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ABSTRACT
Mutual exclusion is a fundamental distributed coordination
problem. Shared-memory mutual exclusion research focuses
on local-spin algorithms and uses the remote memory ref-
erences (RMRs) metric. A recent proof [9] established an
Ω(log N) lower bound on the number of RMRs incurred by
processes as they enter and exit the critical section, match-
ing an upper bound by Yang and Anderson [18]. Both these
bounds apply for algorithms that only use read and write
operations. The lower bound of [9] only holds for determin-
istic algorithms, however; the question of whether random-
ized mutual exclusion algorithms, using reads and writes
only, can achieve sub-logarithmic expected RMR complex-
ity remained open. This paper answers this question in the
affirmative.

We present two strong-adversary [8] randomized local-spin
mutual exclusion algorithms. In both algorithms, processes
incur O(log N/ log log N) expected RMRs per passage in ev-
ery execution. Our first algorithm has sub-optimal worst-
case RMR complexity of O

(
(log N/ log log N)2

)
. Our second

algorithm is a variant of the first that can be combined with
a deterministic algorithm, such as [18], to obtain O(log N)
worst-case RMR complexity. The combined algorithm thus
achieves sub-logarithmic expected RMR complexity while
maintaining optimal worst-case RMR complexity. Our up-
per bounds apply for both the cache coherent (CC) and the
distributed shared memory (DSM) models.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming

General Terms
Algorithms, Theory
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1. INTRODUCTION
In the mutual exclusion problem, a set of processes must

coordinate their access to a critical section so that, at any
point in time, at most a single process is inside the critical
section. Introduced by Dijkstra in 1965 [11], the mutual
exclusion problem is at the core of Distributed Computing
and is still the focus of intense research [3, 17]. In this
paper, we consider mutual exclusion in the asynchronous
shared-memory model.

A natural way to measure the time complexity of algo-
rithms in this model is to count the number of shared-
memory accesses performed by processes. This measure is
problematic for mutual exclusion implementations because,
in this case, a process may perform an unbounded number
of memory accesses while busy-waiting for another process
[1]. Instead, we can measure the time complexity of an algo-
rithm by counting only remote memory references (RMRs),
i.e., memory accesses that traverse the processor-to-memory
interconnect. Local-spin algorithms, which perform busy-
waiting by repeatedly reading locally accessible shared vari-
ables, achieve bounded RMR complexity and have practical
performance benefits [7]. Indeed, recent mutual exclusion
research investigates the RMR complexity of local-spin al-
gorithms (see [2, 5, 6, 10, 14, 15, 16] for some examples).

Anderson and Kim presented a simple randomized vari-
ant [16] of their (deterministic) read/write adaptive mu-
tual exclusion algorithm [5]. Their randomized variant has
expected O(log k) RMR complexity, where k is point con-
tention. Since they presented a lower bound that precludes
deterministic algorithms with O(log k) RMR complexity, this
established a separation in terms of RMR complexity be-
tween randomized and deterministic adaptive algorithms.
With the single exception of [16], prior art local-spin mu-
tual exclusion research dealt exclusively with deterministic
algorithms. Yang and Anderson presented the first O(log N)
RMRs read/write mutual exclusion algorithm [18]. Ander-
son and Kim [4] conjectured that this was best possible.
This conjecture was recently proved by Attiya, Hendler and
Woelfel [9]. The lower bound of [9] holds only for determin-
istic algorithms, however, since it assumes that a scheduling
adversary knows processes’ future steps. The question of
whether randomization can help break the logarithmic bar-
rier of [9] thus remained open. In this paper, we provide a
positive answer to this question.

Golab et al. [12] presented a constant-RMRs read/write
implementation of compare-and-swap. Moreover, they proved
that any shared-memory algorithm using reads, writes, and
conditional operations (such as compare-and-swap), can be



simulated by a read/write algorithm, with only a constant
multiplicative increase in RMR complexity. The algorithms
we present use variables that support the compare-and-swap
and read operations. It follows from [12], that these vari-
ables can be implemented from reads and writes only while
maintaining asymptotic RMR complexities.1

Our Contributions. We establish a separation in terms
of RMR complexity between randomized and determinis-
tic read/write mutual exclusion algorithms. Since the lower
bound of [9] holds also for algorithms that can use condi-
tional operations in addition to reads and writes, this sepa-
ration applies for such algorithms also.

We present starvation-free randomized mutual exclusion
algorithms for the CC model, in which processes incur
O(log N/ log log N) expected RMRs per passage in every ex-
ecution, even against a strong-adversary [8] that can sched-
ule processes according to their execution history. Our first
algorithm has sub-optimal worst-case RMR complexity of
O

(
(log N/ log log N)2

)
. Our second algorithm is a variant

of the first that can be combined with a deterministic al-
gorithm, such as [18], to obtain O(log N) worst-case RMR
complexity. The combined algorithm thus achieves sub-
logarithmic expected RMR complexity while maintaining
optimal worst-case RMR complexity. We then describe (in
Section 5) the simple modifications that are required for
these algorithms to achieve the same properties in the DSM
model.

Model. Our model of computation is based on [13]. A
concurrent system models an asynchronous shared memory
system where N processes communicate by executing op-
erations on shared variables. Each process is a sequential
execution path that performs a sequence of steps, each of
which invokes a single operation on a shared variable.

In the cache-coherent (CC) computation model, each pro-
cessor maintains local copies of shared variables it accesses
inside its cache, whose consistency is ensured by a coher-
ence protocol. At any given time a variable is remote to a
processor if the corresponding cache does not contain an up-
to-date copy of the variable. A memory access to a remote
variable is called a remote memory reference (RMR). In the
distributed shared memory (DSM) computation model, each
processor has its own locally-accessible shared-memory seg-
ment. A processor can also access variables in remote mem-
ory segments; each such access incurs an RMR.

