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Abstract. We design an algorithm to embed graph metrics into ℓp with
dimension and distortion both dependent only upon the bandwidth of the
graph. In particular we show that any graph of bandwidth k embeds with
distortion polynomial in k into O(log k) dimensional ℓp, 1 ≤ p ≤ ∞. Prior
to our result the only known embedding with distortion independent
of n was into high dimensional ℓ1 and had distortion exponential in
k. Our low dimensional embedding is based on a general method for
reducing dimension in an ℓp embedding, satisfying certain conditions, to
the intrinsic dimension of the point set, without substantially increasing
the distortion. As we observe that the family of graphs with bounded
bandwidth are doubling, our result can be viewed as a positive answer
to a conjecture of Assouad [2], limited to this family. We also study an
extension to graphs of bounded tree-bandwidth.

⋆ The work was done in part while the author was at the Center for the Mathematics of
Information, Caltech, and the Institute for Pure and Applied Mathematics, UCLA.



1 Introduction

The problem of embedding graph metrics into normed spaces with low dimension
and distortion has attracted much research attention (cf. [14]). In this paper
we study the family of graphs with bounded bandwidth. The bandwidth of an
unweighted graph G = (V,E) is the minimal k such that there exists an ordering
of the vertices in which the end points of every edge are at most k apart. Let dG
be the shortest path metric on the graph G. Let (Y, ρ) be a metric space, we say
that an embedding f : V → Y has distortion D ≥ 1 if there exists a constant
c > 0 such that for all x, y ∈ V ,

dG(x, y) ≤ cρ(f(x), f(y)) ≤ DdG(x, y) .

Our main result is the following.

Theorem 1. For any integer k ≥ 1 there exist d = d(k) and D = D(k) with
the following property. For every p ≥ 1 and graph G = (V,E) with bandwidth
at most k, there exists an embedding of (V, dG) into ℓp space of dimension d
with distortion D. In particular we have: D(k) = O(k2) and d(k) = O(log2 k).
Alternatively we also get: D(k) = O(k2.001) and d(k) = O(log k).

Our work is related to a conjecture of Assouad [2]. The doubling constant of
a metric space is the minimal α such that any ball of radius r can be covered by
α balls of half the radius, then the doubling dimension of V is defined as log2 α.
Assouad proved that for any metric (V, d), the ”snow-flake” metric (V, d1−ϵ)
embeds into Euclidean space with distortion and dimension depending only on
on the doubling constant of (V, d) and on ϵ. Assouad conjectured that this is
possible even when ϵ = 0, but this was disproved by [19] (a quantitative bound
was given by [12]). It is also shown in [12] that Assouad’s conjecture holds for
the family of doubling tree metrics. As the doubling constant of graphs with
bandwidth k can be bounded by O(k), one can view our result as providing a
different family of doubling metrics for which Assouad’s conjecture holds.

Graphs with low bandwidth play an important role in fast manipulation of
matrices, in particular computing Gauss elimination and multiplication [10]. In
his seminal paper Feige [11] showed an approximation algorithm for computing
the bandwidth with poly-logarithmic guarantee. The bandwidth of a graph also
plays a role in certain biological settings, such as gene clustering problems [20].

There has been a great deal of previous work on embedding families of graphs
into ℓp with bounded distortion (for example [9,12,13,18,8]). The problem of
embedding graphs of bounded bandwidth has been first tackled by [7]. They
show that this family of graphs includes interesting instances which do not fall
within any of the cases for which constant distortion embeddings are known.
In their paper they show that bounded bandwidth graphs can be embedded
into ℓ1 [7] with distortion independent of the number of vertices n. However,
the distortion of their embedding was exponential in the bandwidth k. Also,
the dimension of that embedding was dependent on the number of vertices (in
fact polynomial in n). We improve the result of [7] for graphs of bandwidth k



in several ways: First, our embedding works for any ℓp space (1 ≤ p ≤ ∞) as
a target space, not just ℓ1. Second, the distortion obtained is polynomial in k;
specifically: O(k2+θ). Finally, we show that the dimension can be independent
of n as well, and as low as O((log k)/θ) (for any 0 < θ < 1).

