
Lower Bounds for Restricted-Use Objects

(Extended Abstract)

James Aspnes∗ Hagit Attiya† Keren Censor-Hillel‡ Danny Hendler§

February 2, 2012

Abstract

Concurrent objects play a key role in the design of applications for multi-core architectures,
making it imperative to precisely understand their complexity requirements. For some objects, it
is known that implementations can be significantly more efficient when their usage is restricted.
However, apart from the specific restriction of one-shot implementations, where each process
may apply only a single operation to the object, very little is known about the complexities of
objects under general restrictions.

This paper draws a more complete picture by defining a large class of objects for which
an operation applied to the object can be “perturbed” L consecutive times, and proving lower
bounds on the time and space complexity of deterministic implementations of such objects. This
class includes bounded-value max registers, limited-use approximate and exact counters, and
limited-use collect and compare-and-swap objects; L depends on the number of times the object
can be accessed or the maximum value it can support.

For implementations that use only historyless primitives, we prove lower bounds of
Ω(min(logL, n)) on the worst-case step complexity of an operation, where n is the number
of processes; we also prove lower bounds of Ω(min(L, n)) on the space complexity of these
objects. When arbitrary primitives can be used, we prove that either some operation incurs
Ω(min(logL, n)) memory stalls or some operation performs Ω(min(logL, n)) steps.

In addition to these deterministic lower bounds, the paper establishes a lower bound on the
expected step complexity of restricted-use randomized approximate counting in a weak oblivious
adversary model.

∗Department of Computer Science, Yale University
†Department of Computer Science, Technion
‡Computer Science and Artificial Intelligence Laboratory, MIT
§Department of Computer Science, Ben-Gurion university of the Negev

1 Introduction

With multi-core and multi-processor systems now prevalent, there is growing need to gain better
understanding of concurrent objects and, specifically, to establish lower bounds on the cost of
implementing them. An important general class of concurrent objects, defined by Jayanti, Tan and
Toueg [15], are perturbable objects, including widely-used objects, such as counters, max registers,
compare-and-swap, single-writer snapshot and fetch-and-add.

Lower bounds are known for long-lived implementations of perturbable objects, where processes
apply an unbounded number of operations to the object. For example, Jayanti et al. [15] consider
obstruction-free implementations of perturbable objects from historyless primitives, such as read,
write, test-and-set and swap. They prove that such implementations require Ω(n) space and that
the worst-case step-complexity of the operations they support is Ω(n), where n is the number of
processes sharing the object.

In some applications, however, objects are used in a restricted manner. For example, there
might be a bound on the total number of operations applied on the object, or a bound on the
values that the object needs to support. When an object is designed to allow only restricted use,
it is sometimes possible to construct more efficient implementations than for the general case.

Indeed, Aspnes, Attiya and Censor-Hillel [3] showed that at least some restricted-use perturbable
objects admit implementations that “beat” the lower bound of [15]. For example, a max register
can do a write of v in O(min(log v, n)) steps, while a counter limited to m increments can do
each increment in O(min(log2m,n)) steps. Such a restricted-use counter leads to a randomized
consensus algorithm with O(n) individual step complexity [4], while restricted-use counters and
max registers are used in a mutual exclusion algorithm with sub-logarithmic amortized work [7].

This raises the natural question of determining lower bounds on the complexity of restricted-use
objects. The proof of Jayanti et al. [15] breaks for restricted-use objects because the executions
constructed by these proofs exceed the restrictions on these objects.

For the specific restriction of one-time object implementations, where each process applies
exactly one operation to the object, there are lower bounds which are logarithmic in the number
of processes, for specific objects [1,2,6] and generic perturbable objects [14]. Yet, these techniques
yield bounds that are far from the upper bounds, e.g., when the object can be perturbed a super-
polynomial number of times.

This paper provides a more complete picture of the cost of implementing restricted-use objects
by studying the middle ground. We give time and space lower bounds for implementations of
objects that are only required to work under restricted usage, for general families of restrictions.

We define the notion of L-perturbable objects that strictly generalizes classical perturbability;
specific examples are bounded-value max registers, limited-use approximate and exact counters,
and limited-use compare-and-swap and collect objects.1 L, the perturbation bound, depends on
the number of times the object can be accessed or the maximum value it can support (see Table 1).

For L-perturbable objects, we show lower bounds on the step and space complexity of
obstruction-free deterministic implementations from historyless primitives. The step complexity
lower bound is Ω(min(logL, n)), and its proof employs a technique that we call backtracking cov-
ering, introduced by Fich, Hendler and Shavit in [11] and later used in [5]. The space complexity
lower bound is Ω(min(L, n)).

1A single-writer snapshot object is also a collect object (the converse is, in general, false). Therefore, our lower
bounds for the collect object also hold for the single-writer snapshot object.

1

perturbation step complexity max(steps, stalls) space complexity rand. step
bound (L) complexity

compare 3
√
m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(3

√
m,n)) —

& swap
collect m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(m,n)) —
max m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(m,n)) Ω(log log m

log log log m)

register (also [3]) (for m ≤ n, [3])
k-additive

√
m
k − 1 Ω(min(log m

k , n)) Ω(min(log m
k , n)) Ω(min(k

√
m,n)) Ω(log log m

log log log m)

counter (also [3]) (for m ≤ n)

Table 1: Summary of lower bounds for restricted-use objects; where m is the maximum value
assumed by the object or the bound on the number of operations applied to it. All the bounds are
derived in this paper, except when stated otherwise.

We also consider implementations that can apply arbitrary primitives and not only historyless
primitives, and use the memory stalls measure [8] to quantify the contention incurred by such
implementations. We use backtracking covering to prove that either an implementation’s worst-
case operation step complexity is Ω(min(logL, n)) or some operation incurs Ω(min(logL, n)) stalls.

In addition to our deterministic lower bounds, we establish a lower bound of
Ω(log logm/ log log logm) on the expected step complexity of randomized m-valued c-accurate
counters, a particularly weak class of counters that allow a multiplicative error of factor at most c.
Our lower bound employs Yao’s Principle [16] and assumes a weak oblivious adversary.

Table 1 summarizes the lower bounds for specific L-perturbable objects.
Aspnes et al. [3] prove lower bounds on obstruction-free implementations of max registers and

approximate counters from historyless primitives: an Ω(min(logm,n)) step lower bound on de-
terministic and Ω(logm/ log logm) lower bound, for m ≤ n, on the expected step complexity of
randomized implementations. These bounds, however, use a different proof technique, which is
specifically tailored for the semantics of the particular objects, and does not seem to generalize to
the restricted-use versions of arbitrary perturbable objects. Moreover, they neither prove space-
complexity lower bounds nor consider implementations from arbitrary primitives.

2 Model and Definitions

A shared-memory system consists of n asynchronous processes p1, . . . , pn communicating by apply-
ing primitive operations (primitives) on shared base objects. An application of each such primitive
is a shared memory event. A step taken by a process consists of local computation followed by one
shared memory event.

A primitive is nontrivial if it may change the value of the base object to which it is applied,
e.g., a write or a read-modify-write, and trivial otherwise, e.g., a read. Let o be a base object that
is accessed with two primitives f and f ′; f overwrites f ′ on o [10], if starting from any value v
of o, applying f ′ and then f results in the same value as applying just f , using the same input
parameters (if any) in both cases. A set of primitives is historyless if all the nontrivial primitives
in the set overwrite each other; we also require that each such primitive overwrites itself. A set
that includes the write and swap primitives is an example of a historyless set of primitives.

2

Executions and Operations: An execution fragment is a sequence of shared memory events
applied by processes. An execution fragment is pi-free if it contains no steps of process pi. An
execution is an execution fragment that starts from an initial configuration (in which all shared
variables and processes’ local states assume their initial values).

An operation instance of an operation Op on an implemented object is a subsequence of an
execution, in which some process pi performs the operation Op on the object. The primitives
applied by the operation instance may depend on the values of the shared base objects before
this operation instance starts and during its execution (pi’s steps may be interleaved with steps of
other processes). Most implementations are required to be linearizable [13]. An implementation is
obstruction-free [12] if a process terminates its operation instance if it runs in isolation long enough.

A process p is active after execution α if p is in the middle of performing an operation instance,
i.e., p has applied at least one event of the operation instance in α, but the instance is not complete
in α. Let active(α) denote the set of processes that are active after α. If p is not active after α,
we say that p is idle after α. A base object o is covered after an execution α if there is a process p
in the configuration resulting from α that has a nontrivial event about to access o; we say that p
covers o after α.

