1. Draw a polygon P and place guards in it, such that the guards cover the boundary of P, but there exists a point in the interior of P that is not seen by any of the guards.

2. The **stabbing number** of a triangulated simple polygon P is the maximum number of diagonals intersected by any line segment contained in the interior of P. Describe an algorithm that computes a triangulation for a convex polygon that has stabbing number $O(\log n)$.

3. Let S be a set of n disjoint horizontal segments in the plane. Construct a data structure of size $O(n \log n)$ that supports **vertical ray shooting queries**. That is, construct a data structure that supports queries of the following form: Given a query point p and a direction up/down, find the segment in S which lies immediately above/below p (if there exists such a segment), that is, find the segment that is hit first by a vertical ray emanating from p and directed upwards/downwards. Analyze your solution in terms of preprocessing time, storage space, and query time. The desired bounds are $P(n) = O(n \log^2 n)$, $S(n) = O(n \log n)$, $Q(n) = O(\log^2 n)$.

4. Let $S = \{s_1, \ldots, s_n\}$ be a set of n axis-parallel squares in the plane, and put $U = \bigcup_{i=1}^{n} s_i$. Prove that the combinatorial complexity of the boundary of U is $O(n)$.

5. Let S be a set of n axis-parallel rectangles in the plane. We would like to be able to report all rectangles in S that are fully contained in a query axis-parallel rectangle. Describe a data structure of size $O(n \log^4 n)$ that supports such queries in time $O(\log^4 n + k)$, where k is the number of reported rectangles.

Submission: December 7, 2009.