
An O(1) RMRs Leader Election Algorithm

[Extended Abstract]

Wojciech Golab
∗

Department of Computer
Science

University of Toronto
Toronto, Canada

wgolab@cs.toronto.edu

Danny Hendler
†

Faculty of Industrial
Engineering and Management

Technion

hendler@
techunix.technion.ac.il

Philipp Woelfel
‡

Department of Computer
Science

University of Toronto
Toronto, Canada

pwoelfel@cs.toronto.edu

ABSTRACT
The leader election problem is a fundamental distributed
coordination problem. We present leader election algorithms
for the cache-coherent (CC) and distributed shared memory
(DSM) models using reads and writes only, for which the
number of remote memory references (RMRs) is constant in
the worst case.

The algorithms use splitter-like objects [6, 8] in a novel
way for the efficient partitioning of processes into disjoint
sets that share work. As there is an Ω(log n/ log log n) lower
bound on the RMR complexity of mutual exclusion for n
processes using reads and writes only [4], our result separates
the mutual exclusion and leader election problems in terms
of RMR complexity in both the CC and DSM models.

Our result also implies that any algorithm using reads,
writes and one-time test-and-set objects can be simulated
by an algorithm using reads and writes with only a con-
stant blowup of the RMR complexity. Anderson, Herman
and Kim raise the question of whether conditional primitives
such as test-and-set and compare-and-swap are stronger than
read and write for the implementation of local-spin mutual
exclusion [3]. We provide a negative answer to this question,
at least for one-time test-and-set.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

∗Supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.
†Supported in part by Sun Microsystems and by the Tech-
nion’s Aly Kaufman Fellowship.
‡Supported by DFG grant WO1232/1-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06,July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

General Terms
Algorithms, Performance, Theory

Keywords
Leader election, mutual exclusion, shared memory, remote
memory references, test-and-set

1. INTRODUCTION
The leader election problem is a fundamental distributed

coordination problem. In the leader election problem, ex-
actly one process, the leader, should be distinguished from
all other processes. Processes must output either a win or
a lose value: the process elected as leader must output win,
and all other processes must output lose.

We consider the time complexity of shared memory algo-
rithms based on reads and writes under the remote memory
references (RMR) complexity measure. The main contri-
butions of this paper are leader election algorithms with
O(1) RMR complexity for the cache-coherent (CC) model
and for the distributed shared memory (DSM) model. To
the best of our knowledge, these are the first leader elec-
tion algorithms using only reads and writes that have a sub-
logarithmic RMR complexity.

Our algorithms are based on a novel use of splitter-like ob-
jects for the efficient partitioning of processes into disjoint
sets such that all processes in one set share work. Based
on these algorithms, we are also able to prove that any al-
gorithm for the CC or DSM model using read, write and
one-time test-and-set can be simulated by an algorithm us-
ing read and write with only a constant blowup of the RMR
complexity. Thus, one-time test-and-set is no stronger than
read and write in terms of RMR complexity in the CC or
DSM model.

The leader election problem is closely related to the mu-
tual exclusion problem [11], and leader election may be re-
garded as “one-shot” mutual exclusion [12]. In particular,
any algorithm that solves mutual exclusion also solves leader
election.

Alur and Taubenfeld proved that for any mutual exclusion
algorithm for two or more processes using reads and writes
only, the first process to enter its critical section may have
to perform an unbounded number of accesses to shared vari-
ables [1]. For leader election, this result implies that the pro-
cess eventually elected as a leader may have to perform an

unbounded number of shared variable accesses. As observed
by Anderson, Herman and Kim [3], this result indicates that
a time complexity measure that counts all shared memory
accesses is meaningless for mutual exclusion; the same holds
for leader election. Largely because of that, recent work on
mutual exclusion uses the RMR complexity measure, which
counts only remote memory references. These references
cannot be resolved by a process locally and cause intercon-
nect traffic. Recent mutual exclusion work also focuses on
local-spin algorithms, for which all busy-waiting is done by
means of read-only loops that repeatedly test locally acces-
sible variables (see, e.g., [4, 5, 15, 16, 17]).

Anderson was the first to present a local-spin mutual ex-
clusion algorithm using only reads and writes with bounded
RMR complexity [2]. In his algorithm, a process incurs
O(n) RMRs to enter and exit its critical section, where n
is the maximum number of processes participating in the
algorithm. Yang and Anderson improved on that, and pre-
sented an O(log n) RMRs mutual exclusion algorithm based
on reads and writes [7]. This is the most efficient known al-
gorithm under the worst-case RMR complexity measure for
both mutual exclusion and leader election using reads and
writes only in both the CC and DSM models. A prior algo-
rithm by Choy and Singh (with minor modifications to en-
sure termination) surpasses Yang and Anderson’s algorithm
in the context of leader election in the CC model by achiev-
ing an amortized complexity of O(1) RMRs, while retaining
O(log n) worst-case RMR complexity [9]. This algorithm is
based on a cascade of splitter-like filter objects, and was
originally proposed as a building block for adaptive mutual
exclusion. Our algorithm improves on the above results by
establishing a tight bound of Θ(1) RMRs in the worst case
on leader election in both the CC and DSM models.

Anderson and Kim [4] proved a lower bound of
Ω(log n/ log log n) on the RMR complexity of n-process mu-
tual exclusion algorithms that use reads and writes only.
This result improves on a previous lower bound of
Ω(log log n/ log log log n) obtained by Cypher [10]. Both lo-
wer bounds hold also for algorithms that in addition use
conditional primitives, such as test-and-set and compare-
and-swap; lower RMR complexity can be attained with the
help of non-conditional primitives such as swap [3]. This is
somewhat surprising, as compare-and-swap is stronger than
swap in Herlihy’s wait-free hierarchy [13].

Anderson, Herman and Kim raise the question of whether
conditional primitives are stronger than reads and writes in
the context of mutual exclusion RMR complexity [3]. The
known lower bounds provide no relevant information here as
they are insensitive to the availability of conditional primi-
tives. For one-time test-and-set, we provide a negative an-
swer to this question by showing that, in both the CC and
DSM models, it is no stronger than reads and writes in terms
of RMR complexity for implementing any algorithm.

1.1 Model Definitions and Assumptions
In this paper we consider both the cache-coherent (CC)

and distributed shared memory (DSM) multiprocessor archi-
tectures. Each processor in a CC machine maintains local
copies of shared variables inside a cache, whose consistency
is ensured by a coherence protocol. At any given time a vari-
able is remote to a processor if the corresponding cache does
not contain an up-to-date copy of the variable. In a DSM
machine, each processor instead owns a segment of shared

memory that can be locally accessed without traversing the
processor-to-memory interconnect. Thus, every variable is
local to a single processor and remote to all others.

