
Nearly Tight Low Stretch Spanning Trees

Ittai Abraham∗ Yair Bartal† Ofer Neiman‡

Abstract

We prove that any graph G with n points has a distri-
bution T over spanning trees such that for any edge (u, v)
the expected stretch ET∼T [dT (u, v)/dG(u, v)] is bounded
by Õ(log n). Our result is obtained via a new approach
of building “highways” between portals and a new strong
diameter probabilistic decomposition theorem.

1 Introduction

Let G = (V,E) be a finite graph. For any subgraph H =
(V ′, E′) of G let dH be the induced shortest path metric
with respect to H . In particular, for any edge (u, v) ∈ E
and any spanning tree T of G, dT (u, v) denotes the shortest
path distance between u and v in T .

Given a distribution T over spanning trees of
G, let stretchT (u, v) = ET∼T

[
dT (u,v)
dG(u,v)

]
and let

stretchT (G) = max(u,v)∈E stretchT (u, v). Let
stretch(n) = maxG=(V,E)||V |=n infT {stretchT (G)}.

Initial results were obtained by Alon, Karp, Peleg
and West [3] showing that Ω(log n) = stretch(n) =
exp(O(

√
log n log log n)). The upper bound was signifi-

cantly improved to O((log n)2 log log n) by Elkin, Emek,
Spielman and Teng [11]1. For the class of Series-Parallel
graphs Emek and Peleg [12] obtained a bound of Θ(log n).
The main result of this paper is a new upper bound on
stretch(n) that is tight up to polylogarithmic factors2.

∗School of Engineering and Computer Science, Hebrew University, Is-
rael. Email: ittaia@cs.huji.ac.il.

†School of Engineering and Computer Science, Hebrew University, Is-
rael and Center of the Mathematics of Information, Caltech, CA, USA.
Email: yair@cs.huji.ac.il. Supported in part by a grant from the Israeli
Science Foundation (195/02) and in part by a grant from the National Sci-
ence Foundation (NSF CCF-065253).

‡School of Engineering and Computer Science, Hebrew University, Is-
rael. Email: neiman@cs.huji.ac.il. Supported in part by a grant from the
Israeli Science Foundation (195/02).

1In fact these result apply to a similar notion, avg − stretch(n) =

maxG=(V,E)||V |=n infT { 1
|E|

∑
(u,v)∈E

dT (u,v)
dG(u,v)

} which is equiva-
lent up to a constant factor to stretch(n).

2[10] announced stretch(n) = O((log n)2), but this claim was sub-
sequently withdrawn by the authors

Theorem 1.

stretch(n) = O
(
log n · log log n · (log log log n)3

)
Remark 1. For ease of presentation we show a slightly
weaker bound of

stretch(n) = O
(
log n · (log log n)2 · log log log n

)
,

and prove the tighter bound in the full version [1].

Our result may be applied to improve the running time
of the Spielman and Teng [17] solver for sparse symmetric
diagonally dominant linear systems.

1.1 Techniques

We extend the star-decomposition technique of Elkin
et. al.[11]. A star-decomposition of a graph is a parti-
tion of the vertices into clusters that are connected into a
star: a central cluster is connected to every other cluster
by a single edge. As in [11] given a subgraph over a clus-
ter X , the central cluster X0 is formed by cutting a ball
with radius r0 around a center x0 and the remaining clus-
ters X1, X2, . . . , which are called cones, are formed itera-
tively. Let Yj = X \

⋃
0≤k≤j Xk. The cone Xj is created

by choosing an edge (yj , xj) such that yj ∈ X0, xj ∈ Yj−1

and defining Xj as the cone with radius rj around xj from
the cluster Yj−1, as all the points whose distance to x0 go-
ing through the edge (xj , yj) does not increase too much
relatively to the shortest path distance, formally Xj =
{x ∈ Yj−1 | dX(x0, yj) + dX(yj , xj) + dYj−1(xj , x) −
dX(x0, x) ≤ rj}. Let radx0(X) = maxx∈X d(x0, x),
then typically the radius of the central ball is chosen so that
r0 ≈ radx0(X)/c for a constant c. An important param-
eter of a star-decomposition is the radius of the cone. We
say that the star-decomposition has parameter ε if for any
j ≥ 1, the radius rj of the cone Xj is at most ε · radx0(X).

Applying star-decompositions in a recursive manner in-
duces a spanning tree T . For a point u denote by X(i) the
cluster that contains u in the ith recursive invocation of the
hierarchical star-decomposition algorithm.

The O(log2 n log log n) bound of [11] is obtained by
choosing ε ≈ 1/ log n and showing:

1

1. O(1) radius stretch. For any cluster X in-
duced by the recursive invocation of the hierarchi-
cal star-decomposition algorithm, and any z ∈ X ,
dT (x0, z) = O(radx0(X)).

2. O((log n · log log n)/ε) decomposition stretch. For
any edge (u, v),∑

i Pr[(u, v) is separated when star-decomposing X(i)]·
diam(X(i)) = O(log n log log n)/ε.

Combining these two properties yields their result, notic-
ing that if the end points of an edge (u, v) fall into differ-
ent clusters in the partitioning of X(i) then dT (u, v) can be
bounded by dT (u, x0) + dT (v, x0) = O(diam(X(i))).

Good radius stretch is obtained by observing that in each
recursive application of the star partition the radius of a
cluster is stretched by at most 1 + 1/ log n, and since there
are O(log n) scales the total radius stretch is a constant.
Good decomposition stretch is obtained by using a version
of the decomposition of [5, 9].

Better radius stretch. In our scheme we perform a star-
decomposition with a parameter ε ≈ 1/ log log n, this sig-
nificantly improves the decomposition stretch, by a factor
of ≈ log n/ log log n. A naive attempt to bound the radius
stretch, by 1+1/ log log n in each scale, will result in super
logarithmic radius stretch over all scales.