Note that the fact that a graph has bandwidth k can be viewed as providing
an embedding into 1 dimension with expansion bounded by k, but without any
control on the contraction. Our result means that by increasing the dimension
to O(log k), one can get a bound not only on the expansion but also on the
contraction of the embedding.

The low dimensionality of our embedding follows from a generalization we
give for a result of [1], who study embedding metric spaces in their intrinsic
dimension. In [1] it is shown that for any n point metric space, with doubling
constant α, there exists an embedding into ℓp space with distortion O(log1+θ n)
and dimension O((logα)/θ) (for any 0 < θ < 1). Here, we extend their method
in a way that may be applicable for reducing the dimension of embeddings in
other settings. We show sufficient conditions on an embedding of any metric
space (V, d) into ℓp (possibly high dimensional) with distortion γ, allowing to
reduce the dimension to O((logα)/θ) with distortion only O(γ1+θ).

Our embedding for graphs of bandwidth k is obtained as follows: we first
provide an embedding with distortion O(k2) which satisfies the conditions of the
dimension reduction theorem. Our final embedding follows from the fact that
the doubling constant of graphs of bandwidth k is O(k).

It is worth noting that our embedding provides bounds independent of n for
all 1 ≤ p ≤ ∞. This is unusual: most previous non-trivial results for embed-
ding infinite graph classes into normed spaces with constant distortion (inde-
pendent of n) have ℓ1 as a target metric [9,13] (and require high dimension).
This is because of strong lower bounds indicating that trees have a distortion
of Ω(

√
log log n) [15] and tree-width two graphs have a distortion of Ω(

√
log n)

when embedded into ℓ2 [17]. Since bandwidth k graphs do not include all trees,
these lower bounds will not apply and we are able to embed into ℓ2 with constant
(independent of n) distortion. We observe that ℓ2 is potentially a more natural
and useful target metric.

We extend our study to graphs of bounded tree-bandwidth [7] (see Definition 7
for precise definition). While this family of graphs includes all trees and thus
requires distortion at least Ω(

√
log log n) when embedded into ℓ2, we are still

able to apply our techniques with an additional overhead related to the embe-
dability of trees. We provide an embedding of tree-bandwidth k graphs into ℓ2
with distortion O(poly(k)

√
log log n) and into ℓ1 with distortion polynomial in

k. Moreover, when the graph has bounded doubling dimension we can apply our
dimension reduction technique to achieve distortion and dimension depending
solely on the doubling dimension and on k, utilizing the embedding of [12] for
trees with bounded doubling dimension.

In general there has been a great deal of work on finding low-distortion em-
beddings. These embeddings have a wide range of applications in approximation
algorithms, and in most cases low dimension is also desirable (for example im-



proving the running time). Our work makes further progress towards achieving
low-distortion results with dimension reduced to the intrinsic dimension. In par-
ticular, our embeddings imply better bounds in applications such as nearest
neighbor search, distance labeling and clustering.

1.1 Summary of Techniques

The result of [1] includes the design of a specific embedding technique (locally
padded probabilistic partitions), combined with the careful application of the
Lovasz Local Lemma to show that it is possible to randomly merge the coordi-
nates of this embedding in such a way that there is a non-zero probability that no
distance is contracted. This can then be combined with constructive versions of
the local lemma [3,16] to deterministically produce a low-dimensional embedding
with no contraction.

We decouple the embedding technique of [1] from the local lemma, showing
that any embedding technique which satisfies certain locality properties as well
as having a single coordinate which lower bounds each particular distance can
be applied in this way. Given any metric space (V, d) with doubling constant α,
we give sufficient conditions to reduce the dimension of an embedding of V into
ℓp with distortion γ to have dimension O((logα log γ)/ log(1/ϵ)) and distortion
O(γ/ϵ) where γ−1 < ϵ < 1. This approach allows some modularity in defining
an embedding – if we are given a low distortion embedding (potentially much
lower distortion than logn for some source metrics) which satisfies the locality
properties then we can maintain the low distortion while obtaining low dimension
as well.