In the presentation of our algorithm we assume that there
is a unique process executing the algorithm on each proces-
sor. (Clearly, the RMR complexity of the algorithm can only
improve if multiple processes execute on some or all of the
processors.) An instruction of the algorithm causes a remote
memory reference if it accesses a variable that is remote to
the process that executes it. In DSM local-spin algorithms,
each process has its own dedicated spin variables, stored in
its local segment of shared memory. In contrast, in a CC
machine it is possible for multiple processes to locally spin
on the same shared variable. We assess the RMR complex-
ity of a leader election algorithm by counting the worst-case
total number of remote memory references required by a
process to execute the algorithm.

In the model we consider processes are asynchronous but
do not fail. (In fact, it follows from [1] that no fault-tolerant
leader election algorithm that uses solely reads and writes
exists.) Every process is live, meaning that once it begins
executing an algorithm, it continues to take steps until its
algorithm terminates.

The remainder of the paper is organized as follows. An
overview of our leader election algorithms is provided in Sec-
tion 2. In Section 3, we give a detailed description of the
DSM algorithm. We then present a CC variant in Section 4
as an extension of the DSM algorithm. Section 5 discusses
the RMR complexity of the one-time test-and-set primitive.
Algorithm correctness proofs are provided in the full version
of this paper, available through CiteSeer.

2. OVERVIEW OF THE ALGORITHMS
The algorithms proceed in asynchronous merging phases

(described in more detail in Section 3.3). At the end of
each merging phase, the set of processes is partitioned into
losers and contenders. As the name suggests, a loser will not
be elected leader, while a contender has a chance of being
elected leader. Initially, all processes are contenders. Once
a process has become a loser, it remains a loser thereafter.

The set of contenders is further partitioned into teams.
Each team has a unique head ; all its other members are
called idle. Only the head of a team performs RMRs. The
goal that each process performs only a constant number of
RMRs is met by ensuring that each process can be a team
head for only a constant number of phases, in each of which
it may perform only a constant number of RMRs. After
performing this predetermined number of RMRs, the team
head selects an idle team member to be the new head, and
loses.

An idle member merely waits (in a local-spin loop) until
it is informed either that it has become a loser, or that it
has become the head of a team. In fact, idle members are
not even aware of the team to which they belong; only the
head of the team knows its members.

Each team of contender processes is further classified ei-
ther as hopeful or as a playoff contender. When a team is
first formed (more about team formation shortly), it is hope-
ful; it will become a playoff contender in phase i if it does
not “encounter” any other team in phase i. In each phase
i, at most one team becomes a playoff contender; and if one
does, it is called the level-i playoff contender.

The set of teams evolves from phase to phase as follows.

Initially, in phase 0, every process is the head of a hopeful
team that has no other members. For any positive integer
i, suppose that at the end of phase i− 1, the contenders are
partitioned into a set of teams. We now explain how the set
of teams evolves during phase i. There are three possible
outcomes for each hopeful team:

1. All members of the team become losers. The algorithm
ensures that this does not happen to all hopeful teams.

2. The team becomes a level-i playoff contender. This
happens for at most one hopeful team.

3. The team merges with other phase-i teams, forming
a new, larger, phase-(i + 1) hopeful team. This new
team proceeds to participate in phase i + 1. The head
of the original phase-i team may leave the new team
and lose.

We prove that any hopeful team formed in phase i has
at least i + 1 members. Thus, the level-i playoff contender
team (if one exists) has at least i members. The number
of hopeful teams decreases in each phase, and eventually
only playoff contender teams remain, say at the end of some
phase ` ≤ n (in fact it can be shown that ` ∈ O(log n)).
Furthermore, for each i ∈ {1, . . . , `}, there is at most one
level-i playoff contender team. All such teams compete to
select an overall playoff winner team, one of whose members
is finally elected to be the overall leader.

The overall playoff winner team is selected as follows.
Clearly there is a level-` playoff contender team, where phase
` is the phase in which the last remaining hopeful team be-
came a playoff contender. That team also becomes the level
` playoff winner. For each level i from ` − 1 down to 1, a
level-i playoff winner team is determined as follows. The
head of the level-(i + 1) playoff winner team and the level-
i playoff contender team, if it exists, enter a two-process
competition (leader election). The winner’s team becomes
the level-i playoff winner team. If there is no level-i playoff
contender team, then the head of the level-(i + 1) playoff
winner team will certainly win the competition, since there
is no opponent.

In order to ensure that every process performs at most a
constant number of RMRs during playoffs, the head of the
level-(i+1) playoff winner team for i ≥ 1 selects a new team
head to compete in level i, and then leaves the team. Since
a level-j playoff contender team has at least j members, it
follows that the resulting level-i playoff winner team is not
empty. In particular, the level-1 playoff winner is not empty
and becomes the level-0 playoff winner.

Finally, the algorithm elects a member of the level-0 play-
off winner team (which, by the above argument, has at
least one member). All other members of that team become
losers. So, at the end of the algorithm, exactly one of the
participating processes is elected as the leader, and all oth-
ers become losers. An example execution of the algorithm
is illustrated in Figure 1.

3. DETAILED DESCRIPTION OF THE
ALGORITHM FOR THE DSM MODEL

This section is organized as follows. In Section 3.1 we de-
scribe the notation that we use in the pseudo-code of the

{ṗ1}P0
H

//{ṗ1}L1
PC

//{ṗ1}L1
PW

//{ṗ1}L0
PW

{ṗ2}P0
H

//{ṗ2, p3}P1
H

//{ṗ2, p3}P2
L

{ṗ3}P0
H

77oooooo

{ṗ4}P0
H

//{ṗ4}P1
L

{ṗ5}P0
H

//{ṗ5, p6}P1
H

//{ṗ5, p6}L2
PC

//{ṗ5, p6}L2
PW

''PPPPPP
//{ṗ5}L1

L

{ṗ6}P0
H

77oooooo
{ṗ6}L1

L

Notation: {p1, . . . , pk}NT represents a team consisting of
p1, . . . , pk where T indicates the team type (H = hopeful,
L = loser, PC = playoff contender, PW = playoff winner)
and N denotes the corresponding team-building phase num-
ber (Pi for phase i) or playoff level (Li for level i). Dotted
process IDs denote team heads.

Figure 1: Example of team evolution over time
(→ direction) leading to election of p1.

algorithm. In Section 3.2 we describe LeaderElect, the al-
gorithm’s main function. Section 3.3 gives a detailed de-
scription of the procedure for merging teams.

