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Abstract. We propose what appears to be the first anomaly detection framework that
learns from positive examples only and is sensitive to substantial differences in the presen-
tation and penalization of normal vs. anomalous points. Our framework introduces a novel
type of asymmetry between how false alarms (misclassifications of a normal instance as an
anomaly) and missed anomalies (misclassifications of an anomaly as normal) are penalized:
whereas each false alarm incurs a unit cost, our model assumes that a high global cost is
incurred if one or more anomalies are missed.
We define a few natural notions of risk along with efficient minimization algorithms. Our
framework is applicable to any metric space with a finite doubling dimension. We make
minimalistic assumptions that naturally generalize notions such as margin in Euclidean
spaces. We provide a theoretical analysis of the risk and show that under mild conditions,
our classifier is asymptotically consistent. The learning algorithms we propose are compu-
tationally and statistically efficient and admit a further tradeoff between running time and
precision. Some experimental results on real-world data are provided.

1 Introduction

Cost-sensitive learning [10, 38] is an active research area in machine learning. In this framework,
different costs are associated with different types of misclassification errors. In general, these
costs differ for different types of misclassification. Classifiers are then optimized to minimize
the expected cost incurred due to their errors. This is in contrast with cost-insensitive learning,
where classification algorithms are optimized to minimize their error rate — the expected frac-
tion of misclassified instances, thus implicitly making the (often unrealistic) assumption that all
misclassification errors have the same cost.

Cost-sensitive classification is often useful for binary classification, when the datasets under
consideration are highly imbalanced and consist mostly of normal instances and with only a
small fraction of anomalous ones [19, 23]. Since the terms “false positive” and “false negative”
are confusing in the context of anomaly detection, we call a normal instance misclassified as an
anomaly a false alarm and an anomaly misclassified as normal a missed anomaly. Typically, the
cost of a missed anomaly is much higher than that of a false alarm.

We consider a cost-sensitive classification framework, in which learning is based on normal
instances only and anomalies are never observed during training. Our framework introduces a
novel type of asymmetry between how false alarms and missed anomalies are penalized: whereas
each false alarm incurs a unit cost, our model assumes that a high global cost is incurred if one
or more anomalies are missed.



As a motivating example for our framework, consider a warehouse equipped with a fire alarm
system. Each false fire alarm automatically triggers a call to the fire department and incurs a
unit cost. On the other hand, any nonzero number of missed anomalies (corresponding to one or
more fires breaking out in the warehouse) cause a a single “catastrophic” cost corresponding to
the warehouse burning down one or more times (only the first time “matters”).

We define a natural notion of risk and show how to minimize it under various assumptions.
Our framework is applicable to any metric space with a finite doubling dimension. We make
minimalistic assumptions that naturally generalize notions such as margin in Euclidean spaces.
We provide a theoretical analysis of the risk and show that under mild conditions, our classifier is
asymptotically consistent. The learning algorithms we propose are efficient and admit a further
tradeoff between running time and precision — for example, using the techniques of [15] to
efficiently estimate the doubling dimension and the spanner-based approach described in [14] to
quickly compute approximate nearest neighbors. Some experimental results on real-world data
are provided.

Related work The majority of published cost-sensitive classification algorithms assume the
availability of supervised training data, were all instances are labeled (e.g. [9, 12, 24, 32, 35, 38,
39]).

Some work considers semi-supervised cost-sensitive classification. Qin et al. [29] present cost-
sensitive classifiers for training data that consists of a relatively small number of labeled instances
and a large number of unlabeled instances. Their implementations are based on the expectation
maximization (EM) algorithm [8] as a base semi-supervised classifier. Bennett et al. [4] present
ASSEMBLE, an adaptive semi-supervised ensemble scheme that can be used to to make any cost-
sensitive classifier semi-supervised. Li et al. [22] recently proposed CS4VM - a semi-supervised
cost-sensitive support vector machine classifier. Other cost-sensitive semi-supervised work in-
volves attempts to refine the model using human feedback (see, e.g., [16, 25, 27]).

