
Homework assignment no. 3

- 1. Let R be a set of n points in the plane, and let B be a set of n blue points in the plane. A line l is a separator for R and B if all points of R lie on one side of l and all points of B lie on the other side of l. Describe an algorithm for deciding in expected O(n) time whether there exists a separator for R and B.
- 2. Construct the search structure for the given scene, assuming s_i is inserted in the *i*'th iteration, i = 1, 2, 3, 4. Draw the structure after each insertion.

- 3. The Gabriel graph of a set \mathcal{P} of points in the plane consists of all edges pq, $p,q \in \mathcal{P}$, such that the circle with diameter pq does not contain any point of \mathcal{P} in its interior.
 - (a) Prove that the Delaunay triangulation of \mathcal{P} contains the Gabriel graph of \mathcal{P} .
 - (b) Prove that pq is an edge of the Gabriel graph if and only if pq intersects the Voronoi edge between Vor(p) and Vor(q).
 - (c) Show that the Gabriel graph can be computed in $O(n \log n)$ time.

Submission: January 19, 2016.