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ABSTRACT
We presents a novel abstract individual-process crash-recovery

model for non-volatile memory, which enables modularity, so that

complex recoverable objects can be constructed in a modular man-

ner from simpler recoverable base objects. Within the framework of

this model, we define nesting-safe recoverable linearizability (NRL)

– a novel correctness condition that captures the requirements for

nesting recoverable objects. Informally, NRL allows the recovery

code to extend the interval of the failed operation until the recovery

code succeeds to complete (possibly after multiple failures and re-

covery attempts). Unlike previous correctness definitions, the NRL

condition implies that, following recovery, an implemented (higher-

level) recoverable operation is able to complete its invocation of a

base-object operation and obtain its response.

We present algorithms for nesting-safe recoverable primitives,
namely, recoverable versions of widely-used primitive shared-

memory operations such as read, write, test-and-set and compare-

and-swap, which can be used to implement higher-level recoverable

objects. We then exemplify how these recoverable base objects can

be used for constructing a recoverable counter object.

Finally, we prove an impossibility result on wait-free implemen-

tations of recoverable test-and-set (TAS) objects from read, write

and TAS operations, thus demonstrating that our model also facili-

tates rigorous analysis of the limitations of recoverable concurrent

objects.
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1 INTRODUCTION
Shared-memory multiprocessors are asynchronous in nature. Asyn-

chrony is related to reliability, since algorithms that provide non-

blocking progress properties (e.g., lock-freedom or wait-freedom

[15]) in an asynchronous environment with reliable processes con-

tinue to provide the same progress properties in the presence of

crash failures. This happens because a process that crashes perma-

nently during the execution of the algorithm is indistinguishable

to the other processes from one that is merely very slow. Owing to

its simplicity and intimate relationship with asynchrony, the crash-

failure model is almost ubiquitous in the treatment of concurrent

algorithms.

The attention to the crash-failure model has so far mostly ne-

glected the crash-recovery model, in which a failed process may be

resurrected after it crashes. Recent developments foreshadow the

emergence of new systems, in which byte-addressable non-volatile
main memory (NVRAM), combining the performance benefits of

conventional main memory with the durability of secondary stor-

age, co-exists with (or eventually even replaces) traditional volatile

memory. Traditional log-based recovery techniques can be applied

correctly in such systems but fail to take full advantage of the par-

allelism and efficiency that may be gained by allowing processing

cores to access recovery data directly using memory operations

rather than by performing slow block transfers from secondary

storage. Consequently, there is increased interest in recoverable
concurrent objects (also called persistent or durable): objects that
are made robust to crash-failures by allowing their operations to

recover from such failures.

In this paper, we present a novel abstract individual-process

crash-recovery model for non-volatile memory, inspired by a model

introduced by Golab and Ramaraju for studying the recoverable
mutual exclusion (RME) problem [13]. Our model enables nesting

of recoverable objects, so that complex recoverable objects can be

constructed in a modular manner from simpler recoverable base ob-

jects. We assume that processes communicate via persistent shared-

memory variables. Each process also has local variables stored in

volatile processor registers. At any point, a process may incur a

crash-failure, causing all its local variables to be reset to arbitrary

values. A key challenge with which recovery code must cope in our

model is that operation response values are returned via volatile

processor registers. Hence, they may become inaccessible to the

calling process if it fails just before persisting the response value.

Each recoverable operation Op is associated with a recovery func-
tion that is responsible for completing Op upon recovery from a

crash-failure.

https://doi.org/10.1145/3212734.3212753
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Several correctness conditions for the crash-recovery model

were defined in recent years (see, e.g., [2, 3, 14, 17], further dis-

cussed in Section 4). The goal of these conditions is to maintain

the state of concurrent objects consistent in the face of crash fail-

ures. However, guaranteeing object consistency is insufficient for

operation nesting. To illustrate this point, consider a base object

B that supports atomic compare&swap (CAS) and read operations.

Suppose that an operation Op by some recoverable object O in-

vokes B.compare&swap (old,new ) in its algorithm which, upon

completion, should return a success or failure response. Suppose

also that some process p crashes inside Op, immediately after it

invokes B.compare&swap (old,new ). Since the CAS operation is

atomic, the consistency of B is ensured in spite of p’s failure: either
the CAS took effect before the failure, or it did not. However, the

consistency of B is insufficient, since once p recovers from the

crash, it has no way of knowing whether the CAS succeeded or

not, as its response was written to a volatile local variable that was

lost because of the crash. Reading B will not help, since even if

new was written before the crash, it may have been overwritten by

other processes since then.Op may therefore not be able to proceed

correctly.

