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The literature describes two high performance concurrent stack algorithms based on combining
funnels and elimination trees. Unfortunately, the funnels are linearizable but blocking, and the
elimination trees are non-blocking but not linearizable. Neither is used in practice since they
perform well only at exceptionally high loads. The literature also describes a simple lock-free
linearizable stack algorithm that works at low loads but does not scale as the load increases.
The question of designing a stack algorithm that is non-blocking, linearizable, and scales well
throughout the concurrency range, has thus remained open.

This paper presents such a concurrent stack algorithm. It is based on the following simple
observation: that a single elimination array used as a backoff scheme for a simple lock-free stack
is lock-free, linearizable, and scalable. As our empirical results show, the resulting elimination-
backoff stack performs as well as the simple stack at low loads, and increasingly outperforms all
other methods (lock-based and non-blocking) as concurrency increases. We believe its simplicity
and scalability make it a viable practical alternative to existing constructions for implementing
concurrent stacks.

OA preliminary version of this paper appeared in the proceedings of the 16th Annual ACM Sym-
posium on Parallelism in Algorithms, Barcelona, Spain, 2004, pages 206-215.
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1. INTRODUCTION

Shared stacks are widely used in parallel applications and operating systems. As
shown in [28], LIFO-based scheduling not only reduces excessive task creation,
but also prevents threads from attempting to dequeue and execute a task which
depends on the results of other tasks. A concurrent shared stack is a data structure
that supports the usual push and pop operations with linearizable LIFO semantics.
Linearizability [16] guarantees that operations appear atomic and can be combined
with other operations in a modular way.

When threads running a parallel application on a shared memory machine access
the shared stack object simultaneously, a synchronization protocol must be used
to ensure correctness. It is well known that concurrent access to a single object
by many threads can lead to a degradation in performance [1; 14]. Therefore, in
addition to correctness, synchronization methods should offer efficiency in terms of
scalability, and robustness [12] in the face of scheduling constraints. Scalability at
high loads should not, however, come at the price of good performance in the more
common low contention cases.

Unfortunately, the two known methods for parallelizing shared stacks do not meet
these criteria. The combining funnels of Shavit and Zemach [27] are linearizable
LIFO stacks that offer scalability through combining, but perform poorly at low
loads because of the combining overhead. They are also blocking and thus not
robust in the face of scheduling constraints [18]. The elimination trees of Shavit
and Touitou [24] are non-blocking and thus robust, but the stack they provide is
not linearizable, and it too has large overheads that cause it to perform poorly at
low loads. On the other hand, the results of Michael and Scott [21] show that the
best known low load method, the simple linearizable lock-free stack introduced by
IBM [17] (a variant of which was later presented by Treiber [29]), scales poorly due
to contention and an inherent sequential bottleneck.

This paper presents the elimination backoff stack, a new concurrent stack al-
gorithm that overcomes the combined drawbacks of all the above methods. The
algorithm is linearizable and thus easy to modularly combine with other algorithms;
it is lock-free and hence robust; it is parallel and hence scalable; and it utilizes its
parallelization construct adaptively, which allows it to perform well at low loads.
The elimination backoff stack is based on the following simple observation: that
a single elimination array [24], used as a backoff scheme for a lock-free stack [17],
is both lock-free and linearizable. The introduction of elimination into the backoff
process serves a dual purpose of adding parallelism and reducing contention, which,
as our empirical results show, allows the elimination-backoff stack to outperform
all algorithms in the literature at both high and low loads.

We believe its simplicity and scalability make it a viable practical alternative to
existing constructions for implementing concurrent stacks.

1.1 Background

Generally, algorithms for concurrent data structures fall into two categories: block-
ing and non-blocking. There are several lock-based concurrent stack implementa-
tions in the literature. Typically, lock-based stack algorithms are expected to offer
limited robustness as they are susceptible to long delays and priority inversions [10].

The first non-blocking implementation of a concurrent list-based stack appeared
in the IBM System 370 principles of operation manual in 1983 [17] and used the
double-width compare-and-swap (CAS) primitive. A variant of that algorithm in
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which push operations use unary CAS instead of double-width compare-and-swap
appeared in a report by Treiber in 1986 [29]. We henceforth refer to that algo-
rithm as the IBM/Treiber algorithm. The IMB/Treiber algorithm represented a
stack as a singly-linked list with a top pointer and used (either unary or double)
compare-and-swap (CAS) to modify the value of the top atomically. No perfor-
mance results were reported by Treiber for his non-blocking stack. Michael and
Scott in [21] compared the IBM/Treiber stack to an optimized non-blocking algo-
rithm based on Herlihy’s general methodology [13], and to lock-based stacks. They
showed that the IBM/Treiber algorithm yields the best overall performance, and
that the performance gap increases as the amount of multiprogramming in the sys-
tem increases. However, from their performance data it is clear that because of its
inherent sequential bottleneck, the IBM /Treiber stack offers little scalability.

Shavit and Touitou [24] introduced elimination trees, scalable tree like data struc-
tures that behave “almost” like stacks. Their elimination technique (which we will
elaborate on shortly as it is key to our new algorithm) allows highly distributed
coupling and execution of operations with reverse semantics like the pushes and
pops on a stack. Elimination trees are lock-free, but not linearizable. In a similar
fashion, Shavit and Zemach introduced combining funnels [27], and used them to
provide scalable stack implementations. Combining funnels employ both combin-
ing [8; 9] and elimination [24] to provide scalability. They improve on elimination
trees by being linerarizable, but unfortunately they are blocking. As noted earlier,
both [24] and [27] are directed at high-end scalability, resulting in overheads which
severely hinder their performance under low loads.

The question of designing a practical lock-free linearizable concurrent stack that
will perform well at both high and low loads has thus remained open.

1.2 The New Algorithm

Consider the following simple observation due to Shavit and Touitou [24]: if a push
followed by a pop are performed on a stack, the data structure’s state does not
change. This means that if one can cause pairs of pushes and pops to meet and
pair up in separate locations, the threads can exchange values without having to
touch a centralized structure since they have “eliminated” each other’s effect on
it. Elimination can be implemented by using a collision array in which threads
pick random locations in order to try and collide. Pairs of threads that “collide”
in some location run through a lock-free synchronization protocol, and all such
disjoint collisions can be performed in parallel. If a thread has not met another
in the selected location or if it met a thread with an operation that cannot be
eliminated (such as two push operations), an alternative scheme must be used. In
the elimination trees of [24], the idea is to build a tree of elimination arrays and use
the diffracting tree paradigm of Shavit and Zemach [26] to deal with non-eliminated
operations. However, as we noted, the overhead of such mechanisms is high, and
they are not linearizable.