Restricted-Use Objects: Our main focus in this paper is on objects that support restricted
usage. One example of such objects are objects that have a limit on the number of operation
instances that can be performed on them, as captured by the following definition. An m-limited-
use object is an object that allows at most m operation instances; m is the limit of the object.

Another type of objects with restricted usage are objects that have a value associated with
their state which cannot exceed some bound. Examples are bounded max-registers and bounded
counters [3], whose definitions appear in the appendix.

We also consider collect and compare-and-swap objects. A collect object provides two opera-
tions: a store(val) by process pi sets val to the latest value for pi. A collect operation cop returns
a view, 〈v1, . . . , vn〉, satisfying the following properties: 1) if vj = ⊥, then no store operation by pj
completes before cop starts, and 2) if vj 6= ⊥, then vj is the operand of a store operation sop by pj
that starts before cop completes and there is no store operation by pj that starts after sop completes
and completes before cop starts. A linearizable b-valued compare-and-swap object assumes values
from {1, . . . , b} and supports the operations read and CAS(u,v), for all u, v ∈ {1, . . . , b}. When
the object’s value is u, CAS(u,v) changes its value to v and returns true; when the object’s value
differs from u, CAS(u,v) returns false and does not change the object’s value.

3 Lower Bounds for Deterministic Restricted-Use Objects

In this section, we prove lower bounds for obstruction-free implementations of some restricted-use
objects. Our starting point is the definition of perturbable objects by Jayanti et al. [15]. Roughly
speaking, an object is perturbable if in some class of executions, events applied by an operation of
one process influence the response of an operation of another process. The flavor of the argument
used by Jayanti et al. to obtain their linear lower bound is that since the perturbed operation
needs to return different responses with each perturbation, it must be able to distinguish between
perturbed executions, implying that it must perform an increasing number of accesses to base
objects.

Following is the formal definition of perturbable objects.

3

α λ

a single step by some
processes except p`

-opn by pn

α γ

events by p`

λ -opn by pn

Figure 1: A perturbable object: opn returns different responses in the two executions.

Definition 1 (See Figure 1.) An object O is perturbable if there is an operation instance opn
by process pn, such that for any pn-free execution αλ where no process applies more than a single
event in λ and for some process p` 6= pn that applies no event in λ, there is an extension of α, γ,
consisting of events by p`, such that pn returns different responses when performing opn by itself
after αλ and after αγλ.

We observe that αγλ in the above definition is an execution, since no process applies more than
a single event in λ and p` applies no events in λ.

The linear lower bounds [15] on the space and step complexity of obstruction-free implemen-
tations on perturbable objects (as defined in Definition 1 above) are obtained by constructing
executions of unbounded length, hence they do not apply in general for restricted-use objects.

To prove lower bounds for restricted-use objects, we define a class of L-perturbable objects.
As opposed to the definition of a perturbable object, we do not require every execution of an L-
perturbable object to be perturbable, since this requirement is in general not satisfied by restricted-
use objects. For such objects, some executions already reach the limit or bound of the object,
not allowing any further operation to affect the object, which rules out a perturbation of these
executions. To achieve our lower bounds we only need to show the existence of a special perturbing
sequence of executions rather than attempting to perturb any execution. The longer the sequence,
the higher the lower bound, since the perturbed operation will have to access more base objects in
order to distinguish between executions in the sequence and be able to return different responses.

Definition 2 An object O is L-perturbable if there exists an operation instance opn by pn such that
an L-perturbing execution of O can be constructed as follows: The empty execution is 0-perturbing.
Assume the object has a (k−1)-perturbing execution αk−1λk−1, where no process applies more than
a single event in λk−1.

1. If |λk−1| = n − 1, then we say that αk−1λk−1 is saturated, and the execution αkλk with
αk = αk−1, λk = λk−1 is k-perturbing.

2. Otherwise, if there exists a process p` 6= pn that applies no event in λk−1 and an extension of
αk−1, γ, consisting of events by p`, such that pn returns different responses when performing
opn by itself after αk−1λk−1 and after αk−1γλk−1, then we define a k-perturbing execution as
follows. Let γ = γ′eγ′′, where e is the first event of γ such that opn returns different responses
after αk−1λk−1 and after αk−1γ

′eλk−1. Let λ be any permutation of the events in λk−1 and
the event e, and let λ′, λ′′ be any two sequences of events such that λ = λ′λ′′. The execution
αkλk is k-perturbing, where αk = αk−1γ

′λ′ and λk = λ′′.

If an object is L-perturbable, then, starting from the initial configuration, we may construct
a sequence of L + 1 perturbing executions, αkλk, for 0 ≤ k ≤ L, each of which extending its

4

predecessor perturbing execution. If for some i, αiλi is saturated, then we cannot further extend
the sequence of perturbing executions since we do not have available processes to perform the
perturbation. However, in this case we have lower bounds that are linear in n. For presentation
simplicity, we assume in this case that the rest of the sequence’s perturbing executions are identical
to αiλi.

Definition 2 allows flexibility in determining which of the events of λk−1 are contained in λk
and which are contained in αk. We use this flexibility to prove lower bounds on the step, space and
stall-complexity of L-perturbable objects.

The definition implies that every perturbable object is L-perturbable for every integer L ≥ 0,
hence, the class of L-perturbable objects generalizes the class of perturbable objects. On the other
hand, there are L-perturbable objects that are not perturbable; for example, a b-bounded n-process
max register, for b ∈ poly(n), is not perturbable in general, by the algorithm of [3]. That is, the
class of perturbable objects is a proper subset of the class of L-perturbable objects.

Lemma 5 (in the appendix) establishes that several common restricted-use objects are L-
perturbable, where L is a function of the limit on the number of different operations that may
be applied to them. The challenge in proving this lemma is in increasing L, which later translates
to higher lower bounds. The specific bounds are summarized in Table 1.

3.1 Lower bounds for implementations using historyless objects

We define the concept of an access-perturbation sequence, and prove a step-complexity lower bound
for objects that admit such a sequence.

Definition 3 (See Figure 2.) An access-perturbation sequence of length L of an operation instance
opn by process pn on an object O is a sequence of executions {αrλrφr}Lr=0, such that α0λ0 is empty,
φ0 is an execution of opn by pn starting from the initial configuration, and for every r, 1 ≤ r ≤ L,
the following properties hold:

1. The execution αrλr is pn-free.

2. In φr, process pn runs solo after αrλr until it completes the operation instance opn, in the
course of which it accesses the base objects B1

r , . . . , B
ir
r .

3. λr consists of jr ≥ 0 nontrivial events applied by jr distinct processes, p1
r , . . . , p

jr
r to distinct

base objects O1
r , . . . , O

jr
r , respectively, all of which are accessed by pn in φr. If jr = n− 1, we

say that αrλrφr is saturated.

4. (a) If αr−1λr−1φr−1 is saturated, then we let αr = αr−1, λr = λr−1 and φr = φr−1.

(b) Otherwise, we let αr = αr−1γ
′
rλ
′
r−1, and λr = λ′′r−1er, where λ′r−1 is the subset of λr−1

containing all events to base objects that are not accessed by pn in φr, λ′′r−1 is the subset
of λr−1 containing all events to base objects that are accessed by pn in φr, and γ′rer is
an execution fragment by a process p`r not taking steps in λr−1, where er is its first
nontrivial event to a base object in {B1

r−1, . . . , B
ir−1

r−1 } \ {O1
r−1, . . . , O

jr−1

r−1 }.

Next, we prove a step lower bound for implementations that have an access-perturbation se-
quence. If the sequence is saturated, then the lower bound is linear in the number of processes,
otherwise it is logarithmic in the length of the sequence. Our goal is to prove that pn has to access

5

αr−1 λr−1

steps by p1
r−1, . . . , p

jr−1
r−1

to base objects O1
r−1, . . . , O

jr−1
r−1

accessed by pn in φr−1

-φr−1

opn by pn accessing
{B1

r−1, . . . , B
ir−1
r−1 }

αr = αr−1γ
′
rλ
′
r−1 λr = λ′′rer -φr

opn by pn

Figure 2: An access-perturbation sequence of length L: the above describes the executions for every
r, 1 ≤ r ≤ L. Notice that αrλr is pn-free for every r.

a large number of base objects as it runs solo while performing an instance opn of Op in one of
the executions of opn’s access-perturbation sequence. Let πr denote the sequence of base objects
accessed by pn in φr, in the order of their first access in φr; πr is pn’s solo path in φr. If all the
objects accessed in λr−1 are also in λr, i.e., pn accesses them also in φr, then λr = λr−1er. How-
ever, the application of er may have the undesirable effect (from the perspective of an adversary)
of making πr shorter than πr−1: pn may read the information written by p`r and avoid accessing
some other objects that were previously in πr−1.