To address this issue, we define within the framework of our

model the notion of nesting-safe recoverable linearizability (NRL),

a novel correctness condition that captures the requirements for

nesting recoverable objects. Informally, NRL allows the recovery

code to extend the interval of the failed operation until the recov-

ery code succeeds to complete (possibly after multiple failures and

recovery attempts). NRL implies that, following recovery, an imple-

mented (higher-level) recoverable operation is able to complete its

invocation of a base-object operation and obtain its response.

We present several algorithms for nesting-safe recoverable primi-
tive objects, recoverable versions of widely-used primitive shared-

memory operations such as read, write, test-and-set and compare-

and-swap, that can be used by higher-level recoverable objects. We

also provide an example of how these recoverable base objects can

be used for constructing a recoverable counter object.

In addition, we prove an impossibility result on wait-free im-

plementations of recoverable test-and-set (TAS) objects from read,

write and TAS operations, thus demonstrating that our model also

facilitates rigorous analysis of the limitations of recoverable con-

current objects.

2 MODEL AND DEFINITIONS
We consider a system where N asynchronous processes p1, . . . ,pN
communicate by applying operations to concurrent objects. The
system provides base objects that support atomic read, write, and

read-modify-write operations. Base objects can be used for imple-

menting more complex concurrent objects (e.g. counters, queues

and stacks), by defining access procedures that simulate each oper-

ation on the implemented object using operations on base objects.

These may be used in turn similarly for implementing even more

complex objects, and so on.

The state of each process consists of non-volatile shared-memory
variables, which serve as base objects, supporting read, write and

read-modify-write operations, as well as local variables stored in
volatile processor registers which support read and write only. Each

process can incur at any point during the execution a crash-failure
(or simply a crash) that resets all its local variables to arbitrary

values, but preserves the values of all its non-volatile variables. A

process p invokes an operation Op on an object by performing an

invocation step. Upon Op’s completion, a response step is executed,

in which Op’s response is stored to a local variable of p. It follows
that the response value is lost if p incurs a crash before persisting

it.

Operation Op is pending if it was invoked but was not yet com-

pleted. For simplicity, we assume that, at all times, each process has

at most a single pending operation on any one object.
1
A recover-

able operation Op is associated with a recovery function, denoted
Op.Recover, that is responsible for completing Op upon recovery

from a crash. The execution of operations (and recoverable oper-

ations in particular) may be nested, that is, an operation Op1 can
invoke another operation Op2. Following a crash of process p that

occurs when p has one or more pending recoverable operations,

the system may eventually resurrect process p by invoking the

recovery function of the inner-most recoverable operation that was

pending when p failed. This is represented by a recover step for p.
More formally, a history H is a sequence of steps. There are four

types of steps:

(1) an invocation step, denoted (INV ,p,O ,Op), represents the
invocation by process p of operation Op on object O ;

(2) an operation Op can be completed either normally or when,

following one or more crashes, the execution ofOp.Recover
is completed. In either case, a response step s , denoted
(RES ,p,O ,Op,ret ), represents the completion by process p
of operation Op invoked on object O by some step s ′ of p,
with response ret being written to a local variable of p. We

say that s is the response step that matches s’;
(3) a crash step s , denoted (CRASH ,p), represents the crash of

process p. We call the inner-most recoverable operation Op
of p that was pending when the crash occurred the crashed
operation of s. (CRASH ,p) may also occur while p is execut-

ing some recovery functionOp.Recover and we say thatOp
is the crashed operation of s also in this case;

(4) a recovery step s for process p, denoted (REC,p), is the only
step by p that is allowed to follow a (CRASH ,p) step s ′. It
represents the resurrection of p by the system, in which it

invokes Op.Recover,2 where Op is the crashed operation of

s ′. We say that s is the recovery step that matches s ′.
When a recovery functionOp.Recover is invoked by the system

to recover from a crash represented by step s , we assume it receives

the same arguments as those with which Op was invoked when

that crash occurred. We also assume that Op.Recover has access
to a designated per-process non-volatile variable LIp , identifying

the instruction of Op that p was about to execute in the crash rep-

resented by s . An object is a recoverable object if all its operations
are recoverable. In the following definitions, we consider only his-

tories that arise from operations on recoverable objects or atomic

primitive operations.

