1− λv} is chosen deterministically, and

is nonzero for at most two indices t.

First, observe that for every t,∣∣f root
X,t (v)− f root

X,t (u)
∣∣ =

∣∣pt · gt(β · dX(v, r) + α · 2t+1)− qt · gt(β · dX(u, r) + α · 2t+1)
∣∣

≤ min {pt, qt} ·
∣∣gt(β · dX(v, r) + α · 2t+1)− gt(β · dX(u, r) + α · 2t+1)

∣∣+ |pt − qt| · 2t
≤ min {pt, qt} · β · |dX(v, r)− dX(u, r)|+ |pt − qt| · 2t
≤ O(dG(u, v)) + |pt − qt| · 2t . (5)

The first inequality used that gt is bounded by 2t, and the second inequality that gt is 1-Lipschitz; both
follow from Observation 1. The last inequality follows by the triangle inequality (since we assumed
that the shortest path from v to u is contained within X).

Hence, it suffices to show that |pt − qt| = O(dG(u, v)/2t). Indeed, for indices t /∈ {tu, tu + 1, tv, tv + 1},
pt = qt = 0, hence |pt − qt| = 0. Let us consider the other cases. W.l.o.g., assume that dG (v, V \X) ≥
dG (u, V \X) and hence tv ≥ tu.

• tu = tv : In this case, |ptv − qtv | = |(1− λv)− (1− λu)| = λv − λu = |ptv+1 − qtv+1|. Moreover,
this quantity is

λv − λu =
2dG (v, V \X)− 2t

2t
− 2dG (u, V \X)− 2t

2t

=
2 (dG (v, V \X)− dG (u, V \X))

2t
≤ 2dG(u, v)

2t
.

Hence, we get that |pt − qt| = O(dG(u, v)/2t) for both t ∈ {tv, tv + 1}.

• tu = tv − 1 : It holds that

λv + (1− λu) ≤ 2 · 2dG (v, V \X)− 2tv

2tv
+

2tu+1 − 2dG (u, V \X)

2tu

=
2dG (v, V \X)− 2dG (u, V \X)

2tu
≤ 2dG(u, v)

2tu
.
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Figure 6: The first 3 diamond graphs. {s, t} is the level 0 diagonal, {u, v} is the level 1 diagonal, {a1, a2},
{b1, b2}, {c1, c2}, {d1, d2} are the level 2 diagonals. E0 = {{s, t}}, E1 = {{s, u}, {t, u}, {t, v}, {s, v}} .

If we define χ := λv + (1− λu), we conclude that

|ptv+1 − qtv+1| = λv ≤ χ = O(dG(u, v)/2tv+1)
|ptv − qtv | = |1− λv − λu| ≤ χ = O(dG(u, v)/2tv)
|ptu − qtu | = 1− λu ≤ χ = O(dG(u, v)/2tu) .

• tu < tv − 1 : By the definition of tv and tu,

2dG(v, u) ≥ 2 (dG(v, V \X)− dG(u, V \X)) ≥ 2tv − 2tu+1 ≥ 2tv−1.

In particular, for every t ≤ tv + 1, |pt − qt| ≤ 1 ≤ 2dG(u,v)
2tv−1 = O

(
dG(u,v)

2t

)
.

C Lower Bound: Proof of Theorem 3

We start with the definition of the diamond graphs Dk.

Definition 2 (Diamond Graphs). Let D0,D1,D2, . . . be a sequence of graphs defined as follows: D0

is a single edge, and for i ≥ 1, Di is obtained from Di−1 by replacing every edge of Di−1 with a square
with two new vertices. See Figure 6 for illustration.

For each of the new squares created at level i, call the two new vertices a diagonal at level-i.

Consider the graph Dk. For 1 ≤ i ≤ k, denote by Di the set of all level-i diagonals, and let Ei be the
set of pairs of vertices which were edges in Di. It holds that |Ek| = 4k and Dk = 4k−1. Moreover, D0

has pathwidth 1, and it can be verified by induction that Dk has pathwidth k + 1.

Newman and Rabinovich [NR03] proved that every embedding of Dk into `2 requires distortion
√
k + 1.

Lee and Naor [LN04] generalized it for 1 < p ≤ 2, by proving that every embedding of Dk into `p
requires distortion

√
1 + (p− 1)k. We will prove that for p ≥ 2, every embedding of Dk into `p

requires distortion at least
(
k+1
2p−2

)1/p
.