An execution of the entry section and the subsequent exit
section by a process is called a passage. The worst-case RMR
complexity of a mutual exclusion algorithm is the supremum
number of RMRs performed by a process as it performs a
passage, where the supremum is taken over all passages in all
of the algorithm’s executions. The expected RMR complexity
of a mutual exclusion algorithm is the supremum, over all
the algorithm executions, of the expected number of RMRs
performed by a process as it performs a passage.

The compare-and-swap operation (abbreviated CAS) is
defined as follows: CAS(v,expected,new) changes the value
of variable v to new only if its value just before CAS is ap-

1In the CAS implementation of [12], the CAS operation
returns the previous object value. Although a read operation
was not implemented in [12], it can be easily implemented
by calling CAS with an expected value outside the object’s
values-domain; this operation returns the object’s current
value without changing it.

Figure 1: The tree used by the randomized algo-
rithm.

plied is expected ; in this case, the CAS operation returns
true and we say it is successful. Otherwise, CAS does not
change the value of v and returns false; in this case, we say
that the CAS was unsuccessful. A stronger version of CAS,
such as that implemented in [12], returns the value of v just
before CAS is applied, instead of returning true or false.

2. THE RANDOMIZED ALGORITHM
In this section, we describe our first randomized mutual-

exclusion algorithm. In the following description, we let N
denote the number of processes sharing the implementa-
tion. For presentation simplicity, we assume w.l.o.g. that
N = ∆∆ for some positive integer ∆. Note that ∆ =
Θ(log N/ log log N).

The data structure underlying the algorithm consists of a
complete ∆-ary tree of height ∆ and with leaves L1, . . . , LN

(see Figure 1). We say that a node is in level i if its height
is i (leaves have height 0 and the root has height ∆). Each
inner tree node is represented by a structure that includes
a lock field accessed by read and CAS operations. Each
process p is associated with the leaf Lp, and the parent of a
non-root node v is denoted parent(v). We let r denote the
root node and define parent(r) = ⊥.

The pseudo-code of the randomized algorithm is shown
in Figure 2. We first describe the key ideas on which our
algorithm is based and then provide a detailed description
of the pseudo-code of Figure 2.

A process p can enter the critical section in one of two
ways. It can either succeed in capturing all the locks on
the path from its leaf to the root or, otherwise, it can be
promoted by some other process q when q exits the critical
section. If p is promoted, then it no longer needs to climb
up the tree. In this case, p busy-waits until it is signalled to
enter the critical section.

Our algorithm employs two types of promotion mecha-
nisms that differ in the manner in which the process to be
promoted is selected. A promote array of size ∆ is associated
with every internal tree node.



Figure 2: Randomized Mutual Exclusion Algorithm for
Process p ∈ {0, . . . , N − 1}
define Node: struct {lock : int init ⊥, promote: array1

[0..∆− 1] of int init ⊥, nextToPromote: int init 0}
shared: T : Complete ∆-ary tree with leaves2

L1, . . . , LN , promQ : Queue, spin: array [1..N ] of
boolean init false
local: n: Node, ch, next, j, promLevel, q : int3

loop4

Non Critical Section5

promLevel=∆ + 16

n=Lp7

for level=1 to ∆ do8

Let ch be the integer such that n is the9

(ch+1)’th child of parent(n)
n=parent(n)10

CAS(n.promote[ch],⊥,p)11

loop12

if CAS(n.lock,⊥,p) then13

if CAS(n.promote[ch],p,⊥) then14

continue for15

else16

level=level+117

end18

end19

await
(
(n.promote[ch] = ⊥) ∨ n.lock = ⊥

)
20

if n.promote[ch] = ⊥ then21

promLevel=level22

await
(
spin[p]=true

)
23

spin[p]=false24

goto CS25

end26

end loop27

end28

CS: Critical Section29

n=Lp30

for level=1 to min(promLevel-1,∆− 1) do31

n=parent(n)32

PromAndRel(n,p)33

end34

if EMPTY(promQ) then35

q=r.lock36

PromAndRel(n,q)37

else38

spin[promQ.Deq()]=true39

end40

end loop41

Figure 3: Procedure PromAndRel Performed by Pro-
cess p

Input: Node n, process-ID curOwner
local: j1, j2, proc int1

j1 = random(0, ∆-1)2

j2 = n.nextToPromote3

foreach j ∈ {j1, j2} do4

if (proc=n.promote[j]) /∈ {p, ⊥} then5

if CAS(n.promote[j], proc, ⊥) then6

promQ.Enq(proc)7

end8

end9

end10

n.nextToPromote = (n.nextToPromote + 1) mod ∆11

CAS(n.lock, curOwner, ⊥)12

When a process p climbs to node n, it registers at n by
writing its ID to the entry of the promote array correspond-
ing to the sub-tree from which p ascends to n.

When a process q exits the critical section, it performs
both randomized promotion and deterministic promotion at
each node whose lock it captured in its entry section. (if
q itself was promoted in its entry section, then q did not
capture the locks of all nodes on the path from its leaf to
the root.) To perform randomized promotion at node n,
q selects randomly and uniformly an entry of the promote
array associated with n; if some process is registered at that
entry, then q promotes p. If process p is registered at n
when some process performs randomized promotion at n we
say that p participates in a lottery. Clearly the probability
that p is eventually promoted increases with the number of
lotteries in which it participate. Moreover, we show that
whenever p busy waits at a node, the number of lotteries
it participates in is proportional to the number of RMRs it
incurs. This is the basis to our proof (see Section 3) that
randomized promotion ensures the sub-logarithmic expected
RMR complexity of our algorithm.

Sub-logarithmic expected RMR complexity does not pre-
clude starvation, however. In order to bound the worst-
case RMR complexity and avoid starvation, our algorithm
employs deterministic promotion in addition to randomized
promotion. With deterministic promotion, a process per-
forming the exit section inspects an entry of node n’s pro-
mote array pointed at by a nextToPromote index field asso-
ciated with n; if some process is registered at that entry, it
is promoted. The nextToPromote index is incremented in a
round robin manner every time deterministic promotion is
attempted. As we show, this ensures that a process waiting
at some node n will either capture n’s lock, or will be pro-
moted, after n’s lock is released at most ∆ times. This is the
basis to our proof in Section 3 that deterministic promotion
ensures our bound on worst-case RMR complexity. We now
provide a more detailed description of the algorithm.