We introduce a new approach to bound the radius
stretch. We arrange all the points of X in a queue Q =
(z1, z2, . . . , zn), and bound the distance dT (x0, zi) as a
function of i by building “highways” – low stretch paths.
Roughly speaking, the smaller value of i means the harder
we try to give a better bound on dT (x0, zi). Therefore we
try hardest for the first point z1, and indeed by choosing
the first portal edge (y1, x1) on a shortest path to z1 and
keeping z1, y1 in the head of the recursive queues we ob-
tain a “highway” from x0 to z1, i.e. preserving the original
distance. Surprisingly, this small change is enough to give
a good bound on dT (x0, zi) for all i > 1, and we obtain
dT (x0, zi) = O(log log i)radx0(X). The intuition is that
since every cluster contains less points, zi advances in the
recursive queues, and when it becomes the first we get a
“highway” to it. For this intuition to work one must deli-
cately define the ordering of the queues Q0, . . . , Qm for the
clusters X0, . . . , Xm created by the star partition algorithm.
Specifically, we obtain

1. O(log log n) radius stretch. For any cluster X , and
any z ∈ X , dT (x0, z) = O(log log n)radx0(X).

Better decomposition stretch. A relaxation of the span-
ning tree problem suggested by Bartal [4] is to consider a
distribution of dominating tree metrics (in fact of ultramet-
rics) that do not necessarily span the graph. This relax-
ation has proven applicable for approximation algorithms,

online problems and has contributed to recent solutions for
the spanning tree problem (i.e. [11]). Initially O(log2 n) ap-
proximation was obtained in [4] based on the truncated ex-
ponential distribution approach of [15]. This bounded was
subsequently improved to O(log n log log n) in [5] and [9].
Finally an optimal O(log n) approximation was obtained by
[13] based on the cutting scheme of [8]. Subsequently an
O(log n) bound was also obtained using a truncated expo-
nential distribution approach [6, 2].

However, all previous schemes that obtained the optimal
O(log n) bound for the metric problem were insufficient for
the spanning tree problem. Given a graph G = (X, E),
a sequence x1, x2, . . . of cluster centers and a sequence
r1, r2, . . . of radiuses we can define a weak diameter de-
composition by defining Wi = BX(xi, ri) \

⋃
j<i Wj . We

can define a strong diameter decomposition by defining
Ci = BX\

⋃
j<i Cj

(xi, ri). Observe that in a strong diameter
decomposition, for any nonempty cluster Ci, we have that
xi ∈ Ci and Ci is a connected component of G, this may
not be the case for weak diameter decompositions. Indeed
the techniques of [13, 6, 2] provide a weak diameter de-
composition. It was not clear how to extend these results to
strong diameter decompositions that are necessary for star-
decompositions. We show how to obtain a strong diameter
hierarchical decomposition theorem that obtains an optimal
bound in the following sense:

2. O(log n log(1/ε)/ε) decomposition stretch. For any
edge (u, v),∑

i Pr[(u, v) is separated when star-decomposing X(i)]·
diam(X(i)) = O(log n log(1/ε)/ε).

As in [6, 2], our decomposition is based on the truncated
exponential distribution with a parameter depending on the
local growth rate of the space. The main technical difficulty
arises since the space changes after each cluster is cut (the
metric is derived from a graph, and some nodes and edges
are removed at every cut). The idea is to define the local
growth rate with respect to the current metric, and to show
two things: that the expected sum of all growth rates (which
are random variables) over all the scales telescopes to n,
and that the probability to be cut is appropriately bounded
in each scale. Dealing with the randomly changing graph
raises some additional subtleties in the proof. Our strong
diameter hierarchical decomposition theorem may be of in-
dependent interest.

1.2 Applications

One of the main applications of low stretch spanning
trees is solving sparse symmetric diagonally dominant
linear systems of equations. This approach was suggested
by Boman and Hendrickson [7] and later improved by
Spielman and Teng [17]. Spielman and Teng showed an

2

algorithm that for such an n-by-n matrix A with m non-
zero entries and an n-dimensional vector b, if ε > 0 is the
precision of the solution then the algorithm finds x′ such
that ‖x− x′‖A ≤ ε where Ax = b, and the running time is
O

(
m

(
logO(1)m+log(1/ε)

)
+n · avg − stretch(n) log(1/ε)

)
.

Improving the bound requires improvement of the second
element, and we improve it by roughly an additional
O(log log n) factor over [11]. Actually, if the running time
of our construction is reduced, we can obtain an O(log n)
improvement. For planar graphs we obtain O(n · log2 n).

The minimum communication cost spanning tree prob-
lem introduced in [14], in which one is given a weighted
graph G = (V,E, w) and a matrix A = axy | x, y ∈ V ,
the objective is to find a spanning tree minimizing c(T) =∑

x,y∈V axy · dT (x, y). [16] showed an O(2
√

log n·log log n)
approximation ratio based on [3], and [11] improved to
O(log2 n · log log n). Our results can be used to obtain
O(log n · log log n(log log log n)3) approximation ratio.

See [11] for details about more applications.

2 Highways

Let G = (V,E) be a finite graph. For any X ⊆ V let
dX : X2 → R+ be the shortest path metric induced by the
subgraph on X . Let diam(X) = maxy,z∈X{dX(y, z)}.
For x ∈ X let radx(X) = maxy∈X dX(x, y), we omit the
subscript when clear from context (note that diam(X)/2 ≤
rad(X) ≤ diam(X)). For any x ∈ X and r ≥ 0 let
BX,d(x, r) = {y ∈ X | dX(x, y) ≤ r}. Let c = 216 be a
constant. We use the uppercase letter Q to denote a queue,
a sequence of points. Given a point x not in the queue we
say that we enqueue x into Q meaning that we add x as the
last element of the sequence and given a queue Q, the de-
queue operation removes and returns the first element of the
sequence.

In this paper we assume that the graph G is unweighted.
The extension for weighted graphs appears in the full ver-
sion [1]. It is standard and similar to the techniques of [11].

Definition 1 (cone metric3). Given a graph G = (V,E),
subsets Y ⊂ X ⊆ V , points x ∈ X \ Y , y ∈ Y define the
cone-metric ρ = ρ(X, Y, x, y) : Y 2 → R+ as ρ(u, v) =
|(dX(x, u)− dY (y, u))− (dX(x, v)− dY (y, v))|.

Note that a ball BY,ρ(y, r) in the cone-metric ρ =
ρ(X, Y, x, y) is the set of all points z ∈ Y such that
dX(x, y) + dY (y, z)− dX(x, z) ≤ r.

Hierarchical-Star-Partition algorithm. See Figure 1 for
the algorithm. Given an unweighted graph G = (V,E),
create a spanning tree T = (V,E′) by choosing some x0 ∈

3In fact, the cone-metric is a pseudo-metric.

V , letting Q be an arbitrary ordering of V \{x0} and calling:
hierarchical-star-partition(V, x0, Q).

T = hierarchical-star-partition(X, x0, Q):

1. If radx0(X) ≤ 16c return BFS(X).
2. (X0, . . . , Xm, (y1, x1), . . . , (ym, xm), Q0, Q1, . . . , Qm) =

star-partition(X, x0, Q);
3. For each i ∈ [0, . . . , m]:
4. Ti = hierarchical-star-partition(Xi, xi, Qi);
5. Let T be the tree formed by connecting T0 with Ti using

edge (yi, xi) for each i ∈ [1, . . . , m];

Figure 1. hierarchical-star-partition
algorithm

Star-Partition algorithm. See Figure 2 for our
star-partition algorithm. We highlight the main
differences of our algorithm from that of [11]. In addition
to X, x0 it receives as input an ordering of the points in X ,
implemented as a queue data structure and denoted by Q. In
addition to returning a star decomposition X0, X1, . . . , Xm

it returns for each 0 ≤ j ≤ m an ordering of the points in
Xj , implemented as a queue data structure and denoted by
Qj .