In order to demonstrate the power of this approach, we apply it to the prob-
lem of embedding bounded bandwidth graphs into ℓp. We first need to define a
low distortion embedding. The embedding of [7] is not useful for our purpose as
it does not satisfy the necessary properties (in particular the single coordinate
lower bound on distances fails) and because its distortion is undesirably high
(exponential in bandwidth). Instead, we define a new embedding. The basis for
our embedding is the standard scale based approach [18] using probabilistic par-
titions of [12,1] as a black box. The problem is that when using this approach
we obtain an expansion factor of 1 at each scale of the embedding. The number
of scales is logarithmic in the graph diameter, giving us a total expansion of
Θ(logn). The key innovation of our bandwidth embedding is showing that the
number of scales can be reduced to O(k).

Of course, for any scale there may be some point pair whose distance is at
that scale (there are n2 point pairs and only logn scales after all). We cannot
simply remove some scales and expect our distortion to be reasonable. Instead,
we compute a set of active scales for each graph vertex; these are the scales that
represent distances to other points which are nearby in the optimum bandwidth
ordering of the graph. We will reduce coordinate values to zero for vertices which
do not consider the coordinate’s scale to be active. Each vertex has only O(k)
active scales; the issue now is that different vertices have different scales and if
two adjacent vertices have different active scales we might potentially introduce



large expansion. In addition, we need to show that the critical coordinates which
maintain the lower bound of d(x, y) (thus preventing contraction) are active at
one of the two points (x or y). Instead of applying active coordinates directly, we
allow coordinates to decline gracefully by upper-bounding them by the distance
to the nearest point where they are inactive, then use the bandwidth ordering to
prove that the critical coordinates for preventing contraction are not only active
where they need to be, but have not declined by too much to be useful.

A careful analysis of this construction shows that we can obtain distortion of
O(k2). We also show that our modified embedding still posses the locality prop-
erties. Thus we can apply our dimension reduction technique to get dimension
O((log k)/θ) while maintaining the distortion bound up to a factor O(kθ).

2 Embedding in the Doubling Dimension

2.1 Preliminaries and Definitions

Definition 1. The doubling constant of a metric space (V, d) is the minimal
integer α such that for any r > 0 and x ∈ V , the ball B(x, 2r) can be covered by
α balls of radius r. The doubling dimension or intrinsic dimension, denoted
by dim(V ), is defined as logα.

Suppose we are given a metric space (V, d) along with a randomly selected
mapping ϕ : V → ℜD for some dimension D. For 1 ≤ c ≤ D we denote by ϕc(x)
the c’th coordinate of ϕ(x) and thus we have ϕc : V → ℜ. We may assume w.l.o.g
that all coordinates of all points in the range of this mapping are non-negative.

Definition 2. The mapping ϕ is single-coordinate (ϵ, β) lower-bounded if
for every pair of points x, y ∈ V there is some coordinate c such that |ϕc(x) −
ϕc(y)| ≥ βd(x, y) with probability at least 1− ϵ.

In the metric embedding literature, we often speak of an embedding having
contraction β. For ℓ1 embedding, this means there is a set of coordinates whose
sum is lower-bounded by βd(x, y). The single-coordinate (ϵ, β) lower-bounded
condition is stronger than contraction β, although for ℓp norms with large values
of p (i.e. as p tends towards infinity) it becomes equivalent.

Definition 3. Given a mapping ϕ, the ℓ1 expansion of ϕ is δ = maxx,y
∥ϕ(x)−ϕ(y)∥1

d(x,y) .