The new idea (see Figure 1) in this paper is strikingly simple: use a single
elimination array as a backoff scheme on a shared lock-free stack. If the threads fail
on the stack, they attempt to eliminate on the array, and if they fail in eliminating,
they attempt to access the stack again and so on. The surprising result is that this
structure is linearizable: any operation on the shared stack can be linearized at the
access point, and any pair of eliminated operations can be linearized when they
meet.

Because it is a backoff scheme, it delivers the same performance as the simple
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Fig. 1. Schematic depiction of the elimination-backoff cycle.

stack at low loads. However, unlike the simple stack it scales well as load increases
because: (1) the number of successful eliminations grows, allowing many operations
to complete in parallel; and (2) contention on the head of the shared stack is reduced
beyond levels achievable by the best exponential backoff schemes [1] since scores of
backed off operations are eliminated in the array and never re-attempt to access
the shared structure.

1.3 Performance

We compared our new elimination-backoff stack algorithm to a lock-based imple-
mentation using Mellor-Crummey and Scott’s MCS-lock [19] and to several non-
blocking implementations: the linearizable IBM/Treiber [17; 29] algorithm with
and without backoff, and the elimination tree of Shavit and Touitou [24]. Our
comparisons were based on a collection of synthetic microbenchmarks executed on
a 14-node shared memory machine. Our results, presented in Section 4, show that
the elimination-backoff stack outperforms all three methods, and specifically the
two lock-free methods, exhibiting almost three times the throughput at peak load.
Unlike the other methods, it maintains constant latency throughout the concur-
rency range, and performs well also in experiments with unequal ratios of pushs
and pops.

The remainder of this paper is organized as follows. In the next section we
describe the new algorithm in depth. In Section 3, we give the sketch of adaptive
strategies we used in our implementation. In Section 4, we present our empirical
results. In Section 5, we provide a proof that our algorithm has the required
properties of a stack, is linearizable, and lock-free. We conclude with a discussion
in Section 6.

2. THE ELIMINATION BACKOFF STACK
2.1 Data Structures

We now present our elimination backoff stack algorithm. Figure 2 specifies some
type definitions and global variables.
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struct Cell {
Cell *pmnext;
void *pdata;

};

struct Simple_Stack {
Cell *ptop;
};

struct AdaptParams {
int count;
float factor;

};

struct ThreadInfo {
u_int id;
char op;
Cell =*cell;
AdaptParams *adapt;
};

Simple_Stack S;
void **location;
int *collision;

Fig. 2. Types and Structures

Our central stack object follows IBM/Treiber [17; 29] and is implemented as
a singly-linked list with a top pointer. The elimination layer follows Shavit and
Touitou [24] and is built of two arrays: a global location[l..n] array has an element
per thread ¢ € {1..n}, holding the pointer to the ThreadInfo structure, and a global
collision[l..size] array, that holds the IDs of the threads trying to collide. The
elements of both these arrays are initialized to NULL. Each Threadlnfo record
contains the thread id, the type of the operation to be performed by the thread
(push or pop), a pointer to the cell for the operation, and a pointer to the adapt
structure that is used for dynamic adaptation of the algorithm’s behavior (see
Section 3).

2.2 Elimination Backoff Stack Code

We now provide the code of our algorithm. It is shown in Figures 3 and 4. As can
be seen from the code, first each thread tries to perform its operation on the central
stack object (line P1). If this attempt fails, a thread goes through the collision layer
in the manner described below.

Initially, thread ¢ announces its arrival at the collision layer by writing its current
information to the location array (line S2). It then chooses a random location in
the collision array (line S3). Thread ¢ reads into him the id of the thread written
at collision[pos] and tries to write its own id in place (lines S4 and S5). If it
fails, it retries until it succeeds (lines S5 and S6).

After that, there are three main scenarios for thread actions, according to the
information the thread has read. They are illustrated in Figure 5. If ¢ reads an id
of another thread ¢ (i.e., him!=EMPTY), ¢ attempts to collide with ¢. The collision
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void StackOp(ThreadInfo* p) { boolean TryPerformStackOp(ThreadInfo* p){
P1: if (TryPerformStackOp(p)==FALSE) Cell *ptop,*pnxt;
P2: LesOP(p); T1: if (p->op==PUSH) {
P3: return; T2: ptop=S.ptop;
} T3: p->cell->pnext=ptop;
void LesOP(ThreadInfo *p) { T4: if (CAS(&S.ptop,ptop,p—>cell))
S1: while (1) { T5: return TRUE;
S2: location[mypid]=p; T6: else
S3:  pos=GetPosition(p); T7: return FALSE; }
S4:  him=collision[pos]; T8: if (p—>op==P0OP) {
S5:  while(!CAS(&collision[pos],him,mypid)) T9: ptop=S.ptop;
S6: him=collision[pos]; T10: if (ptop==NULL) {
S7: if (him!=EMPTY) { T11: p—->cell=EMPTY;
S8: g=location[him]; T12: return TRUE;
S9: if (q!=NULL&&q->id==him&&q->op!=p->op) { }
S10: if (CAS(&location[mypid],p,NULL)) { T13:  pnxt=ptop->pnext;
S11: if (TryCollision(p,q)==TRUE) T14:  if (CAS(&S.ptop,ptop,pnxt)) {
S12: return; T15: p—>cell=ptop;
S13: else T16: return TRUE;
S14: goto stack; ¥
} T17: else

S15: else { T18: return FALSE; }
S16: FinishCollision(p); }
S17: return

}r 3

S18: delay(spin);
S19: AdaptWidth(SHRINK) ;
$20: if (!'CAS(&location[mypid]l,p,NULL)) {

S21: FinishCollision(p);
S22: return;
}
stack:
523: if (TryPerformStackOp(p)==TRUE)
S24: return;
}
}

Fig. 3. Elimination Backoff Stack Code - part 1

is accomplished by ¢ first executing a read operation (line S8) to determine the
type of the thread being collided with. As two threads can collide only if they have
opposing operations, if q has the same operation as ¢, ¢ waits for another collision
(line S18). If no other thread collides with t during its waiting period, ¢ calls
the AdaptWidth procedure (line S19) that dynamically changes the width of #’s
collision layer according to the perceived contention level (see Section 3). Thread
t then clears its entry in the location array (line S20), and tries once again to
perform its operation on the central stack object (line S23). If p’s entry cannot
be cleared, it follows that ¢ has been collided with, in which case ¢ completes its
operation and returns.

