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" the maximal degree of smoothness, are called splinés and we shall now
_describe them formally. .
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3.8 SPLINE INTERPOLATION
As mentioned in Sec. 3.4, it is possible that a sequence of interpolation
polynomials {p (x)} over a fixed finite interval need not converge even to a
smooth function. And if we investigate the behavior of these polynomials
between the interpolation points we find that in many cases the polynomials
oscillate quite violently while the function varies smoothly. And the higher
the degree of the polynomial, the worse the situation begomes. A way to
overcome this problem is by using piecewise low-order interpolating poly-
nomials on subintervals of the given interval. With them, the oscillation
between points is not significant, so that they can imitate the behavior of the
function. However, the resulting function pieced together from the indivi-
dual low-order polynomials may not be smooth, Since we wish to imitate the
behavior of smooth furictions, a requirement for these piecewise functions is

.that the resulting function pieced together be smooth. Such functions, with

Let the interval I = [a, b] be divided into n — 1 subintervals a=a, <
Gy <*'* < Gy-y < 4, = b not necessarily of equal length. A spline 8(x) of
degree m is a function defined on I which; | . o
1. Coincides. with a polynomial of degree m on each subinterval I =
[ai-na)i=2 .0 0 . .' .
2. Has continuous derivatives up to order m —1. -

The abscissas {a,} are called the nodes or knots of the spline. A spline S(x) is
said to interpolate to the data points (g;, y,) if S{a) =y, i=1,...,n

The word spline derives from the instrument often used by draftsmen in
fairing & curve through data points, The simplest spline, that of degree 1,isa
piecewise linear function which is not very smooth but very useful if the
spacing between nodes is small. In fact; every table of functional values in
which linear interpolation is used leads to an approximation of the underly-
ing function by a linear spline. Splines of degree 2.can be defined, but since
there is only one degree of freedom in their definition, there is a lack of

symmetry in their determination with-relation to the endpoints of the inter-.

val. Furthermoré, the resulting functions are not sufficiently smooth. Thus




e
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the most prevalent spline in use is the cobic spline, which involves two
parameters chosen to reflect the behavior at the endpoints of the interval,
Onc type of end condition is that $*(a) = S"(b) = 0. The cubic spline which
satisfies these conditions is called the natural cubic spline. A second condi-
tion, which generally yields better results, is

S@)=f(a) Sb)=,0)

‘This, of course, requires kriowledge of the derivative at the endpoints.

Since we shall subsequently be dealing exclusively with cubic interpola-
tory splines, we shall drop the adjectives and simply write spline. One of
several representations of splines can be derived as follows. Set

h;=a,—a,_ i=2,3 YR (3.8'1)

Since S(x} is piecewise cubic, §'(x) is piecewise quadratic and S"(x) is piece-
wise linear and continuous. Hence, we can write

S)y=M 3= X I8t oy (3.8-2)
hy by
for certain constants M,, where in fact
' Sa)=M, i=12..,n (38-3)

_Integrating (3.8-2) twice and writing the arbitrary linear function in the form

indicated, we obtain

S(x)=Ml—lM +M,w

6’!1 6h‘ + C[(ﬂ[ = x) + dl(x - ai-l)

- (3.84)
on I;. Since we wish the spline to interpolate at the knots, we have that
S(a;-,) = y;—, and 8(g;) = y,. This determines the ¢, and d;, yielding

- {a, — x) (x —a-,)
S(x) = Ml-——l _6]1'- + Ml Gh‘

M_ h}\a -
+(J.-’:-1— 161 I)alh.x

M\ x — a,-
+ (y. - ——-é—i) 5T‘:'—‘ (3.8-5)

on I,. Differentiating (3.8-5), we obtain

it (@ — x)* =a-1)* p=y-1 M-—-M_,
S) = Moy == A M = T — b
(3.8-6)
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on J,. We note the particular values

Sr( ) _Mi .|+th£ Yi hyi 1
1
(38-7)

~ h h
S{at) = —%M, IgIM'+l J’t«;!:ﬂ H

Since $'(x) is required to be continuous, these two values must be equal;
this yields the equations

hy b+ Ry q By Y1 =0 Vi~ B
6Mi 1t — 3 M, + 3 — M= iy Iy

i=23..,n-1

(38-8)

These form a set of #n — 2 linear equations in M,, ..., M, so that two more
conditions must be added. Once the M’s are determined, the interpolation
spline is completely determined through (3.8- 5) We shall abbreviate
Egs. (3.8-8) by setting

o =Yl 223 n : B

hy
hl"‘l o 6(“""] — al) .
s oo+ e L_.hl__}__h‘;i e BIE1 TN ! hy 4 by
i=23,.., -1 (38-9)