To overcome this difficulty, we employ the backtracking covering technique [5, 11]. The obser-
vation underlying this technique is that objects that are in πr−1 will be absent from πr only if the
additional object to which p`r applies the nontrivial event er precedes them in πr−1. Thus the set
of objects along πr that are covered after αrλr is ‘closer’, in a sense, to the beginning of pn’s solo
path in φr−1. It follows that if there are many access-perturbation sequence executions r for which
|πr| < |πr−1|, then one of the solo paths πr must be ‘long’.

To capture this intuition, we define Ψ, a monotonically-increasing progress function of r. Ψr is
a (logL)-digit binary number defined as follows. Bit 0 (the most significant bit) of Ψr is 1 if and
only if the first object in πr is covered after αr (by one of the events of λr); bit 1 of Ψr is 1 if and
only if the second object in πr exists and is covered after αr, and so on. Note that we do not need
to consider paths that are longer than logL. If such a path exists, the lower bound clearly holds.

To construct the r’th access-perturbation sequence execution, we deploy a free process, p`r and
let it run solo until it is about to write to an uncovered object, O, along πr. (Since the sequence is
not saturated, it follows from Property 4(b) of Definition 3 that such p`r and O exist.) In terms of
Ψ, this implies that the covering event er might flip some of the digits of Ψr−1 from 1 to 0. But O
corresponds to a more significant digit, and this digit is flipped from 0 to 1, hence Ψr > Ψr−1 must
hold. Thus we can construct executions αrλrφr, for 1 ≤ r ≤ L, in each of which Ψr increases. It
follows that Ψr = L− 1 must eventually hold, implying that πr’s length is Ω(logL).

Theorem 1 Let A be an n-process obstruction-free implementation of an L-perturbable ob-
ject O from historyless primitives. Then A has an execution in which some process accesses
Ω(min(logL, n)) distinct base objects during a single operation instance.

Proof: Lemma 6 (in the appendix) shows that any implementation of O from historyless primitives
has an access-perturbation sequence of length L ≥ 1, {αrλrφr}Lr=0. If the sequence is saturated,
then Definition 3 immediately implies that pn accesses n− 1 distinct base objects in the course of
performing φr, and the lower bound holds. Otherwise, we show that opn accesses Ω(logL) distinct
base objects in one of these executions.

Let πr = B1
r . . . B

ir
r denote the sequence of all distinct base objects accessed by pn in φr (after

αrλr) according to Property 2 of Definition 3, and let Sπr denote the set of these base objects. Let

6

SCr = {O1
r , . . . , O

jr
r } be the set of base objects defined in Property 3 of Definition 3. Observe that,

by Property 3, SCr ⊆ Sπr holds. Without loss of generality, assume that O1
r , . . . , O

jr
r occur in πr in

the order of their superscripts.
In the execution αrλrφr, pn accesses ir distinct base objects. Thus, it suffices to show that some

ir is in Ω(logL). For j ∈ {1, . . . , ir}, let bjr be the indicator variable whose value is 1 if Bj
r ∈ SCr and

0 otherwise. We associate an integral progress parameter, Ψr, with each r ≥ 0, defined as follows:

Ψr =
ir∑
j=1

bjr ·
L

2j
.

For simplicity of presentation, and without loss of generality, assume that L = 2s for some integer
s > 0, so s = logL. If ir > s for some r then we are done. Assume otherwise, then Ψr can be
viewed as a binary number with s digits whose j’th most significant bit is 1 if the j’th base object
in πr exists and is in SCr , or 0 otherwise. This implies that the number of 1-bits in Ψr equals |SCr |.
Our execution is constructed so that Ψr is monotonically increasing in r and eventually, for some
r′, Ψr′ equals L− 1 = L

∑s
j=1

1
2j . This would imply that pn accesses exactly s base objects during

φr′ (after αr′λr′).
We next show that Ψr > Ψr−1, for every 0 < r ≤ L. Since αr−1λr−1φr−1 is not saturated, by

Property 4(b) of Definition 3, there is a process p`r that takes no steps in λr−1, and an execution
fragment γ′rer of p`r after αr−1, such that er is the first nontrivial event of p`r in γ′rer to a base
object in {B1

r−1, . . . , B
ir−1

r−1 } \ {O1
r−1, . . . , O

jr−1

r−1 }. By Property 2 of that definition, this object is
accessed by pn in φr. Let k be the index of the object among the objects accessed in φr−1, i.e., it
is Bk

r−1. This implies that Bk
r−1 ∈ Sπr−1 \ SCr−1.

As Bk
r−1 /∈ SCr−1, we have bkr−1 = 0. Since er is the first nontrivial event of p`r in γ′rer to a base

object in Sπr−1 \SCr−1, we have that the values of objects B1
r−1 · · ·B

k−1
r−1 are the same after αr−1λr−1

and αrλr. It follows that bjr−1 = bjr for j ∈ {1, . . . , k − 1}. This implies, in turn, that Bk
r−1 = Bk

r .
As Bk

r ∈ SCr , we have bkr = 1. In the appendix, we use the observation that bkr−1 = 0 to prove that
Ψr > Ψr−1 (Lemma 7). Since Ψ0 = 0 and since Ψr strictly grows with r and can never exceed
L− 1, it follows that ΨL = L− 1, which concludes the proof. 2

The specific lower bounds appear in Theorem 8 in the appendix, and are summarized in Table 1.
To prove space-complexity lower bounds on L-perturbable objects, we construct perturbing

sequences in which many objects are covered; not all of them are necessarily accessed by the reader,
but, nevertheless, they must be distinct, giving a lower bound on the number of base objects. In the
appendix, we define a cover-perturbation sequence, which immediately yields a space-complexity
lower bound for objects that admit such a sequence, linear in its length (Theorem 9), and prove
that every L-perturbable object has such a sequence (Lemma 10). Together with Lemma 5, this
gives the specific lower bounds stated in Theorem 11 (in the appendix) and summarized in Table 1.

3.2 Lower bounds for implementations using arbitrary primitives

The number of steps performed by an operation, as we have measured for implementations using
only historyless objects, is not the only factor influencing the performance of an operation. The
performance of a concurrent object implementation is also influenced by the extent to which multiple
processes simultaneously access widely-shared memory locations. Dwork et al. [8] introduced a
formal model to capture such contention, taking into consideration both the number of steps taken

7

by a process and the number of stalls it incurs as a result of memory contention with other processes.
More formally, an event e applied by a process p to object O in an execution α incurs k memory
stalls if it is immediately preceded by k events by distinct processes different than p that apply
nontrivial primitives to O.

Our next result shows a lower bound on implementations using arbitrary read-modify-write
primitives. Its proof employs a variation of the backtracking covering technique, similar to the
proof of Theorem 1. The earlier proof uses access-perturbable sequence of executions, in which
each new execution deploys a process to cover an object that is not covered in the preceding
execution. Such a series of executions cannot, in general, be constructed for algorithms that may
use arbitrary primitives. Instead, the proof constructs a series of executions in which each new
execution deploys a process that covers some object along pn’s path.

Definition 4 An access-stall perturbation sequence of length L of an operation instance opn by
process pn on an object O is a sequence of executions αrσr,1 · · ·σr,jrρr, such that α0 is empty,
j0 = 0, ρ0 is an execution of opn by pn starting from the initial configuration, and for every r,
1 ≤ r ≤ L, the following properties hold:

1. αr is pn-free,

2. in ρr process pn runs solo until it completes the operation instance opn; in this instance, pn
accesses the base objects B1

r , . . . , B
ir
r ,

3. there is a subsequence O1
r , . . . O

jr
r of disjoint objects in B1

r , . . . B
ir
r and disjoint nonempty sets

of processes S1
r , . . . , S

jr
r such that, for j = 1, . . . , jr,

• each process in Sjr covers Ojr after αr, and

• in σr,j, process pn applies events until it is about to access Ojr for the first time, then
each of the processes in Sjr accesses Ojr, and, finally, pn accesses Ojr.