If q does have a complementary operation, ¢ tries to eliminate by performing two
CAS operations on the location array. The first (line S10) clears ¢’s entry, assuring
no other thread will collide with it during its collision attempt (this eliminates race
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void TryCollision(ThreadInfo*p,ThreadInfo *q) {
Cil: if(p->op==PUSH) {

C2: if (CAS(&location[him],q,p))
C3: return TRUE;
C4: else

{
C5: adaptWidth (ENLARGE)
C6: return FALSE;

}

}
C7: if(p—>op==P0OP) {
C8: if (CAS(&location[him],q,NULL)){
C9: p—>cell=qg->cell;
C10: location[mypid]=NULL;
Ci1: return TRUE
¥

C12: else

{
C13: adaptWidth (ENLARGE)
Cl4: return FALSE;

}

}

}

void FinishCollision(ThreadInfo *p) {
F1: if (p->op==POP_0P) {

F2: p—>cell=location[mypid]->cell;
F3: location[mypid]=NULL;

}
}

Fig. 4. Elimination Backoff Stack Code - part 2

conditions). The second (lines C2 or C8, see Figure 4) attempts to mark ¢’s entry
as “collided with t”. If both CAS operations succeed, the collision is successful.
Therefore ¢ can return (in case of a pop operation it stores the value of the popped
cell).

If the first CAS fails, it follows that some other thread has already managed
to collide with ¢. In this case, thread ¢ acts as in case of a successful collision,
mentioned above. If the first CAS succeeds but the second fails, then the thread
with which ¢ is trying to collide is no longer available for collision. In that case,
t calls the AdaptWidth procedure (lines C5 or C13, see section 3), and then tries
once more to perform its operation on the central stack object; ¢ returns in case of
success, and repeatedly goes through the collision layer in case of failure.

2.3 Memory Management and ABA Issues

As our algorithm is based on the compare-and-swap (CAS) operation, it must deal
with the “ABA problem” [17]: if a thread reads the top of the stack, computes a
new value, and then attempts a CAS on the top of the stack, the CAS may succeed
when it should not, if between the read and the CAS some other thread changes the
value to the previous one again. Similar scenarios are possible with CAS operations
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that access the location array.

Since the only dynamic-memory structures used by our algorithms are Cell and
ThreadInfo structures, the ABA problem can be prevented by making sure that no
Cell or ThreadInfo structure is recycled (freed and returned to a pool so that it
can be used again) while a thread performing a stack operation holds a pointer to
it which it will later access.

Some runtime environments, such as that provided by Java®, implement au-
tomatic mechanisms for dynamic memory reclamation. Such environments seam-
lessly prevent ABA problems in algorithms such as ours. In environments that do
not implement such mechanisms, the simplest and most common ABA-prevention
technique is to include a tag with the target memory location, such that both the
application value and the tag are manipulated together atomically, and the tag
is incremented with each update of the target memory location [17]. The CAS
operation is sufficient for such manipulation, as most current architectures that
support CAS (Intel x86, Sun SPARC®) support their operation on aligned 64-bit
blocks. One can also use general techniques to eliminate ABA issues through mem-
ory management schemes such as Safe Memory Reclamation (SMR) [20] or ROP
[15].

We now provide a brief description of the SMR technique and then describe in
detail how it can be used to eliminate ABA issues in our algorithm.

2.3.1 ABA Elimination Using SMR. The SMR technique [20] uses hazard point-
ers for implementing safe memory reclamation for lock-free recycable structures.
Hazard pointers are single-writer multi-reader registers. The key idea is to asso-
ciate a (typically small) number of hazard pointers with each thread that intends to
access lock-free recycable structures. A hazard pointer is either null or points to a
structure that may be accessed later by that thread without further validation that
the structure was not recycled in the interim; such an access is called a hazardous
reference.

Hazard pointers are used in the following manner. Before making an hazardous
reference, the address of the structure about to be referenced is written to an avail-
able hazard pointer; this assignment announces to other threads that the structure
about to be accessed must not be recycled. Then, the thread must validate that the
structure about to be accessed is still safe, that is, that it is still logically part of
the algorithm’s data-structure. If this is not the case, then the access is not made;
otherwise, the thread is allowed to access the structure. After the hazardous access
is made, the thread can safely nullify the hazard pointer or re-use it to protect
against additional hazardous references.

When a thread logically removes a structure from the algorithm’s data-structure,
it calls the RetireNode method with a pointer to that structure. The structure will
not be recycled, however, until after no hazard pointers are pointing to it. The
RetireNode method scans a list of structures that were previously removed from
the data-structure and only recycles structures that are no longer pointed at by
hazard pointers. For more details, please refer to [20].

The SMR technique can be used by our algorithm as follows. Each thread main-
tains two pools: a pool of Cell structures and a pool of ThreadInfo structures.
In addition, a single hazard pointer is allocated per thread. We now describe the
changes that are introduced to the code of Figures 3, 4 for ensuring safe memory
reclamation.

It is easily seen that the only hazardous references that exist in the code are CAS
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operations that attempt to swap structure pointers. Specifically, these are lines T4,
T14, S10, S20, C2 and C8. This is how these hazardous references are dealt with.

(1)

Line T4: Immediately after line T2, the executing thread’s hazard pointer is
set to point to ptop. Then, the condition S.ptop==ptop is checked. If the
condition is not satisfied, the procedure returns FALSE, since the CAS of line
T4 must fail. Otherwise the code proceeds as in the pseudo-code of Figure 3. It
is now ensured that the structure pointed at by ptop cannot be recycled before
the CAS of T4 is performed.

Line T14: Immediately before line T13, the executing thread’s hazard pointer
is set to point to ptop. Then, the condition S.ptop==ptop is checked. If the
condition is not satisfied, the procedure returns FALSE, since the CAS of line
T14 must fail. Otherwise the code proceeds as in the pseudo-code of Figure
3. It is now ensured that the structure pointed at by ptop cannot be recycled
before the CAS of T14 is performed.

Line S10: Although the CAS of line S10 is technically a hazardous reference,
there is no need to protect it: if the ThreadInfo structure pointed by p is
recycled between when the executing thread ¢ starts performing the LesOP
procedure and when it performs the CAS of line S10, then it must be that
another operation collided with this operation, changed the corresponding value
of the location array to a value other than p, and nullified the entry of the
collision array where t’s ID was written. Since no other LesOP operation can
write t’s ID again to the collision array before ¢ performs the CAS of line S10,
no operation will write to the entry of the location array corresponding to ¢
before ¢ executes the CAS of line S10. Hence this CAS will fail.

Line S20: By exactly the same rationale applied in the case of line S10, there
is no need to protect line S20.

Lines C2, C8: Immediately after line S8, the executing thread’s hazard pointer
is set to point to ¢. Then, the condition g==location[him] is checked. If the
condition is not satisfied, the collision attempt has failed and a goto stack
command is executed. Otherwise the procedure proceeds as in the pseudo-code
of Figure 3. We are now ensured that the structure pointed at by ¢ cannot be
recycled before the CAS of line C2 or C8 is performed.