To simplify presentation as much as possible, the algo-
rithm presented in Sections 3.2 and 3.3 uses a single variable
for representing a set of idle team members, which requires
Θ(n)-bit words; in Section 3.4 we describe a variant of the
algorithm that works with Θ(log n)-bit words.

3.1 Notational Conventions
In the algorithm pseudo-code provided in this section, we

use the following notational conventions. Shared variables
that exist over the entire duration of the algorithm are de-
noted by uppercase names; short-lived variables with func-
tion scope are denoted by lowercase names. Suppose that
each process has its own local instance of variable V . We
write Vp whenever we need to indicate that a pseudo-code
line references the instance of V local to process p. We sim-
ply write V to indicate that the variable being referenced is
the instance of V that is local to the process that executes
the pseudo-code.

The algorithm proceeds in merging phases. Different merg-
ing phases use different “copies” of helper functions that op-
erate on distinct sets of shared variables. One possible way
of reflecting that in the code is to explicitly pass a phase
number parameter to each function and then to index an
array with this parameter whenever a “per-phase” variable
is accessed. This, however, has the undesirable effect of
cluttering the code and correctness proofs.

Instead, we use the following notational convention. In
function calls made from LeaderElect, which is the main
function of the algorithm, the name of the called function
is indexed with the phase number. This signifies that the
called function, and all the subfunctions it calls (either di-
rectly or indirectly) access the copy of the data structure
corresponding to this phase. As an example, in line 5 of
LeaderElect the following call is made: MergeTeamZ(T).
When this call to MergeTeam executes, any reference to a
shared variable done by it (or by the functions it calls) ac-

Algorithm 1: LeaderElect

Output: A value in {win, lose}.
T ← ∅, Z ← 0, S ← success, work ← 01

while work < 3 ∧ S = success do2

work ← work + 13

Z ← Z + 14

(S, T)← MergeTeamZ(T)5

if T = ⊥ then6

wait until T 6= ⊥7

end8

end9

if S = playoff ∧ Z ≥ 1 then10

s← 2PLeaderElectZ()11

if s = lose then12

S ← lose13

else14

Z ← Z − 115

end16

end17

if S = playoff ∧ Z = 0 ∧ T = ∅ then18

return win19

end20

if T 6= ∅ then21

q ← arbitrary process in T22

write Z → Zq23

write S → Sq24

write T − {q} → Tq25

end26

return lose27

cesses the Z’th copy of that variable. An exception to this
rule is the variable PID that stores a process identifier: every
process has a single copy of PID.

3.2 The Function LeaderElect
The LeaderElect function is the main function of the al-

gorithm. Let q be a process that executes it. LeaderElect

uses the variables T , Z, S, and work, all local to q. When-
ever q is a team head, the variable T stores the identifiers
of all the idle members in q’s team. Whenever q is an idle
member, T is ∅. T is initialized to ∅, because when the al-
gorithm starts, q is the head and single member of its team.
The other variables, described in the following, are meaning-
ful only when q is a team head. When q’s team is hopeful,
Z stores the number of the phase in which q’s team is par-
ticipating. If q’s team becomes a playoff contender, then Z
stores the playoff level in which q’s team will compete next.

The status variable S has a value in {lose, playoff,
success}. When q’s team is hopeful, S equals success.
When q’s team is a playoff contender, S equals playoff. If
S = lose, then q’s team has lost and all its team members
are bound to lose, too. The variable work counts the num-
ber of merging phases that are performed by q as a team
head.

Variable initialization is done in line 1. In the while loop
of lines lines 2–8, q participates in at most three merging
phases. As we prove, participating in three phases is enough
to guarantee that the team size strictly increases from phase
to phase. Before each phase, q increments work (line 3)
and Z (line 4) to indicate its participation in another merg-
ing phase. Process q then calls the MergeTeam function.

MergeTeam, described in detail in Section 3.3, is the heart
of our algorithm. It implements the merging algorithm and
returns a pair of values that are stored to q’s S and T vari-
ables (line 5). If the second value returned by MergeTeam

(and stored to T) is ⊥, then q is now an idle member of a
new team. In this case, q spins on variable T until it be-
comes a team head again (line 7). If q is the head of a team
that competes in playoff level Z, for Z ≥ 1 (line 10), then q
invokes the 2PLeaderElect function, a constant-RMR two-
process leader election algorithm whose details are presented
in the full version of this paper. This step is skipped when
q competes in playoff level 0 since there is no level 0 playoff
contender team and q wins by default.

If q wins the level-i playoff competition, then it decre-
ments Z (line 15), as its team will next compete on level
i− 1. If the current level is 0 and q’s team contains no idle
team members (line 18), then q is the single leader elected
by the algorithm (line 19). Otherwise, either q’s team needs
to participate in additional playoff competitions, or a pro-
cess from q’s team will eventually win. In either case, q
arbitrarily selects an idle team member to be the new head
(line 22), copies its state to the local memory of the new
head (lines 23–25) and then loses (line 27).

If q loses the level-i playoff competition, it sets S to lose

(line 13). Then, if its team is non-empty, q copies its state
to a new head chosen from its team, making sure that all
other team members eventually lose also (lines 21–25). In
either case, q loses (line 27).

3.3 The Merging Algorithm
The merging algorithm is employed in every merging phase

in order to coalesce phase-i teams into larger teams that pro-
ceed to participate in subsequent phases. The processes that
participate in the merging algorithm of phase i are the heads
of phase-i teams.

Each merging phase consists of several stages. As the
algorithm is asynchronous, teams participating in different
phases and stages may co-exist at any point of time. A
merging phase consists of the following stages.

• Finding other processes — Every phase-i process
that completes this stage, except for possibly one (sub-
sequently called the special process), becomes aware of
another phase-i process. In other words, it reads the
PID of another phase-i process.

• Handshaking — Every non-special process q tries to
establish a virtual communication link with the pro-
cess it is aware of, p. If a link from p to q is success-
fully established, then p eventually becomes aware of
q. This implies that p can write a message to q’s local
memory and spin on its local memory until q responds
(and vice versa). Thus, after the establishment of the
link, p and q can efficiently execute a reliable two-way
communication protocol.

• Symmetry breaking — The output of the hand-
shaking protocol is a directed graph over the set of
participating processes, whose edges are the virtual
communication links. This graph may contain cycles.
In the symmetry-breaking phase, these cycles are bro-
ken by deleting some of these links and maintaining
others. The output of this stage is a directed forest
whose nodes are the heads of phase-i teams.

• Team merging — Each tree of size two or more in the
resulting forest is now coalesced into a single, larger,
phase-(i + 1) team. The head of the new team is a
process from the phase-i team that was headed by the
tree’s root. The identifiers of all processes in the tree
are collected and eventually reported to the new head.