1
This assumption can be removed, but this would require substantial changes to the

notions of sequential executions and linearizability, which we chose to avoid in this

work.

2
A history does not contain invocation/response steps for recovery functions.
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Consider a scenario in which p incurs a crash (represented by

a crash step s) immediately after a recoverable operation Op com-

pletes (either directly or through the completion of Op.Recover) –
an event represented by a response step r . In this case, the response

value is lost and, moreover, Op.Recover will not be invoked by

the system, since the crashed operation of s is no longer Op but,

rather, the operation Op′ that invoked Op. In general (although

there are exceptions to this rule as we will see in Section 3), Op′

may therefore not be able to proceed correctly. Hence, it is some-

times required to guarantee that a recoverable operation returns

only once its response value gets persisted. This is defined formally

as follows.

Definition 1. A recoverable operation Op is a strict recoverable
operation if whenever it is completed, either directly or by the com-
pletion ofOp.Recover (an event represented by a (RES ,p,O ,Op,ret )
step), ret is stored in a designated persistent variable accessed only
by process p.

For a historyH , we letH |p denote the subhistory ofH consisting

of all the steps by process p in H . We let H |O denote the subhistory

of H consisting of all the invoke and response steps on object O
in H , as well as any crash step in H , by any process p, whose
crashed operation is an operation on O and the corresponding

recover step by p (if it appears inH ).H is crash-free if it contains no
crash steps (hence also no recover steps). We let H |<p,O> denote

the subhistory consisting of all the steps on O by p. A crash-free

subhistory H |O is well-formed, if for all processes p, H |<p,O> is a

sequence of alternating, matching invocation and response steps,

starting with an invocation step.

Given two operations op1 and op2 in a history H , we say that op1
happens before op2, denoted by op1 <H op2, if op1’s response step
precedes the invocation step of op2 in H . If neither op1 <H op2 nor
op2 <H op1 holds then we say that op1 and op2 are concurrent in
H . H |O is a sequential object history, if it is an alternating series of

invocations and the matching responses starting with an invocation

(that may end by a pending invocation). The sequential specification
of an object O is the set of all possible (legal) sequential histories

overO .H is a sequential history ifH |O is a sequential object history

for all objects O .
A crash-free history H is well-formed if: 1) H |O is well-formed

for all objects O , and 2) For all p, if i1,r1 and i2,r2 are two match-

ing invocation/response steps in H |p and i1 <H i2 <H r1 holds,
then r2 <H r1 holds as well. The second requirement guarantees

that if operation Op1 invokes operation Op2, Op2’s response must

precede Op1’s response. Two histories H and H ′ are equivalent, if
H |<p,O> = H ′ |<p,O> for all processes p and objects O . A history

H is sequential, if H |O is sequential for all objects O that appear in

H . Given a history H , a completion of H is a history H ′ constructed
from H by selecting separately, for each object O that appears in

H , a subset of the operations pending on O in H and appending

matching responses to all these operations, and then removing all

remaining pending operations on O (if any).

Definition 2 (Linearizability [16], rephrased). A finite crash-
free history H is linearizable if it has a completion H ′ and a legal
sequential history S such that:

L1. H ′ is equivalent to S ; and

L2. <H ⊆<S (i.e., if op1 <H op2 and both ops appear in S then
op1 <S op2).

Thus, a finite history is linearizable, if we can linearize the sub-

history of each object that appears in it. Next, we define a more

general notion of well-formedness that applies also to histories that

contain crash/recovery steps. For a history H , we let N (H ) denote
the history obtained from H by removing all crash and recovery

steps.

Definition 3 (Recoverable Well-Formedness). A history H
is recoverable well-formed if the following holds.

(1) Every crash step inH |p is either p’s last step inH or is followed
in H |p by a matching recover step of p.

(2) N (H ) is well-formed.

We can now define the notion of nesting-safe recoverable lin-

earizability.