Given a star decomposition X0, X1, . . . , Xm we create
the queue Qj for j > 0 simply as the restriction of Q on
Xj \ {xj}. The queue Q0 is created by first adding either
z1 or the portal y1 which is chosen on a shortest path to z1,
thus making sure the distance from x0 to z1 is preserved
in the recursion. Then interleaving three different queues
Q

(ball)
0 , Q

(fat)
0 , Q

(reg)
0 .

• Q
(ball)
0 is the restriction of Q on X0.

• Q
(reg)
0 is a queue of portals yj ordered by the minimal

point of Q that their cones Xj contains.
• Q

(fat)
0 is a queue of portals yj that lead to cones that

contain “many” points relative to the ordering Q of the
points in Xj .

The exact way these three queues are created is detailed in
Line 5 of Figure 2.

2.1 Bounding the radius stretch

In this part we show that the radius stretch induced by
the hierarchical-star-partition algorithm is at
most O(log log n).

The following two claims imply that the
star-partition algorithm on a cluster X induces a
partition on X and that radial distances are stretched by a
most 1 + ε. These claims are essentially proven in [11].

3

(X0, . . . , Xm, (y1, x1), . . . , (ym, xm), Q0, Q1, . . . , Qm) =
star-partition(X, x0, Q):

1. Let j = 2; Denote the (ordered) elements of Q by Q =
(z1, z2, . . . , zk); Let ε = ε(X) ∈ (0, 1

170c
];

2. Creating the ball X0:

(a) Choose r0 uniformly at random from the interval
[1/(16c), 1/(8c)];

(b) Let X0 = B(x0, r0 · radx0(X)); Let Y0 = X \X0;

3. Creating the first cone X1:

(a) If z1 ∈ Y0 let z = z1 otherwise let z ∈ Y0 be an arbi-
trary point. Let (y1, x1) be an edge such that y1 ∈ X0,
x1 ∈ Y0 and dX(x0, z) = dX(x0, y1) + dX(y1, x1) +
dY0(x1, z) (i.e. an edge on a shortest path from x0 to
z);

(b) Let ρ = ρ(X, Y0, x0, x1) be the cone-metric;
(c) Choose r1 uniformly at random from the interval

[ε/4, ε/2];
(d) Let X1 = B(Y0,ρ)(x1, r1 · radx0(X)); Let Y1 = Y0 \

X1;
4. Creating the remaining cones X2, . . . , Xm:

(a) While Yj−1 6= ∅ :
i. Let (xj , yj , rj) =
cone-cut(X, x0, X0, Yj−1, ε); (has the
property that rj ≤ ε/2)

ii. Let ρ = ρ(Yj−1 ∪X0, Yj−1, x0, xj);
iii. Let Xj = B(Yj−1,ρ)(xj , rj · radx0(X)); Yj =

Yj−1 \Xj ;
iv. Let j = j + 1;

5. Creating the queues Q
(ball)
0 , Q

(fat)
0 , Q

(reg)
0 , Q1, . . . , Qm:

(a) For i = 1, . . . , |X| − 1 :

i. If zi ∈ X0 then enqueue zi into Q
(ball)
0 ;

ii. Otherwise let ` ≥ 1 be such that zi ∈ X`:
• If zi 6= x` then enqueue zi into Q`.
• If y` /∈ Q

(reg)
0 then enqueue y` into Q

(reg)
0 .

• If |X` ∩ {z1, . . . , zi}| >
√

i and y` /∈ Q
(fat)
0

then enqueue y` into Q
(fat)
0 .

6. Creating the queue Q0:

(a) Denote Q
(ball)
0 = z1

1 , . . . , z1
m1 , Q

(fat)
0 = z2

1 , . . . , z2
m2 ,

Q
(reg)
0 = z3

1 , . . . , z3
m3 .

(b) Create Q0 by interleaving the three queues
Q

(ball)
0 , Q

(fat)
0 , Q

(reg)
0 such that:

• If z1 ∈ X0 then z1 is the first element of Q0. Oth-
erwise y1 is the first element of Q0.

• For any x ∈ X , ` ∈ {1, 2, 3}, 1 ≤ i ≤ n if
x = z`

i then x is in the first 3i elements of Q0.

Figure 2. star-partition algorithm

Claim 1. For any graph X , x0 ∈ X , j > 0 let Yj−1 ⊆ X
be the unassigned points of X after creating j clusters
X0, . . . , Xj−1 using the star-partition algorithm,

then for any z ∈ Yj−1 all the shortest paths from z to x0

are fully contained in Yj−1 ∪X0, in particular

dYj−1∪X0(x0, z) = dX(x0, z).

Claim 2. Let X0, . . . , Xm be the clusters created by the
star-partition algorithm on (X, x0, Q), then for any
1 ≤ j ≤ m

radx0(X0) + d(yj , xj) + radxj (Xj) ≤ (1 + ε)radx0(X),

Corollary 3. For any 0 ≤ j ≤ m, radxj
(Xj) < (1 −

1
20c)radx0(X)

Lemma 4. Let X ⊆ V be a connected component
of G(V,E). Let x0 ∈ X and Q = (z1, . . . , z|X|−1)
be any ordering of X \ {x0}. Let T be any
spanning tree of G returned by the algorithm
hierarchical-star-partition(X, x0, Q) with
parameter ε = ε(X) = 1

170c log log(|X|) , then

dT (x0, zi) ≤

 dX(x0, zi) i = 1
i · radx0(X) 1 < i < c

c · log log i · radx0(X) otherwise

(where c = 216)

Proof. The proof is by induction on the radius of X . In the
base case when radx0(X) ≤ 16c create a breadth first tree
centered in x0, and since in such a tree for every z ∈ X ,
dX(x0, z) = dT (x0, z) the claim holds. Now we turn to the
inductive step. Note that Corollary 3 guarantees that for all
j = 0, . . . ,m we have 0 ≤ radxj

(Xj) < radx0(X).
The main idea of the proof is to consider a single ap-

plication of the star-partition algorithm, partitioning X into
X0, X1, . . . , Xm. Assuming that zi ∈ Xj the path between
x0 to zi will be the path going through the edge (yj , xj).
Then use the induction hypothesis on the sub-path x0, yj in
X0 and the sub path xj , zi in Xj . Since by Claim 2 the ra-
dius may increase by a factor of at most 1 + ε, we need to
“gain” in one of the two sub paths. This “gain” will occur
since our construction guarantees that either the position of
zi in the queue of Xj will improve or the position of yj in
X0 will improve, thus the induction hypothesis will give the
required bounds.