The output of the merging phase is a set of new hopeful
teams that proceed to participate in phase i+1 and, possibly,
a single level-i playoff contender team. We now describe the
algorithms that implement the above four stages in more
detail.

3.3.1 Finding Other Processes
This stage is implemented by the Find function. It em-

ploys a splitter-like algorithm. In our implementation, the
splitter consists of shared variables F and G. (Note that
different instances of F and G are used by Find in different
merging phases. See Section 3.1.) When process p executes
Find, it first writes its identifier to F . It then reads G. If
the value read is not ⊥, then p has read from G the identifier
of another process and Find returns that value. Otherwise,
p writes its identifier to G and reads F . If the value read is
the identifier of a process other than p, then it is returned
by Find. Otherwise, Find returns ⊥. Clearly a process in-
curs a constant number of RMRs as it executes the Find

function. The proof of the following lemma is provided in
the full version of the paper.

Lemma 1. The following claims hold.

(a) A call of Find by process p returns ⊥ or the ID of
some process q 6= p that has called Find before p’s call
of Find terminated.

(b) At most one of the processes calling Find receives re-
sponse ⊥.

3.3.2 Handshaking
Except for at most a single special process, which receives
⊥ in response to a Find call, every process that calls Find

becomes aware of one other process. Because of the asyn-
chrony of the system, however, this information is not neces-
sarily useful. E.g., it might be that p becomes aware of q but
then p is delayed for a long period of time and q proceeds
further in the computation or even terminates without being
aware of p. Thus, if p waits for q, it might wait forever. The
handshaking stage consists of a protocol between processes,
through which they efficiently agree on whether or not they
can communicate. The output of this stage for each process
p is a list of outgoing links to processes that became aware
of p (by calling Find) and, possibly, also a link to p from the
single process it became aware of. If p and q share a link,
then, eventually, both of them are aware of each other and
of the existence of the virtual link between them.

The handshaking stage is implemented by the functions
LinkRequest and LinkReceive. If q is aware of p, then q
calls LinkRequest(p) to try to establish a link with p. Thus,
a process calls LinkRequest at most once. We say that a
link from p to q is established, if q’s call to LinkRequest(p)
returns 1.

A process p calls LinkReceive to discover its set of outgo-
ing links. Technically, p and q perform a two-process leader
election protocol to determine whether or not a link from p

Function LinkRequest(p)

Input: Process ID p
Output: a value in {0, 1} indicating failure or success,

respectively
write 1 → Ap[PID]1

s←read(Bp)2

if s = ⊥ then3

link ← 14

else5

link ← 06

end7

write link → LINKp[PID]8

return link9

Function LinkReceive

Output: set of processes to which link was established
B ← 11

forall process IDs q 6= PID do2

if A[q] = ⊥ then3

LINK[q]← 04

else5

wait until LINK[q] 6= ⊥6

end7

end8

return {q | LINK[q] = 1}9

to q is established. This protocol is asymmetric, because it
ensures that p (the recipient of link establishment requests)
incurs no RMRs, whereas q (the requesting process) incurs
only a constant number of RMRs.

The handshaking protocol to establish links with p uses
the array Ap[] and the variable Bp. (Note that different
instances of these variables are used in different merging
phases. See Section 3.1.) Processes p and q use Bp and entry
q of Ap to agree on whether or not q succeeds in establishing
a link with p. The output of this protocol is recorded in the
LINKp array: entry q of LINKp is set if a link from p to q
was established and reset otherwise.

To try and establish a link with p, LinkRequest(p) first
sets the flag corresponding to q in the array Ap (line 1). It
then reads Bp to a local variable (line 2). The link from p
to q is established if and only if the value read in line 2 is ⊥.
If the link is established, q sets the bit corresponding to it
in the array LINKp, otherwise it resets this bit (lines 3–8).

The execution of LinkRequest costs exactly three RMRs
(on account of lines 1, 2 and 8). Each process calls func-
tion LinkRequest at most once because no process becomes
aware of more than a single other process. On the other
hand, it may be the case that many processes are aware of
the same process p. Thus, multiple processes may request
a link with p. Here we exploit the properties of the DSM
model: when p executes LinkReceive it incurs no RMRs be-
cause it only accesses variables in its local memory segment,
possibly waiting by spinning on some of them until a value
is written.

When p executes LinkReceive, it first writes 1 to Bp

(line 1). Any process q that has not yet read Bp will fail
in establishing a link with p. Process p proceeds to scan
the array Ap. For each entry q 6= p, if q has not written
yet to Ap[q] then p resets LINKp[q] as the link from p to

q will not be established (lines 3–4). Otherwise, p locally
spins on LINKp[q] (line 6) waiting for q to either set or reset
this entry (indicating whether a link was established or not,
respectively). Finally, the set of processes that succeeded
in establishing a link with p is returned (line 9). The key
properties of the handshaking functions are captured by the
following lemma.

Lemma 2.

(a) Each call to LinkReceive terminates.

(b) Let L be the set returned by p’s call to LinkReceive.
Then q ∈ L if and only if a link from p to q is eventu-
ally established.

(c) If q’s call to LinkRequest(p) terminates before p starts
executing LinkReceive, then a link from p to q is es-
tablished.

Proof.

Part (a): Consider a call to LinkReceive by process p.
Assume by contradiction that the call does not terminate.
This can only happen if a local spin in line 6 on the entry
LINKp[q] for some process q does not terminate. It follows
that Ap[q] 6= ⊥ since otherwise line 6 is not reached for that
q. It also follows that LINKp[q] remains ⊥ forever. This
is a contradiction because Ap[q] can only be set to a non-⊥
value if q executes line 1 of LinkRequest(p) and in this case
q eventually writes (in line 8 of LinkRequest(p)) a non-⊥
value to LINKp[q].

Part (b): We consider three cases.
Case 1: q executes line 2 of LinkRequest(p) after p

executes line 1 of LinkReceive. In this case q reads a non-
⊥ value in line 2 of LinkRequest(p) and eventually writes 0
to LINKp[q] in line 8. Moreover, no process writes a different
value to LINKp[q]. Thus, the call to LinkRequest(p) made
by q returns 0 (i.e. a link from p to q is not established) and
q /∈ L holds.

Case 2: q executes line 2 of LinkRequest(p) before p
executes line 1 of LinkReceive. In this case s becomes ⊥
in line 2 of LinkRequest(p) and q eventually writes 1 to
LINKp[q] in line 8 and returns 1. Since q writes to Ap[q]
before executing line 2, it follows that Ap[q] 6= ⊥ when p
executes line 3 of LinkReceive. Consequently, no process
other than q modifies the value of LINKp[q] and so q ∈ L
holds.

