Homework assignment no. 4

1. Let S be a set of n (axis-aligned) squares in the plane. We wish to find a piercing set for S of minimum cardinality. That is, we wish to find a set of points P, such that (i) each square $s \in S$ is pierced by at least one point in P (i.e., $s \cap P \neq \emptyset$), and (ii) P is as small as possible (i.e., $|P| \leq|Q|$, for any other piercing set for S).

Alma suggested the following algorithm: Let Q be an initially empty set. As long as S is non-empty do the following: Let $s_{\min } \in S$ be the smallest square in S, add the 4 corners of $s_{\text {min }}$ to Q and remove $s_{\text {min }}$ and all the squares in S that intersect $s_{\text {min }}$ from S.
Prove that (i) The set Q returned by Alma's algorithm is a piercing set for S.
(ii) $|Q| \leq 4|P|$, where P is a minimum-cardinality piercing set for S.
2. Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a set of n axis-parallel squares in the plane, and put $U=\cup_{i=1}^{n} s_{i}$. Prove that the combinatorial complexity of the boundary of U is $O(n)$.
3. Definition: (i) A simple polygon P is star-shaped if there exists a point $c \in P$, such that for any point $p \in P$ the line segment $\overline{c p}$ is contained in P.
(ii) A simple polygon P is monotone if there exists a direction $\vec{d}, 0 \leq \vec{d}<180$, such that P is monotone with respect to \vec{d}. For example P is monotone with respect to $\overrightarrow{0}$ (or, P is x-monotone), if for any vertical line $l, l \cap P$ is either empty or connected.
(a) Give an example of a polygon P that is star-shaped but not monotone.
(b) Give an example of a polygon P that is monotone (and show a direction \vec{d} with respect to which it is monotone) but not star-shaped.
(c) Do examples for parts (a) and (b) exist if we require that P is rectilinear (i.e., all its edges are axis-parallel)?

Submission: January 26, 2017.