We observe that the expansion of ϕ when viewed as an ℓp embedding for
p > 1 will be at most the ℓ1 expansion. On the other hand, the single-coordinate
(ϵ, β) lower-bound condition will still imply that the embedding has contraction
β (for any pair of points with 1− ϵ probability).

Definition 4. A mapping ϕ has the local property if for every coordinate c we
can assign a scale sc which is a power of two such that the following conditions
hold:

1. For every x, y ∈ V with d(x, y) > sc we have either ϕc(x) = 0 or ϕc(y) = 0.



2. For every x, y ∈ V , if there is a single-coordinate lower-bound for x, y, it has
scale Ω(d(x, y)) < sc < d(x, y).

We observe that a mapping ϕ can be viewed as an embedding of (V, d)
into normed space. Provided that the mapping is single-coordinate (ϵ, β) lower-
bounded, we can eliminate contraction by repeatedly (and independently) se-
lecting such mappings many times over and weighting the results by the number
of selections, then multiplying all coordinates by 1

β . This provides an embedding

into ℓ1 with distortion upper-bounded by δ
β ; note that this embedding can also

be viewed as into ℓp for any p > 1 and in fact will have only lower distortion
(the single-coordinate lower-bound condition still guarantees non-contraction).

2.2 Low Dimensional Embedding

An embedding ϕ maps (V, d) to potentially high dimensional space, and we
are interested in reducing the dimension of such an embedding to resemble the
doubling dimension of (V, d) without increasing the distortion. While for general
ϕ such a result would imply dimension reduction for ℓ1 (which is impossible in
general [6]), the additional constraints that ϕ be single-coordinate lower-bounded
and local will enable us to reduce the dimension. In the full version of the paper
we prove the following generalization of [1].

Theorem 2. Suppose we are given a metric space (V, d) with doubling constant
α and a mapping ϕ : (V, d) → ℜD where ϕ is single-coordinate (ϵ, β) lower-
bounded, local, and has ℓ1 expansion at most δ for some β/δ ≤ ϵ ≤ 1/8. Then for
any 1 ≤ p ≤ ∞ we can produce in polynomial time an embedding ϕ̃ : (V, d) → ℓmp

with distortion at most O(δ/(ϵβ)), where m = O
(

logα log(δ/β)
log(1/ϵ)

)
.

Next we construct an embedding with the local property, which will serve
as a basis embedding in Section 3. Recall that a partition P = {C1, . . . , Cn}
of an n-point metric space (V, d) is a pairwise disjoint collection of clusters
(possibly some clusters are empty) which covers V , and P (x) denotes the cluster
containing x ∈ V . W.l.o.g we may assume that minx ̸=y∈X{d(x, y)} ≥ 1. The
following lemma is a generalization of a lemma of [12] and was proven in [1].

Lemma 1. For any metric space (V, d) with doubling constant α, any 0 < Λ <
diam(V ) and 0 < ϵ ≤ 1/2 there exists a distribution P̂ over a set of partitions
P such that the following conditions hold.

– For any 1 ≤ j ≤ n, diam(Cj) ≤ Λ.
– For any x ∈ V , PrP∼P̂ [B(x, ϵΛ/(64 logα)) * P (x)] ≤ ϵ.

For every scale s ∈ I = {2i | −1 ≤ i < log(diam(V )), i ∈ Z} let Ps =
{C1(s), . . . , Cn(s)} be a random partition sampled from P̂ with Λ = s, and
let c1(s), . . . cn(s) be n coordinates that are assigned to the scale s. The random
mapping is defined as

ϕcj(s)(x) =

{
d(x, V \ Cj(s)) x ∈ Cj(s)

0 otherwise
(1)



and
ϕ =

⊕
s∈I,1≤j≤n

ϕcj(s) (2)

Proposition 1. For any 0 < ϵ ≤ 1/2 the mapping ϕ is single-coordinate (ϵ, ϵ/(128 logα))
lower-bounded, and its ℓ1 expansion is at most O(log(diam(V ))).