Case 3: q does not call LinkRequest(p) at all. Since
LINKp[q] is set to 1 only when q executes LinkRequest(p),
it follows that q 6∈ L.

Part (c): If a call to LinkRequest(p) by process q termi-
nates before p calls LinkReceive then we are under the con-
ditions of Case 2 of the proof of Part (b). Hence q ∈ L holds,
and q’s call to LinkRequest(p) returns 1.

3.3.3 Symmetry Breaking
The functions LinkRequest and LinkReceive allow pro-

cesses to establish communication links between them so
that, eventually, both endpoints of each such link are aware
of each other. However, the graph that is induced by these
communication links may contain cycles. The Forest func-
tion calls the functions Find, LinkRequest and LinkReceive

in order to establish communication links and then deletes

Function Forest

Output: A success value in {0, 1}, a process ID (or ⊥)
and a set of processes

p← Find1

if p 6= ⊥ then2

link ← LinkRequest(p)3

else4

special← 15

link ← 06

end7

L ← LinkReceive()8

if link = 1 then9

if L 6= ∅ ∧ PID > p then10

write 1 → CUTp[PID]11

p← ⊥12

else13

write 0 → CUTp[PID]14

end15

else16

p← ⊥17

end18

forall q ∈ L do19

wait until CUT[q] 6= ⊥20

if CUT[q] = 1 then21

L ← L− {q}22

end23

end24

if p = ⊥ ∧ L = ∅ ∧ special 6= 1 then25

return (0,⊥, ∅)26

end27

return (1, p,L) ;28

some of these links in order to ensure that all cycles (if any)
are broken. The deletion of these links may cause some pro-
cesses to remain without any links. Each team head without
links must lose (unless it is special) and, as a consequence,
all the processes in its team also lose. It is guaranteed, how-
ever, that at least one team continues, either as a playoff
contender or as a hopeful team that succeeded in establish-
ing and maintaining a link.

A call to Forest made by team head q returns a triplet
of values: (sq, pq,Lq). The value of sq indicates whether q
is poised to fail (sq = 0) or not (sq = 1). If sq = 1, then pq

and Lq specify q’s neighbors in the graph of communication
links: either pq stores the identifier of q’s parent if a link
from p to q remains after cycles are broken, or pq = ⊥ if no
incoming link to q remains; Lq is the (possibly empty) set
of the identifiers of q’s children, namely processes to which
links from q remain.

We prove that the parent-child relation induced by these
return values is consistent, and that the directed graph in-
duced by that relation (with the edges directed from a node
to its children) is indeed a forest: it is acyclic and the in-
degree of every node is at most 1. We also prove that this
forest contains at most one isolated node, and that at least
one process r calling Forest does not fail. It follows that
all trees in the forest (except for, possibly, one) contain two
nodes or more. The teams whose heads are in the same such
tree now constitute a new, larger, team that proceeds to the
next phase.

A process q executing the Forest function first calls the

Find function and stores the returned value in the local vari-
able p (line 1). If Find returns ⊥, then q sets the special
local flag to indicate that it is the single process that is un-
aware of others after calling Find (line 5). It also resets
the link local variable to indicate that it has no parent link
(line 6). Otherwise, q requests a link from p and stores the
outcome in link (line 3). Regardless of whether q is special
or not, it calls LinkReceive to obtain the set of links from
it that are established (line 8).

Lines 9–24 ensure that all cycles resulting from the calls to
LinkRequest and LinkReceive (if any) are broken. Process
q first tests if a link from its parent was established (line 9)
and if its set of outgoing links is non-empty (line 10). If both
tests succeed, then q may be on a cycle. In that case q deletes
the link from its parent if and only if its identifier is larger
than its parent’s (line 10). As we prove, this guarantees
that all cycles (if any) are broken. To delete its link from
p, process q writes 1 to the entry of the CUTp array that
corresponds to it (line 11). Otherwise, q writes 0 to that
entry so that p would know that this link is maintained
(line 14).

After dealing with the link from its parent, q waits (by
spinning on the entries of its local CUT array) until all the
processes that initially succeeded in establishing links from q
indicate whether they wish to delete these links or to main-
tain them (lines 19–24). If q is not special and was made
isolated after the deletion of links, then the Forest function
returns a code indicating that q should lose (line 26). Oth-
erwise, Forest returns (1, pq,Lq) (line 28), indicating that
q should continue participating in the algorithm, as well as
identifying q’s parent and children in the resulting forest.

It is easily verified that a process executing Forest incurs
a constant number of RMRs. Consider a set P of m ≥ 1
processes, each calling Forest exactly once. Let G = (V, E)
be the directed graph where V ⊆ P is the set of processes
q with sq = 1 and E is the set of edges (u, v) with pv = u.
The following lemma describes the correctness properties of
Forest.

Lemma 3.

(a) Every call to Forest terminates.

(b) If pv = u and u 6= ⊥ then u, v ∈ V . Moreover (u, v) ∈
E if and only if v ∈ Lu.

(c) G is a forest.

(d) |V | ≥ 1 and there is at most one vertex in V with (both
in- and out-) degree 0.

Proof.

Part (a): To obtain a contradiction assume there is a pro-
cess r whose call to Forest does not terminate. Since r may
only wait in line 20, there must be a process q ∈ L such that
CUTr[q] is never set to a non-⊥ value. Since q ∈ L, it follows
from Lemma 2 (b) that q calls LinkRequest(r) and that a
link from r to q is eventually established. Consequently, q
eventually executes either line 11 or line 14 of the Forest

function, a contradiction.

Part (b): Let pv = u. It follows trivially from the algorithm
that if pv 6= ⊥ then sv = 1. Since pv = u it follows that
when v executes line 1 of Forest, the variable p obtains the
value u. Since p is not set to ⊥ in line 17, link must be set

to 1 in line 3 and thus the link from u to v is established.
Moreover, since v does not execute line 12, it writes 0 into
CUTu[v] in line 14 and does not delete the link from u. Now
consider u’s execution of Forest. Since the link from u to v
is established, from Lemma 2 (b), the set L returned by the
call made by u to LinkReceive in line 8 contains v. Since
CUTu[v] is eventually set to 0, su = 1 and v ∈ Lu hold.
Hence we have shown that pv = u implies sv = su = 1 and
v ∈ Lu. Hence u and v are nodes in V and the edge relation
(u, v) ∈ E is well-defined for these nodes. Moreover, this
already shows the direction (u, v) ∈ E ⇒ v ∈ Lu.