The following claim will be essential.
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Claim 2 (`p Quadrilateral Inequality). For p ≥ 2, and every four vectors a, b, c, d ∈ `p, it holds that

‖a− c‖pp + ‖b− d‖pp ≤ 2p−2
(
‖a− b‖pp + ‖b− c‖pp + ‖c− d‖pp + ‖d− a‖pp

)
(6)

Proof. The proof of the following inequality can be found at [Car04, Theorem 11.12],

∀x, y ∈ `p, ‖x+ y‖pp + ‖x− y‖pp ≤ 2p−1
(
‖x‖pp + ‖y‖pp

)
.

Define x1 = b− a, y1 = a− d and x2 = b− c, y2 = c− d. We get

‖b− d‖pp + ‖b− 2a+ d‖pp ≤ 2p−1
(
‖a− b‖pp + ‖d− a‖pp

)
.

‖b− d‖pp + ‖b− 2c+ d‖pp ≤ 2p−1
(
‖b− c‖pp + ‖c− d‖pp

)
.

By summing up and dividing by 2,

‖b− d‖pp +
‖b− 2a+ d‖pp + ‖b− 2c+ d‖pp

2
≤ 2p−2

(
‖a− b‖pp + ‖b− c‖pp + ‖c− d‖pp + ‖d− a‖pp

)
. (7)

The claim now follows by convexity.

Fix some p ≥ 2, and embedding f : Dk → `p. We will assume w.l.o.g that f is non-contractive, and
denote by ρ its expansion, i.e. distortion. Set α0 = 1

2k(p−2) and for i > 0, αi = 1
2(k−i+1)(p−2) . Note that

for i ≥ 1, αi · 2p−2 = αi+1. Our proof will be based on the following Poincaré-type inequality

Claim 3 (Diamond graph `p Poincaré-type inequality).

k∑
i=0

αi ·
∑

{x,y}∈Di

‖f (x)− f (y)‖pp ≤ αk+1 ·
∑

{x,y}∈Ek

‖f (x)− f (y)‖pp . (8)

Proof. For edge {x, y} ∈ Ei−1, denote by {x′, y′} ∈ Di the diagonal created by it. We have∑
{x,y}∈Di

‖f (x)− f (y)‖pp +
∑

{x,y}∈Ei−1

‖f (x)− f (y)‖pp

=
∑

{x,y}∈Ei−1

(
‖f (x)− f (y)‖pp +

∥∥f (x′)− f (y′)∥∥p
p

)
(6)

≤ 2p−2 ·

 ∑
{x,y}∈Ei−1

(∥∥f (x)− f
(
x′
)∥∥p
p

+
∥∥f (x′)− f (y)

∥∥p
p

+
∥∥f (y)− f

(
y′
)∥∥p
p

+
∥∥f (y′)− f (x)

∥∥p
p

)
= 2p−2 ·

∑
{x,y}∈Ei

‖f (x)− f (y)‖22 .

Summing over 1 ≤ i ≤ k’s, with appropriate scaling,

k∑
i=1

αi ·

 ∑
{x,y}∈Di

‖f (x)− f (y)‖pp +
∑

{x,y}∈Ei−1

‖f (x)− f (y)‖pp


≤

k∑
i=1

αi · 2p−2 ·
∑

{x,y}∈Ei

‖f (x)− f (y)‖pp =
k∑
i=1

αi+1 ·
∑

{x,y}∈Ei

‖f (x)− f (y)‖pp .
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Hence

k∑
i=1

αi ·
∑

{x,y}∈Di

‖f (x)− f (y)‖pp + α1 ·
∑

{x,y}∈E0

‖f (x)− f (y)‖pp ≤ αk+1 ·
∑

{x,y}∈Ek

‖f (x)− f (y)‖pp .

As E0 = D0 and α0 = α1, the claim follows.

Next, we calculate

k∑
i=0

αi ·
∑

{x,y}∈Di

d (x, y)p =α0 ·
(

2k
)p

+
k∑
i=1

|Di| · αi ·
(

2k−i+1
)p

= 22k +
k∑
i=1

4i−1 ·
(

2k−i+1
)2

= (k + 1) · 4k . (9)

Recall that f is non-contractive and has expansion ρ. Consequently,

(k + 1) · 4k (9)
=

k∑
i=0

αi ·
∑

{x,y}∈Di

d (x, y)p

≤
k∑
i=0

αi ·
∑

{x,y}∈Di

‖f (x)− f (y)‖pp

(8)

≤ αk+1 ·
∑

{x,y}∈Ek

‖f (x)− f (y)‖pp

≤ αk+1 ·
∑

{x,y}∈Ek

(ρ · d(x, y))p = αk+1 · (ρ)p · |Ek| .

We conclude

ρ ≥
(

4k

|Ek|
· k + 1

αk+1

)1/p

=

(
k + 1

2p−2

)1/p

= Ω(k
1/p) .