There are three main cases to consider, when i = 1, i < c
and i ≥ c. The case i = 1 is simple. The case 1 < i < c
subdivides into three more cases:

1. The first case is zi ∈ X0. This case is relatively
straightforward.

2. The second case is that the first i points of the queue
are all in X1. Here we gain in the central ball because
the portal y1 leading to X1 will be the first element in
Q0.

4

3. The remaining case is that not all of the first i points are
in X1, then there are at most i − 1 points in the cone
Xj among z1, . . . , zi, so by the construction of Qj ,
we gain just enough in the cone (because the bound
that needs to be shown is weak - linear in i) and Q

(reg)
0

guarantees that we do not lose too much in the central
ball.

The interesting case is when i ≥ c, this last case also subdi-
vides into three more cases:

1. One first is that zi ∈ X0. Again. this case is relatively
straightforward and uses the construction of Q

(ball)
0 .

2. The second case is that zi ∈ Xj and Xj is a “thin”
cone - contains less than

√
i of the first i points. Here

we gain in the cone because the position of zi in Qj is
at most

√
i, and Q

(reg)
0 guarantees that we do not lose

too much in the central ball.
3. The third case is that zi ∈ Xj and Xj is a “fat” cone

- contains more than
√

i of the first i points. Here we
gain in the central ball, using the construction of Q

(fat)
0

and Claim 5 to show that the portal yj leading to the
cone is in position ≤ i9/10 in Q0.

We continue with the formal proof of the lemma, accord-
ing to the three main cases. Let ∆ = radx0(X) and for all
0 ≤ j ≤ m, ∆j = radxj

(Xj).

Case 1: In this case i = 1. Note that z1 ∈ X0 ∪ X1. If
z1 ∈ X0 then by the construction z1 is going to be the first
in Q0 therefore by the induction hypothesis on X0 it follows
that dT (x0, z1) ≤ dX(x0, z1). If on the other hand z1 ∈
X1, then again from the construction the point y1, which
was chosen such that y1, x1 are on a shortest path from x0

to z1, will be the first in Q0, and z1 will be the first in X1,
so by induction dT (x0, z1) = dT (x0, y1) + dT (y1, x1) +
dT (x1, z1) ≤ dX(x0, y1) + dX(y1, x1) + dX(x1, z1) =
dX(x0, z1).

Case 2: The second case to consider is when 1 < i < c.

1. First assume that zi ∈ X0. Then zi will be at most i
in the ordering of Q

(ball)
0 and hence at most 3i in the

ordering of Q0. By the induction hypothesis on X0

: dT (x0, zi) ≤ c log log(3i) · ∆0 ≤ i · ∆, using that
∆0 ≤ ∆/(8c), and that log log(3i) ≤ 2i.

2. Now assume that {z1, . . . , zi} ⊆ X1. As y1 is the
first in Q0, by the induction hypothesis on X0 and
X1 we have that dT (x0, y1) ≤ dX(x0, y1) ≤ ∆0 and

dT (x1, zi) ≤ i ·∆1, so

dT (x0, zi)
≤ dT (x0, y1) + dT (y1, x1) + dT (x1, zi)
≤ ∆0 + i ·∆1 + dX(y1, x1)
≤ i(∆0+1+∆1)−(i−1)∆0

≤ i(1 + ε)∆− (i− 1)∆/(16c)
≤ i ·∆ + i ·∆/(170c)− i ·∆/(32c)
≤ i ·∆.

In the fourth inequality using Claim 2 and that
∆0 ≥ ∆/(16c) (note that by the stop condition of
hierarchical-star-partition ∆ ≥ 16c, so ∆0 ≥ 1) and
in the fifth that i− 1 ≥ i/2.

3. Now assume that zi ∈ Xj where not all of z1, . . . , zi

are in Xj (note that z1 ∈ X0∪X1, therefore there is no
case for {z1, . . . , zi} ⊆ Xj where j > 1). First note
that zi must be at most the i− 1 element in Qj . By the
insert sequence to Q

(reg)
0 we have that yj is at most the

3i element in Q0. Using the induction hypothesis on
X0 and Xj we get that

dT (x0, zi)
≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)
≤ c log log(3i) ·∆0 + (i− 1) ·∆j + dX(yj , xj)
≤ (i− 1)(∆0 + 1 + ∆j) + 5c ·∆0

≤ (i− 1)(1 + ε)∆ + 5c ·∆/(8c)
≤ i ·∆−∆ + (i− 1) ·∆/(170c) + 5∆/8
≤ i ·∆.

The third inequality follows since log log(3i) ≤
log log(3c) ≤ 5. The fourth using Claim 2 and that
∆0 ≤ ∆/(8c).

Case 3: In the third case i ≥ c.

1. First assume that zi ∈ X0. Then zi will be at most i in
the ordering of Q

(ball)
0 , hence at most 3i in the ordering

of Q0. By the induction hypothesis on X0 we get that
dT (x0, zi) ≤ c log log(3i) · ∆0 ≤ 2c log log i · ∆0 ≤
c log log i ·∆, using that for i ≥ c, 3i < i2.

2. Next assume that zi ∈ Xj such that |Xj ∩
{z1, . . . , zi}| ≤

√
i, then zi will be at most the

√
i in

Qj , and yj will be at most the i-th in Q
(reg)
0 and hence

at most 3i in the ordering of Q0. By the induction hy-

5

pothesis on X0 and Xj :

dT (x0, zi)
≤ dT (x0, yj) + dT (yj , xj) + dT (xj , zi)

≤ c log log(3i) ·∆0 + c log log(
√

i) ·∆j + 1
≤ c(log log i + 1) ·∆0 + c(log log i− 1) ·∆j + 1
≤ c(log log i− 1) (∆0 + 1 + ∆j) + 2c ·∆0

≤ c(log log i− 1)(1 + ε)∆ + ∆/4
≤ c log log i ·∆ + c log log i · ε∆− c∆ + ∆/4
≤ c log log i ·∆,

the fifth inequality using Claim 2 and that ∆0 ≤
∆/(8c), the sixth that ε ≤ 1/(170c log log i).