Definition 4 (Nesting-safe Recoverable Linearizability

(NRL)). A finite history H satisfies nesting-safe recoverable lineariz-
ability (NRL) if it is recoverable well-formed and N (H ) is a lineariz-
able history. An object implementation satisfies NRL if all of its finite
histories satisfy NRL.

3 NESTING-SAFE RECOVERABLE BASE
OBJECTS

In this section, we present algorithms for recoverable base objects

that support primitive operations such as read, write, compare-and-

swap (CAS) and test-and-set. As described in Section 2, this consists

in implementing a recovery functionOp.Recover for each such op-

eration, which may be invoked by the system upon a crash-failure

when Op is the crashed operation. In the pseudo-code, we use

names that start with a capital letter for shared-memory variables

and lower-case names for local variables. We also use capital-letter

names for implemented operations and lower-case names for prim-

itive operation names.

We remind the reader that, as defined in our model, we only

consider recoverable objects or base objects provided by the system

that support atomic read, write or read-modify-write (RMW) opera-

tions. Before presenting our algorithms we prove that, under these

assumptions, our model guarantees that all histories are recoverable

well-formed.

Lemma 1. Let H be a history in which all operations are applied to
either recoverable objects or atomic base objects. ThenH is recoverable
well-formed.

Proof. Consider an execution α of any algorithm and the cor-

responding history H (α ). If an atomic read, write or RMW is ex-

ecuted in α , then its invocation and response steps appear in H
consecutively hence cannot violate well-formedness, so it suffices

to consider invocation/response steps on recoverable objects and

crash/recovery steps.

When a process p invokes an operation Op on a recoverable

object O , a corresponding invocation step i is appended to H (α ).
If p crash-fails inside Op, a (CRASH ,p) step c is appended to H (α )
and its crashed operation is Op. If and when the system eventu-

ally resurrects p and invokes Op.RECOVER, a recovery step r that
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matches c is appended to H (α ) . If p undergoes additional failures

before Op completes, then additional pairs of a crash step and its

matching recovery step are appended to H (α ). Otherwise, if and
when Op completes, a response step r that matches i is appended
to H (α ). It follows from Definition 3 that H (α ) is a recoverable

well-formed history. �

3.1 Read-Write Object
Our recoverable read-write object algorithm assumes that all values

written to the object are distinct. This assumption can be easily

satisfied by augmenting each written value with a tuple consisting

of the writing process’ ID and a per-process sequence number. In

some cases, such as the example of a recoverable counter that we

present later, this assumption is satisfied due to object semantics

and does not require special treatment.

Algorithm 1 presents pseudo-code for process p of a recoverable

read-write object R. It supports non-strict (see Definition 1) recov-

erable READ and WRITE operations. Both READ and READ.RECOVER
simply return R’s current value (lines 7-9, 18-20).

Our implementation of WRITE “wraps” the write primitive with

code that allows the recovery function WRITE.RECOVER to conclude
whether p’s write in line 4, or a write by a different process, took

place since p’s invocation of WRITE. This is done using a single-

reader-single-writer shared-memory variable Sp that stores a pair

of values – R’s previous value (read in line 2) and a flag that allows

the recovery function to infer the location in WRITE where the

failure occurred. Specifically, flag = 0 holds whenever p is either

not performing a WRITE operation on R (since it is initialized to 0

and set to 0 in line 5 before WRITE returns) or p has performed line

5 but WRITE was not yet completed.

The intuition for correctness is the following. A crash before

line 3 is executed implies that both Sp = <0,curr> and curr , val
hold, since we assume each value written to R is distinct. In this

case, WRITE.RECOVER simply re-executes WRITE (lines 12-13). If a

crash occurs after p writes to Sp in line 3 but before it writes to it

in line 5 and no process writes to R since p reads it in line 2, then

the condition of line 14 holds and so p re-executes WRITE also in

this case (in line 15).

Otherwise neither of the conditions of lines 12, 14 holds. Hence,

either p already executed line 4, or another process wrote to R
between when R was read by p in line 2 and in line 14. In either

of these cases, we may linearize WRITE, so the recovery function

updates Sp and returns ack (lines 16-17). A formal correctness proof

follows.

Lemma 2. Algorithm 1 satisfies NRL.