The Entry Section. The entry section consists of lines
6-28. In iteration h of the external entry loop (lines 8-
28), a process tries to capture the lock of the level-h node
on the path from its leaf to the root. Each node n has
a promote array of size ∆, where entry promote[j] is used
by a process ascending to n from its j’th child. Process
p first ascends one level up the path from Lp to the root
(line 10). It then registers at n by writing its ID to the
entry of n.promote (line 11) corresponding to the sub-tree
from which it ascended to n.2 As we’ve already mentioned,
once p is registered at n, it may be promoted by processes
performing their exit section. Process p then executes the
internal entry loop of lines 12-27 until it either captures
n’s lock or it is promoted. In each iteration of the internal
entry loop, p first tries to capture n’s lock by performing a
CAS operation (line 13). If the CAS succeeds, p tries to un-
register at n by swapping out its ID (line 14). If it succeeds
to un-register, then p can climb up the tree and exits the
current iteration of the external loop (line 15). Otherwise,
p has been promoted at n. It increments p.level (line 17),
so that it now stores the number of the lowest level whose
lock was not captured by p.

If the CAS operation of either line 13 or line 14 fails,

2This is done by a CAS operation, since the CAS object
presented in [12] does not support a write operation.



p busy-waits in line 20 until it either identifies that it was
promoted (this occurs immediately if p previously failed at
line 14) or it reads ⊥ from n’s lock. If p was promoted
(line 21), then it records the lowest level whose lock it did
not capture (line 22) so that it knows which locks to release
in its exit section. It then busy-waits until it is signalled
(line 23) and, once it is, resets its spin variable and pro-
ceeds to the critical section (lines 24-25). If the condition
of line 21 does not hold, then it must be that p read ⊥
from n.lock in line 20. In this case, p proceeds to the next
iteration of the internal loop.

The Exit Section. In the for-loop of lines 31-34, process p
ascends the path from its leaf up until the highest non-root
node whose lock it captured in its entry section. At each
node n along this path, p calls the PromAndRel procedure,
which we describe shorty, in order to promote processes that
may be waiting at n and to release n.

Process p releases every node that it captured in the course
of the preceding entry section, with the exception of the
root’s lock, which is released only if the promotion queue
is empty (lines 35-37). If the queue is non-empty, the first
process ID in it is dequeued and that process is signalled to
enter the critical section (line 39).

The PromAndRel procedure receives two parameters: a
node n and the ID of its current owner curOwner. Pro-
mAndRel can promote up to two processes. In lines 2 and
3, it sets two indexes – j1 and j2 – to the n.promote ar-
ray; it then tries to promote up to two processes whose IDs
are stored in the corresponding entries (lines 5-7). Index
j1 is chosen uniformly at random from {0, . . . , ∆ − 1} and
is used to perform randomized promotion. Index j2 is used
to perform deterministic promotion. It is set to the value
of node n’s nextToPromote field. The nextToPromote field
is incremented in a round-robin manner (line 11). To pro-
mote process proc, p first tries to swap-out proc’s ID from
the corresponding entry of the promote array (line 6). If it
succeeds, p enqueues proc to a queue of promoted processes
(line 7). Finally, PromAndRel releases node n’s lock (line
12).

3. RANDOMIZED ALGORITHM CORRECT-
NESS AND COMPLEXITY

We use the following notation in the proofs that follow.
We say that process p captures the lock of node n whenever
it applies a successful CAS operation on n.lock in line 13 of
the entry section. We say that process p releases the lock of
node n whenever it sets the value of n.lock to ⊥ in Line 12 of
PromAndRel. We say that process p is promoted whenever
some process enqueues p to promQ in line 7 of PromAndRel.
We say that process p is signalled whenever some process
sets the spin flag of process p in line 39 of the exit section.
We say that process p is registered at n if p’s ID is written
at an entry of n.promote. We say that an RMR is a lock-
change RMR if it is caused by a read of n.lock in line 20 of
the entry section.

3.1 Mutual Exclusion
We now provide that our randomized algorithm satisfies

mutual exclusion. The intuition underlying these proofs is
simple: a process p leaves the exit section either after exe-
cuting line 37 or after executing line 39. In the latter case,
the root node remains captured (not necessarily by p) and

the first process in the promotion queue is signalled and will
eventually enter the critical section. In the former case, since
the promotion queue is empty, processes can enter the criti-
cal section only after capturing the root’s lock in line 13 of
the entry section; the use of the CAS operation guarantees
that at most a single process succeeds in doing that.

We use the following notation in the proofs that follow.
We say that process i captures the lock of node n whenever
it applies a successful CAS operation on n.lock in line 13.
We say that process i releases the lock of node n whenever it
sets the value of n.lock to ⊥ in line 12 of the PromAndRel
procedure. We say that process p is promoted whenever
some process enqueues p to promQ in line 7 of PromAndRel.
We say that process p is signalled whenever some process
sets the spin flag of process p in line 39. We say that process
p is enabled to execute line i, and write p@i, if i is the next
line that p will execute when scheduled. We write p@[i− j]
to indicate that process p is enabled to execute some line in
the range [i− j]. We let r denote the root node of the tree
represented by the nodes array. We let SigProcs(E) denote
the set of processes that have been signalled in an execution
E but have not yet entered the critical section after being
signalled. We simply write SigProcs when E is understood.

Lemma 1 The following invariants hold after any execu-
tion E of the algorithm.