Our framework falls within the realm of one-class classification [34] since learning is done
based on normal instances only. Crammer and Chechik [7] consider the one-class classification
problem of identifying a small and coherent subset of data points by finding a ball with a small
radius that covers as many data points as possible. Whereas previous approaches to this problem
used a cost function that is constant within the ball and grows linearly outside of it [3, 30, 33],
the approach taken by [34] employs a cost function that grows linearly within the ball but is kept
constant outside of it. Other papers employing the one-class SVM technique include [18, 26]. Also
relevant is the approach of [31] for estimating the support of a distribution — although in this
paper, the existence of a kernel is assumed, which is a much stronger assumption than that of a
metric.

Definitions and notation We use standard notation and definitions throughout. A metric d on
a set X is a positive symmetric function satisfying the triangle inequality d(x, y) ≤ d(x, z)+d(z, y);
together the two comprise the metric space (X , d). The diameter of a set A ⊆ X is defined by
diam(A) = supx,y∈A d(x, y). In this paper, we always denote diam(X ) by ∆. For any two subsets
A, B ⊂ X , their “nearest point” distance d(A, B) is defined by d(A, B) = infx∈A,y∈B d(A, B).
The Lipschitz constant of a function f : X → R is defined to be the smallest L > 0 that
makes |f(x) − f(y)| ≤ Ld(x, y) hold for all x, y ∈ X . For a metric space (X, d), let λ be the
smallest number such that every ball in X can be covered by λ balls of half the radius. The



doubling dimension of X is ddim(X ) = log2 λ. A metric is doubling when its doubling dimension is
bounded. Note that while a low Euclidean dimension implies a low doubling dimension (Euclidean
metrics of dimension k have doubling dimension O(k) [17]), low doubling dimension is strictly
more general than low Euclidean dimension.

Throughout the paper we write 1{·} to represent the 0-1 truth value of the subscripted
predicate.

Paper outline The rest of this paper is organized as follows. In Section 2 we present our
theoretical results: first, for the idealized case where the data is well-separated by a known
distance, and then for various relaxations of this demand. Some experimental results are provided
in Section 3. We close with a discussion and ideas for future work in Section 4.

2 Theoretical results

2.1 Preliminaries

We define the following model of learning from positive examples only. The metric space (X , d)
is partitioned into two disjoint sets, X = X+ ∪ X−, where X+ are the “normal” points and X−

are the “anomalous” ones. The normal set X+ is endowed with some (unknown) probability
distribution P and the training phase consists of the learner being shown n iid draws of Xi ∈ X+

according to P . In the testing phase, the learner is asked to classify a new X ∈ X as normal or
anomalous. By assumption, normal test points are drawn from P , but no assumption is made on
the distribution of anomalous test points.

Further structural assumptions are needed to make the problem statement non-trivial. By
analogy with common separability assumptions in supervised learning by hyperplanes, we make
the following assumption:

d(X+,X−) ≡ inf
x∈X+,y∈X−

d(x, y) > γ (1)

for some separation distance γ > 0.
We distinguish the two types of classification error: when a normal point is wrongly labeled

as an anomaly, we call this a false alarm, and when an anomaly is wrongly classified as normal,
we call this an missed anomaly.

2.2 Known separation distance

When the separation distance γ is known, we propose a simple classification rule f : X → {−1, 1}
as follows: given a sample S ⊂ X+, classify a new point x as normal (corresponding to f(x) = 1)
if d(x, S) ≤ γ and as anomalous (f(x) = −1) if d(x, S) > γ. Our assumption (1) implies that f
will never make a missed anomaly error, and we can use the techniques of [14] to bound the false
alarm rate of this classifier. Define the false alarm rate of f by

FA(f) =

∫

X+

1{f(x)<0}dP (x). (2)



Theorem 1. Given a training set S = {X1, . . . , Xn} drawn from X+ iid under the distribution
P , define the proximity classifier fn,γ as above:

fn,γ(x) = 1{d(x,S)≤γ} − 1{d(x,S)>γ}. (3)

Then, with probability at least 1 − δ, this classifier achieves a false alarm rate that satisfies

FA(fn,γ) ≤
2 (D log2(34en/D) log2(578n) + log2(4/δ))

n
, (4)

where

D = ⌈8∆/γ⌉
ddim(X )+1

(5)

and ddim(X ) is the doubling dimension of X .

Proof. Consider the function h : X → [−1, 1] satisfying

(i) h(x) ≥ 1 for all x ∈ S
(ii) h(x) < 0 for all x with d(x, S) > γ
(iii) h has the smallest Lipschitz constant among all the functions satisfying (i) and (ii).