Proof. For any x, y ∈ V let s be a power of two such that s < d(x, y) ≤ 2s, then
in the coordinates assigned to scale s, the first property of Lemma 1 suggests
that it must be that x, y fall into different clusters of the partition associated
with the coordinates. Let j be such that x ∈ Cj , it follows that with probability
1 − ϵ, ϕcj(s)(x) ≥ ϵs/(64 logα) ≥ ϵd(x, y)/(128 logα) and that with probability
1, ϕcj(s)(y) = 0.

To see that the ℓ1 expansion is at most 2(log(diam(V )) + 2), note that the
triangle inequality implies that |ϕcj(s)(x)− ϕcj(s)(y)| ≤ d(x, y) for any x, y ∈ V
and j ∈ [n], and since ϕcj(s)(x) is non-zero for a single j ∈ [n] it follows that for
any s ∈ I

Σ1≤j≤n|ϕcj(s)(x)− ϕcj(s)(y)| ≤ 2d(x, y), (3)

and hence

Σs∈I,1≤j≤n|ϕcj(s)(x)− ϕcj(s)(y)| ≤ Σs∈I2d(x, y) = 2(log(diam(V )) + 2)d(x, y) .

Proposition 2. The mapping ϕ has the local property.

Proof. The first local property is immediate by the first property of Lemma 1
and by (1). The second local property follows from the proof of Proposition 1.

3 Low Distortion ℓp-embeddings of Low Bandwidth
Graphs

3.1 Preliminaries and Definitions

Definition 5. Given graph G = (V,E) and linear ordering f : V → {1, 2, ..., |V |}
the bandwidth of f is max{|f(v)− f(w)| | (v, w) ∈ E}. The bandwidth of G is
the minimum bandwidth over all linear orderings f . Given an optimal bandwidth
ordering f , the index of u is simply f(u).

Definition 6. Define λ(x, y) = |f(x)− f(y)| which is the distance between x, y
in the bandwidth ordering f of G.

In what follows we are given a graph G of bandwidth k, the metric space
associated with G is the usual shortest-path metric, and we assume we are given
the optimal ordering f obtaining this bandwidth. This ordering is computable
in time exponential in k, and since our embedding only improves upon previous
work (for example Bourgain [4]) when k is quite small, it may be reasonable
to assume that the ordering is given. In general computing the best bandwidth
ordering is NP-Hard, and the best approximations are poly-logarithmic in n [11].



Proposition 3. Let G be a graph of bandwidth k. Then there exists an ordering
where for any x, y ∈ G, λ(x, y) ≤ k · d(x, y).

Proof. Assume d(x, y) = r, and let Pxy = (x = v0, v1, . . . , vr = y) be a short-
est path in G connecting x and y, then by the triangle inequality λ(x, y) ≤
Σr

i=1λ(vi−1, vi). By the definition of bandwidth for all 1 ≤ i ≤ r, λ(vi−1, vi) ≤ k,
hence the proposition follows.

Proposition 4. If G = (V,E) has bandwidth k, then the doubling constant α
of G is at most 4k + 1.5

Proof. Consider the ball of radius 2r about some point x ∈ V . We must show
that this ball can be covered by at most 4k + 1 balls of radius r.

Consider any integer 0 < a ≤ r. Let Ya be the set of points y such that
d(x, y) = a; similarly let Ya+r be the set of points y such that d(x, y) = a + r.
We claim that the set of balls of radius r centered at points in {x} ∪ Ya ∪ Ya+r

covers the ball of radius 2r around x. In particular, consider any point z in
this ball. If d(x, z) ≤ r then z ∈ B(x, r). If a ≤ d(x, z) < a + r then there is
some shortest path from x to z of length d(x, z) which must include a point y
with d(x, y) = a and d(y, z) = d(x, z) − a < r. It follows that z ∈ B(y, r) and
that y ∈ Ya. If a + r ≤ d(x, z) < 2r then again there is a shortest path from
x to z of length d(x, z) which must include a point y with d(x, y) = a + r and
d(y, z) = d(x, z)− a− r < r. It follows that z ∈ B(y, r) and y ∈ Ya+r.