3. The last subcase is where zi ∈ Xj such that |Xj ∩
{z1, . . . , zi}| >

√
i, then zi will be at most the i in Qj

and by Claim 5 yj will be at most the i9/10 in Q0. Now
by the induction hypothesis, for t ≥ 2

dT (x0, zi)
≤ dT (x0, yj) + dX(yj , xj) + dT (xj , zi)

≤ c log log i9/10 ·∆0 + c log log i ·∆j + 1
≤ c log log i(∆0 + 1 + ∆j) + c log(9/10) ·∆0

≤ c log log i ·∆ + ε · c log log i ·∆− c ·∆0/10
≤ c log log i ·∆ + ∆/170−∆/160
≤ c log log i ·∆,

the fourth inequality using Claim 2 and the fifth that
∆0 ≥ ∆/(16c) and ε ≤ 1/(170c log log i).

The following claim shows that a portal yj leading to a
point zi that belongs to a “fat” cone will be located in an
improved position in the queue of the central ball Q0.

Claim 5. For any i ≥ 216, if zi ∈ Xj such that |Xj ∩
{z1, . . . , zi}| >

√
i then yj will be at position at most i9/10

in Q0.

Proof. We will show that yj will be in the first (3/2)i2/3+1
elements of Q

(fat)
0 . Since i ≥ 216 it follows that yj will be

in the first 3 · ((3/2)i2/3 + 1) < i9/10 elements of Q0.
Let yi1 , . . . , yis with i1 < i2 < · · · < is be a set

of s points that were inserted into Q
(fat)
0 before consider-

ing the point zi, we need to show that s ≤ (3/2)i2/3.
Let zi′1

, . . . , zi′s be the set of points in Q such that yik

was inserted because zi′k
∈ Xik

and Xik
was a “fat”

cone, i.e. |Xik
∩ {z1, . . . , zi′k

}| ≥
√

i′k. Let Aik
=

Xik
∩ {z1, . . . , zi′k

} denote the set that caused yik
to en-

ter Q
(fat)
0 , and note that |Aik

| ≥
√

i′k ≥
√

k. For any

1 ≤ k < ` ≤ s we have that Aik
∩ Ai`

= ∅, since we
do not insert a point yi`

that already appear in Q
(fat)
0 , which

implies Xik
∩ Xi`

= ∅. Note that all the sets Aik
contain

points from z1, . . . , zi, so we have that
∑s

k=1 |Aik
| ≤ i.

Hence
∑s

k=1

√
k ≤

∑s
k=1 |Aik

| ≤ i. We also bound the
sum from below

s∑
k=1

√
k ≥

∫ s

1

√
xdx = [(2/3)x3/2]s1 ≥ (2/3)s3/2,

therefore i ≥ (2/3)s3/2 or s ≤ (3/2)i2/3.

2.2 Improving the radius stretch

The factor of c log log i that was chosen as a bound on
the radius increase in Lemma 4 was somewhat arbitrary. In
fact we can replace it with almost any other monotone in-
creasing function of i, the position in the queue. This will
reduce the “gain” in the induction, therefore the parameter
ε will have to be adjusted accordingly. Define log(0) n = n

and for integer k ≥ 1, log(k) n = log
(
log(k−1) n

)
. Specif-

ically, we show in [1] that by setting a new parameter t =
(log∗ n)/2, and letting c = O(t) and ε = 1

170c·
∏t

k=2 log(k) n

we get a radius stretch of O(c2) (the fact that c is no longer a
constant and that the gain is so small somewhat complicates
the proof of Lemma 4). Then the decomposition stretch be-
comes O((c2 log n · log log log n)/ε), hence the final stretch
is at most

O

(
log(1) n · log(2) n · · · log(t) n ·

(
log(t) n

)4

· log(3) n

)
.

3 Strong Diameter Probabilistic Partitions

Consider a graph G = (V,E), a connected cluster
X ⊆ V , x0 ∈ X and let ∆ = radx0(X). Fix some
edge (u, v) ∈ E. Let X(i) = X(i)(u) be a random vari-
able that indicates which cluster contains u in the i-th step
of the hierarchical application of the star-partition algo-
rithm4. In a similar manner let x

(i)
0 be the random variable

indicating the center of the cluster X(i), and when X(i)

is partitioned denote the central ball as X
(i)
0 and cones as

X
(i)
1 , . . . X

(i)
m where m is a random variable depending on

X(i). Let Ej(X(i), u, v) be the event that u, v ∈ X(i) and
in the star-partition of the cluster X(i) with center x

(i)
0 into

X
(i)
0 , . . . , X

(i)
m , u ∈ X

(i)
j , v /∈ X

(i)
j . Let E(X(i), u, v) be

the event that ∃ 0 ≤ j ≤ m such that Ej(X(i), u, v). Some
notation:

4We abuse notation and think of X(i) as a function to subsets of X
(instead of R). We also refer to X(i) as an event.

6

(x, y, r) = cone cut(X, x0, X0, Y, ε):

• Let p ∈ Y be the point minimizing |X|
|B(Y,dY)(z, ε ·∆/16)|

over all z ∈ Y ; Let χ denote that minimum;
• Let (y, x) be an edge such that x ∈ Y , y ∈ X0 and

dX(x0, y) + dX(y, x) + dY (x, p) = dX(x0, p) (i.e. y and x
lie on some shortest path between x0 and p);

• Choose r ∈ [ε/4, ε/2] according to the following random pro-
cess:

– Divide the interval [ε/4, ε/2] into N = d2 log χe equal
length intervals S1, . . . , SN ; Let h = 1;

– LOOP: Toss a fair coin; If it turns out head and h < N
then let h = h + 1 and goto LOOP;

– Choose r uniformly at random from the interval Sh.
• Return (x, y, r).

Figure 3. cone-cut algorithm

EX(i) [f(X(i))] will stand for
∑

X′ Pr[X(i) = X ′]f(X ′).

Let T be the support of the distribution over spanning
trees induced by the hierarchical star partition algorithm.
Let T (i) ⊆ T be the set of spanning trees for which event
E(X(i), u, v) occurs.

E[dT (u, v)]

≤
∑
i≥1

∑
T∈T (i)

Pr[T] · dT (u, v)

≤
∑
i≥1

EX(i)

[
Pr[E(X(i), u, v)] max

T∈T (i)
{dT (u, v)}

]
≤ O(log log n)

∑
i≥1

EX(i)

[
Pr[E(X(i), u, v)]rad

x
(i)
0

(X(i))
]

The last inequality holds since for any T ∈ T (i),
dT (u, v) ≤ dT (u, x

(i)
0) + dT (x0, v) ≤ 2rad

x
(i)
0

(T) and
using Lemma 4 we get that rad

x
(i)
0

(T) ≤ O(log log n ·
rad

x
(i)
0

(X(i))).