It is shown in [14, 36] that h (a) has Lipschitz constant 1/γ and (b) the function x 7→ sgnh(x) is
realized by fn,γ defined in (3). Corollary 3 in [14] shows that the collection of real-valued 1/γ-
Lipschitz functions defined on a metric space X with doubling dimension ddim(X ) and diameter
∆ has a fat-shattering dimension at scale 1/16 of at most (8∆/γ)ddim(X )+1. The claim follows
from known generalization bounds for function classes with a finite fat-shattering dimension (e.g.,
Theorem 1.5 in [2]). ⊓⊔

Remark 1. Note that the approach via Rademacher averages in general yields tighter bounds
than those obtained from fat-shattering bounds; see [36].

In the sequel, we will find it useful to restate the estimate in Theorem 1 in the following
equivalent form.

Corollary 1. Let fn,γ be the proximity classifier defined in Theorem 1, based on a sample of
size n. Then, for all 0 ≤ t ≤ 1, we have

P (FA(fn,γ) > t) ≤ exp((An,γ − t)/Bn)

where
An,γ = (2Dγ log2(34en/Dγ) log2(578n) + 2 log2 4) /n

and
Bn = 2/(n ln 2)

and D = Dγ is defined in (5).

Proof. An equivalent way of stating (4) is that

FA(fn,γ) > An,γ − Bn ln δ

holds with probability less than δ. Putting t = An,γ − Bn ln δ and solving for δ yields the claim.
⊓⊔



2.3 Definition of risk

We define risk in a nonstandard way, but one that is suitable for our particular problem setting.
Because of our sampling assumptions — namely, that the distribution is only defined over X+ —
there is a fundamental asymmetry between the false alarm and missed anomaly errors. A false
alarm is a well-defined random event with a probability that we are able to control increasingly
well with growing sample size. Thus, any classifier f has an associated false alarm rate FA(f)
defined in (2). Since fn,γ itself is random (being determined by the random sample), FA(fn,γ) is
a random variable and it makes sense to speak of E[FA(fn,γ)] — the expected false alarm rate.

A missed anomaly is not a well-defined random event, since we have not defined any dis-
tribution over X−. Instead, we can speak of conditions ensuring that no missed anomaly will
ever occur; the assumption of a separation distance is one such condition. If there is uncertainty
regarding the separation distance γ, we might be able to describe the latter via a distribution
G(·) on (0,∞), which is either assumed as a prior or somehow estimated empirically.

Having equipped γ with a distribution, our expression for the risk at a given value of γ0

becomes

Risk(γ0) =

∫ ∞

γ0

E[FA(fn,γ)]dG(γ) + C

∫ γ0

0

dG(γ)

which reflects our modeling assumption that we pay a unit cost for each false alarm and a large
“catastrophic” cost C for any nonzero number of missed anomalies.

2.4 Classification rule

As before, we assume a unit cost incurred for each false alarm and a cost C for any positive
missed anomalies. Let An,γ and Bn be as defined in Corollary 1 and assume in what follows that
n is sufficiently large so that An,γ < 1 (the bounds are vacuous for smaller values of n).

When γ is known, the only contribution to the risk is from false alarms, and it decays to zero
at a rate that we are able to control.

Theorem 2. Suppose the separation distance γ is known. Let fn,γ be the proximity classifier
defined in Theorem 1, based on a sample of size n. Then

Risk(γ) ≤ (An,γ + Bn)

where An,γ and Bn are as defined in Corollary 1 and n is assumed large enough so that An,γ < 1.

Proof. We compute

Risk(γ) = E[FA(fn,γ)]

=

∫ ∞

0

P (FA(fn,γ) > t)dt

≤

∫ 1

0

min {1, exp((An,γ − t)/Bn)} dt

=

[

∫ An,γ

0

dt +

∫ 1

An,γ

exp((An,γ − t)/Bn)dt

]

= [An,γ + Bn − Bne(An,γ−1)/Bn ]

≤ (An,γ + Bn),



where the first inequality is an application of Corollary 1. ⊓⊔

When the exact value of the separation distance γ is unknown, we consider the scenario where
our uncertainty regarding γ is captured by some known distribution G (which might be assumed
a priori or estimated empirically).