D Proof of Lemma 6

We restate the lemma for convenience:

Lemma 6 (Composition Lemma). Let (X, d) be a metric space. Suppose that there are constants ρ, τ
and a function f : X → Rs, drawn from some probability space such that:

1. For every u, v ∈ X and every j ∈ [s], |fj(v)− fj(u)| ≤ ρ · d(v, u).

2. For every u, v ∈ X, there exists j ∈ [s] such that E[ |fj(v)− fj(u)| ] ≥ 1
τ · d(v, u).

3. For every v ∈ X, there is a subset of indices Iv ⊆ [s] of size |Iv| ≤ k, such that for every j /∈ Iv,
fj(v) = 0. In other words, for every v ∈ X, f(v) has support of size at most k.

Then, for every p ≥ 1, there is an embedding of (X, d) into `p with distortion O(k1/p). Moreover,
if there is an efficient algorithm for sampling such an f , then there is a randomized algorithm that
constructs the embedding efficiently (in expectation).

18



Proof. Fix n = |X|, and set m = 48ρτ · lnn. Let f (1), f (2), . . . , f (m) : X → Rs be functions chosen i.i.d
according to the given distribution. Set g = m−1/p

⊕m
i=1 f

(i). We argue that with high probability, g
has distortion O(k1/p) in `p.

Fix some pair of vertices v, u ∈ V . Set d(v, u) = ∆. The upper bound follows from Property 1 and
Property 3 of the lemma:

‖g(v)− g(u)‖pp =
m∑
i=1

∑
j∈Iv∪Iu

(
m−

1/p ·
∣∣∣f (i)
j (v)− f (i)

j (u)
∣∣∣)p

≤
m∑
i=1

∑
j∈Iv∪Iu

1

m
· (ρ ·∆)p ≤ 2k · (ρ ·∆)p ,

thus ‖g(v)− g(u)‖p ≤ O(k1/p ·∆).

Next, for the contraction bound, let j be the index of Property 2 w.r.t v, u. Set F = {f : |fj(v)− fj(u)| ≥
∆/2τ} to be the event that we draw a function with significant contribution to v, u. Then using Prop-
erty 1 and Property 2,

∆

τ
≤ E [|fj(v)− fj(u)|] ≤ Pr

[
F
]
· ∆

2τ
+ Pr [F ] · ρ∆ ≤ ∆

2τ
+ Pr [F ] · ρ∆ ,

which implies that Pr [F ] ≥ 1
2ρτ . Let Q

(i)
u,v be an indicator random variable for the event f (i) ∈ F , and

set Qu,v =
∑m

i=1Q
(i)
u,v. By linearity of expectation, E[Qu,v] ≥ m

2ρτ = 24 · lnn. By a Chernoff bound

Pr [Qu,v ≤ 12 · lnn] ≤ Pr

[
Qu,v ≤

1

2
· E [Qu,v]

]
≤ exp(−1

8
E [Qu,v]) ≤ exp(−3 lnn) = n−3 .

By taking a union bound over the
(
n
2

)
pairs, with probability at least 1 − 1

n , for every u, v ∈ V ,
Qu,v > 12 lnn = Ω(m). (Recall that both ρ, τ are universal constants.) If this event indeed occurs,
then the contraction is indeed bounded:

‖g(v)− g(u)‖pp ≥
m∑
i=1

(
m−

1/p ·
∣∣∣f (i)
j (v)− f (i)

j (u)
∣∣∣)p

≥ 1

m

∑
i:Q

(i)
u,v=1

∣∣∣f (i)
j (v)− f (i)

j (u)
∣∣∣p

≥ Qu,v
m
·
(

∆

2ρτ

)p
= Ω

((
∆

2ρτ

)p)
.

In particular, for every u, v, ‖g(v)− g(u)‖p ≥ Ω(∆).

E Proof of the Sawtooth Lemma (Lemma 2)

We restate Lemma 2 for convenience:

Lemma 2 (Sawtooth Lemma). Let x, y ∈ R+. Let α ∈ [0, 1], β ∈ [0, 4] be drawn uniformly and
independently. The following properties hold:

1. Eα,β
[
gt(βx+ α · 2t+1)

]
= 2t−1.
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2t

α = 0 α = 2t − z α = 2t − z
2

α = 2t α = 2t+1 − z α = 2t+1 − z
2 α = 2t+1

Figure 7: α is going from 0 to 2t+1. z ≤ 2t. In each of the figures the leftmost red point represents α while
the rightmost red point represents z+α. Each of the middle figures represent a moment when gt(z+α)− gt(z)
changes its derivative.

2. If |x− y| ≤ 2t−1, then Eα,β
[∣∣gt(βx+ α · 2t+1)− gt(βy + α · 2t+1)

∣∣] = Ω(|x− y|).

