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Abstract

We prove that any grap@ with n points has a distributio” over spanning trees such that for any edgev)
the expected stretcBr 7 [dr (u, v)/da(u, v)] is bounded byO(logn). Our result is obtained via a new approach
of building “highways” between portals and a new strong diten probabilistic decomposition theorem.

1 Introduction

Let G = (V, E) be a finite graph. For any subgraph= (V’, E’) of G let dy be the induced shortest path metric
with respect tad. In particular, for any edgéu, v) € E and any spanning trég of G, dr(u, v) denotes the shortest
path distance betweenandv in T'.

Given a distributiorZ over spanning trees @¥, let stretchr(u,v) = Epor {%} and letstretch7(G) =
max(y )ep stretchr (u, v). Letstretch(n) = maxg—(v,g)||v|=n inf7 {stretchr (G)}.

Initial results were obtained by Alon, Karp, Peleg and Wekshowing that
Q(logn) = stretch(n) = exp(O(y/lognloglogn)). The upper bound was significantly improved((log n)? log log n)
by Elkin, Emek, Spielman and Ten@Q]*. For the class of Series-Parallel graphs Emek and Pé&gpptained a
bound of© (log n). The main result of this paper is a new upper bounstoetch(n) that is tight up to polylogarithmic
factorg.

Theorem 1.
stretch(n) = O (logn - loglogn - (logloglog n)3)

Remark 1. For ease of presentation we first show a slightly weaker baind
stretch(n) = O (logn - (loglogn)? - logloglogn) ,
and prove the tighter bound ilppendix B

Our result may be applied to improve the running time of thelgpan and Teng16] solver for sparse symmetric
diagonally dominant linear systems.
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LIn fact these result apply to a similar notioryg — stretch(n) = maxg—(v,g)||v|=n infT{‘lf‘ Yuven
up to a constant factor tgretch(n).

2[9] announcedstretch(n) = O((logn)?), but this claim was subsequently withdrawn by the authors

dp(u,v)

W} which is equivalent
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1.1 Techniques

We extend the star-decomposition technique of Eétinal[10]. A star-decomposition of a graph is a partition of the
vertices into clusters that are connected into a star: aaleriuster is connected to every other cluster by a single
edge. As in 10] given a subgraph over a clustér, the central clusteX is formed by cutting a ball with radius
ro around a center, and the remaining clustets;, X,, ..., which are called cones, are formed iteratively. Let
Y = X \ Up<r<; Xx- The coneX; is created by choosing an edgg;, ;) such thaty; € Xo,z; € Y;_; and
defining X ; as the cone with radius; aroundz; from the clustery;_, as all the points whose distanceatg going
through the edgézx;, y;) does not increase too much relatively to the shortest patantie, formallyX; = {z €
Y1 | dx (2o, y;) +dx (yj,x;)+dy, (2, x) —dx(xo,x) < r;}. Letrad,, (X) = max,cx d(zo, z), then typically
the radius of the central ball is chosen so thate rad,, (X)/c for a constant. An important parameter of a star-
decomposition is the radius of the cone. We say that thedeteaomposition has parameteif for any j > 1, the
radiusr; of the coneX; is at most - rad,, (X).

Applying star-decompositions in a recursive manner indwcspanning tre€. For a pointu denote byX ) the
cluster that containg in theith recursive invocation of the hierarchical star-decontposalgorithm.

TheO(log? nloglog n) bound of [L0] is obtained by choosing~ 1/ logn and showing:

1. O(1) radius stretch For any clusteX induced by the recursive invocation of the hierarchicatdecomposition
algorithm, and any € X, dr(zg, z) = O(rady, (X)).

2. O((logn - loglogn)/e) decomposition stretctor any edgéu, v),
>, Pr[(u, v) is separated when star-decomposki@'] - diam (X)) = O(logn loglogn)/e.

Combining these two properties yields their result, natidhat if the end points of an edde, v) fall into different
clusters in the partitioning ok ) thend (u, v) can be bounded by (u, o) + dr (v, 2¢) = O(diam (X ?)).

Good radius stretch is obtained by observing that in eaalrsae application of the star partition the radius of a
cluster is stretched by at most+ 1/ logn, and since there ar@(log n) scales the total radius stretch is a constant.
Good decomposition stretch is obtained by using a versidheoflecomposition o], 8].

Better radius stretch. In our scheme we perform a star-decomposition with a pammaetz 1/loglogn, this
significantly improves the decomposition stretch, by adadf ~ logn/loglogn. A naive attempt to bound the
radius stretch, by + 1/loglogn in each scale, will result in super logarithmic radius stnetver all scales.

We introduce a new approach to bound the radius stretch. Ydage all the points ofX in a queueR =
(21,22,...,2,), and bound the distanc&-(zo, z;) as a function ofi by building “highways” —low stretch paths
Roughly speaking, we obtain a bound &f(z¢, z;) = O(loglogi) - rad,,(X). The core observation is that by
choosing where to build the first cone and passing this inédion into the recursion, one can obtain a shortest path
“highway” betweenz, and the first point;, such that the distance betweenandz; in the tree will beexactlythe
original distance in the graph. The challenge is to use th&®eovation to maintain “highways” — low stretch paths —
betweenzy andall the points. Specifically, we obtain

1. O(loglogn) radius stretch For any clustefX, and anyz € X, dr(x¢, z) = O(loglog n)rad,, (X).

Better decomposition stretch. A relaxation of the spanning tree problem suggested by B8}as to consider a
distribution of dominating tree metrics (in fact of ultraimes) that do not necessarily span the graph. This relaxati
has proven applicable for approximation algorithms, anlaimoblems and has contributed to recent solutions for the
spanning tree probleni.¢. [10]). Initially O(log® n) approximation was obtained ir8][based on the truncated
exponential distribution approach df4]. This bounded was subsequently improvedX@og n loglogn) in [4] and
[8]. Finally an optimalO(log n) approximation was obtained b¥7] based on the cutting scheme @f.[ Subsequently
anO(logn) bound was also obtained using a truncated exponentialdison approachd, 1].

However, all previous schemes that obtained the optialg n) bound for the metric problem were insufficient
for the spanning tree problem. Given a graph= (X, F), a sequences, xo, . .. of cluster centers and a sequence
r1,72,... Of radiuses we can define a weak diameter decomposition byinigfl; = Bx (z;,r;) \ Uj<l. W;. We
can define a strong diameter decomposition by defiting- BX\U]-Q» ¢, (x;,7;). Observe that in a strong diameter
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decomposition, for any nonempty clusi€f, we have that;; € C; andC; is a connected component 6f, this

may not be the case for weak diameter decompositions. Intiee@chniques ofl]2, 5, 1] provide a weak diameter
decomposition. It was not clear how to extend these resuk#rong diameter decompositions that are necessary for
star-decompositions. We show how to obtain a strong diantéearchical decomposition theorem that obtains an
optimal bound in the following sense:

2. O(lognlog(1/€)/e) decomposition stretctizor any edgéu, v),
>, Pr[(u, v) is separated when star-decomposhi@)] - diam (X)) = O(lognlog(1/€)/e).

As in [5, 1], our decomposition is based on the truncated exponenstitlition with a parameter depending on
the local growth rate of the space. The main technical difficarises since the spachangesafter each cluster is
cut (the metric is derived from a graph, and some nodes anelsealg removed at every cut). The idea is to define
the local growth rate with respect to the current metric, emshow two things: that the expected sum of all growth
rates (which are random variables) over all the scalesdejes ta, and that the probability to be cut is appropriately
bounded in each scale. Dealing with the randomly changiaglgraises some additional subtleties in the proof. Our
strong diameter hierarchical decomposition theorem mayf bedependent interest.