We then get ihe set of equations
UMy 4+ 2M 4 AM =d,  i=2,3,..,n~1 (38-10)

‘We shall write the two additional conditions in the form
WM+ W My=d, M,y +2M, =d, (3.8-11)

and indicate below several possible choices of the constants A, dy, y,, d,.
The combined system now becomes

[2 4, O 17 M, ] {'d,'
B2 2 4y O M, A3
0 puy 2 _ _ M, dy
: : = : (3.8-12)
2 ’ln—l 0 M-, d--z
O tam1 2 Ag) [ Mamn du-y
O mo2)lM ] 4]

with a tridiagonal matrix.
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1. If one selects A, = d; = p, = d, =0, then M, = M, = 0. This yields the
natural spline as defined above.
2. Using the second endpoint condition proposed above

S'(d)‘= .V': S’(b) = y'n (38-13)
we obtain L=1=p, d= E(J’_____z ik L }"1)
. CARL *
_ 6 Yn— Yn-1 &
hor ( y- 22 ._) (3.8-14)

3. A third possibility is to choose ay, i = 2,... 1 — 1, as the spline nodes, ie.,
not require the endpoints to be nodes, and to impose the conditions

S(ay) = y, and S(a,) = -

In this case, the index i in (3.8-10) runs from 3 to n—2, and the two
additional conditions are similar in form to those of (3.8-11). The values of
4, and d, can readily be evaluated by letting x = a, in (3.8-5) and setting
S(a,) = y1. Similarly, by setting x = a,, we can find the values of 4,.., and
d, ; {30). This scheme, which does not require any additional information,
appears to be better than choice 1 for the average function that comes up in

" practics since the-second derivative does not generally vanish at the end-

points of the interval.
From (3.8-9) wesee that 0 < J; < land 0 < gy < ffori=2,....,n— 1

If, therefore, |4;] <2, | Hn] <2, the matrix in (3.8-12) will be diagonally
dominant. In this case, it can be shown (see Sec. 9.1) that unique solutions to
(3.8-12) will exist for arbitrary d,, ..., d,. Thus, in cases i and 2, we are
assured of the existence of the spline. Similarly, in case 3, a solution always
exists {30}. .

* Splines have the following important properties which can be readily
proved {31, 32}, :

1. Given data points (@, yi) i=1, ..., B- Of all the functions f(x) with
continuous second derivatives which interpolate to these data the spline
S{x) which also satisfies §"(a) = §°(b) = O uniquely minimizes the integral

,

E(g) = [ [g"(0)* dx (38-15)
a

Similarly, of all the functions f(x) with continuous second derivatives

which interpolate to these data and satisfy £(a) = ¥.f'(b) = y, the spline

S(x) which also satisfies (3.8-13}) uniquely minimizes (3.8-15).

INTERPOLATION 77

2. If we define h = max, h; and let S(x) be the '_namral spline interpolating

{ lE:ac) at g, i =1, ..., n, where f(x) has a continuous second derivative,
en

max | S (x) — S(x)| < H[RE({f)}}* (3.8-16)

max | (x) ~ S(x)| < [hE()]

max. (3.8-17) ‘
A simitar theorem holds for the spline S(x) satisfying S'(a) =f"

, ; _ ying S'(a) =

SO -1, a=r
A stronger, albeit only asymptotic, result states that iff(x) has a contin-

u':)us fourth derivative, and if max, (h/h)) < f < oo as A— 0 for a fixéd f
then : .

max | f®(x) - S¥(x)] = O(h*~*)

asxsk

k=012  (3818) -

Example 3.8 Determine the natural cubic spline S(x n;h'ch' t
e e pl (x) which interpolates to the values of y,

a =25 30 I 39 | 45 | 5

- gres00— 5477 6245 —| 6708 —| ~72g0— - o

We have that k, = .05, hy = .09, h, = 06, ks = 08, so that using (3.8-9) leads to

L= famts Ah=f m=d L=% p=9
oy =98540 gy =853 o, =77 o, 7150
dym —43157 dy= —32640 d, =24300
Inserting these values into (3.8-10), we get
M, +2M, + M, o 43157
Mz + M, + M, = ~3,2640

WMy + 2M, + 4M, = —24300

Since we wish to find a netural apline, we have that M, = M
. oe - = 0, 30 that we are left
with a tridiagonal system of three equations. Solving this s :tem bs i i
. the al h
Sec. 9.11 [ef. {9.11-8) to (9.11-10}], we find that ! ythe slgorithm gven

M= —18806 M,m —3226 M,w= —10261




