1. a. Let P_1 and P_2 be two disjoint convex polygons with n vertices in total. Describe an $O(n)$ algorithm that computes the convex hull of $P_1 \cup P_2$.

b. Develop an $O(n \log n)$ algorithm for computing the convex hull of a set of n points in the plane that is based on the algorithm of the previous part.

2. Let l_1, \ldots, l_n be n given lines in the plane, no two parallel and no three meeting at a common point. Let S be the set of their $n(n - 1)/2$ intersection points. Give an algorithm for calculating the convex hull of S in time $O(n \log n)$ (in particular, you cannot afford to calculate the entire set S.) Prove your claims.

3. Let S_1 be a set of n disjoint horizontal segments, and let S_2 be a set of n disjoint vertical segments. Describe an $O(n \log n)$-time algorithm for counting the number of intersections in $S_1 \cup S_2$.

4. Draw a polygon P and place guards in it, such that the guards cover the boundary of P, but there exists a point in the interior of P that is not seen by any of the guards.

Submission: December 17, 2008.