4. let λr−1 be the subsequence of events by the processes in S1
r−1 ∪ · · ·S

jr−1

r−1 that are applied in
σr−1,1 · · ·σr−1,jr−1, then αr−1λr−1 is an r − 1-perturbing execution; if αr−1λr−1 is saturated,
then we say that αr−1σr−1,1 · · ·σr−1,jr−1ρr−1 is saturated,

5. If αr−1σr−1,1 · · ·σr−1,jr−1ρr−1 is saturated, then the r’th execution in the access-stall pertur-
bation sequence is defined as identical to it. Otherwise, the following holds: Ojrr = Bk

r−1, for
some 1 ≤ k ≤ ir−1; Bi

r = Bi
r−1, for all i ∈ {1, . . . k}; Oir−1 = Oir and Sir−1 = Sir for all objects

Oir−1 that precede Bk
r−1 in the sequence B1

r−1, . . . , B
ir
r−1; and either Bk

r−1 /∈ {O1
r−1, . . . , O

jr−1

r−1 }
or Ojrr = Ojrr−1 and |Sjrr | = |Sjrr−1|+ 1.

Theorem 2 Let A be an n-process obstruction-free implementation of an L-perturbable object O
from any read-modify-write primitives. Then A has an execution in which some process either
accesses Ω(min(logL, n)) distinct base objects or incurs Ω(min(logL, n)) memory stalls, during a
single operation instance.

Proof: For simplicity and without loss of generality, assume that L = 22s for some integer s. If A
has an execution in which some process accesses s distinct base objects during a single operation
instance, then the theorem holds. Otherwise, it can be shown that A has an access-stall perturbation

8

sequence of length L (Lemma 12 in the appendix). If one of these executions, αrσr,1 · · ·σr,jrρr, for
some r ≤ L, is saturated, then it follows from Definition 4 that pn incurs n − 1 memory stalls in
the course of σr,1 · · ·σr,jr and the theorem holds. We therefore assume in the following that none of
the executions in A’s access-stall perturbation sequence is saturated. We will prove that pn incurs
Ω(s) memory stalls in one of these executions.

For i ∈ {1, . . . , ir}, let variable nir be defined as follows:

nir =

{
|Smr |, if ∃m ∈ {1, . . . , jr} : Bi

r = Omr ,

0, otherwise.
(1)

Let Nr =
∑ir

i=1 n
i
r. Thus, it suffices for the proof to show that one of these executions has

Nr = Ω(s). We associate the following integral progress parameter, Φr, with each execution r ≥ 0:

Φr =
ir∑
i=1

nir · ss−i. (2)

If nir ≥ s− 1 for some 0 ≤ r ≤ L and i ∈ {1, . . . , ir}, then we are done, since clearly Nr ≥ s− 1
holds in this case. Assume otherwise, then Φr can be viewed as an s-digit number in base s whose
i’th most significant digit is 0 if i > ir or equals the number of processes in S1

r , . . . , S
jr
r covering Bi

r

after αr otherwise.
From the last property of Definition 4, Ojr+1

r+1 = Bk
r , for some 1 ≤ k ≤ ir and, moreover,

Bi
r+1 = Bi

r for i ∈ {1, . . . k}, nir+1 = nir for i ∈ {1, . . . , k − 1}, nkr+1 = nkr + 1, and nir+1 = 0 for
i ∈ {k + 1, . . . , ir}. Based on this, we prove that Φr+1 > Φr (Lemma 13 in the appendix).

Since the sequence Φ1, . . .ΦL is strictly growing, each Φr is unique. By the definition of Φ,
each value Φr corresponds to a different partitioning of integer Nr to the values of the s digits of
Φr. What is the maximum number N of different executions r for which Nr ≤ s holds? N is at
most the number of distinguishable partitions of up to s identical balls into s bins. Let Ab,c be the
number of distinguishable partitions of b identical balls into c bins, then:

N ≤
s∑
j=0

Aj,s = As,s+1 =
(

2s
s

)
=
(

logL
logL/2

)
= Θ

(
4logL/2√
π logL/2

)
= Θ

(
L√

π logL/2

)
< L.

Where the one-before-last equality above follows from Stirling’s approximation and the error of
the approximation ratio

(logL
logL/2

)
/ 4log L/2√

π logL/2
is inversely proportional to s [9, page 75]. Thus, for all

L ≥ 4, there is an execution αr′σr′,1 · · ·σr′,jr
′ρr′ such that Nr′ > s holds. 2

Together with Lemma 5, we obtain the specific bounds presented in Theorem 14 (in the ap-
pendix), and summarized in Table 1.

4 Lower Bound for Randomized Approximate Counters

Proving lower bounds for randomized implementations of concurrent objects is more difficult, due to
the extra flexibility these implementations have. We were not able to prove general lower bounds
for a class of objects, but we take a first step in this direction by proving a lower bound for a
specific, but very useful, object, namely an approximate counter. This object allows some error

9

in the operations applied to them. We consider two variants, depending on whether the error is
additive or multiplicative.

We assume an oblivious adversary, which fixes the sequence of process steps in advance, with-
out being able to predict the coin-flips of the processes or the progress of the execution; in fact,
our adversary does not even require knowledge of the implementation, allowing us to prove the
lower bound using Yao’s Principle [16]. We consider deterministic algorithms, since a randomized
algorithm can be seen as a weighted average of deterministic ones. A distribution over schedules
that gives a high cost on average for any fixed deterministic algorithm, also gives a high cost on
average for any randomized algorithm, which also implies that there exists some specific schedule
that does so. We will describe an (oblivious) adversary strategy achieving the next lower bound:

Theorem 3 For any randomized implementation of an m-valued c-multiplicative-accurate counter
using historyless primitives for n ≥ m processes, and any fixed ε > 0, there is an oblivious adver-
sary strategy that yields, with probability at least 1 − ε, an execution consisting of at most m − 1
concurrent CounterIncrement operation instances, some of which may be incomplete, followed by
a CounterRead operation instance, in which one of the following conditions holds: (a) a constant
fraction of the CounterIncrement instances take more than w operations; (b) the value returned by
the CounterRead operation instance is not consistent with any linearization of the completed oper-
ation instances; or (c) the CounterRead operation instance takes Ω

(
log logm−log log c

logw

)
operations.

We first consider a schedule constructed as follows. Process p1 carries out an operation β1 for
at most w steps. With probability p for each step, p1 is stopped early and is suspended before it
can carry the step out; if the step is not a read operation, this means that the target register is now
covered by a pending operation that can be delivered later to overwrite any subsequent work by
other processes. Whether p1 completes its operation or not, process p2 is next scheduled to carry
out at most w steps, each of which causes p2 to be suspended with probability p as before, and
this process is repeated for the remaining processes up through pn−1. In this way we assemble a
schedule Γ = β′1β

′
2 . . . β

′
n−1, where each β′i is an initial prefix of some high-level operation βi.

From this schedule we construct a family of schedules {Ξk}k≥0, where each Ξk consists of an
initial prefix of Γ of length k (i.e., consisting of k steps), followed by the delivery of all delayed
operations from Γ, and in turn followed by the first r steps of a single operation α executed by pn.
Thus each Ξk is of the form β′1β

′
2 . . . β

′′
mδmδm−1 . . . δ1α, where δi is either the delayed operation of

i or the empty sequence if there is no such operation, α is the single operation of pn, and β′′m is a
prefix of βm that makes the initial segment have the correct length.

The proof is based first on bounding the number of distinct values returned by the reader across
all the schedules Ξk as a function of p and r, and then showing that we can select a subset of these
schedules that must either violate the restriction to short increment and read operations or return
significantly more distinct values. This implies that choosing one of these schedules uniformly at
random is likely to hit one of the bad outcomes. The next lemma, whose proof appears in the
appendix, bounds the number of distinct return values:

Lemma 4 Among the schedules Ξk above, α returns at most (1 + 1/p)r distinct values on average,
where the average is taken over the random choices of the adversary for when to delay operations.

The key idea is that because α is deterministic, the value it returns can depend only on the
values of the at most r registers it reads, and that each register will get at most 1 + 1/p values on

10

average in all the Ξk before it becomes covered by some δi. This is essentially the same idea as used
in [3] for max registers, except that we provide a more careful analysis of the dependence between
the number of values found in each registers, because the union bound used in [3] reduces the lower
bound by a Θ(log logm) factor that in our case would eliminate the lower bound completely.

Lemma 4 holds for arbitrary sequences of operations. To prove Theorem 3, we show that for
the specific case where p = 1/4w and each βi is a CounterIncrement and α is a CounterRead for
a c-multiplicative-accurate counter, we can pick out a subfamily of executions Ξk0 ,Ξk1 , . . .Ξk`−1

,
where `− 1 =

⌊
1
2 log2c

√
m
⌋
− 1 = Θ(logm/ log c), such that, on average, a constant fraction of the

executions Ξki
satisfies one of the conditions in Theorem 3. The full proof appears in the appendix.