For the other direction assume that v ∈ Lu holds (note
that this implies also su = 1). Then v ∈ L holds after u ex-
ecutes line 8, and a link from u to v is established. Hence, u
executes line 20 for q = v and eventually reads CUTu[v] = 0
(otherwise v would be removed from L). It follows that v
writes 0 to CUTu[v]. This implies, in turn, that v executes
line 14 of Forest and that v’s local variable p is set to u.
Since p cannot be changed after that, v’s call to Forest re-
turns the triplet (1, u,Lu) and by definition (u, v) ∈ E holds.

Part (c): By definition, (u, v) ∈ E implies pv = u. Hence
the in-degree of every node in V is at most 1 and it suf-
fices to prove that G is acyclic. To obtain a contradiction,
assume G contains a directed cycle. Let v0, v1, . . . , vk−1

be the nodes on the cycle, i.e. (vi, v(i+1) mod k) ∈ E. Let
vi = max{v0, . . . , vk−1} and assume w.l.o.g. that i = 1.
From assumptions, pv1 = v0. Thus, v1 executes line 10
of Forest when the value of its local variable p equals v0.
Moreover, v1’s call of LinkReceive in line 8 must return a
set that contains v2 (otherwise, from Lemma 2(b) and part
(b) of this lemma, the link from v1 to v2 would not have been
established). Hence, immediately after v1 executes line 10,
|L| ≥ 1 holds. From the choice of v1, we have v1 > p = v0.
It follows that v1 writes 1 to CUTv0 [v1] in line 11. Now
consider the execution of Forest by v0. It is easily verified
that v0 removes v1 from its set L by executing line 22 (for
q = v0). From part (b) of this lemma, (v0, v1) 6∈ E holds.
This is a contradiction.

Part (d): We say that a process q ∈ P loses if q 6∈ V , i.e.
sq = 0 holds. From line 25, a process with no children and
no parent loses iff its local variable special does not equal
1. From Lemma 1 (b), the call to Find (in line 1) returns ⊥
for at most one process. Hence, there is at most one process
for which the variable special is set to 1. It follows that at
most a single node in G has no parent and no children.

It remains to show that V is not empty. If there is a
process v∗ for which the variable special is set to 1 in line 5,
then this process does not lose and so v∗ ∈ V holds. Assume
otherwise. Then, for every process in P , the call to Find (in
line 1) returns a non-⊥ value. Let G′ be the directed graph
(P, E′), where (u, v) ∈ E′ iff v’s call of Find in line 1 returns
u. From assumptions, every node in P has an in-edge in G′

and so G′ contains a directed cycle. Let (v0, v1, . . . , vk−1, v0)
be one such cycle, i.e. (vi, v(i+1) mod k) ∈ E′. The existence
of this cycle implies that each process vi, 0 ≤ i < k, calls
LinkRequest(v(i−1) mod k) in line 3 of Forest. Let j, 0 ≤
j < k, be an index such that no process vi, 0 ≤ i < k, i 6= j,
finishes its execution of line 3 before process vj does so.
Hence, vj finishes its call of LinkRequest(v(j−1) mod k) in
line 3 before v(j−1) mod k calls LinkReceive and, according
to Lemma 2 (c), a link from v(j−1) mod k to vj is established.

Now let E′′ ⊆ E′ be the set of established links, let U ⊆ P
be the set of processes that are an endpoint of at least one of
these links, and let G′′ = (U, E′′). We have already shown
that U 6= ∅ and E′′ 6= ∅ hold. Let v := max U . We finish
the proof by showing that v ∈ V , i.e. that v does not lose.

To obtain a contradiction, assume that v loses. It follows
that when v executes line 25 of Forest, p = ⊥ and L = ∅
hold. Since v ∈ U , there must be another process u such
that either (u, v) ∈ E′′ or (v, u) ∈ E′′ holds.

Case 1, (v, u) ∈ E′′: Since a link from v to u was es-
tablished, u ∈ L after v has finished line 8. Process u can
be removed from L only if v executes line 22. As our as-
sumptions imply that L = ∅ holds when v executes line 25,
it must be that CUTv[u] is set by u to 1 when it executes
Forest. This can only happen if u executes line 11 with
p = v. However, from our choice of v, v > u holds and so
the test of line 10 performed by u fails. Consequently u
does not execute line 11. This is a contradiction.

Case 2, (u, v) ∈ E′′: In this case a link from u to v is es-
tablished. It follows that when v executes line 1 of Forest, p
gets value u. It also follows that v’s call to LinkRequest(u)
in line 3 returns 1. This implies, in turn, that p can be set
to ⊥ only in line 12. However, because of the test in line 10,
this is only possible if L 6= ∅ when v executes line 10. Hence,
there must be a process u′ ∈ P such that a link from v to
u′ has been established. Thus (v, u′) ∈ E′′ holds and we are
under the conditions of Case 1 with u = u′.

3.3.4 Putting it All Together: Team Merging
Merging phases are implemented by the MergeTeam func-

tion. It is called by a head of a phase-i hopeful team, q,
and receives the set of q’s (phase-i) idle team members as a
parameter. Process q first calls Forest to try and merge its
team with other phase-i teams (line 1). As a response, it
receives from Forest a triplet of values: (s, p,L). Process q
then tests whether it lost by checking whether s = 0 holds
(line 2), in which case it returns a lose response, along with
its set of idle members, T (line 3). In the main algorithm
this will trigger a process in which all the idle members in
q’s team eventually lose also. If q did not lose, it checks
whether it is the single isolated node of the graph induced
by the return values of Forest (line 5), in which case it
returns the playoff status along with its unchanged set of
idle members (line 6). Process q’s team is now the level-
i playoff contender. Otherwise, q proceeds to perform the
team-merging stage as follows. First, q adds its new children
(whose identifiers are in L) to the set T (line 8). Next, it
waits until each new child r ∈ L writes its set of idle mem-
bers into entry Sq[r]. Then, q adds all these members to
T (lines 9–12). If q is the head of the new phase-(i + 1)
team (line 13), it returns a success status along with its
new set of idle members (line 14). Otherwise, q is an idle
member of the new team, so it writes its set of idle members
to the local memory of its new parent (line 16), returning a
success status and an empty set to indicate that it is now
an idle team member (line 17).