In this case, the risk associated with a given value of γ0 is:

Risk(γ0) =

∫ ∞

γ0

E[FA(fn,γ)]dG(γ)γ + C

∫ γ0

0

dG(γ)

≤

∫ ∞

γ0

(An,γ + Bn)dG(γ) + C

∫ γ0

0

dG(γ)

=: Rn(γ0),

where the inequality follows immediately from Theorem 2.
Our analysis implies the following classification rule: compute the minimizer γ∗ of Rn(·) and

use the classifier fn,γ∗ . As a sanity check, notice that An,γ grows inversely with γ (at a rate
proportional to 1/γddim(X )+1), so γ∗ will not be arbitrarily small. Note also that Rn(γ0) → 0 as
n → ∞ for any fixed γ0.

2.5 No explicit prior on γ

Instead of assuming a distribution on γ, we can make a weaker assumption. In any discrete metric
space (S, d), define the quantity we call isolation distance

ρ = sup
x∈S

d(x,S \ {x});

this is the maximal distance from any point in S to its nearest neighbor. Our additional assump-
tion will be that ρ < γ (in words: the isolation distance is less than the separation distance).
This means that we can take ρ — a quantity we can estimate empirically — as a proxy for γ.

We estimate ρ = ρ(X+, d) as follows. Given the finite sample X1, . . . , Xn drawn iid from X+,
define

ρ̂n = max
i∈[n]

min
j 6=i

d(Xi, Xj). (6)

It is obvious that ρ̂n ≤ ρ and for countable X , it is easy to see that ρ̂n → ρ almost surely. The
convergence rate, however, may be arbitrarily slow, as it depends on the (possibly adversarial)
sampling distribution P .

To obtain a distribution-free bound, we will need some additional notions. For x ∈ X , define
Bǫ(x) to be the ǫ-ball about x:

Bǫ(x) = {y ∈ X : d(x, y) ≤ ǫ} .

For S ⊂ X , define its ǫ-envelope, Sǫ, to be

Sǫ =
⋃

x∈S

Bǫ(x).



For ǫ > 0, define the ǫ-covering number, N(ǫ), of X as the minimal cardinality of a set E ⊂ X
such that X = Eǫ. Following [5], we define the ǫ-unseen mass of the sample S = {X1, . . . , Xn}
as the random variable

Un(ǫ) = P (X+ \ Sǫ). (7)

It is shown in [5] that the expected ǫ-unseen mass may be estimated in terms of the ǫ-covering
numbers, uniformly over all distributions.

Theorem 3 ([5]). Let X be a metric space equipped with some probability distribution and let
Un(ǫ) be the ǫ-unseen mass random variable defined in (7). Then for all sampling distributions
we have

E[Un(ǫ)] ≤
N(ǫ)

en
,

where N(ǫ) is the ǫ-covering number of X .

Corollary 2. Let Un(ǫ) be the ǫ-unseen mass random variable defined in (7). Then

E[Un(ǫ)] ≤
1

en

(

∆

ǫ

)ddim(X )+2

.

Proof. For doubling spaces, it is an immediate consequence of [21] and [1, Lemma 2.6] that

N(ǫ) ≤

⌈

∆

ǫ

⌉ddim(X )+1

≤

(

∆

ǫ

)ddim(X )+2

.

Substituting the latter estimate into Theorem 3 yields the claim. ⊓⊔

Our final observation is that for any sample X1, . . . , Xn achieving an ǫ-net, the corresponding
ρ̂n satisfies

ρ̂n ≤ ρ ≤ ρ̂n + 2ǫ.

We are now in a position to write down an expression for the risk. The false-alarm component
is straightforward: taking γ̂ = ρ̂n + 2ǫ, the only way a new point X could be misclassified as a
false alarm is if it falls outside of the ǫ-envelope of the observed sample. Thus, this component
of the risk may be bounded by

1

en

(

∆

ǫ

)ddim(X )+2

.

On the other hand a missed anomaly can only occur if γ̂ > γ. Unfortunately, even though
γ̂ = ρ̂n + 2ǫ is a well-defined random variable, we cannot give a non-trivial bound on P (γ̂ > γ)
since we know nothing about how close ρ is to γ. Therefore, we resort to a “flat prior” heuristic
(corresponding roughly to the assumption Pr[ρ + t∆ > γ] ≈ t), resulting in the missed-anomaly
risk term of the form

2Cǫ

∆
. (8)

Combining the two terms, we have

Rn(ǫ) =
1

en

(

∆

ǫ

)ddim(X )+2

+
2Cǫ

∆



which is minimized at

ǫn =
∆ddim(X )+3

2Cen
.