Proof. First observe that R is a recoverable object since each of

its two operations has a corresponding RECOVER function. Consider
an executionα of the algorithm and the corresponding historyH (α ).
From Lemma 1, H (α ) is recoverable well-formed. Hence, H ′(α ) =
N (H (α )) is a well-formed (non-recoverable) history. Following

definition 4, it remains to prove that H ′(α ) |R is linearizable.

Since neither of R’s recovery functions write to variables read

by other processes, they have no effect on their execution. We can

therefore ignore crashes that occur during the execution of the

recovery functions, as long as Sp is not written (which only occurs

in line 16 of WRITE.RECOVER).
Assume p applies a WRITE(val ) operation to R in α . If p does not

fail during its execution, then clearly p writes to R exactly once

in line 4 and this is the operation’s linearization point. Otherwise,

assume that p fails when executing the WRITE operation. A crash

before line 3 implies that p did not yet write to neither Sp nor R,
hence WRITE was not linearized yet. Upon recovery, p reads Sp =
<0,curr>, where curr , val holds, since we assume all written

values are distinct. Hence, WRITE.RECOVER re-executes WRITE.
A crash between the two writes to Sp (in lines 3 and 5) implies

that Sp = <1,curr> and curr , val holds. Upon recovery, if the

condition of line 14 is satisfied, then curr = R ensures that no

process wrote to R between the two reads of R (in lines 2 and 14).

In particular, p did not write to R (so WRITE was not linearized) and
the operation is re-executed.

Otherwise curr , R, i.e., there was a write to R between the

two reads of R by p. If p wrote to R in line 4, then the operation

was already linearized at this point. Otherwise, there was a write

by a different process q that occurred between the two reads by p,
hence within the execution interval of p’s WRITE. Thus, p’s WRITE
can be linearized immediately before q’s, causing q to immediately

overwrite val (if it was indeed written by p in line 4), resulting in

an execution that is indistinguishable to all processes from one in

which p does not write to R at all. It follows that, in both these cases,

p’s WRITE operation can be linearized correctly and WRITE.RECOVER
returns ack .

The last case to consider is when WRITE.RECOVER reads <0,val>
in line 11 and then performs lines 16-17 and returns. This can occur

either if p crashed after executing line 5, or if it crashed before line

5 but a subsequent WRITE.RECOVER failed after updating Sp (in line

16). The latter case can happen only if a previous invocation of

WRITE.RECOVER by p read Sp = <1,curr>, for curr , R, executed
line 16 and then failed. Our previous analysis established that WRITE
can be linearized also in this case. This concludes our discussion of

linearization points of WRITE operations. As for READ, if and when

it returns (in lines 9 or 20), it is linearized when it last read R (in

line 8 or line 19, resp.). �

3.2 Compare-and-Swap Object
A Compare-and-Swap (CAS) object supports the CAS(old,new ) op-
eration, which atomically swaps the object’s value to new only if

the value it stores is old . The operation returns true and we say it

is successful if the swap is performed, otherwise it returns false and

we say it fails. A CAS object also supports a READ operation which

returns the object’s value. Algorithm 2 presents pseudo-code for

process p of a recoverable CAS object C . C stores two fields, both

initially null . The first is the ID of the last process that performed a

successful CAS and the second is the value it wrote.

Both READ and READ.RECOVER simply return C.val. To perform
the CAS operation, process p first readsC . If it reads a value v other

than old , p returns false and is linearized at the read (lines 2-4).

Otherwise, if v , null , p helps the process (say, q) that wrote v by

informing it that its CAS took effect. This is done by writing v to

R[q][p] (lines 5-6), which is a SRSW shared variable used by p to

inform q. This allows processes to inform each other which CAS
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Algorithm 1 Nesting-safe recoverable read/write object R, program for process p

Shared variables: Sp - pair of values, initially < 0,null >

1: procedure WRITE(val)
2: temp ← R
3: Sp ←< 1,temp >
4: R ← val
5: Sp ←< 0,val >
6: return ack
7: procedure READ()
8: temp ← R
9: return temp

10: procedure WRITE.RECOVER(val)
11: < f laд,curr >← Sp
12: if f laд = 0 ∧ curr , val then
13: proceed from line 2

14: else if f laд = 1 ∧ curr = R then
15: proceed from line 2

16: Sp ←< 0,val >
17: return ack
18: procedure READ.RECOVER()
19: temp ← R
20: return temp