Now consider the various sets {x} ∪ Ya ∪ Ya+r as we allow a to range from 1
to r. With the exception of x, these sets are disjoint for distinct values of r. So
every point in B(x, 2r) other than x appears exactly once. It follows that there
must be some choice of a such that the size of this set is only 1 + 1

r |B(x, 2r)|.
Since the graph G has bandwidth k, it follows that any pair of adjacent nodes
are within k of each other in the bandwidth ordering. So all points in B(x, 2r)
are within 2rk of x in the ordering, and thus there are at most 4rk such points.
From this it follows that we need only 4k + 1 balls to cover B(x, 2r).

The remainder of this section will be devoted to proving our main theo-
rem, that graphs of bounded bandwidth embed into ℓp with low dimension and
distortion.

Theorem 3. Let G be a graph with bandwidth k and let 0 < θ < 1, then for
any p ≥ 1, there exists an embedding of G into ℓp with distortion O(k2+θ) and
dimension O((log k)/θ).

3.2 Proof of Theorem 3

Consider the mapping ϕ defined in (2). By Proposition 1 combined with Theorem 2
(noting that for unweighted graphs we get O(logn) ℓ1 expansion) we can trans-
form it into an embedding of a graph with bandwidth k into any ℓp space of

5 A somewhat simpler argument could be applied to give an O(k) bound on the dou-
bling constant, which would suffice for our application. The argument presented here
seems to give a better estimate on the constant.



dimension O((log k)/θ) with distortion O(log1+θ n) for any 0 < θ ≤ 1. Our main
innovation is to reduce the number of scales effecting each of the points, thereby
reducing the overall distortion to O(k2).

Let G be a graph with bandwidth k and f be the optimal ordering obtaining
this bandwidth. Let α ≤ 4k+1 be the doubling constant of G. For each scale s,
we will say that scale s is active at point x if there exists a y such that λ(x, y) ≤ k
and s/8 ≤ d(x, y) ≤ 4s. We define hs(x) to be the distance from x to the nearest
point z for which s is not active (note that hs(x) = 0 if s is not active at x). We

then define a mapping ϕ̂ as follows (recall the definition of sc in Definition 4):

ϕ̂c(x) = min(ϕc(x), hsc(x))

We will claim that for suitable values of ϵ, this ϕ̂ is single-coordinate (ϵ, 1
k )

lower-bounded for all point pairs x, y with |f(x) − f(y)| ≤ 1
4d(x, y), that it is

local, and that it has ℓ1 expansion bounded by O(k). The final embedding will

be ϕ̂ concatenated with an extra coordinate f , which is the location of the points
in the bandwidth ordering. This will allow us to apply Theorem 2 without the
f coordinate, then add in the f coordinate to get our final embedding.

Lemma 2. The mapping ϕ̂ has ℓ1 expansion at most O(k).

Proof. Consider any pair of points x, y. We observe that the total number of
scales which are active for these two points is at most O(k), this is because for
x there are at most 2k − 1 other points z satisfying λ(x, z) ≤ k, and each of
these points may activate at most 6 different scales. We conclude that there are
at most O(k) non-zero coordinates for these two points. So the ℓ1 expansion
expression has only O(k) non-zero terms. Let c be a non-zero coordinate. The
triangle inequality suggests that each coordinate produces expansion of at most
1 in ϕ, that is

ϕc(x)− ϕc(y) ≤ d(x, y)

If ϕ̂c(y) = ϕc(y) then since ϕ̂c(x) ≤ ϕc(x), we can write:

ϕ̂c(x)− ϕ̂c(y) ≤ ϕc(x)− ϕc(y) ≤ d(x, y)

On the other hand, suppose that ϕ̂c(y) = hs(y) where s = sc. Then there is
some z where scale s is inactive, such that hs(y) = d(y, z). Now

ϕ̂c(x)− ϕ̂c(y) ≤ hs(x)− hs(y) ≤ d(x, z)− d(y, z) ≤ d(x, y)

From this we conclude that each non-zero coordinate produces expansion at
most 1, and when we total this over O(k) non-zero coordinates we get total ℓ1
expansion at most O(k).