Note that as n → ∞, we have ǫn → 0 and Rn(ǫn) → 0, implying an asymptotic consistency of the
classifier fn,ρ̂n+2ǫn

for this type of risk. Observe also that analogous asymptotically consistent
estimators are straightforward to derive for risk bounded by

Rn(ǫ) =
1

en

(

∆

ǫ

)ddim(X )+2

+
2Cǫa

∆

for any a > 0.

Fig. 1. A schematic presentation of the various quantities defined in Section 2.5. In the left diagram, ǫ

is too small, resulting in false alarms. On the right, a too-large value of ǫ leads to missed attacks.

3 Experiments

3.1 Methodology

We experimented with several datasets, both synthetic and real-world. The Euclidean metric
d(x, x′) = ‖x − x′‖ =

√
∑

(xi − x′
i)

2 was used in each case. For each dataset, a false alarm incurs
a unit cost and any number of missed anomalies incurs a catastrophic cost C. The value of C is
strongly tied to the particular task at hand. In order to obtain a rough estimate in the case of
an attack on a computer network, we consulted various figures on the damage caused by such
events [13, 37] and came up with the rough estimate of 300, 000 for C; this was the value we used
in all the experiments. The diameter ∆ is estimated as the largest distance between any two
sample points and the doubling dimension ddim(X ) is efficiently approximated from the sample



via the techniques of [15]. The figures presented are the averages over 10 trials, where the data
was randomly split into training and test sets in each trial.

Before we list the classifiers that were tested, a comment is in order. For a fair comparison
to our proposed method, we need a classifier that is both (i) cost-sensitive and (ii) able to learn
from positive examples only. Since we were not able to locate such a classifier in the literature,
we resorted to adapting existing techniques to this task. The following classifiers were trained
and tested on each dataset:

• Asymmetric Anomaly Detector (AAD) is the classifier fn,ρ̂n+2ǫn
proposed in Section 2.5 of

this paper.
• Peer Group Analysis (PGA) is an unsupervised anomaly detection method proposed by Eskin

et al. [11] that identifies the low density regions using nearest neighbors. An anomaly score
is computed at a point x as a function of the distances from x to its k nearest neighbors.
Although PGA is actually a ranking technique applied to a clustering problem, we imple-
mented it as a one-class classifier with k = 1. Given the training sample S, a test point x is
classified as follows. For each xi ∈ S, we pre-compute the distance to xi’s nearest neighbor in
S, given by di = d(xi, S \ {xi}). To classify x, the distance to the nearest neighbor of x in S,
dx = d(x, S) is computed. The test point x is classified as an anomaly if dx = d(x, S) appears
in a percentile α or higher among the {di}; otherwise it is classified as normal. We set the
parameter α = 0.01 (obviously, it should depend on the value of C but the dependence is not
at all clear).

• Global Density Estimation (GDE), proposed by [20] is also an unsupervised density-estimation
technique using nearest neighbors. Given a training sample S and a real value r, one com-
putes the anomaly score of a test point x by comparing the number of training points falling
within the r-ball Br(x) about x to the average of |Br(xi)∩S| over all xi ∈ S. We set r to be
twice the sample average of d(xi, S \ {xi}) to ensure that the average number of neighbors is
at least one. In order to convert GDE into a classifier, we needed a heuristic for thresholding
anomaly scores. We chose the following one, as it seemed to achieve a low classification error
on the data: x is classified as normal if exp(−((Nr(x) − N̄r)/σr) > 1/2, where Nr is the
number of r-neighbors of x in S, N̄r is the average number of r-neighbors over the training
points, and σr is the sample standard deviation of the number of r-neighbors.

Each classifier is evaluated based on the cost that it incurred on unseen data: c units were
charged for each false alarm and an additional cost of C for one or more missed anomalies. As
an additional datum, we also record the cost-insensitive classification error.

3.2 Data sets

We tested the classifiers on the following three data sets.

2D-Single-Cluster. This is a two-dimensional synthetic data set. As shown in Figure 2, the normal
data points are concentrated along a thin, elongated cluster in the middle of a square, with the
anomalies spread out uniformly. A total of 363 points were generated, of which 300 were normal
with 63 anomalies. For the normal points, the x-coordinate was generated uniformly at random
and the y-coordinate was a function of x perturbed by noise. A positive separation distance was
enforced during the generation process.