The following additional changes are introduced in the code of Figures 3, 4 for
correct memory recycling.

(6)

(7)

Before starting a push operation, a ThreadInfo structure 7 is removed from the
ThreadInfo pool and a Cell structure ¢ is removed from the Cell pool. Both
are initialized, and i->cell is initialized to point to c.

After successfully pushing a Cell to the central stack in line T4 and before
returning, the ThreadInfo structure used by the operation is initialized and
returned to the ThreadInfo pool from which it originated. There is no need
to call the RetireNode method here, since at this point the executing thread’s
ThreadInfo structure is not accessible for collisions.

After returning from a pop operation on an empty stack (line T12), the Thread-
Info and Cell structures used by the pop operation are initialized and returned
to the respective pools from which they originated. There is no need to call
the RetireNode method here, since at this point the ThreadInfo structure is not
accessible for collisions and hence also the Cell structure will not be accessed.
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(9) After completing a pop operation that returned a cell (in line S12, S17 or
T16), and upon consuming the application value pointed at from that cell, The
RetireNode method is called to indicate that both the ThreadInfo structure
used by the pop operation and the Cell structure it returned are now logically
not part of the data-structure.

From [20], Theorem 1, we get:

LEMMA 1. The following holds for all algorithm lines that perform a CAS opera-
tion to swap a structure pointer (lines T4, T14, S10, S20, C2 and C8): a structure
is not recycled between when its old value is read and when the CAS operation using
this old value is performed.

Quoting [14]: ”the expected amortized time complexity of processing each retired
node until it is eligible for reuse is constant”. Thus the expected effect of the SMR
technique on performance is small. Specifically, in the absence of contention, time
complexity remains constant.

3. ADAPTATIVE ELIMINATION BACKOFF

The classical approach to handling load is backoff, and specifically exponential
backoff [1]. In a regular backoff scheme, once contention in detected on the central
stack, threads back off in time. Here, threads will back off in both time and space,
in an attempt to both reduce the load on the centralized data structure and to
increase the probability of concurrent colliding. Our backoff parameters are thus
the width of the collision layer, and the delay at the layer.

The elimination backoff stack has a simple structure that naturally fits with a
localized adaptive policy for setting parameters similar to the strategy used by
Shavit and Zemach for combining funnels in [27]. Decisions on parameters are
made locally by each thread, and the collision layer does not actually grow or
shrink. Instead, each thread independently chooses a sub-range of the collision
layer it will map into, centered around the middle of the array, and limited by
the maximal array width. It is possible for threads to have different ideas about
the collision layer’s width, and particularly bad scenarios might theoretically lead
to bad performance, but as we will show, in practice the overall performance is
superior to that of exponential backoff schemes [1]. Our policy is to first attempt
to access the central stack object, and only if that fails to back off to the elimination
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array. This allows us, in case of low loads, to avoid the collision array altogether,
thus achieving the latency of a simple stack (in comparison with this, [27] are at
best three times slower than a simple stack).

Our algorithm adaptively changes the width of the collision layer in the following
way. Each thread ¢ keeps a local variable called factor, 0 <factor< 1, by which
it multiplies the collision layer width to choose the interval into which it will ran-
domly map to try and collide (e.g., if factor=0.5 only half the width is used). The
dynamic adaptation of the collision layer’s width is performed by the AdaptWidth
procedure (see Figure 6). If a thread ¢ fails to collide because it did not encounter
any other thread, then it calls the AdaptWidth procedure with the SHRINK param-
eter to indicate this situation (line S19). In this case, the AdaptWidth procedure
decrements a counter local to thread ¢. If the counter reaches 0, it is reset to its
initial value (line A5), and the width of ¢’s collision layer is being halved (line A6).
The width of the collision layer is not allowed to decrease bellow the MIN_FACTOR
parameter. The rationale of shrinking the collision layer’s width is the following. If
t fails to perform its operation on the central stack object, but does not encounter
other threads to collide with, then t’s collision layer’s width should eventually be
decreased so as to increase the probability of a successful collision.

In a symmetric manner, if a thread ¢ does encounter another thread, but fails to
collide with it because of contention, then ¢ calls the AdaptWidth procedure with
the ENLARGE parameter to indicate this situation (lines C5, C13). In this case,
the AdaptWidth procedure increments the local counter. If it reaches the value
MAX_COUNT, it is reset to its initial value (line A10), and the width of ¢’s collision
layer is being doubled (line A11). The width of the collision layer is not allowed to
surpass the MAX_FACTOR parameter. The rational of enlarging the collision layer’s
width is the following. If ¢ fails to collide with some thread u because u collides
with some other thread v, then the width of ¢’s collision layer should eventually
be enlarged so as to decrease the contention on t’s collision layer and increase the
probability of a successful collision. Finally, the GetPosition procedure, called on
line S3, uses the value of the thread’s factor variable to compute the current width
of its collision layer.

void AdaptWidth(enum direction) {
A1: if (direction==SHRINK)

A2: if (p->adapt->count > 0)

A3: p—>adapt->count--

Ad: else {

A5: p—>adapt->count=ADAPT_INIT

A6: p->adapt->factor=max(p->adapt->factor/2, MIN_FACTOR);
}

A7: else if (p->adapt->count < MAX_COUNT)

A8: p->adapt->count++;

A9: else {

A10: p—>adapt->count=ADAPT_INIT;

A11: p—>adapt->factor=min(2*p->adapt->factor, MAX_FACTOR);
}

}

Fig. 6. Pseudo-code of the AdaptWidth procedure. This procedure dynamically changes the width
of a thread’s collision layer according to the level of contention it encounters when trying to collide.
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The second part of our strategy is the dynamic update of the delay time for
attempting to collide in the array, a technique used by Shavit and Zemach for
diffracting trees in [25; 26]. This is being done by the delay function called at line
S18, which simply implements exponential backoff. Note, that whereas the changes
in the collision layer width are kept between invocations of StackOp, the updates to
the delay time are internal to StackOp, and so the delay time is reset to its default
value whenever StackOp is called.

There are obviously other conceivable ways of adaptively updating these two
parameters and this is a subject for further research.

4. PERFORMANCE

We evaluated the performance of our elimination-backoff stack algorithm relative
to other known methods by running a collection of synthetic benchmarks on a
14 node Sun Enterprise™ E6500, an SMP machine formed from 7 boards of two
400MHz UltraSPARC® processors, connected by a crossbar UPA switch, and run-
ning Solaris™ 9 Operating Environment. Our C code was compiled by a Sun
cc compiler 5.3, with flags -x05 -xarch=v8plusa. All our tests use kernel-space
threads rather than user-space threads.

