Homework assignment no. 1

1. Let P be a set of n points in the plane. Construct a data structure of size $O(n)$ for answering in/out queries in $O(\log n)$ time. That is, given a query point q, determine in $O(\log n)$ time whether q lies in the convex hull of P.
2. Let C_{1} and C_{2} be two convex polygons with n_{1} and n_{2} vertices, respectively. (Each polygon is given by the sequence of its vertices in clockwise order.) Describe an $O(n)$-time algorithm for computing $C_{1} \cap C_{2}$, where $n=n_{1}+n_{2}$.
3. Prove that the problem of computing the convex hull of a set of n points in the plane has an $\Omega(n \log n)$ lower bound. Hint: Show that a set of n real numbers can be sorted in time $O(n)$, plus the time needed for a single convex hull computation.
4. A strip is a region of the plane that is defined by two parallel lines. Its width is the distance between the lines defining it. Let P be a set of n points in the plane. The width of P is the width of a minimum-width strip that contains P. Describe an $O(n \log n)$-time algorithm for computing the width of P. (Hint: Show that the width of P is determined by a pair of parallel lines supporting the convex hull of P, where at least one of them contains an edge of the convex hull.
5. Let S_{1} be a set of n disjoint horizontal segments, and let S_{2} be a set of n disjoint vertical segments. Describe an $O(n \log n)$-time algorithm for counting the number of intersections in $S_{1} \cup S_{2}$.
6. Let C be a set of n circles. We wish to determine whether the circles in C are pair-wise disjoint. How fast can this be done?

Submission: November 24, 2016.