Fig. 2. The 2D-Single-Cluster dataset.

9D-Sphere. This is a 9-dimensional synthetic data set containing 550 instances. The coordinates
are drawn independently from mean-zero, variance-35 Gaussians. Points with Euclidean norm
under 90 were labeled as “normal” and those whose norm exceeded 141 were labeled “anomalies”.
Points whose norm fell between these values were discarded, so as to maintain a strong separation
distance.

BGU ARP. The abbreviation ARP stands for “Address Resolution Protocol”, see [28]. This is
a dataset of actual ARP attacks, recorded on the Ben-Gurion University network. The dataset
contains 9039 instances and 23 attributes extracted from layer-2 (link-layer) frames. Each instance
in the dataset represents a single ARP packet that was sent through the network during the
recording time. There were 173 active computers on the network, of which 27 were attacked. The
attacker temporarily steals the IPv4 addresses of its victims and as a result, the victim’s entire
traffic is redirected to the attacker, without the victim’s knowledge or consent. Our training data
had an anomaly (attack) rate of 3.3%. The training instances were presented in xml format and
their numerical fields induced a Euclidean vector representation.

3.3 Results

Our basic quantities of interest are the number of false alarms (FA), the number of missed
anomalies (MA), and the number of correctly predicted test points (CP). From these, we derive
the classification error

err =
FA + MA

FA + MA + CP

and the incurred cost

Cost = FA + C · 1{MA>0}.



Although in this paper we are mainly interested in the incurred cost, we also keep track of
the classification error for comparison. The results are summarized in Figure 3. Notice that our
classifier significantly outperforms the others in the incurred cost criterion. Also interesting to
note is that a lower classification error does not necessarily imply a lower incurred cost, since
even a single missed attack can significantly increase the latter.

Fig. 3. The performance of the classifiers on the datasets, averaged over 10 trials.

4 Discussion and future work

We have presented a novel (and apparently first of its kind) method for learning to detect anoma-
lies in a cost-sensitive framework from positive examples only, along with efficient learning algo-
rithms. We have given some preliminary theoretical results supporting this technique and tested
it on data (including real-world), with encouraging results.

Some future directions naturally suggest themselves. One particularly unrealistic assumption
is the “isotropic” nature of our classifier, which implicitly assumes that the density has no pre-
ferred direction in space. Directionally sensitive metric classifiers already exist [6] and it would
be desirable to extend our analysis to these methods. Additionally, one would like to place the
heuristic missed-anomaly risk term we proposed in (8) on a more principled theoretical footing.
Finally, we look forward to testing our approach on more diverse datasets.
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1. Noga Alon, Shai Ben-David, Nicolò Cesa-Bianchi, and David Haussler. Scale-sensitive dimensions,
uniform convergence, and learnability. Journal of the ACM, 44(4):615–631, 1997.



2. Peter Bartlett and John Shawe-Taylor. Generalization performance of support vector machines and
other pattern classifiers. pages 43–54, 1999.

3. Asa Ben-Hur. Support vector clustering. Scholarpedia, 3(6):5187, 2008.
4. Kristin P. Bennett, Ayhan Demiriz, and Richard Maclin. Exploiting unlabeled data in ensemble

methods. In KDD, pages 289–296, 2002.
5. Daniel Berend and Aryeh Kontorovich. The missing mass problem, in preparation. 2011.
6. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: identifying density-

based local outliers. SIGMOD Rec., 29:93–104, May 2000.
7. Koby Crammer and Gal Chechik. A needle in a haystack: local one-class optimization. In ICML,

2004.
8. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the

EM algorithm. J. Roy. Statist. Soc. Ser. B, 39(1):1–38, 1977. With discussion.
9. Pedro Domingos. Metacost: A general method for making classifiers cost-sensitive. In KDD, pages

155–164, 1999.
10. Charles Elkan. The foundations of cost-sensitive learning. In IJCAI, pages 973–978, 2001.
11. Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. A geometric frame-

work for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Applications of
Data Mining in Computer Security. Kluwer, 2002.

12. Wei Fan, Salvatore J. Stolfo, Junxin Zhang, and Philip K. Chan. Adacost: Misclassification cost-
sensitive boosting. In ICML, pages 97–105, 1999.