We note that adding the coordinate f does not increase the expansion by
much. In particular, for any point pair x, y we have |f(x) − f(y)| ≤ kd(x, y)



by Proposition 3. So the extra coordinate increases expansion by at most an
additive k.

The tricky part is proving that the mapping is single-coordinate (ϵ, 1
k ) lower-

bounded. Given some pair of points x, y, one might imagine that the critical
coordinates were deemed inactive for x and y, and thus the single-coordinate
lower-bound will no longer hold. We will prove that this is not the case.

Lemma 3. For any k−1/2 ≤ ϵ ≤ 1/2 the mapping ϕ̂ is single-coordinate (ϵ,Ω( 1k ))
lower-bounded for any pair of points x, y with |f(x)− f(y)| ≤ 1

4d(x, y).

Proof. Consider any pair of points x, y with |f(x) − f(y)| ≤ 1
4d(x, y). Let x′ ∈

B(x, d(x,y)
8k ) and y′ ∈ B(y, d(x,y)

8k ). Let s be the scale such that d(x, y)/2 ≤ s <
d(x, y). We will show that scale s must be active at x′ or at y′. But this holds for
any pair of points x′, y′ from the appropriate balls around x, y. It follows that
for one of these two balls it must be the case that scale s is active at all points in

the ball. Suppose without loss of generality that this is B(x, d(x,y)
8k ). Then since

all points in this ball have scale s active, we conclude that hs(x) ≥ d(x,y)
8k . By

Proposition 1 and the local property of ϕ, there is a coordinate c assigned to
scale s, which with 1− ϵ probability, has ϕc(x) ≥ Ω( ϵ

logα )d(x, y) and by the first

local property of ϕ also ϕc(y) = 0. If this event occurs, then since Ω
(

ϵ
logα

)
≥

Ω
(

k−1/2

2 log k

)
≥ Ω(1/k), we get that ϕ̂c(x) ≥ d(x, y)min(Ω( ϵ

logα ),
1
8k ) ≥ Ω(d(x,y)k ),

and of course ϕ̂c(y) = 0. We conclude that x, y are (ϵ,Ω(1/k)) lower bounded.
In the remainder of proof we show that indeed scale s must be active at either

x′ or y′. Since d(x, x′) ≤ d(x, y)/(8k) and d(y, y′) ≤ d(x, y)/(8k) it follows that

d(x′, y′) ≥ d(x, y)(1− 1
4k ) ≥

3
4d(x, y). On the other hand, |f(x)− f(x′)| ≤ d(x,y)

8
and similarly for |f(y)−f(y′)| from which we can conclude that |f(x′)−f(y′)| ≤
1
2d(x, y). Now consider a fixed shortest path from x′ to y′. Assume without loss
of generality that f(x′) < f(y′). We define two special points along this path as
follows:

– x̃ is the first point on the path from x′ to y′ such that for all points z
subsequent to or equal to x̃ on the path, we have f(z) ≥ f(x′).

– ỹ is the first point on the path from x̃ to y′ with f(ỹ) ≥ f(y′)

These points will be auxiliary points showing that scale s is active at either x′

or y′. For instance to show that scale s is active at x′ it is enough to show that
λ(x′, x̃) ≤ k and that s/8 ≤ d(x′, x̃) ≤ 4s. We observe that because any pair of
consecutive vertices on a path are at most k apart in the bandwidth ordering, it
must be that |f(x′)−f(x̃)| ≤ k and |f(y′)−f(ỹ)| ≤ k. Note that for every point
z on the path from x̃ to ỹ, the value of f(z) is a unique point between f(x′) and
f(y′). We conclude that d(x̃, ỹ) ≤ |f(x′) − f(y′)| ≤ 1