In what follows we bound
EX(i)

[
Pr[E(X(i), u, v)] · rad

x
(i)
0

(X(i))
]
. Let

ε = 1
170c·log log |X| and k = 20c(ln(1/ε) + 5). The

main lemma to prove is the following

Lemma 6. There is a universal constant C such that for any
graph G = (V,E), any edge (u, v) ∈ E and any connected
cluster X(i) ⊆ V we have that

EX(i)

[
Pr[E(X(i), u, v)] · rad

x
(i)
0

(X(i))
]

≤ Cd(u, v)/ε
(
EX(i) [log |X(i)|]−EX(i+k) [log |X(i+k)|]

)

Once this lemma is proved, a telescopic sum argument
yields that

E[dT (u, v)]

≤ O(log log n)
∑
i≥1

EX(i)

[
Pr[E(X(i), u, v)]radx0(X

(i))
]

≤ O(log log n) · d(u, v)/ε
k∑

i=1

EX(i) [log |X(i)|]

≤ O(log n · log log n) · d(u, v) · log(1/ε)/ε

= O(log n · (log log n)2 · log log log n) · d(u, v)

As we stated in the introduction, the algorithm of Fig-
ure 3 and proof of Lemma 6 are based on the truncated ex-
ponential distribution approach of [6, 2]. The main techni-
cal difficulty arises since the space changes after each clus-
ter is cut. Dealing with the randomly changing graph raises
some additional subtleties in the proof.

We begin with some definitions and an informal descrip-
tion of the algorithm and the proof idea. Fix the edge
(u, v) ∈ E, a scale i and X = X(i). Let Y ⊆ X be a
random variable indicating that there exists 0 < j ≤ m
such that Y = Yj−1 in the star partition of X . Define the
local growth rate around x ∈ Y with respect to Y as

χ(X, Y, x) =
|X|

|BY,dY
(x, ε∆/16)|

The algorithm for the partition is as follows: Choose a ra-
dius for the central ball around x0 from a uniform distribu-
tion in a range of size ≈ ∆/c. The center x1 is chosen on a
shortest path to z1, the first point in the queue, and then the
radius for the cone is again sampled from a uniform distri-
bution in a range of size ≈ ε∆. For j > 1 the jth center xj

is chosen on a shortest path to the point pj ∈ Yj−1 minimiz-
ing χj = χ(X, Yj−1, pj), and then the radius of the cone is
chosen from a truncated exponential distribution, with pa-
rameter χj .

Denote the event that Y = Yj−1 and u ∈ Xj as
Zj(X, Y, u), and let Z(X, Y, u) be the event that ∃ 0 ≤
j < m such that Zj(X, Y, u). Note that fixing Yj−1 de-
termines deterministically pj and therefore also xj and χj .
Similarly let Zj(X, Y) be the event that Y = Yj−1 and
Z(X, Y) the event that ∃ 0 ≤ j < m such that Zj(X, Y).
Let N(j) be the random variable that is the number of par-
titions S1, . . . , SN(j) of the interval [ε/4, ε/2] for the jth
cone. Let 0 ≤ h(j) ≤ N(j) be the random variable that is
the index of the interval Sh(j) from which the radius rj is
uniformly chosen for Xj . Some more notation:

EY⊆X [f(Y)] will stand for
∑

Y⊆X Pr[Z(X, Y)] · f(Y)
(we write EY when X is implicit).

EY⊆X,j [f(Y)] will stand for
∑

Y⊆X Pr[Zj(X, Y)] ·f(Y)
(we write EY,j when X is implicit).

7

EY⊆X,u[f(Y)] will stand for
∑

Y⊆X Pr[Z(X, Y, u)] ·
f(Y) (we write EY,u when X is implicit).

In all events we remove the parameter X when clear from
context. We divide the event E(u, v) into three cases (by
symmetry we can define all these events with respect to u).

• The first is the event that u falls into one of the first
two clusters (the central ball X0 or the first cone X1).
This event is denoted by G(X, u).

• The second is the event that u is contained in cluster
Xj for some j > 1, such that the cone distance be-
tween u and the center xj is in the last interval i.e.
that ρ(xj , u)/∆ ∈ SN(j). This event is denoted by
F(X, u). We partition the eventF(X, u) using the dif-
ferent values of j: For any j > 1 let Fj(X, u) be the
event that ρ(xj , u)/∆ ∈ SN(j), and note that F(X, u)
is simply that there exists j > 1 such that Fj(X, u)
and also u ∈ Xj .

• The third is the completion of the first two events,
that the cluster Xj containing u has j > 1 and
ρ(xj , u)/∆ /∈ SN(j).

The probability of the first event can be bounded simply by
the inverse of the range from which the radius is drawn, so
we obtain probability at most ≈ d(u,v)

ε∆ .
For the second event we note that reaching the tail of

the exponential distribution requires that N − 1 fair coin
tosses turned out head, which is bounded by ≈ 1

2N ≈ 1
χ2

j
,

then since we choose uniformly from the last interval, the
probability that we separate u, v is ≈ log χj ·d(u,v)

ε∆χ2
j

≤ d(u,v)
ε∆χj

.
Since the parameter χj is a random variable which depends
on the previous cone cuts, the proof becomes a bit more
involved as we need to give a different bound for every
possible Y = Yj−1. We show that for every star-partition∑

j>1 χ−1
j ≤ 1, hence this also holds in expectation and

the second event probability is bounded by ≈ d(u,v)
ε∆ . This

is shown in Claim 7
Bounding the third event relies on the memoryless prop-

erty of the exponential distribution. The major technical
difficulty is that the bound we show depends on the param-
eter χ. Hence we can only show the bound given some
subspace Y from which we cut the next cone. The bound
on the probability obtained here is ≈ log χ·d(u,v)

ε∆ . This is
shown in Claim 8.

The last step is to sum over all scales i, and use a tele-
scopic sum argument on the expectation of the values of the
log χ showing that they sum to O(log(1/ε) · log n). This is
shown in the proof of Lemma 6.

Claim 7. For any cluster X ⊆ V , edge u, v ∈ X , (u, v) ∈
E, we have Pr[F(u) ∧ E(u, v)] ≤ 48d(u, v)/(ε∆) .

Proof. Note that we can only bound the probability of event
such as Ej(u, v) given that some Y = Yj−1 is fixed i.e. that

event Zj(X, Y) occurred (because the parameters xj and
χj that govern the next cone creation are random variables
depending on Y . So fix some Y = Yj−1 and note that
indeed pj , xj and χj = χ(X, Y, pj) are determined deter-
ministically.