(r.lock = ⊥) =⇒
∣∣{p|p@[29− 39]}

∣∣ = 0. (1)

|{p|p@[29− 39]}| ≤ 1. (2)

|SigProcs(E)| ≤ 1. (3)

|SigProcs(E)| = 1 =⇒
∣∣{p|p@[29− 39]}

∣∣ = 0

∧r.lock 6= ⊥. (4)

We claim that the only lines that may violate Invariants
1-4 are lines 15, 25, line 12 of PromAndRel (when called
from line 37), and 39. A process enters the critical section
either after line 25 is executed or after line line 15 is ex-
ecuted when level=∆ holds. It follows that the execution
of either one of these two lines may violate Invariants 1, 2
and 4. When PromAndRel is called from line 37, line 12
of PromANdRel changes r.lock to ⊥ hence Invariants 1 and
4 may be violated. Finally, line 39 increments |SigProcs|,
hence invariants 3 and 4 may be violated.

Observe that all invariants hold vacuously before execu-
tion starts and that no line other than the aforementioned
can violate any of the invariants. We proceed by proving
that none of the above lines can violate the invariants.

Claim 1 The execution of line 15 does not violate the in-
variants.

Proof. Let s be the step in which process p enters the
critical section by executing line 15, when level=∆, and as-
sume the invariants hold before s occurs. Process p can exe-
cute line 15 only after applying a successful CAS operation
in line 13; let s′ denote this step. Since level=∆ when s′ oc-
curs, it follows that r.lock = ⊥ just before s′ and r.lock = p
immediately after s′. From the induction hypothesis applied
to Invariant 1, this implies in turn that, right after s′ occurs,
there are no processes in the critical or exit sections. Also,
from the induction hypothesis applied to Invariants 3-4, Sig-
Procs is empty right after s′. It follows that during the time



interval starting with s′ and ending just before s, there is no
process in the entry or exit sections. This implies that, right
after s, p is the single process in the entry or exit sections
and SigProcs is empty, hence all invariants hold after s.

Claim 2 The execution of line 25 does not violate the in-
variants.

Proof. Let s be the step in which process p enters the
critical section by executing line 25 and assume the invari-
ants hold before s occurs. Since p can execute line 25 only
after the condition of line 23 is satisfied, p was signalled by
some process q. From the induction hypothesis applied to
Invariants 3 and 4, when p is signalled it is the only member
of SigProcs, r.lock 6= ⊥ holds, and there are no processes in
the critical or exit sections. It follows that no process is in
the critical or exit sections in the time period starting when
p is signalled by q and ending just before s occurs. Hence,
right after s, p is the only process in the critical section and(
(r.lock 6= ⊥) ∧ |SigProcs(E)| = 0

)
holds. Therefore all

invariants hold after s.

Claim 3 The execution of line 12 of the PromAndRel pro-
cedure does not violate the invariants.

Proof. Clearly, line 12 does not violate the invariants
when PromAndRel is called from line 33 of the algorithm, so
we only need to consider calls from line 37 of the algorithm.
Let s be the step in which process p frees the root’s lock
in line 12 and assume the invariants hold before s occurs.
Observe that p@[29− 39] holds just before s occurs. From
the induction hypothesis applied to Invariants 2-4, p is the
only process in the critical or exit sections and SigProcs is
empty right before s occurs. Hence, right after s, there are
no processes in the entry or exit sections, SigProcs is empty
and r.lock=⊥, implying that all invariants still hold.

Claim 4 The execution of line 39 does not violate the in-
variants.

Proof. Let s be the step in which process p signals pro-
cess q in line 39 and assume the invariants hold before s oc-
curs. Observe that the test of line 5 of PromAndRel guaran-
tees that p 6= q holds and that p@[29−39] holds just before s
occurs. From the induction hypothesis applied to Invariants
1, 3 and 4, p is the only process in the critical or exit sections
and

(
(r.lock 6= ⊥) ∧ (|SigProcs| = 0)

)
immediately before

s occurs. Hence, right after s, there are no processes in the
entry or exit sections and

(
(r.lock 6= ⊥)∧ (|SigProcs| = 1)

)
holds, implying that all invariants still hold.

Mutual exclusion follows immediately from Claims 1-4.

Lemma 2 The randomized algorithm satisfies mutual ex-
clusion. Moreover, there is always at most a single process
in the critical or exit sections.

3.2 Starvation-Freedom and Worst-Case RMR
Complexity

Claim 5 A process incurs O(log N/ log log N) RMRs in the
exit section (lines 30-39).

Proof. In the exit section, a process performs a constant
number of RMRs in lines 35-39 and less than
∆=O(log N/ log log N) iterations of the loop of lines 31-34,
in each of which it performs a constant number of RMRs.

Claim 6 Node locks cannot be recaptured before they are
released. Moreover, the lock of any non-root node can only
be released by the process that captured it.

Proof. Since node locks can only be captured by a CAS
operation (line 13 of the entry section) that succeeds only
if the lock’s current value is ⊥, once a lock is captured by
some process p, it cannot be re-captured before it is released.
Non-root locks are released by PromAndRel when it is called
in line 33 of the exit section, which proves the second part
of the claim.

Claim 7 Assume that process p starts executing an iteration
of the external entry loop at time t0, trying to capture node
n’s lock. Assume also, that by time t1 > t0, p incurs z
lock-change RMRs and is still executing the same iteration.
Then n’s lock was released at least bz/2c times during time
interval [t0, t1].

Proof. In the CC model, whenever p incurs a lock-change
RMR, the value of n.lock has been modified by another pro-
cess since last read by p. From Claim 6, a lock cannot be
re-captured before it is released. It follows that n’s lock is
released at least once between any two lock-change RMRs
incurred by p.

Claim 8 Let p be a process performing iteration j of the ex-
ternal entry loop, for some j ∈ {1, . . . , ∆}, trying to capture
node n’s lock. Let t be the time when p starts executing the
internal loop in iteration j. Then after n’s lock is released at
most ∆ times after t (if it ever is), p has either already ter-
minated iteration j, or otherwise will do so within a constant
number of RMRs.