4.1 The Benchmarked Algorithms

We compared our stack implementation to the lock-free but non-linearizable elim-
ination tree of Shavit and Touitou [24] and to two linearizable methods: a serial
stack protected by MCS lock [19], and the non-blocking IBM/Treiber algorithm
[17; 29].

—MCS A serial stack protected by an MCS-queue-lock [19]. Each processor locks
the top of the stack, changes it according to the type of the operation, and then
unlocks it. The lock code was taken directly from the article.

—IBM/Treiber Our implementation of the IBM/Treiber non-blocking stack fol-
lowed the code given in [29]. We added to it exponential backoff scheme, as
introduced in [2].

—ETree An elimination tree [24] based stack. Its parameters were chosen so as to
optimize its performance, based on empirical testing.

4.2 The Produce-Consume Benchmark

In the produce-consume benchmark, each thread alternately performs a push or
pop operation and then waits for a period of time whose length is chosen uniformly
at random from the range: [0...workload]. The waiting period simulates the local
work that is typically done by threads in real applications between stack operations
(see Figure 7). In all our experiments the stack was initialized as sufficiently filled
to prevent it from becoming empty during the run.

4.3 Measuring the performance of benchmarked algorithms

We ran the produce-consume benchmark specified above varying the number of
threads and measuring latency, the average amount of time spent per operation,
and throughput, the number of operations per second. We compute throughput
and latency by measuring the total time required to perform the specific amount
of operations by each thread. We refer to the longest time as the time needed to
complete the specified amount of work.
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repeat
op:=random(push, pop)
perform op
w:=random(0. .workload)
wait w millisecs
until 500000 operations performed

Fig. 7. Produce-Consume benchmark
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Fig. 8. Throughput and latency of different stack implementations with varying number of
threads. Each thread performs 50% pushs, 50% pops.

To counteract transient startup effects, we synchronized the start of the threads
(i.e., no thread can start before all other threads finished their initialization phase).
Each data point is the average of three runs, with the results varying by at most
1.4% throughout all our benchmarks.

4.4 Empirical Results

Figure 8 shows the results of a benchmark in which half a million operations were
performed by every working thread, with each thread performing 50% pushs and
50% pops on average. Figure 9 provides a detailed view of the three best performers.
From Figure 8 it can be seen that our results for known structures generally conform
with those of [21; 23], and that the IBM/Treiber algorithm with added exponential
backoff is the best among known techniques. It can also be seen that the new
algorithm provides superior scalable performance at all tested concurrency levels.
The throughput gap between our algorithm and the IBM /Treiber algorithm with
backoff grows as concurrency increases, and at 32 threads the new algorithm is
almost three times faster. Such a significant gap in performance can be explained
by reviewing the difference in latency for the two algorithms.

Table 1 shows latency measured on a single dedicated processor. The new algo-
rithm and the IBM/Treiber algorithm with backoff have about the same latency,
and outperform all others. The reason the new algorithm achieves this good per-
formance is due to the fact that elimination backoff (unlike the elimination used in
structures such as combining funnels and elimination trees) is used only as a backoff
scheme and introduces no overhead. The gap of the two algorithms, with respect
to MCS and ETree, is mainly due to the fact that a push or a pop in our algorithm
and in the IBM/Treiber algorithm typically needs to access only two cache lines in
the data structure, while a lock-based algorithm has the overhead of accessing lock
variables as well. The ETree has an overhead of travelling through the tree.

As Figure 9 shows, as the level of concurrency increases, the latency of the
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Fig. 9. Detailed graph of latency with threads performing 50% pushs, 50% pops.

IBM/Treiber algorithm grows since the head of the stack, even with contention
removed, is a sequential bottleneck. On the other hand, the new algorithm has
increased the rate of successful collisions on the elimination array as concurrency
increases. As Table 2 shows, the fraction of successfully eliminated operations in-
creases from only 11% for two threads up to 43% for 32 threads. The increased elim-
ination level means that increasing numbers of threads complete their operations
quickly and in parallel, keeping latency fixed and increasing overall throughput.

We also tested the robustness of the algorithms under workloads with an imbal-
anced distribution of push and pop operations. Such imbalanced workloads are not
favorable for the new algorithm because of the smaller chance of successful collision.
From Figure 10 it can be seen that the new algorithm still scales, but at a slower
rate. The slope of the latency curve for our algorithm is 0.13 usec per thread, while
the slope of the latency curve for the IBM/Treiber algorithm is 0.3 psec per thread,
explaining the difference in throughput as concurrency increases.

In Figure 11 we compare the various methods under sparse access patterns and
low load, by setting workload = 1000. In these circumstances, all the algorithms
(with the exception of the elimination tree) maintain an almost constant latency as
the level of concurrency increases because of the low contention. The decrease in
the latency of elimination tree w.r.t. the case of workload = 0 is smaller, because
it achieves lower levels of elimination. In contrast, the adverse effect of the sparse

Throughput Lakncy
B000 7 —s— Mew algorithm

E_ 5000 —m—IBMTreiber with backoff — 1200 —+—New algarthm
] e MCS g g 17001 —m—BMfTraiber with backoff
B o 4000 e iBMTreiber g oA 1500] —mcs
ﬁ_‘E —+—ETrea ﬁ £ 1300 —*—|BMTreiber
L g so00 € 11004 _s ETRes
2 ¥ 2000 %E 200
k] g §_ 700
EE 1000 - 500

0-r T T T T T | 300 T —T—T 1

1 2 4 8 14 32 1 2 4 8 14 32

Fig. 10. Throughput and latency under varying distribution of operations: 25% push, 75%pop



14 . Hendler Shavit Yerushalmi

Table 1. Latency on a single processor (no contention).

New algorithm 370
IBM/Treiber with backoff | 380
MCS 546
IBM/Treiber 380
ETree 6850

Table 2. Fraction of successfully eliminated operations per concurrency level
2 threads | 11%
4 threads | 24%
8 threads | 32%
14 threads | 37%
32 threads | 43%

access pattern on our algorithm’s latency is small, because our algorithm uses the
collision layer only as a backup if it failed to access the central stack object, and
the rate of such failures is low when the overall load is low.

To further test the effectiveness of our policy of using elimination as a backoff
scheme, we measured the fraction of operations that failed on their first attempt to
change the top of the stack. As seen in Figure 12, this fraction is low under low loads
(as can be expected) and grows together with load, and, perhaps unexpectedly, is
lower than in the IBM/Treiber algorithm. This is a result of using the collision
layer as the backoff mechanism in the new algorithm as opposed to regular backoff,
since in the new algorithm some of the failed threads are eliminated and do not
interfere with the attempts of newly arrived threads to modify the stack. These
results further justify the choice of elimination as a backoff scheme.