Pr[F(u) ∧ E(u, v)]
= Pr[∃j > 1,Fj(u) ∧ Ej(u, v)]

≤
∑
j≥2

Pr[Ej(u, v) | Fj(u)]

=
∑
j≥2

∑
Y⊆X

Pr[Zj(Y)] · Pr[Ej(u, v) | Fj(u) ∧ Zj(Y)]

=
∑
j≥2

EY,j [Pr[Ej(u, v) | Fj(u)]]

The first equation holds since the probability to be cut by a
cluster whose radius is “large” is the probability that some
cluster Xj with large radius separates u, v. The first in-
equality holds by the union bound and the second equa-
tion since for every event A and pairwise disjoint events
B1, . . . , B` with

∑`
i=1 Pr[Bi] = 1 it holds that Pr[A] =∑`

i=1 Pr[Bi] ·Pr[A | Bi]. Here the events B are Zj(X, Y)
which are disjoint for different subgraphs Y . Note that
events Fj(u) and Zj(X, Y) tell us nothing of the radius of
the next cone Xj , therefore the probability of Ej(u, v) given
the subspace Yj−1 and that ρ(xj , u)/∆ ∈ SN(j) (where
ρ = ρ(X, Y ∪X0, d

′, x0, xj) is the cone metric), is the prob-
ability that h(j) = N(j) (recall that the random variable
h(j) is the index of the interval Sh(j) from which the radius
is uniformly chosen for Xj) and that the uniform choice
in the interval SN(j) hits the place that separates u, v. To
bound the first one

Pr[h(j) = N(j)] = 2−(N(j)−1) ≤ 2−2 log χj+2 = 4/χ2,

and the probability of the second event is d(u,v)
∆|SN(j)|

. Note

that |SN(j)| = ε
4d2 log χje ≥

ε
8 log χj+4 ≥ min{1, 1

log χj
} ε

12 .
These two events are independent, hence

Pr[F(u) ∧ E(u, v)]

≤ 48d(u, v)
ε ·∆

∑
j≥1

EY,j

[
max

{
1
χ2

j

,
log χj

χ2
j

}]

≤ 48d(u, v)
ε ·∆

∑
j≥1

EY,j [χ−1
j]

For any Ȳ = (Ȳ1, Ȳ2, . . . , Ȳn) ⊂ Xn let Z(Ȳ) be
the event

∧
1≤j≤n Z(Ȳj , j) (where Ȳj is the jth compo-

nent of Ȳ). Observe that for any j and Y ⊂ X we have

8

Pr[Z(Y, j)] =
∑

Ȳ⊂Xn,Ȳj=Y Pr[Z(Ȳ)]. Therefore∑
j>1

EY,j [χ−1
j] =

∑
j>1

∑
Y⊆X

Pr[Z(Y, j)] · χ−1
j

=
∑
j≥1

∑
Ȳ⊂Xn

Pr[Z(Ȳ)] · χ−1
j

=
∑

Ȳ⊂Xn

Pr[Z(Ȳ)]
∑
j≥1

χ−1
j

Now it is enough to show that for any X0, X1, . . . , Xm

that may occur in the start-partition algorithm (i.e.
Pr[Z(Ȳ)] > 0, given that Ȳj = X \

⋃
`<j X`) we have∑m

j=1 χ−1
j ≤ 1. This holds because for any 2 ≤ ` < j ≤ m

we have that BY`,dY`
(p`, ε∆/16) ⊆ X`, and Yj ∩X` = ∅,

i.e. BY`,dY`
(pi, ε∆/16) ∩ BYj ,dYj

(pj , ε∆/16) = ∅. There-
fore

m∑
j=1

χ−1
j ≤ |X|−1

m∑
j=1

BYj ,dj
(pj , ε∆/16) ≤ 1.

Claim 8. For any cluster X ⊆ V , edge u, v ∈ X , (u, v) ∈
E, subgraph Y ⊂ X we have

Pr[E(u, v) ∧ ¬F(u) | ¬G(u) ∧ Z(Y, u)]
≤ 12d(u, v) max{1, log χ(X, Y, u)}/(ε ·∆)

Proof. If d(u, v) ≥ ε · ∆/12 the the claim is trivial, so
assume it is smaller. Let j > 1 be such that the next cone to
be cut is Xj (the value of j is not relevant, we fix it in order
to simplify the notation), and recall that fixing Y = Yj−1

determines deterministically pj , xj and χj . Let ρ = ρ(X0∪
Y, Y, x0, xj) be the appropriate cone metric on Y by which
the next cone is cut.

Pr[E(u, v) ∧ ¬F(u) | Z(Y, u)]
≤ Pr[Ej(u, v) ∧ ¬Fj(u) | Z(Y, u) ∧ Z(Y)]
≤ Pr[Ej(u, v) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(Y, u) ∧ Z(Y)]

≤
Pr[Ej(u, v) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X, Y)]
Pr[Z(Y, u) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X, Y)]

The first inequality holds since event Z(Y, u) implies
that u ∈ Xj so the events E(u, v) and Ej(u, v) are equiv-
alent (the same holds for ¬F(u)), and because Z(Y, u) ⊆
Z(X, Y). The second is by the definition of F(u) (given
that u ∈ Xj it cannot be that ρ(xj , u)/∆ falls in the in-
terval SN(j)), and since for any events A,B, Pr[A ∧ B] ≤
Pr[A | B]. The third is by Bayes rule and since Ej(u, v) ∧
Z(Y, u) = Ej(u, v). Let ` be such that ρ(xj , u)/∆ ∈ S`.

First we bound the denominator, noting that there is
no prior information given about the distribution for the

next choice of radius. Since ` < N(j) we can bound
Pr[Z(Y, u) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X, Y)] ≥ 2−`,
since with this probability the radius for the cone Xj will
be chosen from Sm ·∆ with m > ` so it will large enough
to contain u. The numerator Pr[Ej(u, v) | ρ(xj , u)/∆ /∈
SN(j) ∧ Z(X, Y)] can be bounded by 1

2`−1 · 1
2 · d(u,v)

∆|S`| ,
which is the probability that we reach the `-th interval, not
continue to the next one (note that the next interval exists
because ` < N(j)) and when choosing rj uniformly from
S`, it happens to be the place that separates u, v. The prob-
ability for the first event is 2−(`−1), the second is 1/2, and
the third is d(u,v)

∆|S`| . Since |S`| ≥ min{1, 1
log χj

} · ε
12 it fol-

lows that Pr[Ej(u, v) | ρ(xj , u)/∆ /∈ SN(j) ∧ Z(X, Y)] ≤
12d(u,v) max{1,log χj}

ε·∆·2` . We conclude that

Pr[E(u, v)∧¬F(u) | Z(Y, u)] ≤ 12d(u, v) max{1, log χj}
ε ·∆

.

Proof of Lemma 6. Fix any i ≥ 1 and X(i) = X(i)(u).
As described before we partition the event E(u, v) =
E(X(i), u, v), given a fixed cluster X(i) into the three cases.

