1. A ball of radius R, made of material with the density ρ_{s}, is placed into a liquid of density ρ_{l}, $0<\rho_{s}<\rho_{l}$. We want to determine the depth h to which the ball is submerged.
Derive an equation $F(x, r)=0$ determining $x=h / R$ for a given density ratio $r=\rho_{s} / \rho_{l}$. Write an m-function $\mathrm{x}=\operatorname{depth}(\mathrm{r}, \mathrm{tol})$ that uses Newton method to find x satisfying this equation with a given tolerance, $|F(x, r)| \leq t o l$, for a given density ratio r. Explain your choice of the initial approximation x_{0}. Plot and attach to your report a graph $x=x(r)$ for $0 \leq r \leq 1$.
2. Suppose your computer forgot how to calculate logarithms, so you need to write your own function $\mathrm{y}=\mathrm{my}$ _log(x,abs_err) in Matlab to compute natural logarithms $y=\log (x)$ for $x>0$ with the absolute error not exceeding abs_err.
A possible algorithm is based on the Taylor expansion of logarithm,

$$
\log (1-z)=-z-\frac{z^{2}}{2}-\frac{z^{3}}{3}-\ldots
$$

The series converges only if $|z|<1$ and the convergence is very slow for z close to ± 1. We can circumvent these limitations as follows. Let the value of e be known. If $x>1$ we find the minimal integer m such that $x \leq e^{m}$ and use the equality $\log (x)=m+\log \left(x e^{-m}\right)$. Then $x e^{-m}=1-z$, where $0<z<1-1 / e \approx 0.63$, so the series converges quickly (you need to estimate the absolute error if only n first terms have been summed up). For $0<x<1$ we have $\log (x)=-\log (1 / x)$, so the same algorithm can be used.
You may use this algorithm or find a better way to compute logarithms (but do not use e^{x} or any other function which is as difficult to calculate as the logarithmic one).
3. Write an m-function secant that solves nonlinear equations by the secant method. Use this program and your function my_log to solve the equation $\log (x)=10$ with the absolute error Δx not exceeding 10^{-3}. Note that there are two sources of error: the \log values you get are not exact and the equation is solved numerically. In your written report explain how did you choose the values of the parameters abs_err in my_log and tol in secant (see program specification) to achieve the needed accuracy.
4. Thermistors are temperature-measuring devices based on the principle that the thermistor material exhibits a change in electrical resistance with a change in temperature. By measuring the resistance one can determine the temperature.
Steinhart-Hart equation for the 10K3A Betatherm thermistor is (A. Kaw)

$$
\begin{equation*}
\frac{1}{T}=a_{0}+a_{1} \log (R)+a_{2} \log ^{3}(R) \tag{1}
\end{equation*}
$$

where T is in Kelvin, R is in Ohms, $a_{0}=1.129241 \times 10^{-3}$, $a_{1}=2.341077 \times 10^{-3}, a_{2}=8.775468 \times$ 10^{-8}.
Suppose that $R \in[1,5]$ and is measured with the relative error $\delta(R) \leq 1 . e-3$. To calculate $\log (R)$ you use your program my_log. Is it possible to calculate T with the absolute error $\Delta T \leq 2^{\circ} K$? If possible, what is the maximal absolute error of $\log (R)$ calculation that can be specified in my_log? Explain.

Attention: You are given specifications for each of the programs to be submitted. We expect you to copy and use these spec files.