Proof. Let m be the node from which p ascends to node
n and let ch denote the ordinal number of m among n’s chil-
dren. Process p writes its ID to n.promote[ch] (in line 11)
before it starts executing the internal entry loop. Since m
is not the root-node, Claim 6 guarantees that no other pro-
cess will capture m’s lock before p releases it. It follows that
n.promote[ch]=p holds as long as p is not promoted and does
not capture n’s lock.

Every process that releases n’s lock tries to deterministi-
cally promote a process registered at n in entry n.nextToPromote
of the promote array (lines 3-6 of PromAndRel). Observe
that, from Lemma 2, the execution of the exit section is se-
quential. Since n.nextToPromote is incremented modulo ∆
every time n’s lock is released (line 11 of PromAndRel) and
is never modified elsewhere, some process will write ⊥ to
n.promote[ch] in line 6 of PromAndRel by the time n’s lock
is released at most ∆ times after t, unless p is no longer reg-
istered at n by then. If p has already finished executing the
internal entry loop by time t, the claim clearly holds. Other-
wise, p proceeds to execute lines 22–25 of the entry section
and will terminate iteration j within a constant number of
RMRs.

Claim 9 A process incurs O(log N/ log log N) RMRs as it
performs a single iteration of the external entry loop.

Proof. Let n be the node p tries to capture in iteration
j of the external entry loop. From Claims 7 and 8, p incurs
a total of O(log N/ log log N) lock-change RMRs during it-
eration j. Moreover, since in each iteration of the internal
entry loop, except for possibly the last, p incurs such an



RMR, it follows that the number of internal loop iteration
performed by p in iteration j is also O(log N/ log log N). Fi-
nally observe that p can incur at most a single RMR in
line 20 on account of reading n.promote[ch], since, once it
does, p proceeds to wait for a signal (in line 23) and then
performs at most a constant number of additional RMRs
before it finishes executing the external loop iteration. The
claim follows.

Claim 10 A process incurs O
(
(log N/ log log N)2

)
RMRs

in the entry section.

Proof. Immediate from Claim 9 and the fact that p ex-
ecutes at most ∆ = O(log N/ log log N) external entry loop
iterations.

From Claims 5 and 10, we get the following lower bound
on the algorithm’s worst-case RMR complexity.

Lemma 3 The algorithm has O
(
(log N/ log log N)2

)
worst-

case RMR complexity.

Claim 11 Let p be a process executing iteration j of the ex-
ternal entry loop, trying to capture the lock of node n and let
ch denote the entry of n.promote corresponding to p. Then,
when p exits iteration j, n.promote[ch] 6= p holds.

Proof. Process p can exit iteration j only from lines 15
or 25. From Claim 6, no other process can write its ID to
n.promote[ch] before p exits iteration j. Process p can exe-
cute line 15 only after it succeeds in setting n.promote[ch]=⊥
in line 14. Also, p can execute line 25 only after the condi-
tion of line 21 is satisfied, implying that n.promote[ch]=⊥
holds. Finally observe that no process other than p ever
writes value p to an entry of the promote array.

Claim 12 If a process p is promoted while performing iter-
ation j of the external entry loop on some node n, then p
eventually busy-waits at line 23 in the course of performing
that iteration.

Proof. Let q be the process that promoted p (in line 7
of PromAndRel) and let ch be the entry of n.promote cor-
responding to p. Before executing line 7, q must perform a
successful CAS that swaps the value of n.promote[ch] from
p to ⊥ in line 6 of PromAndRel. From Claim 11, this implies
that p is still in iteration j when that CAS occurs. It follows
that when p next executes line 20, n.promote[ch]=⊥ holds
and p proceeds to execute lines 21-23.

Lemma 4 The algorithm is starvation-free.

Proof. Observe that Lemma 3 does not guarantee starvation-
freedom, since, theoretically, a process may be stuck forever
in a busy-waiting loop without incurring RMRs and without
making progress. We prove that this does not happen. A
process performs busy-waiting loops only in lines 20 and 23.
The proof proceeds (and concludes) by considering each of
these cases separately.

Claim 13 A process cannot be stuck forever in the busy-
waiting loop of line 23.

Proof. Clearly from the code, process p executes line 23
only if the condition of line 21 was satisfied, implying that
p was promoted by some process q in line 6of PromAndRel.
Immediately after that, q enqueues p to the promotion queue
in line 7 of PromAndRel. Let t be the time when this occurs,
let k, for some 1 ≤ k ≤ N − 1, be the position of p in the
promotion queue and let q1, . . . , qk−1 denote the processes
that precede p in the queue at time t.

From Lemma 5, the operations on the promotion queue (in
line 7 of PromAndRel and in line 39 of the exit section) are
performed sequentially and queue semantics are maintained.
It follows from the test of line 35 that, starting from time t,
the root’s lock remains captured until the promotion queue
becomes empty. Also, it follows from Claim 12, that every
signalled process eventually enters the critical section. Thus,
processes q1, . . . , qk−1 enter and exit the critical section one
after the other and eventually qk−1 signals p in line 39.

Claim 14 A process cannot be stuck forever in the busy-
waiting loop of line 20.

Proof. Suppose, by way of contradiction, that the algo-
rithm has an infinite execution E in which a set of processes
P are stuck forever in line 20. Let p ∈ P be a process that
is stuck in line 20 on a node n with maximum level h and
assume n.lock=q when p busy-waits in line 20. Since pro-
cess q succeeded in capturing node n’s lock, and from our
maximality assumption, q does not get stuck in line 20 when
climbing up from n. From Claim 13, q does not get stuck in
line 23 either. It follows that q eventually enters and then
exits the critical section.

Thus, q eventually releases n.lock. Let t be the time when
this occurs and consider the first time after t when p reads
n.lock in line 20. If n.lock=⊥, p will immediately exit the
busy-waiting loop. Assume, then, that p reads the ID of an-
other process. In this case, p incurs an RMR. However, from
Claim 9, this can only happen O(log N/ log log N) times.
This is a contradiction.