13. CEI figures: Computer Economics Inc. Security issues: Virus costs are rising again., 2003.
14. Lee-Ad Gottlieb, Leonid (Aryeh) Kontorovich, and Robert Krauthgamer. Efficient classification for

metric data. In COLT, 2010.
15. Lee-Ad Gottlieb and Robert Krauthgamer. Proximity algorithms for nearly-doubling spaces. In

APPROX-RANDOM, pages 192–204, 2010.
16. Russell Greiner, Adam J. Grove, and Dan Roth. Learning cost-sensitive active classifiers. Artif.

Intell., 139(2):137–174, 2002.
17. Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-

distortion embeddings. In FOCS, pages 534–543, 2003.
18. Katherine A. Heller, Krysta M. Svore, Angelos D. Keromytis, and Salvatore J. Stolfo. One class

support vector machines for detecting anomalous windows registry accesses. In ICDM Workshop on
Data Mining for Computer Security (DMSEC), 2003.

19. Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intell.
Data Anal., 6(5):429–449, 2002.

20. Edwin M. Knorr and Raymond T. Ng. A unified notion of outliers: Properties and computation. In
KDD, pages 219–222, 1997.

21. R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search. In 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 791–801, January 2004.

22. Yu-Feng Li, James T. Kwok, and Zhi-Hua Zhou. Cost-sensitive semi-supervised support vector
machine. In AAAI, 2010.

23. Charles X. Ling and Victor S. Sheng. Cost-sensitive learning. In Encyclopedia of Machine Learning,
pages 231–235. 2010.

24. Charles X. Ling, Qiang Yang, Jianning Wang, and Shichao Zhang. Decision trees with minimal costs.
In ICML, 2004.

25. Alexander Liu, Goo Jun, and Joydeep Ghosh. A self-training approach to cost sensitive uncertainty
sampling. In ECML/PKDD (1), page 10, 2009.

26. Jun Luo, Li Ding, Zhisong Pan, Guiqiang Ni, and Guyu Hu. Research on cost-sensitive learning in
one-class anomaly detection algorithms. In Bin Xiao, Laurence Yang, Jianhua Ma, Christian Muller-
Schloer, and Yu Hua, editors, Autonomic and Trusted Computing, volume 4610 of Lecture Notes in
Computer Science, pages 259–268. Springer Berlin / Heidelberg, 2007.

27. Dragos D. Margineantu. Active cost-sensitive learning. In IJCAI, pages 1622–1613, 2005.
28. David C. Plummer. Rfc 826: An ethernet address resolution protocol – or – converting network

protocol addresses to 48.bit ethernet address for transmission on ethernet hardware, 1982. Internet
Engineering Task Force, Network Working Group.



29. Zhenxing Qin, Shichao Zhang, Li Liu, and Tao Wang. Cost-sensitive semi-supervised classification
using CS-EM. In Computer and Information Technology, 2008. CIT 2008. 8th IEEE International
Conference on, pages 131 –136, july 2008.

30. Bernhard Schölkopf, Chris Burges, and Vladimir Vapnik. Extracting support data for a given task.
In KDD, pages 252–257, 1995.

31. Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C. Williamson.
Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443–1471,
2001.

32. Yanmin Sun, Mohamed S. Kamel, Andrew K. C. Wong, and Yang Wang 0007. Cost-sensitive boosting
for classification of imbalanced data. Pattern Recognition, 40(12):3358–3378, 2007.

33. David M. J. Tax and Robert P. W. Duin. Data domain description using support vectors. In ESANN,
pages 251–256, 1999.

34. David Martinus Johannes TAX. One-class classification. PhD thesis, Deltf University of Technology,
2001.

35. Peter D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree
induction algorithm. J. Artif. Intell. Res. (JAIR), 2:369–409, 1995.

36. Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz functions.
Journal of Machine Learning Research, 5:669–695, 2004.

37. Richard Waters. When will they ever stop bugging us?, 2003. Financial Times, special report.
38. Bianca Zadrozny and Charles Elkan. Learning and making decisions when costs and probabilities

are both unknown. In KDD, pages 204–213, 2001.
39. Zhi-Hua Zhou and Xu-Ying Liu. On multi-class cost-sensitive learning. Computational Intelligence,

26(3):232–257, 2010.