Algorithm 2 Nesting-safe recoverable CAS object C , program for process p

Shared variables: R[N][N] - all elements initially null

1: procedure CAS(old,new)

2: <id,val> ← C .read ()
3: if val , old then
4: return f alse

5: if id , null then
6: R[id][p]← val

7: ret ← C .cas (<id,val >,<p,new>)
8: return ret
9: procedure READ()
10: <id,val> ← C
11: return val

12: procedure CAS.RECOVER(old, new)

13: if C = <p,new> ∨
new ∈ {R[p][1], . . . ,R[p][N ]} then

14: return true
15: else
16: proceed from line 2

17: procedure READ.RECOVER()
18: <id,val> ← C
19: return val

operations were successful. We assume that CAS is never invoked
with old = new and that values written to C by the same process

are distinct. (This assumption can be easily satisfied by augmenting

each written value with a per-process sequence number.) The help-

ing mechanism described above guarantees that, upon recovery,

process p is able to determine that its CAS operation took effect if

the value it wrote is still stored in C or is written in R[p][j], for
some j.

If p crash-fails inside CAS without modifying C , either because
it crashes before line 7 or because it crashed after its cas in line

7 failed, then <p,new> is never written to C or to any of R[p][∗].
In this case, CAS.RECOVER simply re-executes CAS. A key point in

the correctness argument is that a CAS operation that crashed after

a failed (primitive) cas can be re-executed, since it did not affect

other processes, hence we may assume it was not linearized yet

and re-execute it without violating the sequential specification of

CAS.

Lemma 3. Algorithm 2 satisfies NRL.

Proof. First observe that C is a recoverable object since each of

its two operations has a corresponding RECOVER function. Consider
an executionα of the algorithm and the corresponding historyH (α ).

From Lemma 1, H (α ) is recoverable well-formed. Hence, H ′(α ) =
N (H (α )) is a well-formed (non-recoverable) history. Following

definition 4, it remains to prove that H ′(α ) |C is linearizable. Since

none of the recovery functions writes to a variable read by other

processes, they have no effect on their executions. We can therefore

ignore crashes that occur during the execution of the recovery

function.

For presentation simplicity, when we refer to the value of C we

refer to the value of its second field, which represents the state of

the object, and when we refer to the content of C , we refer to both

fields as a pair. Since no process writes the same value twice, it

follows that the content of C is unique, while the value of C is not

necessarily unique, since different processes may write the same

value.

Assume p applies a CAS(old,new ) operation to C in α . First as-
sume that p does not crash during the CAS operation. In line 2, p
readsC and then compares the value ofC to old . If the values differ,
then the operation is linearized at the read in line 2 and indeed at

this point the value of C is different from old , so p returns false in
line 4. Otherwise, p informs the last process q to have performed a

successful CAS that its operation took effect. It does so by writing to
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R[q][p] the value it read from C . Then, p tries to change the value

of C by performing cas in line 7.

The following two possibilities exist. Assume first that a success-

ful CAS toC was linearized between p’s execution of line 2 and line

7. In this case, the first such operation must change C’s value to a

value other than old , and we can linearize p’s operation right after

it. Since the content of C is unique, p’s cas operation in line 7 fails,

and it returns false in line 8. Otherwise, there was no successful

CAS to C between the read in line 2 and the CAS in line 7, and thus

the cas in line 7 is successful, and this is also the linearization point

and p returns true in line 8.

Assume now that p crashed during a CAS operation. Assume first

that either p crashed before executing line 7, or it crashed after line

7 but its cas operation in line 7 failed. In both cases, <p,new> was

never written toC , since p writes distinct values toC . As processes
write to R only values they read from C , no process wrote new
to R[p][∗]. Consequently, CAS.RECOVER re-executes CAS. A failed

cas operation does not affect other processes, that is, removing

the operation is indistinguishable to other processes. Therefore, in

both cases, considering the operation as not having a linearization

point so far and re-executing it does not violate the sequential

specification of CAS.