To study the behavior of our adaptation strategy we conducted a series of exper-
iments to hand-pick the “optimized parameter set” for each level of concurrency.
We then compared the performance of elimination backoff with an adaptive strat-
egy to an optimized elimination backoff stack. These results are summarized in
Figure 13. Comparing the latency of the best set of parameters to those achieved
using adaptation, we see that the adaptive strategy is about 2.5% - 4% slower.
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From these results we conclude that our adaptation techniques appear to work
reasonably well. Based on the above benchmarks, we conclude that for the concur-
rency range tested, elimination backoff is the algorithm of choice for implementing
linearizable stacks.

5. CORRECTNESS PROOFS

This section contains a formal proof that our algorithm is a lock-free linearizable
implementation of a stack. It is organized as follows. In Section 5.1, we describe
the model used by our proofs. In section 5.2, we prove basic correctness properties
of our algorithm. Proofs of linearizability and lock-freedom are then provided in
Sections 5.3 and 5.4, respectively.

5.1 Model

Our model for multithreaded computation follows [16], though for brevity and ac-
cessibility we will use operational style arguments. A concurrent system models an
asynchronous shared memory system where A set P of n deterministic threads com-
municate by executing atomic operations on shared variables from some finite set
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Fig. 13. Comparison of algorithm latency achieved by hand-picked parameters with that achieved
by using an adaptive strategy
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V. Each thread is a sequential execution path that performs a sequence of steps. In
each step, a thread may perform some local computation and may invoke at most a
single atomic operation on a shared variable. The atomic operations allowed in our
model are read, write, and compare-and-swap. The compare-and-swap operation
(abbreviated CAS) is defined as follows: CAS(v,ezpected,new) changes the value of
variable v to new only if its value just before CAS is applied is expected; in this
case, the CAS operation returns true and we say it is successful. Otherwise, CAS
does not change the value of v and returns false; in this case, we say that the CAS
was unsuccessful.

A configuration of the system is a vector of size n + |V, that stores the states
of all threads of P and the values of all variables of V.! We say that thread t is
enabled to execute line L at configuration s if t’s state in s implies that, when next
scheduled, t executes line L.

An ezecution is a (finite or infinite) sequence of steps that starts from an initial
configuration. This is a configuration in which all variables in 'V have their initial
values and all threads are in their initial states. If o € B is a base object and F is
a finite execution, then value(F, o) denotes the value of o at the end of E. If no
event in E changes the value of o, then value(F, o) is the initial value of o. In other
words, in the configuration resulting from executing F, each base object o € B has
value value(E, o). For any finite execution fragment F and any execution fragment
E’, the execution fragment EE’ denotes the concatenation of £ and E'.

A concurrent stack is a data structure whose operations are linearizable [16]
to those of the sequential stack as defined in [6]. The following is a sequential
specification of a stack object.

DEFINITION 1. A stack S is an object that supports two types of operations: push
and pop. The state of a stack is a sequence of items S = (vg, ...,vg). The stack is
initially empty. The push and pop operations induce the following state transitions
of the sequence S = (vy, ..., vg), with appropriate return values:

—push(Vpew ), changes S to be (vo, ..., Vi, Unew)
—vpop(), if S is not empty, changes S to be (vy,...,vp—1) and returns vi; if S is
empty, it returns empty and S remains unchanged.

We note that a pool is a relaxation of a stack that does not require LIFO ordering.
We start by proving that our algorithm implements a concurrent pool, without
considering a linearization order. We then prove that our stack implementation is
linearizable to the sequential stack specification of Definition 1. Finally we prove
that our implementation is lock-free.

5.2 Correct Pool Semantics

We first prove that our algorithm has correct pool semantics, i.e., that pop opera-
tions can only pop items that were previously pushed, and that items pushed by
push operations are not duplicated and can be popped out. This is formalized in
the following definition. 2

DEFINITION 2. A stack algorithm has correct pool semantics if the following
requirements are met for all stack operations:

IThe state of each thread conmsists of the values of the thread’s local variables, registers and
program-counter.

2For simplicity we assume all items are unique, but the proof can easily be modified to work
without this assumption.



A Scalable Lock-free Stack Algorithm . 17

(1) Let Op be a pop operation that returns an item i, then i was previously
pushed by a push operation.

(2) Let Op be a push operation that pushed an item i to the stack, then there is
at most a single pop operation that returns i.

(3) Let Op be a pop operation, then if the number of push operations preceding
Op is larger than the number of pop operations preceding it, Op returns a value.

We call any operation that complies with the above requirement a correct pool
operation.

LEMMA 2. Operations that modify the central stack object are correct pool oper-
ations.

PrOOF. Follows from the correctness of Treiber’s algorithm [29]. O

In the following, we prove that operations that exchange their values through
collisions are also correct pool operations, thus we show that our algorithm has
correct pool semantics. We first need the following definitions.

DEFINITION 3. We say that an operation op is a colliding operation if it returns
in line S12, S17 or S22 of LesOP. If op performs a push then we say it is a push
colliding operation, otherwise we say that it is a pop colliding operation.

DEFINITION 4. Let op1 be a push operation and ops be a pop operation. We say
that op1 and ops have collided if ops obtains the value pushed by op; without ac-
cessing the central stack object. More formally, we require that one of the following
conditions hold:

—Operation ops performs a successful CAS in line C8 of TryCollision and q
points to the ThreadInfo structure representing opy at that time.

—Operation ops performs a CAS operation in line S20 of TryPerformStackOp and
the CAS fails because the entry of the location array corresponding to the thread
executing opy points at that time to the Threalnfo structure representing op .

DEFINITION 5. We say that a colliding operation op is active if it executes a
successful CAS in lines C2 or C8 of TryCollision. We say that a colliding oper-
ation is passive if op performs an unsuccessful CAS operation in lines S10 or S20
of LesOP.

DEFINITION 6. Let op be an operation performed by thread t and let s be a config-
uration. Ift is enabled to execute a line of LesOP, TryCollision or FintishCollision
in s, then we say that t is trying to collide at s. Otherwise, we say that op is not
trying to collide at s.

We next prove that operations can only collide with operations of the opposite
type. In the proofs that follow, we let [; denote the element corresponding to t in
the location array. First we need the following technical lemma.

LEMMA 3. Ewvery colliding operation op is either active or passive, but not both.

PrOOF. Let Op be a colliding operation. From Definition 3, we only need to
consider the following cases.