2d(x, y). Since these points
are on the shortest path, we know that d(x′, y′) = d(x′, x̃) + d(x̃, ỹ) + d(ỹ, y′). It
follows that either d(x′, x̃) ≥ 1

8d(x, y) or d(ỹ, y
′) ≥ 1

8d(x, y).
On the other hand, it is not hard to see that d(x′, x̃) ≤ d(x′, y′) ≤ d(x, y) +

1
4kd(x, y) ≤ 2d(x, y) and similarly for d(y′, ỹ). We conclude that indeed scale s
must be active for one of x′, y′.



Lemma 4. The mapping ϕ̂ is local.

Proof. The first condition follow immediately from the fact that ϕ is local and
ϕ̂c(x) ≤ ϕc(x) for all c and x. The second condition follow from Lemma 3.

We now combine the lemmas and apply Theorem 2 to ϕ̂. This guarantees
bounded contraction for point pairs with |f(x)−f(y)| ≤ 1

4d(x, y). We add the sin-
gle additional coordinate f , and this guarantees bounded contraction for points
with |f(x) − f(y)| ≥ 1

4d(x, y). Choosing for any 0 < θ < 1, ϵ = k−θ will give
distortion O(k2+θ) and dimension O((log k)/θ).

4 Tree Bandwidth

We will give an embedding of a graph of low tree-bandwidth [7] into ℓp. The
distortion will be polynomial in k, with a multiplicative O(

√
log log n) term for

p > 1 [5]. This improves upon the result of [7] by reducing the distortion and
extending to ℓp. All the proofs appear in the full version of the paper.

Definition 7. [[7]] Given a graph G = (V,E), we say that it has tree-bandwidth
k if there is a rooted tree T = (I, F ) and a collection of sets {Xi ⊂ V |i ∈ I} such
that: ∀i, |Xi| ≤ k, V =

∪
Xi, the Xi are disjoint, ∀(u, v) ∈ E, u and v lie in the

same set Xi or u ∈ Xi and v ∈ Xj and (i, j) ∈ F , and if i has parent p(i) in T ,
then ∀v ∈ Xi,∃u ∈ Xp(i) such that d(u, v) ≤ k. T is called the decomposition
tree of G.

Theorem 4. There is a randomized algorithm to embed tree-bandwidth k graphs
into ℓp with expected distortion O(k3 log k + kρ) where ρ is the distortion for
embedding the decomposition tree into ℓp.

In the case of ℓ1, there is a simple embedding of a tree with ρ = 1. For ℓ2,
the bound of [5] ensures ρ = O(

√
log log n).

We can also apply Theorem 2 to reduce the dimension the embedding of
Theorem 4. To do this we need to bound the dimension in which the tree can
be embedded. We have the following lemma,

Lemma 5. Let G be a graph with tree bandwidth k, and let α be the doubling
constant of G, then the doubling dimension of the decomposition tree T for G is
logαT = O((logα)(log k)).

It follows that we can use an embedding for the decomposition tree T of G
where the distortion and dimension are functions of the doubling dimension of
T , as shown in [12], and therefore are a function of α and k alone.

Theorem 5. Suppose that we are given a tree-bandwidth k graph along with its
tree decomposition. Let the doubling constant of this graph be α. Let αT be the
doubling constant of T , given by Lemma 5. Further, suppose that there exists an
embedding of the tree decomposition into d(αT ) dimensional ℓp with distortion
ρ(αT ). Then for any 0 < θ < 1 there is an embedding of the graph into ℓp with
expected distortion O(k3+θ log k+kρ(αT )) and dimension O((logα)/θ+d(αT )).
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20. Q. Zhu, Z. Adam, V. Choi, and D. Sankoff. Generalized gene adjacencies, graph
bandwidth, and clusters in yeast evolution. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 6(2):213–220, 2009.