1.2 Applications

One of the main applications of low stretch spanning treemiging sparse symmetric diagonally dominant linear
systems of equation3his approach was suggested by Boman and Hendricl&@mf{l later improved by Spielman
and Teng 16]. Spielman and Teng showed an algorithm that for such-ag-n matrix A with m non-zero entries and
ann-dimensional vectob, if ¢ > 0 is the precision of the solution then the algorithm findsuch that|z — 2'|| 4 < ¢
whereAz = b, and the running time i® (m (1ogo(1) m+ 10g(1/e)) + n - avg — stretch(n) - log(l/e)). Improv-
ing the bound requires improvement of the second elemedtwanimprove it by roughly an additionél(log logn)
factor over [LO]. Actually, if the running time of our construction is redad; we can obtain af(log n) improvement.
For planar graphs we obtaid(n - log? ). See details iCorollary 6

The minimum communication cost spanning t@eblem introduced in13], in which one is given a weighted
graphG = (V, E,w) and a matrixA = a,, | z,y € V, the objective is to find a spanning tree minimizi(@") =
> e yev Gay - dr(2,y). [15) showed anO(2v!ee™oslee™) approximation ratio based og]f and [10] improved to
O(log® n - loglogn). Our results can be used to obt&log n - log log n(log log log n)*) approximation ratio.

See [LQ] for details about more applications.

1.3 Structure of the Paper

In Section 2we describe a star-decomposition framework, that for anyeightedn point graphG induces a tree
such thatdiam(7T") < O(diam(G) - loglogn). In Section 3we describe a distribution on star-partitions that fol-
lows the framework oBection 2 We analyze the expected stretch of an edge and prove the lmbutretch(n) =

O( (1og n - (loglogn)? - log log log n) In Appendix Awe discuss briefly how to extend the result for weighted gsaph
In Appendix Bwe show the tighter result statedTineorem 1

2 Highways

Let G = (V, E) be a finite graph. For anX C V letdx : X? — R be the shortest path metric induced by the
subgraph onX. Letdiam(X) = max, .cx{dx(y, 2)}. Forz € X letrad,(X) = max,cx dx(z,y), we omit the
subscript when clear from context (note thi&im(X)/2 < rad(X) < diam(X)). For anyz € X andr > 0 let
Bx.a(z,7) = {y € X | dx(z,y) < r}. Letc = 26 be a constant. We use the uppercase |€}t&s denote ajueue

a sequence of points. Given a poinhot in the queue we say that we enquetirto () meaning that we add as the
last element of the sequence and given a quigube dequeue operation removes and returns the first elerhtre
sequence.



Definition 1 (cone metrié). Given a graphG; = (V, F), subsety” ¢ X C V, pointsz € X \ Y,y € Y define the
Cone_metri(p = p(X7 vavy) (Y2 - R aSp(uJ}) = |(dx(.%',u) - dy(y’ u)) - (dX(‘T’ ’U) - dy(ya ’U))|

Note that a balBy,,(y, r) in the cone-metrip = p(X,Y, z,y) is the set of all points € Y such thatlx (x,y) +
dy (y,z) —dx(x,z) <.

Hierarchical-Star-Partition algorithm.  SeeFigure 1for the algorithm. Given an unweighted gragh= (V, E),
create a spanning trée = (V, E’) by choosing some, € V, letting @ be an arbitrary ordering df \ {zo} and
calling: hi erar chi cal -star-partition(V,zg, Q).

T =hierarchical -star-partition(X,zo,Q):

If rads, (X) < 16¢ returnBFS(X).

(Xoy. ooy Xoms (y1,21)5 - -+, (Ymy Tm ), Qo, @1, ..., Qm) = star-partition(X,zo,Q);
Foreach € [0,...,m]:

T; =hi erarchical -star-partition(X;, z;,Q:);

a kw0 D PE

LetT be the tree formed by connectifig with 7; using edg€y;, x;) for eachi € [1,...,m];

Figure 1:hi er ar chi cal - st ar- parti ti onalgorithm

Star-Partition algorithm.  SeeFigure 2for ourst ar - parti ti on algorithm. We highlight the main differences
of our algorithm from that of1Q]. In addition toX, x it receives as input an ordering of the pointsinimplemented
as a queue data structure and denote@byn addition to returning a star decompositi&ig, X1, ..., X,, it returns
for each0 < j < m an ordering of the points iX;, implemented as a queue data structure and denotéyd by

Since as noted above the trivial radius bound (loosing ¢) in every scale) does not work anymore we attempt
to directly boundir(zo, z) for all z € X. The arrangement oX \ {zo} in a queue&? = (z1,...,z,_1) determines
“how hard” we try to give a tight bound for the point - roughly speaking the smaller valueiaheans the harder we
try to give a better bound ody (zo, z;). The star partition algorithm therefore changes to try batébr the first point
z1, and indeed by choosing the first portal edge z1) on a shortest path te, and keeping1, y1 in the head of the
recursive queues we obtain a “highway” fram to z1, i.e. preserving the original distance. Surprisingly, this dmal
change is enough to give a good boundigiizy, z;) for all i > 1, and we obtairr (zo, z;) = O(log logi)rad,, (X).
The intuition is that since every cluster contains less {3oi3 advances in the recursive queues, and when it becomes
the first we get a “highway” to it. For this intuition to work ermust delicately define the ordering of the queues
Qo, - .., Q. for the clustersXy, ..., X, created by the star partition algorithm. The main difficustylefiningQo,
as the portalg; play a dual part - we need to maintain their original posiiior) and also make sure that the tree
distance to them is small enough: as it determines the disttiomz to all the points inX;.

Suppose; € Y; forsome; > 1. By Claim 2there is an inherent loss ofia-¢ factor due to star-partition algorithm.
Hence it is not sufficient for the inductive argument to siynplbtain a bound ol (xo, y;) = O(loglog i)rad,, (Xo)
in the ball X, and dr(zj,2;) = O(loglogi)rad,,(X;) in the coneX;. We must “gain” inductively either in
dr(zo,y;) (the ball part of the path) or idr (z,, z;) (the cone part of the path). This is done by choosing the quieue
in the following manner: Given a star decompositiog, X1, . . ., X, we create the queug; for j > 0 simply as the
restriction of@ on X; \ {z;}. The queu&), is the created by first adding either or the portaly; which is chosen
on a shortest path te, thus making sure the distance framto z; is preserved in the recursion. Then interleaving

three different queus@ ™", Q™ Q9.
° Q((Jba”) is the restriction of) on X,. This queue provides the required bounddtiz,, z;) whenz; € Xj.

° Qgeg) is a queue of portalg; ordered by the minimal point af that their conesX; contains. When a cone
contains relatively few point we “gain” in the cone part oétphath toz;. This queue guarantees that for any
z; € X, the “central ball” part of the path te; is not stretched too much.

3|n fact, the cone-metric is a pseudo-metric.



° ant) is a queue of portalg; that lead to cones that contain “many” points relative todhgering( of the
points in.X;. When a cone is “fat” we cannot gain in the cone part, this gupuarantees that we gain in the

ball part.