3. If |x− y| > 2t−1, then Eα,β
[∣∣gt(βx+ α · 2t+1)− gt(βy + α · 2t+1)

∣∣] = Ω(2t).

Property 1 is straightforward, as by Observation 1 gt is periodic with period length 2t+1. Indeed, for
every fixed β, Eα

[
gt(βx+ α · 2t+1)

]
= Eα

[
gt(α · 2t+1)

]
= 2t−1. The following claim will be useful in

the proofs of Property 2 and Property 3.

Claim 4. For z ∈ [0, 2t+1], Eα∈[0,1]

[∣∣gt(z + α · 2t+1)− gt(α · 2t+1)
∣∣] =

(2t+1−z)z
2t+1 .

Proof. Set (∗) = Eα∈[0,1]

[∣∣gt(z + α · 2t+1)− gt(α · 2t+1)
∣∣]. By substituting the variable of integration,

(∗) = 1
2t+1 ·

∫ 2t+1

0 |gt(z + α)− gt(α)| dα. First assume that z ≤ 2t, then there are 5 “phase changes”
in |gt(z + α)− gt(α)| from 0 to 2t+1, at 2t − z, 2t − z

2 , 2t, 2t+1 − z, 2t+1 − z
2 . (see Figure 7 for

illustration). We calculate

2t+1 · (∗) =

∫ 2t−z

0
zdα+

∫ z
2

0
(z − 2α)dα+

∫ z
2

0
2αdα+

∫ 2t−z

0
zdα+

∫ z
2

0
(z − 2α)dα+

∫ z
2

0
2αdα

= 2 ·
∫ 2t−z

0
zdα+ 2 ·

∫ z
2

0
zdα =

(
2t+1 − z

)
z .

For z > 2t, set w = 2t+1 − z. Then using that gt is periodic,

Eα∈[0,1]

[∣∣gt(w + α · 2t+1)− gt(α · 2t+1)
∣∣] = Eα∈[0,1]

[∣∣gt(w + z + α · 2t+1)− gt(z + α · 2t+1)
∣∣]

= Eα∈[0,1]

[∣∣gt(2t+1 + α · 2t+1)− gt(z + α · 2t+1)
∣∣]

= Eα∈[0,1]

[∣∣gt(z + α · 2t+1)− gt(α · 2t+1)
∣∣] .

Hence by the first case, (∗) =
(2t+1−w)w

2t+1 =
(2t+1−z)z

2t+1 .

For the proofs of Property 2 and Property 3 assume w.l.o.g x > y. Set z = x − y, and
(∗) = Eα,β

[∣∣gt(βx+ α · 2t+1)− gt(βy + α · 2t+1)
∣∣]. As gt is a periodic function, we have that

(∗) = Eβ
[
Eα
[∣∣gt(βz + α · 2t+1)− gt(α · 2t+1)

∣∣]].
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Proof of Property 2. Using Claim 4, we have

(∗) = Eβ

[(
2t+1 − βz

)
βz

2t+1

]
=

1

2t+1
· 1

4
·
(

2t+1z

2
β2 − z2

3
· β3 |40

)
=

1

4
·
(

16

2
· z − z2

2t+1
· 26

3

)
≥ 1

4
·
(

8− 64

3 · 4

)
· z =

2

3
· |x− y| ,

where in the inequality we used that z ≤ 2t−1.

Proof of Property 3. As gt is periodic function, Claim 4 implies that for every w ≥ 0 it holds that

Eα
[∣∣gt(w + α · 2t+1)− gt(α · 2t+1)

∣∣] =
(2t+1−(w mod 2t+1))(w mod 2t+1)

2t+1 . Let a ∈ [0, 4] such that a · z =
2t+1 (such a exists as |x− y| > 2t−1). The claim follows as,

(∗) · 2t+1 = Eβ∈[0,4]

[(
2t+1 − (βz mod 2t+1)

)
(βz mod 2t+1)

]
≥
b 4ac−1∑
i=0

1

4
·

(i+1)a∫
ia

(
2t+1 − (β · 2t+1

a
mod 2t+1)

)
(β · 2t+1

a
mod 2t+1)dβ

=

b 4ac−1∑
i=0

1

4
·

a∫
0

(
2t+1 − β · 2t+1

a

)
· β · 2t+1

a
dβ

=

⌊
4

a

⌋
· 1

4
· a

2t+1
·

2t+1∫
0

(
2t+1 − γ

)
· γdγ

≥ 4

2a
· 1

4
· a

2t+1
·
(

2t+1γ
2

2
− γ3

3
|2t+1

0

)
=

1

2
· 1

2t+1
·
(
2t+1

)3
6

=

(
2t+1

)2
12

.
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