1. Let D be a set of disks in the plane. A subset D' of D is an independent set of D, if for any two disks $d_1, d_2 \in D'$, $d_1 \cap d_2 = \emptyset$. D' is a maximum independent set of D, if it is an independent set of D and if $|D'| \geq |D''|$ for any other independent set D'' of D.

Give a simple constant factor approximation algorithm for computing a maximum independent set of D.

2. Let D be a set of n disks of diameter 1 in the plane. Give a PTAS for computing a maximum independent set of D. (Use the shifting strategy.)

Hint: Draw a grid by drawing the horizontal line $y = i$ and the vertical line $x = i$, for each integer i. You may assume that none of the centers of the disks in D lies on a grid line. Fix an integer $k > 0$ (as a function of ε). For each pair of integers (i, j), such that $0 \leq i, j \leq k-1$, let $D_{i,j}$ be the subset of disks obtained by removing all disks that are intersected by a vertical line $x = l$, where $(l \mod k) = i$, or by a horizontal line $y = l$, where $(l \mod k) = j$. Prove that the independent set of at least one of these k^2 subsets is of size at least $(1 - \varepsilon)|OPT|$, and show how to compute it in polynomial time.

Submission: January 6, 2011