The exact way these three queues are created is detaileddb bf Figure 2

(XO, L) X’m7 (ylvxl)v ey (ym7 l’m), QO: le e Qm) =star- part iti On(X7 To, Q)
1. Letj = 2; Denote the (ordered) elements@fby Q = (21, 22, ..., 2x); Lete = e(X) € (0, =52);
2. Creating the ball Xy:

(a) Chooser uniformly at random from the intervél /(16¢), 1/(8¢)];
(b) Let Xo = B(:E(),To . radzo (X)), LetYy =X \ Xo;

3. Creating the first cone Xi:

(@) If z1 € Yo letz = z; otherwise let: € Y, be an arbitrary point. Leiy:, 1) be an edge such th
y1 € Xo, z1 € Yy anddx (zo,2z) = dx(zo,y1) + dx(y1,x1) + dy, (z1, 2) (i.e. an edge on
shortest path from to 2);

(b) Letp = p(X, Yo, x0,x1) be the cone-metric;

(c) Chooser; uniformly at random from the intervad /4, ¢/2];

(d) LetX1 = By,,p) (21,71 - radso (X)); LetYr = Yo \ X1,
4. Creating the remaining cones Xs, ..., X,,:

(@) WhileY;_1 #0:
i. Let(z;,y;,7;) = cone-cut (X, zo, Xo,Y;-1,¢); (has the property that; < ¢/2)
ii. Letp=p(Y;—1U Xo,Y;_1,20,;);
iii. Let X; = B(y'jil’p)(flfj, rj-rads, (X)); Y; = Y21\ X
iv. Letj=7+1,
5. Creating the queues Q™" Q™ Qi Q1,...,Qm
(@ Fori=1,...,|X|—1:
i. If z; € Xo then enqueue; into Qéba");
ii. Otherwise let/ > 1 be such that; € X,:
e If z; # x, then enqueue; into Q.
o If y, ¢ QU then enqueug into Q9.
o If (XN {z1,..., 2} > Viandy, ¢ Q™ then enqueug, into Q™.
6. Creating the queue Qo:

ball 1 fat 2 re 3
(@) DenoteQ™™ = z1,... 2L, QM =22, ... 22, Q09 =25, 23

(b) CreateQ by interleaving the three queues’™”, Q™ , Q* such that:

e If z; € X, thenz is the first element of),. Otherwisey, is the first element of).
e Foranyr € X,/ ¢ {1,2,3},1 <14 < nif x = 2! thenz is in the first3; elements ofo.
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Figure 2:st ar - parti ti on algorithm

2.1 Bounding the radius stretch

In this part we show that the radius stretch induced byhther ar chi cal - star-partiti on algorithm is at

mostO(loglogn).



The following two claims imply that thet ar - parti t i on algorithm on a clusteX induces a partition oX’
and that radial distances are stretched by a rhast. These claims are essentially provenig][we provide a proof
for completeness.

Claim 1. For any graphX, zo € X, j > 0letY;_; C X be the unassigned points &f after creating; clusters
Xo,..., X1 using thest ar - par ti ti on algorithm, then for any. € Y;_; all the shortest paths fromto =, are
fully contained inY;_; U X, in particular

dn71UX0 (xo, Z) = dx(l'o, Z)

Proof. Let A = rad,,(X). Let P, ,, be a shortest path and assume by contradictionftha; ¢ Y;_; U X, so let
1 <i < j — 1 be the minimak such that there exists € P, ,, andu € X,. Letz; be the portal to the con¥,. By
Definition 1sinceu € X; it must be that in the metri¢’ = dx,uy,_,

d' (u, o) +ri - A >d (u,z;) + d (2, 70).

Sincew lies on a shortest path fromto z(, the minimality ofi suggests that this shortest path is fully contained in
Yi—1 U X thusd'(z, 20) = d'(z,u) + d'(u, z¢), and conclude that

d'(z,z0) + 1 - A=d(z,u) +d (u,z0) + 1 - A > d'(2,u) + d (u,2;) + d (2i,m0) > d'(2,2;) + d (2, 20),
hencez should be inX;, contradiction. O
Claim 2. Let (Xo,..., Xm, (W1, 21), -y (Um, Tm), Qo, Q1,-..,Qm) = star-partition(X,xzy, Q) then for
anyl <j<m

rady, (Xo) + d(y;, z;) +rad,, (X;) < (1 + €)rady, (X),
Proof. Let A = rad,,(X). Let 3 be such thatad,,(Xo) = - A, letd’ = dx,uy,_,, letz; be the portal ofX; and
p = p(XoUY;_1,Yj_1,20,2;) be the cone-metric. Takee X as the farthest point from; (with respect tal’),

take any shortest pafh,; . fromz; to z and separate it into consecutive segments: uo, vo, U1, v1, . . ., Uk, Vg = 2
such that for any < ¢ < k, p(u;,v;) =0, i.e.

dl(l'o,ui) — d/(,Tj, ul) = dl(,To, ’Ui) — dl(,Tj, ’Ui)

and(v;,u;+1) € E (note that it could be that; = v;). The definition of cone-metric suggests that r; - A, as
otherwisez ¢ By, , ,(z;,7j-A) = Xj.
SinceP,, . is a shortest path we have for @l i < k thatd'(x;, u;) + d'(us,v;) = d'(x;,v;), therefore

k k

Zd/(wo,’l}i) = Z(d’(wo,ui)—i-d/(ui,vi)). (1)

=0 =0
Claim 1suggests thaty (o, z) = d'(x0, z), hence
A > dx(CC(),Z) :d/(CCO’Z) :d/(I07vk)

1
= (d' (w0, u;) + d (us, v;) — d(xg,v;)) + d (w0, u) + d (ur, vx)

e
|

i=0
k—1
> (d' (w0, u;) + d'(ui, vi) = (d' (w0, wip1) + d' (vi,uig1))) + d' (o, ug) + d' (u, vi)
1=0
k—1
= d'(wo,u0) — d'(xo,ur) + (d' (ui,v;) — 1) + d' (w0, ug) + d (ug, vx)
1=0
2
= (BA+1)—k+ Zd/(uiavi)



The second line follows fromiy, the third from the fact that’ (z¢, v;) < d'(zo, uit+1) + d (uit1, v;), the fourth since
the sum telescopes aill(v;, u;+1) = 1, and the fifth sincel’(zo, uo) = d'(zo,x;) = d'(x0,y;) + d'(y;, ;) =
rad,,(Xo) + 1 = A + 1.

Therefore
k k—1
radmj (Xj) = d/(fL‘j,Z) = Zd’(ui,vi) + Zd’(vi,uiﬂ) < (A - ﬁA + k — 1) +k < (1 — ﬁ)A + 27‘jA — 1,
=0 =0

(recall thatt < r;A). And now sincer; < ¢/2,

rady, (Xo) + d(yj, z5) +rad,, (X;) < BA+14+ (1 - B)A+eA—-1=(1+¢)A.

Corollary 3. Forany0 < j < m, rady, (X;) < (1 — 50-)radg, (X)

Proof. The corollary is immediate foX, by the construction, foj > 0: asrad,,(Xo) > rad,,(X)/(16¢) and
e <1/(170c) usingClaim 2

radg; (X;) < (1 + €)rady, (X) — rads,(Xo) < (1 —1/(20¢))rad,, (X).
O

Lemma4. LetX C V be a connected component®fV, £). Letzy € X and@ = (z1,..., z/x|—1) be any ordering
of X\{zo}. LetT be any spanning tree 6f returned by the algorithrhi er ar chi cal -star-partiti on(X, z, Q)
with parametek = ¢(X) = Wlog(\xl)’ then
dX (Io, Zl) i1=1
dT(,To,Zi)S i~radzo(X) l<i<e
c¢-loglogi-rad,,(X) otherwise

(wherec = 216)

Proof. The proof is by induction on the radius &f. In the base case whead,,(X) < 16¢ create a breadth first tree
centered inzy, and since in such a tree for evere X, dx(zo, z) = dr(zo, ) the claim holds. Now we turn to the
inductive step. Note thaorollary 3guarantees that for ajl= 0, ..., m we haved < rad,,;(X;) < radg,(X).

The main idea of the proof is to consider a single applicatibthe star-partition algorithm, partitioning into
Xo, X1, ...,Xm. Assuming that; € X, the path between, to z; will be the path going through the edég;, z; ).
Then use the induction hypothesis on the sub-patly; in X, and the sub path;, z; in X ;. Since byClaim 2the
radius may increase by a factor of at mbst ¢, we need to “gain” in one of the two sub paths. This “gain” witlcur
since our construction guarantees that either the posifienin the queue ofX; will improve or the position of; in
Xo will improve, thus the induction hypothesis will give thejtéred bounds.