Pr[E(u, v)]
= Pr[E(u, v) ∧ F(u)] + Pr[E(X(i), u, v) ∧ ¬F(u)]
= Pr[E(u, v) ∧ F(u)] + Pr[E(u, v) ∧ G(u)]

+Pr[E(u, v) ∧ ¬F(u) ∧ ¬G(u)]

The last equality holds since event G(u) implies that
¬F(u). We claim that the following hold:

Pr[E(X(i), u, v) ∧ F(u) | X(i)] ≤ 48d(u, v)/(ε∆) (1)
Pr[E(u, v) ∧ G(u) | X(i)] ≤ 5d(u, v)/(ε∆) (2)
Pr[E(u, v) ∧ ¬F(u) ∧ ¬G(u) | X(i)] (3)
≤ 12d(u, v)/(ε∆) · EY,u[max{1, log χ(X, Y, u)}]

(1) holds directly from Claim 7. (2) since the radius of
the central ball is chosen uniformly from interval of length
∆/(16c) ≥ ε∆, and for the first cone from interval of length
ε∆/4. (3) holds by using Claim 8 and writing

Pr[E(u, v) ∧ ¬F(u) ∧ ¬G(u)]
≤ EY,u [Pr[E(u, v) ∧ ¬F(u) | ¬G(u)]]

≤ 12d(u, v)
ε ·∆

EY,u[max{1, log χ(X, Y, u)}]

Combining these three equation yields that for C = 65

Pr[E(u, v)] ≤ C·d(u, v)/(ε∆)·EY,u[max{1, log χ(X, Y, u)}] .

Recall that k = 20c(ln(1/ε) + 5), and Corollary 3 sug-
gests that for any cluster X and any j ≥ 0 that radxj

(Xj) ≤

9

(1− 1/(20c))radx0(X), hence for any event X(i+k), given
that X(i) happened

rad(X(i+k)) ≤ (1−1/(20c))k·rad(X(i)) ≤ ε·rad(X(i))/32,

therefore diam(X(i+k)) ≤ ε · rad(X(i))/16 and by def-
inition u ∈ X(i+k), so fixing any Y such that event
Z(X(i), Y, u) occurred then if X(i+k) ⊆ Y also X(i+k) ⊆
BY,dY

(u, ε · rad(X(i))/16).

EY,u[log χ(X(i), Y, u)]

= log |X(i)| − EY,u[log |BY,dY
(u, ε · rad(X(i))/16|]

≤ log |X(i)| −

EY,u

 ∑
X(i+k)⊆Y

Pr[X(i+k) | Z(X(i), Y, u)] log |X(i+k)|

= log |X(i)| −

∑
X(i+k)⊆X(i)

Pr[X(i+k) | X(i)] · log |X(i+k)|

We conclude that

EX(i)

[
Pr[E(X(i), u, v)]

]
≤ EX(i) [log |X(i)|]−

EX(i)

 ∑
X(i+k)⊆X(i)

Pr[X(i+k) | X(i)] log |X(i+k)|

= EX(i) [log |X(i)|]−∑

X(i)

Pr[X(i)]
∑

X(i+k)⊆X(i)

Pr[X(i+k) | X(i)] log |X(i+k)|

= EX(i) [log |X(i)|]− EX(i+k) log |X(i+k)|

Acknowledgments: We would like to thank Michael Elkin
for initial discussions on the problem, Harald Räcke and
Yuval Emek for comments on a preliminary version.

References

[1] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low
stretch spanning trees, Arxiv 0808.2017, 2008.

[2] I. Abraham, Y. Bartal, and O. Neiman. Advances in met-
ric embedding theory. In thirty-eighth annual ACM sympo-
sium on Theory of computing, pages 271–286, New York,
NY, USA, 2006. ACM Press.

[3] Noga Alon, Richard M. Karp, David Peleg, and Douglas
West. A graph-theoretic game and its application to the k-
server problem. SIAM J. Comput., 24(1):78–100, 1995.

[4] Y. Bartal. Probabilistic approximation of metric spaces and
its algorithmic applications. In 37th Annual Symposium on
Foundations of Computer Science (Burlington, VT, 1996),
pages 184–193. IEEE Comput. Soc. Press, Los Alamitos,
CA, 1996.

[5] Y. Bartal. On approximating arbitrary metrics by tree met-
rics. In 30th Annual ACM Symposium on Theory of Comput-
ing, pages 183–193, 1998.

[6] Y. Bartal. Graph decomposition lemmas and their role in
metric embedding methods. In 12th Annual European Sym-
posium on Algorithms, pages 89–97, 2004.

[7] Erik Boman, Bruce Hendrickson, and Stephen Vavasis. Solv-
ing elliptic finite element systems in near-linear time with
support preconditioners, 2004.

[8] Gruia Calinescu, Howard J. Karloff, and Yuval Rabani. Ap-
proximation algorithms for the 0-extension problem. In Sym-
posium on Discrete Algorithms, pages 8–16, 2001.

[9] Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto
Guha. Rounding via trees: deterministic approximation al-
gorithms for group steiner trees and k-median. In thirti-
eth annual ACM symposium on Theory of computing, pages
114–123, New York, NY, USA, 1998. ACM Press.

[10] Kedar Dhamdhere, Anupam Gupta, and Harald Räcke. Im-
proved embeddings of graph metrics into random trees. In
seventeenth annual ACM-SIAM symposium on Discrete al-
gorithm, pages 61–69, New York, NY, USA, 2006. ACM.

[11] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-
Hua Teng. Lower-stretch spanning trees. In thirty-seventh
annual ACM symposium on Theory of computing, pages
494–503, New York, NY, USA, 2005. ACM Press.

[12] Yuval Emek and David Peleg. A tight upper bound on the
probabilistic embedding of series-parallel graphs. In seven-
teenth annual ACM-SIAM symposium on Discrete algorithm,
pages 1045–1053, New York, NY, USA, 2006. ACM.

[13] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight
bound on approximating arbitrary metrics by tree metrics. In
thirty-fifth annual ACM symposium on Theory of computing,
pages 448–455. ACM Press, 2003.

[14] T.C. Hu. Optimum communication spanning trees. SIAM
Journal on Computing, pages 188–195, 1974.

[15] Nathan Linial and Michael Saks. Decomposing graphs
into regions of small diameter. In second annual ACM-
SIAM symposium on Discrete algorithms, pages 320–330,
Philadelphia, PA, USA, 1991. Society for Industrial and Ap-
plied Mathematics.

[16] D. Peleg and E. Reshef. Deterministic polylogarithmic ap-
proximation for minimum commu- nication spanning trees.
In 25th International Colloq. on Automata, Languages and
Programming, pages 670–681, 1998.

[17] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification, and
solving linear systems. In thirty-sixth annual ACM sympo-
sium on Theory of computing, pages 81–90, 2004.

10