3.3 Expected RMR Complexity

Claim 15 Assume process p starts executing iteration j of
the external entry loop, for some j ∈ {1, . . . , ∆}, at time t0,
trying to capture the lock of node n; let t1 > t0 and let I =
[t0, t1]. Also, let z(I) denote the number of RMRs incurred
by p in I, and let s(I) denote the number of lock-change
RMRs incurred by p during I. Then there exist constants
c1, c2 such that z(I) ≤ c1 · s(I) + c2 holds.

Proof. Observe that the number of non-lock-change RMRs
incurred in each iteration of the internal entry loop is con-
stant. This is because at most a single RMR will be incurred
by p on account of reading n.promote[ch] in line 20; after
such an RMR is incurred, p executes lines 22-25 and ter-
minates iteration j within a constant number of RMRs. If,
in the same internal loop iteration, p incurs an RMR in line
13 but does not incur a lock-change RMR, then p will incur
a lock-change RMR in the next internal loop iteration (if
there is one). Since the number of RMRs incurred in itera-
tion j outside the internal entry loop is constant, the claim
follows.

Lemma 5 The expected number of RMRs performed in the
course of the algorithm’s entry and exit sections is
O(log N/ log log N).



Proof. From Claim 5, the number of RMRs performed
in the course of the exit section is O(log N/ log log N). It
thus suffices to prove the claim for the entry section.

Assume process p starts executing the entry section at
time t0, let t1 > t0 and let I = [t0, t1]. Also, let s(I) denote
the number of lock-change RMRs incurred by p in I and let
z(I) denote the total number of RMRs performed by p in
I. Applying Claim 15 for all the iterations of the external
entry loop and summing up, we get:

z(I) = O
(
s(I) + log N/ log log N

)
. (5)

It thus suffices to prove that E
[
s(I)

]
= O(log N/ log log N)

holds.
We say that process p participates in a lottery, whenever

some process in its exit section tries to randomly promote
(in lines 2 and 4-7 of PromAndRel) a process on some node
n while p is registered at n. Let r(I) denote the number of
times during I in which p participates in a lottery. Since
a process tries to perform randomized promotion on every
node whose lock it releases, we get from Claim 7:

r(I) = Ω
(
s(I)

)
. (6)

We let Gx denote a geometrically distributed (with prob-
ability x) random variable. Whenever p participates in a
lottery, it has probability 1/∆ of being promoted regardless
of the behavior of an adversarial scheduler. Moreover, once
p is promoted, it will not participate in additional lotteries.
We thus have:

E
[
r(I)

]
≤ E

[
G1/∆

]
=

1

1/∆
= ∆ = O(log N/ log log N).

(7)
Where the inequality above follows from the fact that,

from Lemma 3 and Claim 7, a process participates in at
most O

(
(log N/ log log N)2

)
lotteries. The lemma now fol-

lows from Equations 5 - 7.

From Lemmas 2-5 we get:

Theorem 1 The randomized algorithm is a correct starvation-
free mutual exclusion algorithm and has O(log N/ log log N)
expected RMR complexity and O

(
(log N/ log log N)2

)
worst-

case RMR complexity.

4. THE COMBINED ALGORITHM
The randomized algorithm presented in Section 2 (hence-

forth the non-quitting algorithm) has O
(
(log N/ log log N)2

)
worst-case RMR complexity, which is sub-optimal. In this
section, we present a variant of that algorithm, henceforth
called the quitting algorithm, that can be combined with
a deterministic algorithm such as [18]. The resulting Com-
bined Randomized Deterministic (henceforth CRD) algorithm
achieves optimal worst-case RMR complexity of O(log N)
while maintaining expected RMR complexity of
O(log N/ log N log N).

The entry code and exit code of the quitting algorithm are
encapsulated within procedures REnter and RExit, respec-
tively. The pseudo-code of these procedures is presented in

Figures 4 and 5. The key difference between the quitting and
non-quitting algorithms is the following. Whereas a process
p is either promoted or succeeds in capturing the root node’s
lock in the entry code of the non-quitting algorithm, a third
option exists in the entry code of the quitting algorithm: p
quits executing REnter if it incurs Θ(log N) RMRs. In this
case, as we explain soon, p has to execute the entry code
of a deterministic algorithm before it can enter the CS. We
now describe the quitting algorithm in more detail. We then
describe the CRD algorithm.

REnter. Similarly to the non-quitting algorithm, a process
p, executing the entry section of the quitting algorithm, may
enter the critical section after capturing the locks of all nodes
on its path to the root (in line 20, when level=∆) or after it
is signalled (in line 39). Unlike the non-quitting algorithm,
p may also quit REnter (by returning FALSE in line 32)
when the value of the p.RMRsNum local variable exceeds
log N (line 29).

The internal entry loop of the non-quitting algorithm was
changed so that a process can maintain an asymptotically-
accurate estimate of the number of RMRs it incurs. This
estimate is stored in the RMRsNum local variable. To fa-
cilitate that, the structure of the lock field was changed and
now consists of a pair of values <i,nextToPromote>, where i
is either a process ID or ⊥, and nextToPromote has the same
function as in the non-quitting algorithm. As we prove in
the full paper, since the nextToPromote field is incremented
(modulo ∆) each time a process releases node n’s lock, an
argumentation similar to that used in the proof of Claim 8
establishes that the inequality of line 11 holds every time
the lock’s value changed since last read by p.

The structure of the internal loop was also changed in or-
der to eliminate the await of line 20 of the non-quitting algo-
rithm. This is because a process may incur Θ(log N/ log log N)
RMRs while executing line 20 of that algorithm.

When the value of p.RMRsNum exceeds log N , p tries
to un-register at n by swapping out its ID (line 30). If it
succeeds, then p records the level in which it quits (line 31)
so that later, when it executes the exit section of the quitting
randomized algorithm (RExit), it can release all the locks it
captured on its path up to that level. Process p then returns
FALSE to indicate that it failed to enter the CS; this will
then trigger a call to the entry section of the deterministic
algorithm. If the CAS of line 30 fails, then p was already
promoted at n. It will then return from REnter successfully
in line 39.