There are three main cases to consider, whenl, i < candi > ¢. The casé = 1is simple. The casé < i < ¢
subdivides into three more cases:

1. Thefirst case is; € Xy. This case is relatively straightforward.

2. The second case is that the firgtoints of the queue are all iff;. Here we gain in the central ball because the
portaly; leading toX; will be the first element irg).

3. The remaining case is that not all of the firpbints are inX,, then there are at most- 1 points in the coneX
amongzy, . . ., z;, S0 by the construction @;, we gain just enough in the cone (because the bound that needs

to be shown is weak - linear ii) anngeg) guarantees that we do not lose too much in the central ball.

The interesting case is whén> ¢, this last case also subdivides into three more cases:



1. Onefirstis that; € Xy. Again. this case is relatively straightforward and usescibnstruction oQ((Jba").

2. The second case is thate X; andX; is a “thin” cone - contains less thati of the firsti points. Here we

gain in the cone because the positionzpfn Q; is at mosty/i and Qéreg) guarantees that we do not lose too
much in the central ball.

3. The third case is that € X; andX; is a “fat” cone - contains more thati of the firsti points. Here we gain

in the central ball, using the construction@fat) andClaim 5to show that the porta); leading to the cone is
in position< i%/10 in Q.

We continue with the formal proof of the lemma, accordingte three main cases.

Case 1: Inthis case = 1. Note thatz; € Xg U X;. If 21 € Xg then by the constructior, is going to be the
firstin Qo therefore by the induction hypothesis &R it follows thatdr(zg, 21) < dx(xo, z1). If on the other hand
z1 € X1, then again from the construction the pajnt which was chosen such that, =, are on a shortest path from
zo 10 21, will be the first inQy, andz; will be the firstin X, so by inductionir (zq, 21) = dr(zo, y1) +dr(y1, 1) +
dr(z1,21) < dx(xo,y1) + dx(y1,21) + dx(v1,21) = dx(x0, 21).

Case 2: The second case to consider is whHeq i < c.

1. First assume that; € Xy. Thenz; will be at mosti in the ordering on(()ba”) and hence at most in the
ordering ofQy. By the induction hypothesis ol : dr(xo, z;) < cloglog(3i) - rad,,(Xo) < i - rad,, (X),
using thatrad,, (Xo) < rad,,(X)/(8¢), and thatoglog(3i) < 2i.

2. Now assume th&tzq,...,2;} € X;. Asy; is the first inQo, by the induction hypothesis ok, and X; we
have thaﬂT(Io, yl) S dx(xo,yl) S I‘&dzo (Xo) anddT(Il, Zl) S 7 - radzl(Xl), SO

IN

dr(xo,y1) + dr(y1, 1) + dr(x1, 2;)

rad,, (Xo) + ¢ - rad,, (X1) + dx (y1,21)

i(rady, (Xo) + dx (y1,21) + rady, (X1)) — (i — 1)rad,, (Xo)
i(1 4 e)rady, (X) — (i — Drady, (X)/(16¢)

i radg, (X) + i - rady, (X)/(170¢) — i - rady, (X)/(32¢)

i - rad,, (X).

dr(zo, i)

(VAN VAN VAN VAN VAN

In the fourth inequality usin@laim 2and thatrad,,, (Xo) > rads,(X)/(16¢) (note that by the stop condition
of hierarchical-star-partitiorad,,, (X) > 16¢, sorad,,(Xo) > 1) and in the fifth that — 1 > /2.

3. Now assume that; € X; where not all oz, ..., z; are inX; (note thatz; € X, U X, therefore there is no
case for{z1,...,z} C X; wherej > 1). First note that; must be at most the— 1 element in@,. By the

insert sequence @geg) we have thay; is at most the3i element inQ). Using the induction hypothesis oty
and.X; we get that

dr(zo,y;) + dr(y;, ;) + dr (), z)

cloglog(3i) - rady, (Xo) + (i — 1) - rad,, (X;) + dx (y;, ;)

(i — 1)(radg, (Xo) + dx (y;, ;) + rads, (X)) + 5c - rada, (Xo)

(1 —1)(1 + e)radsy (X) + 5c¢ - rady, (X)/(8¢)

i - rady, (X) — rads, (X) + (i — 1) - rady, (X)/(170¢) + Srady, (X)/8
i-radg, (X).

dr(zo, 2i)

(VAN VAN VAN VAR VARSI VAN

The third inequality follows sinclg log(3i) < loglog(3c) < 5. The fourth usin@laim 2and thatad,, (X,) <
rads, (X)/(8¢).



Case 3: Inthe third case > c.

1. First assume that € X,. Thenz; will be at most; in the ordering o@éba"), hence at mosti in the ordering
of Qy. By the induction hypothesis akiy we get that

dr(zo, 2zi) < cloglog(3i) - rad,, (Xo) < 2cloglogi - rad,,(Xo) < cloglogi - rad,, (X) .
using that fori > ¢, 3i < i2.

2. Nextassume that € X; suchthatX; N{z,...,z}| < Vi, thenz; will be at most the// in Q;, andy; will
be at most the-th in Qgeg) and hence at most in the ordering ofY,. By the induction hypothesis ok, and
Xj:

dr(20,y;) + dr(yj, ;) + dr(z, 2)

cloglog(3i) - rady, (Xo) + cloglog(Vi) - rad,, (X;) + dx (y;, ;)

c(loglogi 4 1) - rad, (Xo) + c(loglogi — 1) - rad,, (X;) + dx (y;, ;)

c(loglogi — 1) (rady, (Xo) + dx (y;, z;) + rads, (X)) + 2¢ - rads, (Xo)

c(loglogi — 1)(1 + e)rad,, (X) + rad,, (X)/4

cloglogi - rad,, (X) + cloglogi - rad,, (X)/(170cloglogi) — ¢ - rad,, (X) + rad,, (X)/4
cloglogi - rad,, (X),

dr (o, 2i)

VAN VAN VAN VAR VAR VANR VA

the fifth inequality usingClaim 2and thatrad,,, (Xo) < rads,(X)/(8¢), the sixth that < 1/(170cloglog).

3. The last subcase is wheree X; such tha{X; N {zy,...,z}| > Vi, thenz; will be at most the in Q; and
by Claim 5y; will be at most the®/*° in Q. Now by the induction hypothesis, for> 2

dr (w0, y;) + dx (yj, x;) + dr (), 2)

cloglogi®/1Y - rad,, (Xo) + cloglogi - rad,, (X;) + dx (y;, x;)
cloglogi(rad,,(Xo) 4+ dx (y;, ;) 4+ rad., (X;)) 4+ clog(9/10) - rad,, (Xo)
cloglogi - radg, (X) + € - cloglogi - rad,, (X) — ¢ radg, (Xo)/10
cloglogi - rad,, (X) + rad,, (X)/170 — rad,, (X)/160

cloglogi - rad,, (X),

dr(zo, i)

(VAN VAN VANRR VANRR VAN VAN

the fourth inequality usin@laim 2and the fifth thatad,.,(Xo) > rad.,(X)/(16¢) ande < 1/(170cloglog ).
O

The following claim shows that a porta} leading to a point; that belongs to a “fat” cone will be located in an
improved position in the queue of the central 2}.

Claim 5. Foranyi > 216, if z; € X; such thaiX; N {z1,...,2}| > /i theny; will be at position at most’/*° in
Qo.

Proof. We will show thaty; will be in the first(3/2)i%/® 4 1 elements oant). Sincei > 216 it follows thaty, will
be in the firsB - ((3/2)i%/ + 1) < i%/1° elements of),.