If we choose w to match the lower bound on CounterRead, we get a lower bound on the worst-
case cost of any c-multiplicative-accurate counter operation for fixed c of Ω

(
log logm

log log logm

)
. This is

much smaller than Jayanti’s lower bound of Ω(log n) on randomized n-bounded counters [14], which
also allows much stronger primitives in the implementation. But the smaller bound is not surprising
if one considers that a c-multiplicative-accurate counter effectively provides only Θ(log logm) bits
of information about the number of increments, compared with Θ(logm) for standard counter.

5 Summary

This paper presents lower bounds for concurrent obstruction-free implementations of objects that
are used in a restricted manner. (See Table 1 in the introduction.) The step lower-bound on max
registers is tight [3] and the step lower bound on randomized counters is almost tight, as there is
an O(log logm) upper bound [7], under the same adversary model. It is unclear whether the other
lower bounds are tight. Another interesting research direction is to devise generic implementations
for L-perturbable objects. This is of particular interest in the case of randomized implementations,
where there is also an important issue of the type of adversary tolerated.

References

[1] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert, and M. Zadimoghaddam. Optimal-time
adaptive tight renaming, with applications to counting. In PODC, pages 239–248, 2011.

[2] D. Alistarh, J. Aspnes, S. Gilbert, and R. Guerraoui. The complexity of renaming. In FOCS,
pages 718–727, 2011.

[3] J. Aspnes, H. Attiya, and K. Censor. Polylogarithmic concurrent data structures from mono-
tone circuits. J. ACM, to appear. Previous version in PODC, pages 36–45, 2009.

[4] J. Aspnes and K. Censor. Approximate shared-memory counting despite a strong adversary.
ACM Transactions on Algorithms, 6(2), 2010.

[5] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-free
implementations. J. ACM, 56(4), 2009.

[6] H. Attiya and D. Hendler. Time and space lower bounds for implementations using k-cas.
IEEE Trans. Parallel Distrib. Syst., 21(2):162–173, 2010.

11

[7] M. A. Bender and S. Gilbert. Mutual exclusion with O(log log n) amortized work. In FOCS,
pages 728–737, 2011.

[8] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. Journal of
the ACM, 44(6):779–805, 1997.

[9] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley, 1968.

[10] F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized synchronization.
J. ACM, 45(5):843–862, 1998.

[11] F. E. Fich, D. Hendler, and N. Shavit. Linear lower bounds on real-world implementations of
concurrent objects. In FOCS, pages 165–173, 2005.

[12] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended
queues as an example. In ICDCS, pages 522–529, 2003.

[13] M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, June 1990.

[14] P. Jayanti. A time complexity lower bound for randomized implementations of some shared
objects. In PODC, pages 201–210, 1998.

[15] P. Jayanti, K. Tan, and S. Toueg. Time and space lower bounds for nonblocking implementa-
tions. SIAM Journal on Computing, 30(2):438–456, 2000.

[16] A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity. In FOCS,
pages 222–227, 1977.

A Examples of L-Perturbable Objects

A counter is a linearizable object that supports a CounterIncrement operation and a CounterRead
operation, which returns the number of CounterIncrement operation instances linearized before
it. In a k-additive-accurate counter, any CounterRead operation returns a value within ±k of the
number of CounterIncrement operation instances linearized before it. A c-multiplicative-accurate
counter is a counter for which any CounterRead operation returns a value x with v/c ≤ x ≤ vc,
where v is the number of CounterIncrement operation instances linearized before it.

A max-register is a linearizable object that supports a Write (v) operation, which writes the
value v to the object, and a ReadMax operation, which returns the maximum value written by any
Write operation instance linearized before it. In the bounded version of these objects, the object is
only required to satisfy its specification if its associated value does not exceed a certain threshold.
A b-bounded max register takes values in {0, . . . , b−1}. A b-bounded counter is a counter that takes
values in {0, . . . , b− 1}. For a b-bounded object O, b is the bound of O.

Lemma 5 1. An obstruction-free implementation of a b-bounded-value max register is (b− 1)-
perturbable.

2. An obstruction-free implementation of an m-limited-use max register is (m− 1)-perturbable.

12

3. An obstruction-free implementation of an m-limited-use counter is (
√
m− 1)-perturbable.

4. An obstruction-free implementation of a k-additive-accurate m-limited-use counter is (
√

m
k −

1)-perturbable.

5. An obstruction-free implementation of an m-limited-use b-valued compare-and-swap object is
(3
√
m− 1)-perturbable (if b ≥ n).

6. An obstruction-free implementation of an m-limited-use collect object is (m− 1)-perturbable.

Proof:

1. Let O be a b-bounded-value max register and consider an obstruction-free implementation
of O. We show that O is (b − 1)-perturbable for a ReadMax operation instance opn of pn,
by induction, where the base case for r = 0 is immediate for all objects. We perturb the
executions by writing values that increase by one to the max register. This guarantees that
opn has to return different values each time, while getting closer to the limit of the object as
slowly as possible.

Formally, let r < b and let αr−1λr−1 be an (r − 1)-perturbing execution of O. If αr−1λr−1 is
saturated, then, by case (1) of Definition 2, it is also an r-perturbing execution.

Otherwise, our induction hypothesis is that opn returns r − 1 when run after αr−1λr−1. For
the induction step, we build an r-perturbing execution after which the value returned by opn
is r. Since αr−1λr−1 is not saturated, there is a process p` 6= pn that does not take steps in
λr−1. Let γ be the execution fragment by p` where it first finishes any incomplete operation
in α and then performs a Write operation to the max register with the value r ≤ b− 1. Then
opn returns the value r when run after αr−1γλr−1, and r − 1 when run after the (r − 1)-
perturbing execution αr−1λr−1. It follows that r-perturbing executions may be constructed
from αr−1λr−1 and γ as specified by Definition 2.

2. The proof for an m-limited-use max register is the same as that for a b-bounded value max
register. We could even allow writing any increasing sequence of values to the max register
rather than only increasing by one, since the limit of the object applies to the number of
operations rather than to its value.

3. WhenO is anm-limited-use counter, we use a proof similar to the one we used for a limited-use
max register, where we perturb a CounterRead operation opn by applying CounterIncrement
operations. The subtlety in the case of a counter comes from the fact that a single perturbing
operation may not be sufficient for guaranteeing that opn returns a different value after
αr−1λr−1 and after αr−1γλr−1, since we do not know how many of the CounterIncrement
operations by processes that are active after αr−1 were linearized. As there are at most r− 1
such operations, in order to ensure that different values are returned by pn after these two
executions, we construct γ by letting the process p` apply r CounterIncrement operations
after finishing any incomplete operation in αr−1. This can be done as long as r ≤

√
m in

order not to pass the limit on the number of operations allowed, which will be 1 +
∑√m

r=1 r =
1 + (

√
m−1)

√
m

2 ≤ m.

13

4. For a k-additive-accurate m-limited-use counter the proof is similar to that of a counter,
except that p` needs to perform an even larger number of CounterIncrement operations in
γ, because of the inaccuracy allowed in the returned value of the CounterRead operation
opn. Denote by Ir the number of CounterIncrement operation instances performed by the
perturbing process in iteration r. We have that I1 = k + 1 in order for opn to return at
least 1. We claim that for r > 1, Ir = 2k + r, and prove this by induction. The operation
opn run after αr−1λr−1 can return a value which is as large as

∑r−1
j=1 Ij + k. Therefore,

we need the number of complete CounterIncrement operation instances after αr−1γλr−1 to
be at least

∑r−1
j=1 Ij + k + (k + 1), for opn to return at least

∑r−1
j=1 Ij + k + 1. Besides the

CounterIncrement operation instances in γ, at least
∑r−1

j=1 Ij − (r − 1) CounterIncrement
operation instances have finished, therefore setting Ir = 2k + r implies that opn returns at
least

∑r−1
j=1 Ij − (r − 1) + Ij − k, which is

∑r−1
j=1 Ij + k + 1 as needed.

This claim implies that a k-additive-accurate m-limited-use counter is
(√

m
k − 1

)
-perturbable,

because the total number of operation instances will be

1 +
(

(k + 1) + (2k + 2) + . . .+
(

2k +
√
m

k
− 1
))
≤ 1 + 2k

(√
m

k
− 1
)

+

(√
m
k − 1

) (√
m
k − 1 + 1

)
2

≤ 1 +
(
2
√
m− 2k

)
+
m

2
≤ m,

where the last inequality holds for a large enough m (m ≥ 16).