—Op returns in line S12. In this case, op performed a successful CAS in line C2
or C8 of TryCollision. Thus, from Definition 5, Op is active. To obtain a
contradiction, assume that Op is also passive. It follows from Definition 5, that
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Op performed an unsuccessful CAS operation in line S10 or S20 before calling
TryCollision. In each of these cases, however, Op returns after performing
FinishCollision and does not call TryCollision after that. This is a contra-
diction.

—Op returns in line S17. It follows that Op performed an unsuccessful CAS op-
eration in line S10. Hence, from Definition 5, Op is passive. To obtain a con-
tradiction, assume that Op is also active. It follows from Definition 5, that Op
executed a successful CAS operation in lines C2 or C8 of TryCollision before
its unsuccessful CAS in line S10. In this case, however, TryCollision returns
true and so Op immediately returns in line S12. This is a contradiction.

—Op returns in line S22. Tt follows that Op performs an unsuccessful CAS operation
in line S20. Hence, from Definition 5, Op is passive. The proof proceeds in a
manner identical to that of the corresponding proof for line S17.

O

LEMMA 4. Operations can only collide with operations of the opposite type: an
operation that performs a push can only collide with operations that perform a pop,
and vice versa.

PROOF. Let op be a colliding operation. From the code and from Definition 3, op
either returns true from TryCollision or executes FinishCollision. We now examine
both these cases.

(1) TryCollision can succeed only in case of a successful CAS in line C2 (for
a push operation) or in line C8 (for a pop operation). Such a CAS changes the
value of the other thread’s cell in the location array, thus exchanging values
with it and returns without modifying the central stack object. From the code,
before calling TryCollision op has to execute line S9, thus verifying that it
collides with an operation of the opposite type. Finally, from Lemma 1, g points
to the same ThreadInfo structure starting from when it is assigned in line S8
by Op and until either line C2 or C8 is performed by Op.

(2) If op is a passive colliding operation, then op performs FinishCollision, which
implies that op failed in resetting its entry in the location array (in line S10 or
$20). Let opl be the operation that has caused op’s failure by writing to its
entry. From the code, opl must have succeeded in TryCollision. The proof
now follows from case (1).

O

LEMMA 5. An operation terminates without modifying the central stack object if
and only if it is a colliding operation.

ProoF. If Op modifies the central stack object, then its call of TryPerformStackOp
returns true and it returns in line S24. It follows from Definition 3 that Op is not a
colliding operation. As for the other direction, if Op is a colliding operation, then
it returns in lines S12, S17 or S22. It follows that it does not return in line S24,
hence it could not have changed the central stack object. [

LEMMA 6. Let s be a configuration, and let t be a thread . Then t is trying to
collide in s if and only if l; # NULL holds in s.

PROOF. In the initial configuration, [;=NULL holds. In the beginning of each
collision attempt performed by operation op, the value of [; is set to a non-NULL
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value in line S2. We need to show that op changes the value of I; back to NULL
before completing the collision attempt, either successfully or unsuccessfully. We
now check both these cases.

—Suppose that op fails in its collision attempt, that is, op reaches line S23. Clearly
from the code, to reach line S23, op has to perform a successful CAS in either
line S10 or in line S20, thus it sets the value of I; to NULL upon finishing its
unsuccessful collision attempt.

—Otherwise, op succeeds in its collision attempt. Consequently, it exits LesOp in
the same iteration, in lines S12, S17 or S22. Clearly from the code, to reach line
S12 op has to perform a successful CAS in line S10, thus setting the value of
l; to NULL. If op returns in lines S17 or S22, then it returns after it executes
FinishCollision. From the code of FinishCollision, if op is a pop operation, then
FinishCollision sets I; to NULL at line F3. Finally, if op is a push operation and
reaches FinishCollision, then op must have failed to perform a CAS in lines S10
or 5S20. This failure implies that some other operation changed the value of I;.
As op is a push operation, we have by Lemma 4, that the value of [; was changed
by another operation, op;, that performed a pop operation; thus op; changed I;
to NULL in line C8.

O

LEMMA 7. Let Op be a push operation by some thread t, and let s be a config-
uration. If it holds in s that [;#NULL, then Op is trying in s to push the value
l-> cell.pdata.

PRrROOF. Clearly from the code and from Lemma 1, only Op can write a value
different than NULL to l;. From Lemma 6, I; is NULL after Op exits, hence Op is
in the midst of a collision attempt in configuration s. From Lemma 1, it follows
that the value of I; in s is a a pointer to t’s ThreadInfo structure written on line
S2. As Op is a push operation, the cell Op is trying to push is pointed at from the
cell field of that structure. O

LEMMA 8. Ewvery passive colliding operation collides with exactly one active col-
liding operation and vice versa.

PRrROOF. Immediate from Definition 4 and from Lemma 1. O

LEMMA 9. Ewvery colliding operation op collides with exactly one operation of the
opposite type.

ProoOF. Follows from Lemmas 3 and 8. [

We now prove that, upon colliding, opposite operations exchange values in a
proper way.

LEMMA 10. If a pop operation collides, it obtains the value of the single push
operation it collided with.

PRrROOF. Let op; denote a pop operation performed by thread t. If op; is a passive
colliding operation, then, from Lemma 9 and Definition 5, it collides with a single
active push colliding operation, ops. As op; succeeds in colliding, from Definition
4 and from Lemma 1, it obtains in line F2 the cell that was written to I; by ops.

Assume now that op; is a an active colliding operation, then, from Lemma 9
it collides with a single passive push colliding operation, ops. As op; succeeds in
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colliding, it succeeds in the CAS of line C8 and thus, from Lemma 1, returns the
cell that was written by ops. [

LEMMA 11. If a push operation collides, its value is obtained by the single pop
operation it collided with.

PROOF. Let op; denote a push operation performed by thread ¢. If op; is a
passive colliding operation, then, from Lemma 9 and Definition 5, it collides with a
single active pop colliding operation, ops. As op; is passive, from Definition 5, op;
performs an unsuccessful CAS in line S10 or S20. From Lemma 1, it follows that
the value of [; was previously set to NULL by ops as it obtained in line F2 the cell
that was written by op; to [; .

Assume now that op; is a an active colliding operation, then, from Lemma 9
and Definition 5, it collides with a single passive pop colliding operation, ops. Let
q be the thread performing ops. As op; is active, from Definition 5, it performs
a successful CAS operation in line C2, thus writing a pointer to its ThreadInfo
structure to l;. From Lemma 1, it follows that, if and when op, returns, it returns
the cell field of this structure. [

We can now prove that our algorithm has correct pool semantics.
THEOREM 1. The elimination-backoff stack has correct pool semantics.