If p did perform a successful CAS in line 7 before the crash, then

this is also the operation’s linearization point. We argue that the

next process q to perform a successful CAS on C , if any, must write

new to R[p][q] before its CAS takes effect. Assume there exists such

a process q. Then, consider the time when the successful CAS of q in

line 7 occurs. It must be that q executes lines 2-7 without crashing,

since any crash before writing to C will cause the re-execution of

the CAS operation, as we have already shown. In addition, q reads

<p,new> from C in line 2, since by our assumption it succeeds in

replacing p’s value, that is, it performed a successful CAS when

C’s content was <p,new>. As the content of C is unique, reading

any other content implies the CAS in line 7 fails, a contradiction.

Hence, before q’s successful CAS in line 7, it writes new to R[p][q]
in line 6. We assume that the left term in the condition of line 13 of

CAS.RECOVER is evaluated before the right term. Consequently, in

line 13, p either reads C = <p,new> or, otherwise, some process q
already replaced C’s content but wrote new to R[p][q] before that,
thus p observes new in R[p][q]. In both cases, p considers the CAS
operation as successful and returns true in line 14.

As for READ, if and when it returns (in lines 11 or 19), it is lin-

earized when it last read C (in line 10 or line 18, respectively). �

3.3 Test-and-Set Object
A non-resettable Test-and-Set (TAS) object is initialized to 0 and

supports the T&S operation, which atomically writes 1 and returns

the previous value. In the following, we present a recoverable non-

resettable test-and-set algorithm that uses a (non-recoverable) non-

resettable (and non-readable) TAS object and read/write shared

variables. Before that, however, we present an impossibility result

on such implementations of recoverable TAS algorithms.

We say that an operation (or a recovery function) is wait-free
[15], if a process that does not incur failures during its execution

completes it in a finite number of its own steps. Our implementa-

tion of TAS has a wait-free T&S operation but its recovery code is

blocking. The following theorem proves that this is inevitable: any

recoverable TAS object from these primitives cannot have both a

wait-free T&S operation and a wait-free T&S.RECOVER function.

Theorem 4. There exists no recoverable non-resettable TAS al-
gorithm satisfying NRL, from read/write and (non-recoverable) non-
resettable TAS base objects only, such that both the T&S operation and
the T&S.RECOVER function are wait-free.

Proof. We prove the theorem using valency arguments [10]. Let

A be an NRL recoverable non-resettable TAS implementation using

the base objects assumed by the theorem, and assume towards a

contradiction that both T&S and T&S.RECOVER are wait-free. We say

that a configuration C is p-valent (resp. q-valent) if there exists a

crash-free execution starting from C in which p (resp. q) returns
0 or has already returned 0. C is bivalent if it is both p-valent and
q-valent, and univalent otherwise. Observe that any configuration

C is eitherp-valent or q-valent (or both), because in a solo execution
of p followed by a solo execution of q from C where both complete

their operations (if they haven’t done so already), exactly one must

return (or already returned) 0.

The initial configuration C0, in which both p and q invoke the

TAS operation, is bivalent – a solo execution of each process returns
0. Using valency arguments and as we assume that T&S is wait-free,
there is an execution starting from C0 that leads to a bivalent con-

figuration C1, in which both p and q are about to perform a critical

step. This step must be an application of the t&s primitive to the

same base object. Moreover, a step by any of the processes leads to a

different univalent configuration. Assume wlog that configuration

C1 ◦ p is p-valent whereas C1 ◦ q is q-valent.
Let p and then q perform their next t&s steps, followed by a

crash step of p. Since p’s response from the t&s primitive is lost

due to the crash, upon recovery p does not know whether the t&s
primitive was performed, and if it was, what the response value

was. Specifically, configurationsC1 ◦p ◦q ◦CRASHp andC1 ◦q ◦p ◦
CRASHp are indistinguishable to p. Consequently, a solo execution

of T&S.RECOVER byp after both configurations (whichwill complete

since we assume that T&S.RECOVER is wait-free) returns the same

value ret . This implies that both configurations are u-valent for
some u.

Wlog assume u = p (the other case is symmetric), then we

consider configuration C ′
1
= C1 ◦ q ◦ p ◦ CRASHp . Note that C ′

1

is indistinguishable from configuration C1 ◦ q ◦ p for q, since q is

not aware of p’s crash. Therefore, C ′
1
is both q-valent and p-valent,

that is, it is bivalent. Since we assume that both processes are only

allowed to use read, write and t&s primitives, we can repeat the

same argument again and show that there is an extension of C ′
1

leading to a bivalent configuration C2, where both p and q are

about to perform a critical step. Moreover, this step must be the

application of a t&s primitive to the same base object. This must be

a TAS base object other than those previously used in the execution,

since those would always return 1, contradicting criticality.