5. Let O be an m-limited-use b-bounded compare-and-swap object, b ≥ n. We show that it is
(3
√
m− 1)-perturbable for a read operation instance by pn, by induction, where the base case

for r = 0 is immediate for all objects. In our construction, all processes except for pn perform
only CAS operation instances.

Let r < 3
√
m − 1 and let αr−1λr−1 be an (r − 1)-perturbing execution of O. If αr−1λr−1 is

saturated, then, by case (1) of Definition 2, it is also an r-perturbing execution.

Otherwise, our induction hypothesis is that αr−1λr−1 includes at most
∑r−1

i=1 i
2 CAS operation

instances. Let u be the value returned by opn after αr−1λr−1, and let j denote the number
of processes that apply events in λr−1 and let p1

r−1, . . . , p
j
r−1 be these processes. Let ξ be an

execution fragment that follows αr−1 in which all active processes other than p1
r−1, . . . , p

j
r−1

finish any incomplete operation instances they started in αr−1. For k ∈ {1, . . . , j}, let (uk, vk)
denote the operands of the last CAS operation instance started by pkr−1 in αr−1. Since
αr−1λr−1 is not saturated and since r−1 < 3

√
m−1, there is a process p` 6∈ {p1

r−1, . . . , p
j
r−1}∪

{pn} and, moreover, there is a value v ∈ {1, . . . , n} \ {u, u1, . . . , uj}.
Denote by β the sequence of operation instances CAS(u, v)CAS(v1, v) . . . CAS(vj , v), denote
by βr the sequence of operation instances resulting from concatenating r copies of β and let
γ = ξβr.

We claim that O’s value after αr−1γλr−1 is v. Consider O’s value after p` executes β once
after αr−1ξ. There are two possibilities: either O’s value is v (in which case it remains v also
after αγ), or, otherwise, all the CAS instances in β failed, implying that one or more of the
operation instances performed by p1

r−1, . . . , p
j
r−1 are linearized during the execution of γ. In

14

the latter case, consider O’s value after p` executes β twice after αr−1ξ. Once again, either
O’s value is v (and remains v also after αr−1γ), or, otherwise, additional operation instances
performed by p1

r−1, . . . , p
j
r−1 are linearized during the second execution of β. Applying this

argument iteratively and noting that j ≤ r − 1, by construction, establishes our claim.

Consider the execution αr−1γλr−1φ, where φ is an execution of read by pn. Then φ must
return v, whereas an execution of read by pn after αr−1λr−1 returns u 6= v. Execution αrλr
can now be constructed as in the proofs for limited use max registers and counters. The
number of operation instances applied by p` in γ is (j + 1) · r ≤ r2. Since O allows only m
operation instances, this implies that the sequence can have length 3

√
m−1, because the total

number of operation instances will be 1 +
∑ 3√m−1

r=1 r2 < m.

6. Let O be an m-limited-use collect object and consider an obstruction-free implementation of
O. We show that O is (m− 1)-perturbable for a collect operation instance opn of pn, by in-
duction, where the base case for r = 0 is immediate for all objects. We perturb the executions
by having processes store values that change their collect component. This guarantees that
opn has to return different values each time, while getting closer to the limit of the object as
slowly as possible.

Formally, let r < m and let αr−1λr−1 be an (r − 1)-perturbing execution of O. If αr−1λr−1

is saturated, then, by case (1) of Definition 2, it is also an r-perturbing execution.

Otherwise, Let V =< v1, . . . , vn > denote the value that is returned by a collect operation
by pn after αr−1λr−1. Since αr−1λr−1 is not saturated, there is a process p` 6= pn that does
not take steps in λr−1. Let γ be the execution fragment by p` where it first finishes any
incomplete operation in α and then applies an update(v′`) operation operation to O, for some
v′` 6= v`. Then opn must return different values when run after αr−1γλr−1 and after the (r−1)-
perturbing execution αr−1λr−1. It follows that r-perturbing executions may be constructed
from αr−1λr−1 and γ as specified by Definition 2.

2

B Proofs Omitted from Section 3

Lemma 6 An L-perturbable object implementation from historyless primitives has an access-
perturbation sequence of length L.

Proof: Let O be an L-perturbable object implementation from historyless primitives. We show
that it has an access-perturbation sequence of length L, for the operation opn as defined in Defini-
tion 3. The proof is by induction, where we prove the existence of the execution αrλrφr, for every
r, 0 ≤ r ≤ L. To allow the proof to go through, in addition to proving that the execution αrλrφr
satisfies the 4 conditions of Definition 3, we will prove that αrλr is r-perturbing.

For the base case, r = 0, α0λ0 is empty and φ0 is an execution of opn starting from the initial
configuration. Moreover, the empty execution is 0-perturbing. We next assume the construction of
the sequence up to r − 1 < L and construct the next execution αrλrφr as follows.

By the induction hypothesis, the execution αr−1λr−1 is (r − 1)-perturbing. If αr−1λr−1 is
saturated, then, by case (1) of Definition 2, αr = αr−1, λr = λr−1 and αrλr is r-perturbing.

15

Moreover, by property 4(a) of Definition 3, αrλrφr is the r’th access-perturbation execution, where
φr = φr−1.

Assume otherwise. Then, by property 4(b) of Definition 3 , there is a process p`r 6= pn that
does not take steps in λr−1, for which there is an extension of αr−1, γr, consisting of events by p`r ,
such that pn returns different responses when performing opn by itself after αr−1λr−1 and after
αr−1γrλr−1. As per Definition 2, let γr = γ′rerγ

′′
r , where er is the first event of γ such that opn

returns different responses after αr−1λr−1 and after αr−1γ
′
rerλr−1. Clearly er is a nontrivial event.

Denote by φr the execution of opn by pn after αr−1γ
′
rerλr−1. Since opn returns different values

after αr−1λr−1 and after αr−1γ
′
rerλr−1, and since the implementation uses only historyless primi-

tives, this implies that er is applied to some base object B not in {O1
r−1, . . . , O

jr−1
r−1 } that is accessed

by pn in φr.
We define λ′r−1 to be the subsequence of λr−1 containing all events to base objects that are not

accessed by pn in φr, and λ′′r−1 to be the subsequence of λr−1 containing all events to base objects
that are accessed by pn in φr. We then define αr = αr−1γ

′
rλ
′
r−1, λr = λ′′r−1er and show that αrλrφr

satisfies the properties of Definition 3.
We first observe that αrλrφr is a well defined execution, since the execution fragment γ′r by p`r

is performed after αr−1, and all operations in λr−1 are nontrivial events to distinct base objects
none of which is by p`r . It follows that αrλr and αr−1γ

′
rerλr−1 are indistinguishable to pn, hence

φr is a solo execution of opn by pn after both executions.
Property 1 holds since αrλr is pn-free by construction, and φr is a solo execution fragment by

pn in which it performs opn, so Property 2 holds. To show Property 3, we observe that αrλr is
indistinguishable to pn from αr−1γ

′
rerλr−1 and hence pn accesses the base object B in φr. Finally,

Property 4 follows by construction.
We conclude the proof by claiming that αrλr is r-perturbing, which follows from its construction

and Definition 2. 2

Lemma 7 Ψr > Ψr−1.

Proof:
Ψr =

∑ir
j=1 b

j
r · L2j

=
∑k−1

j=1 b
j
r · L2j + bkr · L2k +

∑ir
j=k+1 b

j
r · L2j

=
∑k−1

j=1 b
j
r−1 · L2j + L

2k +
∑ir

j=k+1 b
j
r · L2j

≥
∑k−1

j=1 b
j
r−1 · L2j + L

2k

>
∑k−1

j=1 b
j
r−1 · L2j +

∑ir−1

j=k+1 b
j
r−1

L
2j

= Ψr−1,

where the last equality is based on the observation that bkr−1 = 0. 2

Theorem 8 An n-process obstruction-free implementation of an m-limited-use max register, m-
limited-use counter, m-limited-use b-valued compare-and-swap object or an m-limited-use collect
object from historyless primitives has an operation instance requiring Ω(min(logm,n)) steps. An
obstruction-free implementation of a b-bounded max register from historyless primitives has an
operation instance requiring Ω(min(log b, n)) steps. An obstruction-free implementation of a k-
additive-accurate m-limited-use counter from historyless primitives has an operation instance re-
quiring Ω(min(logm− log k, n)) steps.