PROOF. From Lemma 2, all operations that modify the central stack object are
correct pool operations. From Lemmas 10 and 11, all colliding operations are
correct pool operations. Thus, all operations on the elimination-backoff stack are
correct pool operations. It follows from Definition 2 that the elimination-backoff
stack has correct pool semantics. [

5.3 Linearizability

Given a sequential specification of a stack, we provide specific linearization points
mapping operations in our concurrent implementation to sequential operations so
that the histories meet the specification.

DEFINITION 7. The elimination backoff stack linearization points are selected as
follows. All operations, except for passive colliding operations, are linearized in the
following lines, executed in their (single) successful iteration:

—push operation are linearized in lines T4 or C2.

—pop operations are linearized in lines T10, T14 or C8.

For passive colliding operations, we set the linearization point to be at the time
of linearization of the matching active colliding operation, and the push colliding
operation is linearized before the pop colliding operation.

Each push or pop operation consists of a while loop that repeatedly attempts
to complete the operation. We say that an iteration is a successful iteration if the
operation returns at that iteration; otherwise, another iteration will be performed.
Every completed operation has exactly one successful iteration (its last one), and
the linearization point of the operation occurs in the course of performing that
iteration.

From definition 1, it follows that a successful collision does not change the state
of the central stack object. Consequently, at any point in time, the state of the
stack is determined solely by the state of its central stack object. We proceed by
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proving that the aforementioned code lines are correct linearization points both for
operations that complete by modifying the central stack object, and for operations
that exchange values through collisions.

LEMMA 12. The lines specified in Definition 7 are correct linearization points
for operations that complete by modifying the central stack object.

PROOF. The linearization points specified in Definition 7 for operations that
complete by modifying the central stack object are:

—Line T4 (for a push operation)
—Line T10 (in case of empty stack) or line T14 (for a pop operation)

Since colliding operations do not change the state of the stack, the claim follows
directly from the linearizability of Treiber’s algorithm [29]. [

Before establishing the correctness of the linearization points for colliding oper-
ations, we need the following technical lemma.

LEMMA 13. Let op1 be an active colliding operation and let ops be the passive
colliding operation with which it collides. Then the linearization point of op1, as
specified in Definition 7, is within the time interval of ops.

PROOF. From definition 5, op; performs a successful CAS in line C2 (if it is a
push operation) or in line C8 (if it is a pop operation). From Definition 7, this is
op1’s linearization point. From Lemma 9, op; collides only with ops and these two
operations have opposite types.

Let s be the configuration immediately preceding the execution of the lineariza-
tion line of op;. The success of the CAS in line C2 or C8 and Lemma 1 imply that
the value of opy’s entry in the location array is non-NULL in s (otherwise the check
at line S9 would have failed). Thus, from Lemma 6 and definition 6, ops is trying
to collide in configuration s. [

LEMMA 14. The lines specified in Definition 7 are correct linearization points
for colliding operations.

PRrROOF. To simplify the proof and avoid the need for backward simulation style
arguments, we consider only complete execution histories, that is, ones in which all
abstract operations have completed, so we can look “back” at the execution and
say for each operation where it happened.

We first note that according to Lemma 13, the linearization point of passive
colliding operations is well-defined (it is obviously well-defined for active colliding
operations). We need to prove that correct LIFO ordering is maintained between
any two linearized colliding operations and between these operations and operations
that modify the central stack object.

As we linearize a passive colliding operation in the linearization point of its
(single) counterpart active colliding operation, no other operations can be linearized
between these two operations. Moreover, since the push operation is linearized just
before the pop operation, this is a legal LIFO matching that cannot interfere with
the LIFO matching of other pairs of colliding operations or with that of operations
that modify the central stack object. Finally, from Lemma 10, the pop operation
indeed obtains the value of the push operation it collides with. [J

THEOREM 2. The elimination-backoff stack is a correct linearizable implemen-
tation of a stack object.

PrRoOOF. Immediate from Lemmas 12 and 14. O
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5.4 Lock Freedom

THEOREM 3. The elimination-backoff stack algorithm is lock-free.

PROOF. Let op be some operation. We show that in every iteration made by op,
some operation performs its linearization point, thus the system as a whole makes
progress. If op manages to collide, then op’s linearization has occurred, as have the
linearization of the operation op collided with.

Otherwise, op calls TryPerformStackOp. If TryPerformStackOp returns TRUE,
op immediately returns, and its linearization has occurred. If, on the other hand,
TryPerformStackOp returns FALSE, then it must be that the CAS operation it
applied to the central stack object was unsuccessful. This implies, in turn, that
a CAS operation applied to S.ptop by some other operation op; was successful.
Hence, op; was linearized. It follows that whenever op completes a full iteration,
some operation is linearized. [

6. DISCUSSION

Shared stacks are widely used in parallel applications and operating systems. In
this paper, we presented the elimination backoff stack, the first concurrent stack
algorithm that is both linearizable, lock-free and can achieve high throughput in
high contention executions. The elimination backoff stack is based on the following
simple observation: that a single elimination array [24], used as a backoff scheme
for a lock-free stack [29], is both lock-free and linearizable. The introduction of
elimination into the backoff process serves a dual purpose of adding parallelism and
reducing contention, which, as our empirical results show, allows the elimination-
backoff stack to outperform all algorithms in the literature at both high and low
loads.

We observe that, unlike the simple algorithm of [29] in which threads can be
anonymous, our algorithm requires that all threads that concurrently perform colli-
sion attempts have unique identifiers. The same thread can use different identifiers,
however, in different collision attempts. It is therefore easy to support applications
in which threads are created and deleted dynamically: threads can get and re-
lease unique identifiers from a small name space by using any long-lived renaming
algorithm (see, e.g., [3; 4]); since accessing the central stack does not require an
identifier, there is no adverse effect on time complexity in the absence of contention.
There is also no need of a-priori knowledge of the maximum number of concurrently
participating threads, as a lock-free dynamically resizable array (see [7]) can be used
instead of the static location array.

Our algorithm includes a tight “busy-waiting” loop in lines S5-S6, performed by a
process as it tries to apply a successful CAS operation to an entry of the collision
array. In general, long busy-waiting loops have adverse effect on performance; as
our empirical results establish, however, this is not the case with our algorithm. The
reason for this is that our algorithm uses a mechanism for dynamically adapting
the width of the collision array; when the load is high, this mechanism increases
the width of the collision array and reduces the probability of CAS failures. This
ensures that the loop of lines S5-S6 is short in practice.

Several related works have appeared since the preliminary version of this paper
was published. Colvin and Grobes [5] presented a somewhat simplified version of
our algorithm and proved its correctness by using the PVS [22] theorem prover.
Recently, Hendler and Kutten [11] introduced bounded-wait combining, a technique
by which asymptotically high-throughput lock-free linearizable implementations of
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objects that support combinable operations (such as counters, stacks, and queues)
can be constructed.
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