Lety,,,...,y:, Withi; < iy < --- < iy be a set ok points that were inserted int@gat) before considering the
point z;, we need to show that < (3/2)i%/3. Let zir, ..., zir, be the set of points id) such thaty;, was inserted
becausezi;c € X, andX;, was a “fat” conej.e. |X;, N {z1,.. "Z%H > \/ﬁ Let 4;, = X;, N {z,.. "Z%}

denote the set that causgd to entengat), and note thalt4,, | > \/ﬁ > k. For anyl < k < ¢ < s we have that

A;. NA;, =0, since we do notinsert a poip, that already appear @gat), which impliesX;, N X;, = 0. Note that



all the setsA;, contain points fromy, .. ., z;, o we have that ), _, [4;,| <i. Henced ;_, vk < S5_, |Ai | <.
We also bound the sum from below

XS: k> / Vads = (/352 > (2/3)52,
k=1 1

thereforei > (2/3)s3/2 or s < (3/2)i%/3. -

Corollary 6. Forany weighted graptiy = (V, E) denote byV | = nand|E| = m, invokinghi er ar chi cal - star-partition
algorithm onGG where inst ar parti ti on algorithm we use the

| mpConeDeconpose(G, BS(xg, ro - rad(X)), rad(X)/ loglog n, log log n, m) of [10], then we get a single span-

ning treeT such that

1 d
— Z dr(u,v) < O(logn - (loglogn)?).
m v

The running time i€)(m log n) if G is unweighted and (m logn + nlog® n) if G is weighted.

Proof. Since our algorithm works in a similar manner to th€][algorithm, we can use their partitioning method

| npConeDeconpose, which has a a running time @6i(m) if G is unweighted and(m+nlogn) if G is weighted.

The only difference is that in the first iteration € 1), instead of picking an arbitrary portal we pick the node:;

that is first on a shortest path framg to the first in the queu€. The average stretch of their cone cutting method is
roughlyO(logn - loglogn - 1/¢) (recall thate = 1/loglogn), and since the radius of our spanning tree increases by
O(loglogn), the corollary follows. It remains to see that our runnimgeiis no worse tharlp], and indeed it is easy

to see that adding the queues increase the run time only bysdest factor. O

3 Strong Diameter Probabilistic Partitions

(z,y,7) = cone cut (X, zo, Xo,Y,€):

e Letp € Y be the point minimizing|B( LX]
Y,

over allz € Y'; Let x denote that
ay) (7€ - Tad,, (X)/16)] z X

minimum;

e Let(y,x)be anedge suchthate Y,y € Xo anddx (zo,y) +dx (y, z) +dy (z,p) = dx (o, p) (i.e.
y andx lie on some shortest path betweenandp);

e Chooser € [¢/4, ¢/2] according to the following random process:
— Divide the intervale/4, /2] into N = [21log x| equal length interval$, ..., Sn; Leth = 1;
— LOOP: Toss a fair coin; If it turns out head ahd< N then leth = h 4+ 1 and goto LOOP;
— Chooser uniformly at random from the intervay, .

e Return(z,y,r).

Figure 3:cone- cut algorithm

Consider a grapldr = (V. E), a connected clusteX C V, zp € X and letA = rad,,(X). Fix some edge
(u,v) € E. Let X = X (y) be a random variable that indicates which cluster contaiimsthe i-th step of the

hierarchical application of the star-partition algorithrm a similar manner Iaéi) be the random variable indicating

the center of the clustex (), and whenX (%) is partitioned denote the central ball &5” and cones ax'\” ... x{?
wherem is a random variable depending 6f("). Let &;(X () u,v) be the event that,v € X @ and in the star-

partition of the cluste& ) with centerz” into X\”, ..., XV, u € XJ(.Z'), v ¢ XJ(.Z'). LetE(X @, u,v) be the event
that3 0 < j < m such that; (X, u, v). Some notation:

“4We abuse notation and think af(¥) as a function to subsets &f (instead ofR). We also refer toX () as an event.

10



Ex o [f(X@)] will stand for" ., Pr[X® = X']f(X").

Let 7 be the support of the distribution over spanning trees iaduxy the hierarchical star partition algorithm.
Let7(® C T be the set of spanning trees for which evé(X (), u, v) occurs.

Eldr(u,v)] < Z Z Pr[T] - dr(u,v)

i>1TeT®
< s (2)
< XEw PrECX Y, 0)] s (0 (. 0)]

< O(log logn)ZEX(i) [Pr[E(X(i),u,v)] -rad_q) (X(i))} .
0
i>1
The last inequality holds since for arfy € 7, dy(u,v) < dT(u,x((f)) + dp(zo,v) < 2rad_«(T) and using
0
Lemma 4we get thatad_ (T') < O(loglogn - rad ) (X(*)).
0 0
In what follows we bound y () {Pr[S(X(i),u, v)]-rad ) (X(i))] Lete =
0
5). The main lemma to prove is the following

T70cTog ey andk = 20¢(In(1/€)+

Lemma 7. For any graphG = (V, E), any edgdu, v) € E, any connected cluste¥ () C V we have that
Ey o [Pr[g(X“), u,v)] - rad (X(i))} < C-d(u,v)/e- (Exm log |X@|] — Excim [log |X<i+k>|]) .
0

whereC' is a universal constant.

Once this lemma is proved, a telescopic sum argument yiefds t

Eldr(u,0)] < O(loglogn) Y Ex [Pr[g(x<i>,u,v)] ~radm0(X(i))}

i>1

k
< O(loglogn) - d(u,v)/e > Ex[log|X "]
i=1
< O(logn -loglogn) - d(u,v) -log(1/e€)/e
= O(logn - (loglogn)? - logloglogn) - d(u,v) .

As we stated in the introduction, the algorithm Eifjure 3and proof ofLemma 7are based on the truncated
exponential distribution approach dj,[1]. The main technical difficulty arises since the spabangesafter each
cluster is cut. Dealing with the randomly changing grapkeaisome additional subtleties in the proof.

We begin with some definitions and an informal descriptionthef algorithm and the proof idea. Fix the edge
(u,v) € F,ascale andX = X@. LetY C X be a random variable indicating that there exists j < m such
thatY = Y;_; in the star partition ofX. Define the local growth rate arounds Y with respect td” as

|X]
| By, dy (7,€A/16)|

The algorithm for the partition is as follows: Choose a radiar the central ball around, from a uniform
distribution in a range of size&z A/c. The center; is chosen on a shortest pathztg the first point in the queue, and
then the radius for the cone is again sampled from a unifostniblition in a range of sizer eA. Forj > 1 the jth
centerz; is chosen on a shortest path to the pgipt Y;_; minimizing x; = x(X, Y;_1, p;), and then the radius of
the cone is chosen from a truncated exponential distributigth parametey ;.

Denote the event thaf = Y;_; andu € X; asZ;(X,Y,u), and letZ(X,Y, u) be the eventthai 0 < j < m
such thatZ; (X, Y, u). Note that fixingY;_; determines deterministically; and therefore also; andy;. Similarly
let Z;(X,Y) be the event that” = Y;_; andZ(X,Y) the eventthaB 0 < j < m such thatZ;(X,Y"). Let N(5)
be the random variable that is the number of partitiSns . . , Sy ;) of the intervalle/4, ¢/2] for the jth cone. Let
0 < h(j) < N(j) be the random variable that is the index of the intesS/al;) from which the radius; is uniformly
chosen forX ;. Some more notation:

X(X,Y,z) =

11



Eycx[f(Y)] will stand for} s  Pr[Z(X,Y)] - f(Y) (we writeEy whenX is implicit).
Eycx,;[f(Y)] will stand for} _y -  Pr[Z;(X,Y)] - f(Y) (we writeEy,; whenX is implicit).
Eycx,u[f(Y)] will stand for}y. -  Pr[Z(X, Y, u)] - f(Y) (we writeEy,,, whenX is implicit).
We divide the evenf (X, u, v) into three cases (by symmetry we can define all these evetftsegpect ta:).

e The firstis the event that falls into one of the first two clusters (the central b&} or the first coneX). This
eventis denoted by (X, u).