16

Definition 5 A cover-perturbation sequence of length 1 ≤ L ≤ n− 1 of an operation instance opn
by process pn on an object O is a sequence of executions {αrλrφr}Lr=0, such that α0λ0 is empty, φ0

is an execution of opn by pn, and for every r, 1 ≤ r ≤ L, the following hold.

1. The execution αrλr is pn-free.

2. In φr, process pn runs solo after αrλr until it completes opn.

3. In λr, distinct processes q1, . . . , qr each apply a nontrivial event to distinct base objects
O1, . . . , Or, respectively.

4. |active(αrλr)| ≤ r.

The space lower bound for cover-perturbable objects follows immediately from Property 3:

Theorem 9 Let A be an n-process obstruction-free implementation of an object O from historyless
primitives. If A has a cover-perturbation sequence of length L, then A has an execution in which
L distinct base objects are accessed.

The next lemma shows that every L-perturbable object has a cover-perturbation sequence of
length L.

Lemma 10 An L-perturbable object has a cover-perturbation sequence of length L.

Proof: We show that the object has a cover-perturbation sequence of length L for operation
instance opn as defined in Definition 5. The proof is by induction, where we prove the existence
of the execution αrλrφr, for every r, 0 ≤ r ≤ L. To allow the proof to go through, in addition to
proving that the execution αrλrφr satisfies the four conditions of Definition 5, we will prove that
αrλr is r-perturbing.

For the base case, r = 0, α0λ0 is empty and φ0 is an execution of opn starting from the initial
configuration. Moreover, the empty execution is 0-perturbing. We next assume the construction of
the sequence up to r − 1 < L and construct the next execution αrλrφr as follows.

By the induction hypothesis, the execution αr−1λr−1 is (r−1)-perturbing. If αr−1 is saturated,
we take αr = αr−1 and λr = λr−1. Otherwise, by case (2) of Definition 2, there is a process p`r 6= pn
that does not take steps in λr−1, for which there is an extension of αr−1, γr, consisting of events
by p`r , such that pn returns different responses when performing opn by itself after αr−1λr−1 and
after αr−1γrλr−1. As per Definition 2, let γr = γ′rerγ

′′
r , where er is the first event of γ such that

opn returns different responses after αr−1λr−1 and after αr−1γ
′
rerλr−1. Clearly er is a nontrivial

event.
Denote by φr the execution of opn by pn after αr−1γ

′
rerλr−1. Since opn returns different values

after αr−1λr−1 and after αr−1γ
′
rerλr−1, and since the implementation uses only historyless primi-

tives, this implies that er is applied to some base object B not in {O1, . . . , Or−1} that is accesses
by pn in φr.

Define αr = αr−1γ
′ and λr = λr−1e. To conclude the proof, we need to show that the execution

αrλr satisfies the properties of Definition 5. Since Property 1 holds for execution αr−1λr−1, it is
pn-free. By construction, γ′ is performed by p`r 6= pn, hence αrλr is also pn-free, establishing that
Property 1 holds for it as well. Property 4 holds for αrλr since |active(αrλr)| = |active(αr−1λr−1)|+
1 ≤ r − 1 + 1 = r. Finally, Properties 3 and 2 are immediate from our construction.

By its construction, αrλr is r-perturbing, which concludes the proof. 2

17

Theorem 11 The space complexity of any obstruction-free implementation of an m-limited-use
max register or an m-limited-use collect object from historyless primitives is Ω(min(m,n)). The
space complexity of any obstruction-free implementation of an m-limited-use b-valued compare-and-
swap object from historyless primitives is Ω(min(3

√
m,n)). The space complexity of any obstruction-

free implementation of a b-bounded max register from historyless primitives is Ω(min(b, n)). The
space complexity of any obstruction-free implementation of a k-additive-accurate m-limited-use
counter from historyless primitives is Ω(min(

√
m
k , n)).

Lemma 12 An L-perturbable object implementation has an access-stall perturbation sequence of
length L.

Proof: Let O be an L-perturbable object implementation. We show that it has an access-stall-
perturbation sequence of length L, for the operation opn as specified in Definition 4. The proof is
by induction, where we prove the existence of the execution αrσr,1 · · ·σr,jrρr, for every r, 0 ≤ r ≤ L.

For the base case, r = 0, α0 is empty, and j0 = 0, implying that λ0 is also empty. It fol-
lows that α0λ0 is the empty execution and therefore, by Definition 2, is 0-perturbing. We next
assume the construction of the sequence up to r < L and construct the next access-stall execution,
αr+1σr+1,1 · · ·σr+1,jr+1ρr+1.

By induction hypothesis, αrσr,1 · · ·σr,jrρr is an r-perturbing execution. If it is saturated, then
we set αr+1 = αr, jr+1 = jr, σr+1,j = σr,j for j = 1, . . . , jr and ρr+1 = ρr. By induction hypothesis
and Definitions 2 and 4, αr+1σr+1,1 · · ·σr+1,jr+1ρr+1 is an r + 1 access-stall execution.

Assume, then, that αrσr,1 · · ·σr,jrρr is not saturated. Let φr denote a solo execution of opn by
pn after αrλr. Since all the events in λr are by distinct processes other than pn, and since each of the
objects Ojr is accessed by pn after it is accessed by the processes of Sjr , for j ∈ {1, . . . jr}, executions
αrσr,1 · · ·σr,jrρr and αrλrφr are indistinguishable to all processes. Since αrλr is an r-perturbing
execution and r < L, and since αrλr is not saturated, it follows from Definition 2 that there exists
a process p`r+1 6= pn that applies no event in λr and an extension γ′r+1er+1 of αr, consisting of
events by p`r+1 , such that er+1 is the first event of γ′r+1er+1 such that pn returns different responses
after αrλr and after αrγ′r+1er+1λr. It follows that er+1 is a nontrivial event applied by p`r+1 to a
base object in {B1

r , . . . , B
ir
r }; let this base object be Bk

r . There are two cases:
Case 1: If Bk

r = Ok
′
r , for some k′ ∈ {1, . . . , jr}, then let jr+1 = k′, for j = 1, . . . , k′−1, σr+1,j = σr,j

(thus, Ojr+1 = Ojr and Sjr+1 = Sjr), Ok
′
r+1 = Ok

′
r , Sk

′
r+1 = Sk

′
r ∪ {p`r+1} (thus, er+1 appears in

σr+1,k′), αr+1 = αrγ
′
r+1λ

′
r and λr+1 = λ′′r , where λ′r consists of the events of λr applied to objects

Ok
′+1
r , . . . , Ojrr , and λ′′r consists of the events of λr applied to objects O1

r , . . . , O
k′
r and the event

er+1.
Case 2: Otherwise, let k′ be the largest integer such that Ok

′
r precedes Bk

r in πr (or 0 if Bk
r is not

preceded in πr by any of the objects O1
r , . . . , O

jr
r). Then jr+1 = k′+1, for j = 1, . . . , k′, σr+1,j = σr,j

(hence also Ojr+1 = Ojr and Sjr+1 = Sjr), O
jr+1

r+1 = Bk
r , Sjr+1

r+1 = {p`r+1}, αr+1 = αrγ
′
r+1λ

′
r and

λr+1 = λ′′r , where λ′r consists of the events of λr applied to objects Ok
′+1
r , . . . , Ojrr , and λ′′r consists

of the events of λr applied to objects O1
r , . . . , O

k′
r and the event er+1, and in σr+1,jr+1 , pn applies

events until it is about to apply its first event to Ojr+1

r+1 , then p`r+1 applies er+1 and finally pn applies
its first event to Ojr+1

r+1 .
In both cases, it follows from the construction and from Definition 2 that αr+1λr+1 is (r+1)-

perturbing. Since αr is pn-free and none of the events of γ′r+1λ
′
r are by pn, αr+1 is also pn-free. Let

ρr+1 denote the execution in which process pn runs solo after αr+1σr,1 · · ·σr,jr+1 until it completes

18

the operation instance opn, in the course of which it accesses the base objects B1
r+1, . . . , B

ir+1
r . It

follows from our construction that αr+1σr+1,1 · · ·σr+1,jr+1ρr+1 is an r+ 1 access-stall execution. 2

Lemma 13 Φr+1 > Φr.