RExit. Since process p may have returned from REnter
before capturing all locks on its path either because it was
promoted or because it quitted REnter, the loop of lines 2-
5 ascends only up until the highest node on p’s path to the
root that was captured by p in REnter (see lines REnter :31,
REnter :36 and RExit :2).

Similarly to the non-quitting algorithm, randomized and
deterministic promotions are always applied to a node be-
fore its lock is released. Both promotions and lock release
are performed by the CRDPromAndRel procedure, whose
pseudo-code appears in Figure 6.

Unlike the non-quitting exit section, and as mentioned
before, CRDPromAndRel releasees a lock by writing to it the
pair of values <⊥,j2> (line CRDPromAndRel :12), where j2
is the updated nextToPromote index.



Figure 4: Procedure REnter for Process p

Output: FALSE if quits, TRUE otherwise.
local: RMRsNum: int init 0,1

owner, nextToPromote: int2

highestLevel=∆ + 13

n=Lp4

for level=1 to ∆ do5

Let ch be the integer such that n is the (ch+1)’th6

child of parent(n)
n=parent(n)7

CAS(n.promote[ch],⊥,p)8

<owner,nextToPromote>=n.lock9

loop10

if n.lock 6= <owner,nextToPromote> then11

RMRsNum=RMRsNum+112

<owner,nextToPromote>=n.lock13

end14

if owner=⊥ then15

if CAS(n.lock,16

<⊥, nextToPromote>,
<p, nextToPromote>)
then17

if CAS(n.promote[ch],p,⊥) then18

if (level=∆) then19

return TRUE20

else21

continue for22

end23

else24

level=level+125

end26

end27

end28

if RMRsNum > log N then29

if CAS(n.promote[ch],p,⊥) then30

highestLevel=level31

return FALSE32

end33

end34

if (n.promote[ch] = ⊥) then35

highestLevel=level36

await spin[p]=true37

spin[p]=false38

return TRUE39

end40

end loop41

end42

Figure 5: Procedure RExit for Process p

n=Lp1

for level=1 to min(highestLevel-1, ∆− 1) do2

n=parent(n)3

CRDPromAndRel(n)4

end5

if quitted then return6

if EMPTY(promQ) then7

CRDPromAndRel(r)8

else9

spin[promQ.Deq()]=true10

end11

Figure 6: Procedure CRDPromAndRel Performed by
Process p

Input: Node n
local: j1, j2, prev, tmp, proc int1

j1 = random(0, ∆-1)2

prev=<tmp,j2>=n.lock3

foreach j ∈ {j1, j2} do4

if (proc=n.promote[j]) /∈ {p, ⊥} then5

if CAS(n.promote[j], proc, ⊥) then6

promQ.Enq(proc)7

end8

end9

end10

j2 = j2 + 1 mod ∆11

CAS(n.lock, prev, <⊥,j2>)12

Figure 7: The CRD Algorithm for Process p

define Node: struct {lock : int init <⊥, 0>, promote:1

array [0..∆− 1] of int init ⊥}
shared: T : Complete ∆-ary tree with leaves2

L1, . . . , LN , promQ : Queue,
spin: array [1..N ] of boolean init false
local: n: Node, ch, next : int, highestLevel : int, quitted :3

int
loop4

Non Critical Section5

quitted=REnter()6

if quitted then7

DEnter()8

TwoPMutexEnter(RIGHT)9

else10

TwoPMutexEnter(LEFT)11

end12

CS: Critical Section13

if ¬quitted then14

TwoPMutexExit(LEFT)15

else16

TwoPMutexExit(RIGHT)17

DExit()18

end19

RExit()20

end loop21

Finally, if p quitted REnter (as indicated by the quitted
flag set in line CRD :6), then it must not release the root
node’s lock, nor should it signal a process (line RExit :6).

CRD Algorithm. The main code of the CRD algorithm is
shown in Figure 7. In addition to the quitting randomized
algorithm, it uses two deterministic mutual-exclusion imple-
mentations. An O(log N) RMRs N -process implementation
(such as [18]), whose entry and exit sections are encapsu-
lated within the DEntry and DExit procedures, respectively;
and an O(1) RMRs 2-process deterministic implementation
(such as a 2-process instance of [18]), whose entry and exit
sections are encapsulated within the TwoPMutexEnter and
TwoPMutexExit procedures, respectively. Figure 8 depicts
the structure of the entry and exit sections of the CRD al-
gorithm.

One may think that combining our randomized algorithm
with a deterministic algorithm should not be hard: each
process can alternate between executing steps of the two al-



Figure 8: The structure of the CRD algorithm: (a)
entry section, (b) “normal” exit section, (c) exit sec-
tion in case the process quitted in its respective en-
try section.

gorithms; once it captures the lock of one of them, it can
abort from the other. This approach does not seem to work.
To abort from the randomized algorithm, a process p must
release all the locks that it captured, thus possibly causing
processes that are waiting at these nodes to incur RMRs;
however, as p is not holding the root’s lock, it cannot pro-
mote other processes, and so sub-logarithmic expected RMR
complexity cannot be ensured.

Our solution to this problem is that processes quit the
randomized algorithm rather than aborting: a process that
quits the randomized algorithm enters the CS through the
deterministic algorithm. Only when it exits the CS does
it unlock the locks it captured before quitting. We now
describe the CRD algorithm in more detail.

The entry section of the CRD algorithm consists of lines 6-
11. To enter the critical section, a process first executes the
entry section of the quitting algorithm (line 6). Processes
that do not quit REnter then call the entry section of the 2-
process algorithm (line 11), playing the role of the left-hand
process in that algorithm.