Let P be the set of team heads calling MergeTeam. Also,
for a ∈ P , let Ta denote the set of p’s idle team members.
Thus a’s team is the set {a} ∪ Ta. Now let all team heads
a ∈ P call MergeTeam(Ta) and let (reta, T ′a) be the corre-
sponding return values (we prove that all these function
calls terminate). A team head a can either lose, succeed
or its team becomes a playoff contender, as indicated by the

Function MergeTeam(T)
Input: A set T of process IDs
Output: A status in {lose, playoff, success} and

either a set of process IDs or ⊥
(s, p,L)← Forest()1

if s = 0 then2

return (lose, T)3

end4

if p = ⊥ ∧ L = ∅ then5

return (playoff, T)6

end7

T ← T ∪ L8

for r ∈ L do9

wait until S[r] 6= ⊥10

T ← T ∪ S[r]11

end12

if p = ⊥ then13

return (success, T)14

else15

write T → Sp[PID]16

return (success,⊥)17

end18

return value reta. Let P ′ ⊆ P be the set of processes that
succeed and remain team heads after their call to MergeTeam

returns (i.e. the heads of the remaining hopeful teams). We
denote by T ∗ the team that becomes playoff contender, i.e.
the set consisting of that team’s head and idle team mem-
bers. If no team becomes a playoff contender during the call
to MergeTeam, then T ∗ = ∅.

The proof of the following lemma is provided in the full
version of the paper. Part (d) implies that the size of hopeful
teams increases from phase to phase. This is required, to-
gether with parts (b) and (c), in order to ensure the progress
of the leader election algorithm. Part (e) ensures that we
maintain the semantic correctness of our notion of a team,
i.e. that each process is member of exactly one team and
that every team has exactly one team head.

Lemma 4. The following claims hold.

(a) Each call to the function MergeTeam terminates.

(b) At most one team becomes a level-i playoff contender.

(c) At least one team does not lose.

(d) For every process a ∈ P ′ there is a different process
b ∈ P such that Ta ∪ Tb ∪ {b} ⊆ T ′a .

(e) The following sets partition
S

a∈P Ta ∪ P : T ∗, P ′, T ′b
for b ∈ P ′, and the set of processes in teams whose
head a ∈ P loses.

Based on the above lemma, the following theorem estab-
lishes the correctness of the algorithm. The proof is provided
in the full version of the paper and relies on the observation
that every team in phase k or level k, for k ≥ 1, has at least
k team members.

Theorem 5. Let P be a non-empty set of processes exe-
cuting the algorithm LeaderElect. Then each process in P
performs a constant number of RMRs, exactly one process
returns win and all other processes return lose.

It is easy to see that the space complexity of the algorithm
is O(n2 log n). It can also be shown that the response time
(as defined in [9]) is O(n log n), despite the fact that the
algorithm has constant RMR complexity.

3.4 Reducing Word Size Requirements
As mentioned earlier, the algorithm presented above re-

quires a word size of Θ(n) for storing a team set in a single
word. We now describe a simple modification that makes
the algorithm work with realistic O(log n)-bit variables. The
key idea is that we represent a team set as a linked list of
process identifiers.

The only functions that are modified are LeaderElect and
MergeTeam, since all other functions operate on processes
and do not manipulate teams at all. In the following descrip-
tion of the required changes, p is the process that executes
the code.

3.4.1 MergeTeam
Let p → a1 → a2 . . . → al be the linked list representing

p’s team set when p starts executing MergeTeam. In lines 8–
12 of the pseudo-code of MergeTeam, presented in Section
3.3, p merges its team with the teams headed by all the
processes in the set L, the set of its children in the forest.

The new algorithm only merges p’s team with some pro-
cesses from the team of a single child q ∈ L. In phase one
and two, q’s team has a size of one and two, respectively,
and q’s complete team is merged into p’s team. Now as-
sume that MergeTeam is called in phase three or higher and
let q → b1 → b2 . . .→ bm be the linked list representing q’s
team set. In this case p adds only b1 and b2 to its team set
(it is easy to see that m ≥ 2). Thus, the new team is now
represented by the list p→ b1 → b2 → a1 → a2 . . .→ al. It
can easily be verified that this can be done by p in a constant
number of RMRs. This is enough to guarantee that team
size strictly increases from phase to phase, as needed to es-
tablish Theorem 5. Thus, the correctness of the algorithm
and the constant RMR complexity are maintained.

As we only add some of the processes from q’s team to p’s
team, the teams headed by all the other processes in L, as
well as the remaining members of q’s team, must lose. This
is easily accomplished by starting a “lose process” along the
linked lists of these processes, in which each of them notifies
the next process that the team must fail, and then itself
fails.

3.4.2 LeaderElect
Wherever in the original LeaderElect algorithm a process

p checks whether p’s team set equals ⊥ (lines 6, 7, 18, 21),
in the new LeaderElect algorithm p checks whether it is
the last element of the linked list. Additionally, instead of
selecting an arbitrary process to be the new head in line 22,
in the new algorithm p simply assigns the next process in
the linked list to be the new head. Line 25 is no longer
required since the next process in the list has a linked list
of the remaining idle team members.

4. EXTENSION TO THE CC MODEL
The algorithm presented in Section 3 has an RMR com-

plexity of Θ(n) in the CC model due to the loops on lines 2–8
of LinkReceive, lines 19–24 of Forest, and lines 9–12 of
MergeTeam. Constant RMR complexity can be achieved by
modifying the LinkRequest and LinkReceive functions so

that the set of children returned by LinkReceive has size
at most one. We denote by LinkReceive-CC the modified
LinkReceive function. We also divide LinkRequest into two
functions, LinkRequestA-CC and LinkRequestB-CC, which
must be called in that order. In particular, every process
that calls LinkRequestA-CC(p) must eventually also call
LinkRequestB-CC(p). Extending the definition from Sec-
tion 3.3.2, we say that a link from p to q is established, if q’s
call to LinkRequestB-CC(p) returns 1.

The DSM version of the leader election algorithm is modi-
fied by replacing the function Forest with Forest-CC, shown
below, which incorporates the new calling sequence of the
handshaking functions.

Function Forest-CC

p← Find1

if p 6= ⊥ then LinkRequestA-CC(p)2

L ← LinkReceive-CC()3

if p 6= ⊥ then4

link ← LinkRequestB-CC(p)5

else6

special← 17

link ← 08

end9

/* resume from line 9 of Forest */

The CC version of the handshaking functions where pro-
cesses request links from p uses the following shared vari-
ables: Ap and Bp – integers, initially ⊥. To perform a call
to LinkRequestA-CC(p), a process q simply writes its PID

to Ap. To perform LinkReceive-CC, p first saves Ap into
a temporary variable, say a. If a = ⊥, then p writes its
own PID to Bp and returns ∅. Otherwise, a is the identifier
of some q 6= p that invoked LinkRequestA-CC(p), so p ac-
knowledges having seen a by writing a to Bp, and returns
{a}. Finally, to perform LinkRequestB-CC(p), q waits until
Bp 6= ⊥, and returns 1 if and only if Bp = q.

The modified handshaking functions satisfy the following
properties, analogous to Lemma 2. The proof is provided in
the full version of the paper.

Lemma 6.

(a) Each call made to LinkRequestB-CC(p) terminates,
provided that p calls LinkReceive-CC.

