Definition: A simple polygon P is star-shaped if there exists a point $c \in P$, such that for any point $p \in P$ the line segment cp is contained in P. The point c is called a center point of P.

1. Let P be a star-shaped polygon, and let c be a center point of P. Show that, given a query point q, one can determine in $O(\log n)$ time whether q lies in P. Assume that P is given as an array of its n vertices in sorted order along the boundary.

2. Give an expected linear-time algorithm to decide whether a simple polygon is star-shaped.

3. On n parallel railway tracks n trains are moving with constant speeds v_1, \ldots, v_n. At time $t = 0$ the trains are at positions k_1, \ldots, k_n. Give an $O(n \log n)$ algorithm that detects all trains that at some moment in time are leading. (Hint: use the algorithm for computing the intersection of half-planes.)

4. Let P be a set of n points in the plane. Describe an $O(n \log n)$-time algorithm that finds for each point $p \in P$ the point in P that is closest to p.

5. The Gabriel graph of a set \mathcal{P} of points in the plane consists of all edges pq, $p, q \in \mathcal{P}$, such that the circle with diameter pq does not contain any point of \mathcal{P} in its interior.

 (a) Prove that the Delaunay triangulation of \mathcal{P} contains the Gabriel graph of \mathcal{P}.

 (b) Prove that pq is an edge of the Gabriel graph if and only if pq intersects the Voronoi edge between Vor (p) and Vor (q).

 (c) Show that the Gabriel graph can be computed in $O(n \log n)$ time.

6. Let $H = \{h_1, \ldots, h_n\}$ be a set of n lines in the plane. Assuming that there are no two lines in H that are parallel to each other, and there are no three lines in H that share a point, prove that the number of faces that are formed by the lines in H is

$$\frac{n^2}{2} + \frac{n}{2} + 1 .$$

7. Let R be a set of n points in the plane, and let B be a set of n blue points in the plane. A line l is a separator for R and B if all points of R lie on one side of l and all points of B lie on the other side of l. Describe an algorithm for deciding in expected $O(n)$ time whether there exists a separator for R and B.

Submission: January 4, 2010.