e The second is the event thats contained in clusteX; for somej > 1, such that the cone distance between
u and the centex; is in the last interval.e. that p(z;,u)/A € Sy(;. This event is denoted b (X, u).
We partition the evenf (X, u) using the different values gf. For anyj > 1 let F;(X, u) be the event that

p(xj,u)/A € Sy, and note thatF (X, u) is simply that there existg > 1 such thatF; (X, v) and also
u < X;.

e The third is the completion of the first two events, that thestdrX; containingu hasj > 1 andp(z;,u)/A ¢
SNG)-

The probability of the first event can be bounded simply byitiverse of the range from which the radius is drawn,
so we obtain probability at most (“ O}

For the second event we note that reaching the tail of therex@l distribution requires thal — 1 fair coin
tosses turned out head, which is bounded:b;glw 2, then since we choose uniformly from the last interval,

d(u v)
eAx

the probability that we separatev is ~ 2% ’ggi%“’”) < . Since the parametey; is a random variable which

depends on the previous cone cuts, the proof becomes a beétimaived as we need to give a different bound for
every possiblé” = Y;_;. We show that for every star—partitioﬁj>1 xj*l < 1, hence this also holds in expectation

and the second event probability is boundedtbﬁ%. This is shown irClaim 8

Bounding the third event relies on the memoryless propértii®exponential distribution. The major technical
difficulty is that the bound we show depends on the parametédence we can only show the bound given some
subspacé&” from which we cut the next cone. The bound on the probabilittamed here isz M This is
shown inClaim 9

The last step is to sum over all scafesind use a telescopic sum argument on the expectation oathessof the
log x showing that they sum t©(log(1/¢) - logn). This is shown in the proof dfemma 7

Claim 8. For any clusterX C V, edgeu,v € X, (u,v) € E, we have
Pr{F(X,u) AN E(X, u,v)] < 48d(u,v)/(eA) .

Proof. Note that we can only bound the probability of event such 4%, u, v) given that som&” = Y;_; is fixed

i.e. that eventZ;(X,Y’) occurred (because the parameteysandy; that govern the next cone creation are random
variables depending o¥i. So fix someY” = Y;_; and note that indeegl;, =; andy; = x(X,Y,p,) are determined
deterministically.

Pr[F(X,u) A E(X, u,v)]
= Pr[3j > 1, F(X,u) AN&E(X,u,v)]
< ZPr (X, u,v) | Fj(X,u)]

= Z > Pr(Zi(X, V)] Prl€;(X, u,0) | Fi(X,u) A Z5(X,Y)]
j>2YCX

= > By, [Prlg;(X,u,v) | Fi(X,u)]]
j>2

12



The first equation holds since the probability to be cut byuatelr whose radius is “large” is the probability that some
clusterX; with large radius separatesv. The first inequality holds by the union bound and the secopton since
for every eventd and pairwise disjoint even3y, . .., By with Zle Pr[B;] = 1itholds thatPr[A] = Zle Pr[B;] -
Pr[A | B;]. Here the event® are Z;(X,Y") which are disjoint for different subgraplis Note that events; (X, u)
and Z;(X,Y) tell us nothing of the radius of the next coiig, therefore the probability of; (X, w,v) given the
subspace’;_; and thap(x;, u)/A € Sy ;) (Wherep = p(X, Y UXo,d', zo, ;) is the cone metric), is the probability
thath(j) = N(j) (recall that the random variable(j) is the index of the intervab), ;) from which the radius is
uniformly chosen forX ;) and that the uniform choice in the interv&j; ;) hits the place that separates. To bound
the first one

Pr(h(j) = N(j)] = 27 (V07D < 272108252 — 4 /32,

and the probability of the second eventz%. Note that Sy ;)| =
These two events are independent, hence

£

’long} 12

€ €
4[21log x; | z 8log x; +4 > min{1

1 logy;
max 3
X5 XS

48d(u, v) 1
A ZEY,J' ;]
j=>1

48d(u, v)
— A D By
7j>1

Pr{F(X,u) AN E(X, u,v)]

IN

ForanyY = (Y1,Ys,...,Y,) C X" let Z(Y) be the even}\, ., Z(X,Yj, j) (whereY; is the;jth component
of Y). Observe that for anyandY C X we havePr[Z(X,Y,j)] = PVexn Y=y Pr[Z(Y)]. Therefore

S Byl = DD PrlZ(X.Y.5)] X!

7>1 J>1YCX
- XY pz
Jjzlycxn
= 2 PlE@N) X
Ycxn Jj=1
Now it is enough to show that for an¥y, X1,..., X, that may occur in the start-partition algorithrine(

Pr[Z(Y)] > 0, giventhaty; = X\Uj<; Xe) we haved 7" | Xfl < 1. This holds because foragy< ¢ < j < mwe
have thatBy, a,, (pr, €A/16) C Xy, andY NX,=0,ie. Bybdye (pi,€A/16) N By, ay, (pj, €A/16) = 0. Therefore

ZXJ-_I < |X|7lan,dj (pj, €A/16) < 1
j=1 j=1

Claim 9. For any clusterX C V, edgeu,v € X, (u,v) € E, subgraphy” ¢ X we have
Pri€(X,u,v) A =F(X,u) | 2G(X,u) A Z(X,Y,u)] < 12d(u,v) max{1,log x(X,Y,u)}/(e- A)

Proof. If d(u,v) > e- A/12 the the claim is trivial, so assume it is smaller. liet 1 be such that the next cone to
be cut isX; (the value ofj is not relevant, we fix it in order to simplify the notationpdarecall that fixingt” = Y;_;
determines deterministically;, z; andy;. Letp = p(Xo U Y,Y, 2, z;) be the appropriate cone metric ¥hby
which the next cone is cut.

Pri€(X,u,v) A =F(X,u) | Z2(X,Y,u)] Pri&; (X, u,v)
Pri&€;(X,u,v)
Pri&;(X,u,v)
Pr[Z(X,Y,u)

IAIA

pxj,u)/A & Sy AN Z(X, Y, u) N Z(X,Y)]
plzj,u)/A ¢ Sy AN Z(X,Y)]
(xjvu)/A ¢ SN(j) A Z(X7 Y)]

A=Fi(X,u) | Z(X,Y,u) A Z(X,Y)]
|
|
!

IN

p
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The first inequality holds since evefi{ X, Y, v) implies thatu € X; so the event§(X, u,v) and&; (X, u,v) are
equivalent (the same holds fetF (X, u)), and becaus€ (X,Y,u) C Z(X,Y). The second is by the definition of
F(X,u) (given thatu € X it cannot be thap(x;,u)/A falls in the intervalSy;)), and since for any events, B,
Pr[A A B] < Pr[A | B]. The third is by Bayes rule and sin€e(X, u,v) A Z(X,Y,u) = &;(X,u,v). Letl be such
thatp(z;,u)/A € S,.