Proof:
Φr+1 =

∑ir+1

i=1 n
i
r+1 · ss−i

=
∑k

i=1 n
i
r+1 · ss−i

=
∑k−1

i=1 n
i
r · ss−i + (nkr + 1) · ss−k

>
∑k

i=1 n
i
r · ss−i +

∑s
i=k+1(s− 1) · ss−i

≥
∑ir

i=1 n
i
r · ss−i

= Φr

2

Theorem 14 An n-process obstruction-free implementation of an m-limited-use max register, m-
limited-use counter, an m-limited-use b-valued compare-and-swap object or an an m-limited-use
collect object from any read-modify-write primitives has an operation instance that either requires
Ω(min(logm,n)) steps or incurs Ω(min(logm,n)) stalls. An obstruction-free implementation of a b-
bounded max register from any read-modify-write primitives has an operation instance that either re-
quires Ω(min

(
log b, n

)
) steps or incurs Ω(min

(
log b, n

)
) stalls. An obstruction-free implementation

of a k-additive-accurate m-limited-use counter from any read-modify-write primitives has an opera-
tion instance that either requires Ω(min

(
logm− log k, n

)
) steps or incurs Ω(min

(
logm− log k, n

)
)

stalls.

C Proofs Omitted from Section 4

Lemma 4 (repeated) Among the schedules Ξk defined in Section 4, α returns at most (1+1/p)r

distinct values on average, where the average is taken over the random choices of the adversary for
when to delay operations.

Proof: For simplicity, let us assume that α performs only read operations; as observed in [3],
for the particular class of executions we are considering we can always replace an α that does not
perform only read operations by an optimized version that reads each register on its first access
and replaces any subsequent accesses with internal simulations. Notice that this means we allow
the algorithm to be aware of our set of restricted executions.

For each Ξk, define a bit-vector bk = bk1, b
k
2, . . . b

k
r , where each bki is 1 if either there are fewer

than i reads in α or the i-th read observes a value that was written by some δj , and 0 if the i-th
read in α reads a register that was not written by some delayed operation δj .

We will compute an upper bound T (bk) on the expected number of distinct sequences of values
that α may observe in Ξk,Ξk+1, . . . as a function of the bit-vector bk. The expectation is taken
over the sequence of adversary choices used to construct the parent schedule Γ, conditioned on the
choices, made in the first k steps of the construction, that contribute to Ξk. Note that the count
includes the sequence of values observed by α in Ξk, so, for example, T (111111) will be 1 (since no
further changes in the bit-vector are possible) and not 0.

19

Moving from Ξk to Ξk+1 involves adding one step, which may change at most one register. To
be visible to α, this register must not be covered in Ξk and must appear somewhere in the sequence
of registers that α reads. The effect of changing the i-th register that α reads is that (a) α sees a
new sequence of values, and (b) α can change what registers it reads on steps i + 1, i + 2, . . . , r.
It may also be the case (with probability p, independent of previous choices) that bk+1

i becomes 1,
because the new operation on the i-th register becomes one of the covering operations δj .

From the point of view of the bk vector, the effect of adding an operation that changes the
sequence of values seen by α is to (a) set bk+1

i to 1 with probability p, for some i with bki = 0;
and (b) allow any later bits in bk+1 to be set arbitrarily. We can bound the number of distinct
sequences seen by α by bounding the number of times this can happen before all bits in bk are 1.

Define the following recurrence on suffixes of b. Here T (x) represents an upper bound on the
expected number of distinct sequences of values that can be obtained from the last |x| registers
read by α, if we do not change the value of any earlier registers.

T (〈〉) = 1.
T (1x) = T (x).
T (0x) = T (x) + (1− p) max

x′
T (0x′) + pmax

x′
T (1x′).

The justification for this recurrence is that (a) there is only one possible sequence of values
that can be obtained by reading no registers; (b) if the first register in the suffix is covered, then
any further values must be obtained by updating later registers; and (c) if the first register is not
covered, then we obtain at most T (x′) distinct values in the tail before having to apply an operation
that changes the value in the first register, after which we get T (0x′) more values if we are lucky
enough not to cover it and T (1x′) more values otherwise, where x′ is the new tail that holds after
the first register is changed.

We can eliminate the max functions in the last line by observing that setting x′ to the all-zero
vector maximizes T (1x′) and T (0x′). This is because any sequences of values that can be obtained
starting with some registers covered can be obtained using the same strategy when those registers
are not covered but the adversary chooses not to use them. So we can rewrite the last line as

T (0x) = T (x) + (1− p)T (00|x|) + pT (10|x|),

where |x| is the length of x, so that 0|x| is the all-zero vector of the same length.
For the vector 0`, this gives the recurrence

T (0`) = T (0`−1) + (1− p)T (0`) + pT (10`−1) = T (0`−1) + (1− p)T (0`) + pT (0`−1),

which we can solve to get

T (0`) =
1 + p

p
T (0`−1).

It follows that T (0`) = (1 + 1/p)`. Setting ` = r completes the proof. 2

Theorem 3 (repeated) For any randomized implementation of an m-valued c-multiplicative-
accurate counter for n ≥ m processes, and any fixed ε > 0, there is an oblivious adversary strat-
egy that yields, with probability at least 1 − ε, an execution consisting of at most m − 1 con-
current CounterIncrement operation instances, some of which may be incomplete, followed by a

20

CounterRead operation instance, in which one of the following conditions holds: (a) a constant frac-
tion of the CounterIncrement instances take more than w operations; (b) the value returned by the
CounterRead operation instance is not consistent with any linearization of the completed operation
instances; or (c) the CounterRead operation instance takes Ω

(
log logm−log log c

logw

)
operations.

Proof: Let p = 1/4w, let each βi be a CounterIncrement and let α be a CounterRead for a c-
multiplicative-accurate counter. We pick out a subfamily of executions Ξk0 ,Ξk1 , . . .Ξk`−1

where we
choose ki so that the schedule Ξki

includes the first mi =
⌊
(2c)2i

√
m
⌋

calls to CounterIncrement,
where i ranges from 0 to `− 1 =

⌊
1
2 log2c

√
m
⌋
− 1 = Θ(logm/ log c). Call an execution Ξki

good if
(a) it includes at most mi/4 CounterIncrement operations that fail to terminate after executing
w operations and (b) the CounterRead operation returns a value after at most r operations that is
consistent with some linearization of the execution.

Our choice of p = 1/4w implies that any CounterIncrement is truncated with probability at
most 1/4. Standard Chernoff bounds then give that the number of truncated increments among
the first mi increments is at most mi/4 +O(

√
mi logmi) = mi(1/4 + o(1)) with probability at least

1−m−a for any fixed constant a (this uses the fact that mi = Ω(
√
m)); this implies that the same

bound holds for all `+1� n executions with probability at least 1−m−a+1. Adding these truncated
increments to the at most mi/4 increments that fail to finish gives at most mi(1

2 + o(1)) < 3
4mi

partial increments in each good Ξki
with high probabilitiy for sufficiently large m.

It follows that if vi is the number of increments that complete before the CounterRead in a good
execution Ξki

, we have mi/4 < vi ≤ mi and for the return value xi of a correct c-multiplicative-
accurate CounterRead we have mi/4c < xi ≤ cmi. From our definition of mi, we have mi =
mi+1/4c2, so xi ≤ cmi = cmi+1/4c2 = mi/4c < xi+1; it follows that the return value of the
CounterRead in any two good executions is distinct.

From Lemma 4, across all executions Ξk (including our chosen executions Ξki
, there are an

expected (4w + 1)r possible distinct return values for CounterRead operations that finish in less
than r steps. Markov’s inequality gives a probability of at least 1/2 that the actual number of
return values is bounded by 2(4w + 1)r. So with probability at least 1/2− o(1), there are at most
2(4w + 1)r good executions.

We now have the adversary choose one of the ` executions Ξki
uniformly at random. Taking

into account the probability of errors so far, the probability that the adversary chooses a good
execution is at most (1/2−o(1))2(4w+1)r/` = (1−o(1))(4w+1)r/`. Let (1−o(1))(4w+1)r/` = ε,
and solve for r by taking the log of both sides:

o(1) + r log(4w + 1)− log ` ≥ log ε

which gives

r ≥ log `− log(1/ε)− o(1)
log(4w + 1)

= Ω
(

log logm− log log c
logw

)
,

where the log(1/ε) and o(1) terms disappear into the constant. If r is smaller than this bound,
then the proportion of good executions will drop to less than ε.

So far we have been considering only deterministic counter implementations. However, any
randomized counter implementation can be treated as a random superposition of deterministic
counter implementations, each characterized by some fixed set of coins, and our adversary strategy
does not depend on the particular deterministic implementation chosen. By Yao’s Principle, the
same probability of getting a bad execution applies even for randomized algorithms. 2

21