(b) Let L be the set returned by p’s call to LinkReceive-CC.
Then q ∈ L if and only if a link from p to q is eventu-
ally established.

(c) If q’s call to LinkRequestA-CC(p) terminates before p
starts executing LinkReceive-CC, then a link from p
to some process (not necessarily q) is eventually estab-
lished.

Straight-forward extensions of the proofs of Lemma 3 and
Theorem 5 yield analogous results for the CC variant of
the leader election algorithm, where Forest is replaced by
Forest-CC.

5. THE RMR COMPLEXITY OF ONE-TIME
TEST-AND-SET

In this section we describe a linearizable [14] simulation
of an n-process one-time test-and-set object by our leader

election algorithm. A one-time test-and-set object assumes
values from {0, 1} and is initialized to 0. It supports a single
operation, test-and-set. The test-and-set operation atom-
ically writes 1 to the test-and-set object and returns the
previous value.

Consider first the DSM model. Suppose that an algorithm
A uses a one-time test-and-set object T that is local to some
process p. Our goal is to be able to “plug” our simulation of
all such objects T into A with only a constant blowup in the
RMR complexity. Thus, as T resides in the local memory
segment of process p, our simulation should allow p to apply
operations to T without incurring RMRs at all. Any process
q 6= p should incur O(1) RMRs when it applies an operation
to T .

Our simulation uses three objects: an (n − 1)-process
constant-RMR leader election object LEp (that can be im-
plemented by using our leader election algorithm), a two-
process constant-RMR leader election object 2LEp (the im-
plementation, discussed in the full version of the paper, must
be asymmetric so that p incurs no RMRs), and a read-write
register Rp initialized to ⊥. As indicated by the subscript
p, all these objects reside in p’s local memory segment.

To apply the test-and-set operation on T , a process q 6= p
first reads Rp. If the result is not ⊥, then q loses (i.e. returns
1). Otherwise, q writes its ID to Rp and then executes the
(n − 1)-process leader election algorithm of LEp. If it is
elected, q proceeds to compete against p on 2LEp. Only if
it is also elected here does q win (i.e. return 0), otherwise it
loses.

To apply the test-and-set operation on T , process p (to
which T is local) first reads Rp. If it is not ⊥, then q loses.
Otherwise, p writes its ID to Rp and then competes on 2LEp

against the leader elected on LEp (if any). Finally, q returns
0 if and only if it wins 2LEp.

It is easily verified that the RMR complexity of the sim-
ulation is as required and that the test-and-set operation of
exactly one process returns response 0. As for linearizabil-
ity, note that once an operation on T is completed, every
subsequent operation returns 1 after reading a non-⊥ value
from Rp. Thus, the single operation that returns 0 either
completes before or executes concurrently with every other
operation, and can always be placed first in the lineariza-
tion order. The simulation works also in the CC model if
LeaderElect is modified as per Section 4, though a slightly
simpler simulation is possible using a single n-process leader
election object. Thus, we get the following result.

Theorem 7. Any algorithm using one-time test-and-set
objects, reads and writes can be simulated by an algorithm
using only reads and writes with only a constant blowup in
the RMR complexity in both the DSM and CC models.

6. CONCLUSIONS AND FUTURE WORK
We have shown that one-time test-and-set can be imple-

mented using atomic reads and writes in the CC and DSM
models using O(1) RMRs. It is interesting that our algo-
rithm simultaneously achieves optimal RMR complexity and
high response time. We do not currently know whether this
is inherent in the leader election problem or merely a feature
of our particular solution. In future work we plan to analyze
our algorithms with respect to additional time complexity
measures, and explore possible complexity trade-offs.

Acknowledgments
The authors are indebted to Vassos Hadzilacos who, in ad-
dition to providing useful comments on matters pertaining
to this work, was kind enough to write down a high-level
overview of our algorithm on which the contents of Section 2
are based. We would also like to thank Faith Ellen Fich for
enlightening discussions about the leader election and mu-
tual exclusion problems, as well as Hagit Attiya and the
anonymous referees for their insightful comments.

7. REFERENCES
[1] R. Alur and G. Taubenfeld. Results about fast mutual

exclusion. In Proc. RTSS 1992, pp. 154–162, 1992.

[2] J. Anderson. A fine-grained solution to the mutual
exclusion problem. Acta Inf., 30(3):249–265, 1993.

[3] J. Anderson, T. Herman, and Y. Kim. Shared-memory
mutual exclusion: Major research trends since 1986.
Dist. Comp., 16(2-3):75–110, 2003.

[4] J. Anderson and Y. Kim. An improved lower bound
for the time complexity of mutual exclusion. In Proc.
ACM PODC 2001, pp. 90–99, Aug. 2001.

[5] J. Anderson and Y. Kim. Nonatomic mutual exclusion
with local spinning. In Proc. ACM PODC 2002, pp.
3–12, July 2002.

[6] J. Anderson and M. Moir. Wait-free algorithms for
fast, long-lived renaming. Sci. Comp. Prog.,
25(1):1–39, 1995.

[7] J. Anderson and J. Yang. Time/contention trade-offs
for multiprocessor synchronization. Inf. and Comp.,
124(1):68–84, 1996.

[8] H. Attiya and A. Fouren. Adaptive and efficient
wait-free algorithms for lattice agreement and
renaming. Theory of Comp. Sys., 31(2):642–664, 2001.

[9] M. Choy and A. Singh. Adaptive solutions to the
mutual exclusion problem. Dist. Comp., 8(1):1–17,
1994.

[10] R. Cypher. The communication requirements of
mutual exclusion. In ACM Proc. SPAA 1995, pp.
147–156, July 1995.

[11] E. Dijkstra. Solution of a problem in concurrent
programming control. Comm. of the ACM, 8(9):569,
Sep. 1965.

[12] C. Dwork, M. Herlihy, and O. Waarts. Contention in
shared memory algorithms. Journal of the ACM,
44(6):779–805, 1997.

[13] M. Herlihy. Wait-free synchronization. ACM Trans. on
Prog. Lang. and Sys., 13(1):123–149, Jan. 1991.

[14] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Trans. on Prog. Lang. and Sys., 12(3):463–492, July
1990.

[15] Y. Kim and J. Anderson. Adaptive mutual exclusion
with local spinning. In Proc. DISC 2000, pp. 29–43,
Oct. 2000.

[16] Y. Kim and J. Anderson. A time complexity bound
for adaptive mutual exclusion. In Proc. DISC 2001,
pp. 1–15, Oct. 2001.

[17] H. Lee. Transformations of mutual exclusion
algorithms from the cache-coherent model to the
distributed shared memory model. In Proc. ICDCS
2005, pp. 261–270, June 2005.