First we bound the denominator, noting that there is no pmimrmation given about the distribution for the next
choice of radius. Sincé < N (j) we can boun®r[Z(X,Y,u) | p(z;,u)/A ¢ Sn) A Z(X,Y)] > 27, since with
this probability the radius for the con®€; will be chosen fromS,,, - A with m > ¢ so it will large enough to contain

u. The numeratoPr(&;(X, u,v) | p(z;,u)/A ¢ Sy A Z(X,Y)] can be bounded by - 3 - dA(]‘SZ‘) which is

the probability that we reach théeth interval, not continue to the next one (note that the m&etrval exists because
¢ < N(j)) and when choosing; uniformly from S, it happens to be the place that separates The probability

for the first event i€~ (-1, the second i$ /2, and the third is‘%. Since|S,| > min{1, ——1 - =< it follows that
o log x; 12

Pr(&; (X, u,v) | plzj,u)/A ¢ Sy A Z(X,Y)] < Bllewimaxillosxi} e conclude that

12d(u, v) max{1,log x; }

Pr[&(X, u,v) A ~F(X,u) | Z2(X,Y,u)] < A

O

Proof ofLemma 7 Fix anyi > 1 andX® = X () (u). As described before we partition the evéni (), u, v), given
a fixed clusterX () into the three cases.
Pr[&(X D, u,v)]
= PriE(XD u,0) A F(XD, u)] 4+ PriE(XD, u,0) A =F(XD, u)]
Pr&(XD u,v) A F(XD u)] 4+ PriE(X D, u,v) A GXD u)] + Pri&(X D, u,v) A ~F(XO u) A=G(XD u)]

The last equality holds since evehtX (), u) implies that-F (X ), ). We claim that the following hold:
PriE(X @D u,v) A F(XD,u) | XD < 48d(u,v)/(eA) 2)

Prl&(XD,u,v) AG(XD u) | XD < 5d(u,v)/(e) 3)
Pr[E(X(i), u, v) A ﬁ]:(X(i),u) A ﬁg(X(i),u) | X(i)] < 12d(u,v)/(eA) - Ey [max{1,log x(X, Y, u)}] (4)

(2) holds directly fromClaim 8 (3) since the radius of the central ball is chosen uniformlyrfrimterval of length
A/(16¢) > €A, and for the first cone from interval of length\ /4. (4) holds by usingClaim 9and writing
PriE(XD,u,0) A=F (XD u) A=G(X D u)] < By [Pr[g(X(i),u, V) A=F(XD u) [ ~G(X D u)

12d(u,v)
e-A

IN

EY,u[maX{la 10g X(Xa Y, u)}]
Combining these three equation yields that@o# 65
Pr[&(X W, u,v)] < C-d(u,v)/(eA) - By, [max{1,log x(X,Y,u)}] .

Recall that: = 20¢(In(1/¢) +5), andCorollary 3suggests that for any clust&rand anyj > 0 thatrad,, (X;) <
(1 —1/(20c))rad,, (X), hence for any event (%) given thatX () happened

rad(X R < (1 —1/(20¢))% - rad(X ) < e - rad(X ) /32,

thereforaliam (X (+#)) < erad(X (V) /16 and by definition: € X “+%) so fixing anyY” such that even (X ), Y, u)
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occurred then itY %) C Y also X %) C By 4, (u, ¢ - rad(X ) /16).

Ey,u[log X(X(Z)’ Y, U)] = 10g |X(l)| _ Equ[log |BY,dy (u’ €- rad(X(l))/16|]
< log| XD =By, | Y PrX0 [ Z(X Y u)] - log X T
X(G+k)CY
= log|X®| - Z PriX+0) | X D] 10g | X+
X+ CX ()
We conclude that
Exo [PF[E(X(Z'),U7U)] < Exo |log|X®| - Z Pr[X R | X@] . 1og | X 0]
X (i+k) C X (2)
= Exw[log|X®|] - ZPr [X @] Z Pr[X (5 | X O] . log | X (0|

X () X (itk) C X (4)

= Exo|log |X(i) ] = Exc+w log |X(i+k)|
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A Extending to Weighted Graphs

In order for our algorithm to work for general weighted grapive will make the following change: After choosing
the pointsz;, y; in the cone-cut algorithm, create an imaginary pgjfitwhich lies on the edgg;, z; such that
d(zo,y}) = rads,(Xo), then return the poing’. Note that then the inequalityid.., (Xo) + d(y}, ;) + rad., (X;) <

(1 + e)rad,, (X) will hold, which is the onIy place we used the unweighted proyof G. With a slight change to
the algorithm the number of imaginary points added is at ritesthumber of edges in the original gragh This is
because the point; is connected only tg; in the central ballX,, so if in the recursion depth when cutting a cluster

X, the edge is cut by the central ball), then the conéX, created will contain only one pointy; = 4, SO in such a

case it will hold thatad,,, (Xo) + d(y;, y %) +rady, (X¢) < (14 €)rad,, (X), and we will not add another imaginary
point.

The other change to the algorithm is contraction of smallesdépllowing [LO]. Let G = (V, E) be the original
graph of sizen. At every recursive step dfi er archi cal star partition fora clusterX with A = rad(X)
we contract all edges shorter thafA /n for a constant. Then these small edges will not be cut - it guarantees that
every edge is at risk in at moéi(log n) recursive steps. It remains to show that the radius doesngase - note
that adding back all these edges will increase the radius impatcA, and also note that our inductive proof actually
has a slack of’ A , i.e. if we need to bound(zo, z;) by i - A then we actually show thakt;(z,, z;) <i- A — A.
Now choosing: < ¢’ will guarantee that even after expanding back all the edgesomtracted the radius bound still
holds. The last issue is the choice of portals in the expagdegh. If2; is the super node in thgth portal (recall
thaty’; is an added imaginary point), we choasee «; which is connected to some vertexjnand also lies on the
shortest path fromy to z;.
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B Improving the stretch slightly

The factor ofcloglog i that was chosen as a bound on the radius increasermma 4was actually arbitrary. In fact
we can replace it with almost any other monotone increagingtfon ofi, the position in the queue. In order to
optimize (asymptotically) the stretch, we take a very slointreasing function of, using the following definitions:

Recall thatiog!® n = n and for any integet < ¢ < log* n, log® n = log (log(t’l) n) We uselog® n = min{t |

1<log®n < 2}. For any integet < ¢ <log*nlety;(n) = HZ:Q log® n, (whent = 1 let v1(n) =1).
The following two technical claims are provenAppendix C

Claim 10. Forany0 < a < 1,7 > 4 and integer < t < log* i,

log" (i) < log™ i + (log a) /¢ —1(i).
Claim 11. Foranya > 1,4 > 16 and integer2 < t < log™ 1,

log' (ai) < log™ i + (2loga)/logi.

The parameter that was a constant can now be arbitrary number2!8, i.e. it can be a function ofX |. We also
use a different value of = m for the star partition. Now the lemma that gives a tighterdmban the radius is

the following:

Lemma 12. Letl < ¢ < log” c be aninteger. LetX, d) be the metric derived from an unweighted graphk= (V, ),
v € X and@ = (z1,...,2x)—1) any ordering ofX \ {z,}, also letT" be the spanning tree @ returned by the

algorithmhi er ar chi cal - star-partiti on(X,x, Q) with parameter = ¢(X, ¢, t) = W(\XI)’ then
d(Io,Zi) i1=1
dr (o, 2;) < i - radz, (X) l<i<ec

c-log® i rady, (X) otherwise

Proof. The proof is by induction on the radius &f. Note thatCorollary 3guarantees that for afl = 0,...,m we
havel < rad,,(X;) < radg,(X).

Case 1. Thecase = 1 is identical toLemma 4

Case 2: The second case to consider is whHeq i < c.

1. First assume that; € Xy. Thenz; will be at mosti in the ordering on((Jba”) and hence at most in the
ordering ofQ,. By the induction hypothesis ol : dr(z0,2) < clog®(3i) - rad,, (Xo) < i - rady, (X),
using thatrad,, (Xo) < rad, (X)/(4c), and thatog™ (3i) < 2i.

2. Next assume thdtzy, ..., 2} € X1. Asy is the first inQo, by the induction hypothesis ok, and X; we
have thaﬂT(xo, yl) < dX (.”L'o,yl) < radwo (Xo) anddT(:vl,zi) <7q- radm] (Xl), SO

dr(xo,y1) + dr(y1, 1) + dr (21, 2:)

radg, (Xo) + i - rady, (X1) + d(y1, 21)

i(rady, (Xo) + d(y1,x1) + rad,, (X1)) — (i — 1)rad,, (Xo)
i(1 4 e)rady, (X) — (i — D)rad,, (X)/(16¢)

i - radg, (X) +1i-rady, (X)/(170c) — i - radg, (X)/(32¢)
i-rad,, (X).

dr (o, 2i)

(VAN VAN VAN VAN VARSI VAN

In the fourth inequality using thatd,,, (Xo) > rad,,(X)/(16¢), in the fifth thati /(i — 1) < 2.