Processes that do quit REnter need to capture the lock of
the N -process deterministic algorithm (line 8). Once they
do, they call the entry section of the 2-process algorithm
(line 9), playing the role of the right-hand process in that
algorithm. As we prove in the final paper, the 2-process
mutual-exclusion algorithm is always used by at most a sin-
gle “left-hand” process (a process that did not quit REnter)
and at most a single “right-hand” process (a process that
did quit REnter and holds the lock of the deterministic al-
gorithm).

The exit section of the CRD algorithm consists of lines
14-20, where a process simply performs in reverse order the
exit sections of the algorithms whose entry sections it exe-
cuted in lines 6-11. A process that did not quit REnter, first
executes the exit section of the 2-process algorithm (playing
the role of the left-hand process, in line 15) and then ex-
ecutes RExit (line 20). A process that did quit REnter,
executes the exit section of the 2-process algorithm (playing
the role of the right-hand process, in line 17), followed by the
exit sections of the deterministic (line 18) and randomized
(line 20) algorithms.

Correctness. Correctness proofs for the CRD algorithm
appear in the full paper. Proving starvation-freedom and
expected RMR complexity for the CRD algorithm is quite

similar to proving these properties for the non-quitting ran-
domized algorithm (see Section 3). The mutual exclusion
proof for the CRD algorithm relies also on the properties of
the deterministic N -process and 2-process algorithms and
the manner in which they are combined.

The worst-case complexity proof for the CRD algorithm
relies on the fact that the number of RMRs incurred by
a process in the entry section of the quitting randomized
algorithm is O(log N) as long as the value of the RMRsNum
variable does not exceed log N . The proof of the following
theorem appears in the full paper.

Theorem 2 The CRD algorithm is a correct starvation-free
mutual exclusion algorithm and has O(log N/ log log N) ex-
pected RMR complexity and O(log N) worst-case RMR com-
plexity.

5. MODIFICATIONS REQUIRED FOR THE
DSM MODEL

We now describe how our CC algorithms can be modi-
fied for the DSM model. In this model, processes that try to
capture a node-lock cannot busy-wait on the lock without in-
curring an unbounded number of RMRs. Instead, they must
spin on local variables. We therefore need a mechanism that
allows a process releasing a node-lock to notify all processes
waiting for that lock to be released. Such a mechanism can
be implemented by using a synchronization mechanism we
call a wait-signal object (WS object). WS objects for both
the CC and the DSM models were introduced in [12].3 WS
objects support operations wait and signal. Consider a WS
object W . Each process p can call W.wait(q) once for each
process q 6= p during an execution, and it can call W.signal
once. The semantics and complexity of WS objects are as
follows:

1. The call W.wait(q) by process p 6= q does not terminate
before process q calls the W.signal operation.

2. Each W.signal function call terminates within a con-
stant number of steps, and once process q has finished
a W.signal call, p’s function call W.wait(q) terminates
within a constant number of steps.

3. Each function call W.wait(q) or W.signal incurs a con-
stant number of RMRs.

We now describe how the algorithm presented in Section 2
is modified for the DSM model so that the expected and
worst-case RMR complexities are maintained. Similar mod-
ifications can be made to the combined algorithm described
in Section 4.

In the algorithm given in Figure 1, a process p can busy-
wait only in line 20 or line 23. These await-operations are
the only operations that can cause the algorithm to incur a
higher asymptotic RMR cost in the DSM model than in the
CC model.

If each variable spin[p] is allocated in p’s local memory
segment, then Line 23 incurs no RMRs in the DSM model.
In order to deal with line 20, we associate with each node
n a WS object n.W . The await-operation in line 20 is
replaced by a call of n.W.wait(q), where q is the process

3Note that the WS objects described in [12] are one-time
but they can easily be made long-lived.



ID returned from the CAS-operation in line 13.4 When p
releases a lock, it has to notify waiting processes by calling
n.W.signal. Thus, this operation is added after the CAS-
operation in line 12 of the PromAndRel procedure.

With root-locks we have to be a bit more careful, though:
since processes now wait for a signal from a specific process,
we have to make sure that the process that calls signal actu-
ally owns the root-lock. We ensure this by handing over the
root-lock to a promoted process, after performing the pro-
motion in line 39. More precisely, the else-part of line 39,
is replaced by the following 3 operations:

proc = promQ.deq();
CAS(r.lock, p, proc);
spin[proc] = true.

Since the root-lock handing over may cause processes wait-
ing on the root to incur RMRs, both randomized and de-
terministic promotions are also performed at the root node.
The last operation of the exit-section is then to signal all
processes that are possibly waiting for the root-lock to be
released by calling r.W.signal.

These modifications have the following consequences. Con-
sider a process p that fails to capture node n’s lock because
process q has the lock. Before p makes another attempt
to capture the lock, it calls n.W.wait(q) and therefore in-
curs a constant number of RMRs until q calls n.W.signal.
However, q calls this function only after promoting a process
chosen at random from the processes registered at n. There-
fore, if p makes k attempts to capture node n’s lock, then
it necessarily participates in Ω(k) lotteries. Moreover, every
time node n’s lock is being released, the process owning that
lock calls n.W.signal (this now holds also for the root-lock,
as the “handing over” mechanism ensures that the process
executing the exit-section has the root-lock), thus ensuring
that every n.W.wait-call terminates.

6. CONCLUSIONS
In this work we establish a separation in terms of RMR

complexity, for both the CC and DSM models, between
randomized and deterministic mutual exclusion algorithms
that can use read, write, and conditional operations (such
as compare-and-swap). We present two starvation-free ran-
domized algorithms, in which processes incur
O(log N/ log log N) expected RMRs per passage. We also
present the CRD algorithm, which combines our second ran-
domized algorithm with an optimal-time deterministic mu-
tual exclusion algorithm (such as [18]) and achieves optimal
worst-case logarithmic RMR complexity while maintaining
O(log N/ log log N) expected RMR complexity.

We do not know whether our upper bound is tight. More-
over, we are also not aware of any non-trivial lower bound on
the expected RMR complexity of randomized mutual exclu-
sion. Resolving this gap remains an interesting open ques-
tion.
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