17



3. Now assume that; € X; where notall ofzq, ..., z; are inX;. This case further subdivides to two main cases,
the second one divides to two subcases (this complicatisesasince: is not a constant anymore).

(a) If i < c/4: First note that; must be at most the— 1 element inQ;. By the insert sequence @9 we
have that; is at most thei < ¢ elementin?)y. Using the induction hypothesis oy and.X; we get that

dr(20,y;) + dr(y;, =) + dr(z;, 2)

i-rady, (Xo) + (i — 1) - rad, (X;) + d(y;, ;)

(i — 1)(rads, (Xo) + d(y;, x;) + rads, (X;)) + rads, (Xo)

(i = 1)(1 + )rady, (X) + rada, (X)/(8¢)

i - rady, (X) — rady, (X) 4+ (i — 1) - rady, (X)/(170¢) + rads, (X)/(8¢)
i-radg, (X).

dr (o, 2i)

(VAN VAN VAN VAN VARSI VAN

(b) Otherwise > ¢/4, then there are two cases:

o If |X;N{z,...,2}| < +ithenz; will be at most the/i in Q; andy; will be at most thesi in Q.
Note that forc > 100, v/i < /2, and alsdog'® (3i) < i for all ¢ > 1, hence

dr(wo, y;) + dr (y;, ;) + dr(;, z:)

clog(34) - rady, (Xo) + (i/2) - rad,, (X;) + d(y;, ;)
c-i-rady, (Xo) + (i/2) - rad,, (X)

i-radg, (X)/8 4 (i/2)rady, (X)

i - rad,, (X),

dr(zo, 2i)

VAN VAN VAN VAN VAN

using thatrad,, (Xo) < rad,,(X)/(8¢).

o If |X;N{z1,...,2} > ithenz; will be at most the-th in Q; and byClaim 5y; will be at most
thei%/1% in Q,. Note thati®/'* < i/2, then by the induction hypothesis

dr(zo,y;j) + dr(yj, ;) + dr(zj, 2)

(1/2) - rads, (Xo) + i - rad,, (X;) + d(y;, z;)

i - (radg, (Xo) + d(yj, x;) + rads, (X;)) — (i/2) - rady, (Xo)
i-rady, (X) +e-i-rad,, (X) —i-rad,, (X)/(32¢)

i-radg, (X),

dr(xo, 2;)

(VAN VAN VAN VAN VAN

using thatad,,(Xo) > rad,,(X)/(16¢).

Case 3: The third case when> c:

1. If z; € Xy then it will be at most in the ordering ofQ ) hence at mossi in the ordering ofQ. By the

induction hypothesis oX, we get that

(ball
0

dr(z0, 2) < clog'?(3i) - rada, (Xo) < 2¢log™® (i) - rady, (Xo) < clog® i - rad,, (X)),

using that fori > ¢, 3i < i2 hencelog™ (3i) < 21log'" i for all ¢.

2. The second case is whene X; such thatX; N {z,...,z}| < Vi, thenz; will be at most the/7 in Q;, and
y; will be at most the-th in Q*¥ and hence at most in the ordering ofQ,. By the induction hypothesis on
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Xo andXj, fort > 2:

dr (o, 2i)

[VARVAN

IN

INCIAIN TN

dr (w0, y;) + dr(y;, 75) + dr(z;, 2)
clog(t)(?)i) -rad,, (Xo) + clog(t)(ﬂ) -rad,, (X;) + d(y;, ;)
(1og(t) i+4/logi) - rady, (Xo) + c(log? i — 1/¢;_1(i)) - rad,; (X;) + d(y;, ;)
c(log i —1/1-1(i)) (rady, (Xo) + d(y;, ;) + rad,, (X;)) + ¢(4/ logi + 1/¢;1(i)) - rady, (Xo)
c(log i — 1/, 1(8)) (1 + €)rady, (X) + (1/(21ogi) + 1/ (811 (i) rady, (X)
X) + rady, (X) -log® i/ (170¢4(i)) — rad, (X)/pi-1(i) + 3rade, (X)/(4pr—1 (i)
)
)

clog(t)z rady, (
clog™® i - rads, (X) + rady, (X)/(1700;-1(1)) = rads, (X)/(4¢e-1(0))
(

+
+

clog 1 - radg, (X),

the third inequality usin@laim 10andClaim 11 The fifth inequality holds since for evesy> 1,logi > ¢ (i),
and sorad,, (X)/logi < rad,, (X)/¢i—1(i), and the sixth becauseg™ i /o, (i) = 1/¢i_1(i).

In a similar manner, it can shown that the same holds ferl.

3. The last case is wherg € X, such thaiX,; N {z1,...,2;}| > /i, thenz; will be at most the in Q; and by
Claim 5y; will be at most th(-:zg/10 in Q. Now by the induction hypothesis, for> 2

dr (o, zi)

< dr(xo,y;) +d(yj, x;) + dr(x;, z)

< clog® %10 rad,, (Xo) + clog'? i - rad, (X)) +d(y;, %))

< clog® i(rady, (Xo) + d(y;, z;) + rad; (X;)) + clog(9/10)/ps—1(7) - rade, (Xo)
< clog®i-rad,, (X) +e-clog®i-rad,, (X) — ¢ rady, (Xo)/ (1001 (i))

< clog®™ i rady, (X) + rady, (X) - log™ i/(1704(1)) — rada, (X)/(160p,1(i))
< clog®i-rady, (X)),

the third inequality usingclaim 1Q In a similar manner, it can shown that the same holds ferl.

O

Proof of Theorem 1 Takec = 2'81log™® n (recall thatt = (log*n)/2 and indeedt < log* ). Note thatl/e =
O(cypy(n)) and the parametér= O(clog(1/¢)) = O(clogloglogn). Theincrease in radiusiad(7) < O(c*rad(X)),
and plugging in these parameterd®&mma 7implies that the expected stretch for any edger) € FE is bounded by

ETNT [dT (u, ’U)]

< 0 (02 logn - k/e)
= O(c*logn -logloglogn - ¢:(n))

_ 0 <1Og<1> - Tog™ - log® n - 10g (%" /%) 1. (1ogl0os /) n)“ log® n)
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C Proof of some claims

Proof of Claim 10 We prove by induction on. The base case whete= 2 holds sincdoglog (i*) = log(alogi) =
loglog i + log a. Assume the claim holds féarand we prove fot + 1

log™™ (1) = log (1Og(t) (z’a))
< log (log i + (loga) /pr-11)
= log (10g( ) (1 + (log a)/(¢i—1(i) - log® )))
< log (10g( )i (210ga/wr(z)))
= 1Og(t+1)i+ (log a)/¢: ().

The first inequality uses the induction hypothesis, theitasfuality holds becaudega < 0, andl + x < 2% for
xr <0. O

Claim 13. Foranyc > 0,b > 2and0 <t <log*b
log® (b + ¢) < (log™ b) + .

Proof. By induction ont, for ¢ = 0 it holds since by definitioﬂbg(o)(b +¢) = b+c. Assume fort — 1 and prove for

log!™ (log(b - (1 + ¢/b)))
log®™Y (log b + (cloge)/b)
log®¥ b + (cloge) /b

log(t) b+ec.

log™ (b + ¢)

ININ A

We used the induction hypothesis in the second inequality. O

Proof of Claim 11

log® (ai) = Y (logi 4 loga)
= (10gl (1 + (loga)/log1))
< logz 6 (log a)/ log z)
= log( 2) (loglogi + (loga - loge)/log1)
< log®i+ (2loga)/logi.
The last inequality we us€laim 13with b = loglogi > loge. O
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