Continuing in thismanner, we construct a crash-free execution of

q in which it executes an infinite number of steps while performing

a single T&S operation. This is a contradiction. �

Algorithm 3 presents pseudo-code for process p of a recoverable

TAS objectT that uses a base atomic non-readable and non-resetable



Nesting-Safe Recoverable Linearizability PODC ’18, July 23–27, 2018, Egham, United Kingdom

t&s operation. T supports a strict recoverable T&S operation. We

assume a process invokes the T&S operation at most once, as any

additional operations are bound to return 1.

T uses a shared-memory array R, where R[i] (initialized to 0)

stores the state of process i , as well as shared variables Winner
and Doorway whose usage we describe soon. Process p first sets its

state to 1 (in line 2) to indicate it is trying to enter the algorithm’s

doorway. If the doorway is closed (line 3), implying that another

process closed it (in line 7) before p performed line 3, then p “loses”

the T&S operation, so it sets its return value to 1 (in line 4) and

proceeds to persist its response value, indicate it completed its

operation and return (lines 11-13).

If the doorway is still open, p updates its state (line 6), closes

the doorway (line 7), and attempts to win the (non-recoverable)

atomic t&s operation (line 8). It p wins, then it declares that it is

the winner by writing its identifier to theWinner variable in line

10. Regardless of whether p wins or loses, it proceeds to persist its

state and return its response in lines 11-13.

As we prove, the doorway mechanism guarantees that any T&S
operation invoked afterDoorway is set (in line 7) will return 1.3 This
implies that an operation that returns 0 can be linearized before all

other operations. Once a process writes toWinner, any process can

recover by simply reading Winner. Hence, the main difficulty is to

ensure that at most a single process writes toWinner.
We now proceed to describe the recovery function, which uses

R[p] for determining at which point in the execution p crashed. If

the condition of line 15 is satisfied, then p crashed before executing

line 6, implying that its operation did not yet affect any other

process, so T&S.RECOVER simply re-executes T&S (line 16). If the

condition of line 17 is satisfied, then p crashed after writing 3 to

R[p], in either line 12 or line 33, implying that p already computed

its response and wrote it to Resp . In this case, T&S.RECOVER simply

returns the value stored in Resp (in lines 18-19). If the condition

of line 20 is satisfied, then a winner already declared itself, thus p
recovers by determining its response accordingly, persisting it, and

returning (lines 21, 31-34).

If none of the above cases holds, then p still needs to compete

to win the TAS. In order to do so, it closes the doorway in line 22,

in case it is still open, announces it is recovering and competing

for the TAS by writing 4 to R[p] in line 23, and attempts to win the

t&s operation in line 24.

The difficulty in determining the winner of the T&S operation

is that a process may win the atomic t&s operation (in line 8 or

in line 24) and then fail before writing its identifier toWinner. In
order for a unique winner to be determined in this case, p now has

to pass two busy-waiting loops, in lines 25-26 and 27-28. In the

first loop, p waits for all lower-indexed processes that started an

operation to complete it. In the second loop, p waits for all higher-

indexed processes that started an operation to either complete it

or to announce that they are recovering. As we prove, these busy-

waiting loops guarantee that if there is a process writing toWinner
in line 10, then p must wait for it to do so. Also, only the process

with the smallest identifier out of those that reach these loops is

able to compete and possibly win and write to Winner in lines

3
We note that the doorway mechanism could have been replaced by simply reading T
if a readable atomic TAS object would have been used by the algorithm.

29-30, while the rest of the recovering processes must wait for it to

complete. As we prove, this implies that at most a single process

writes toWinner.

Claim 1. Algorithm 3 satisfies NRL.

Proof. First observe that T is a recoverable object since each of

its two operations has a corresponding RECOVER function. Consider
an executionα of the algorithm and the corresponding historyH (α ).
From Lemma 1, H (α ) is recoverable well-formed. Hence, H ′(α ) =
N (H (α )) is a well-formed (non-recoverable) history. Following

definition 4, it reamins to prove that H ′(α ) |T is linearizable.

The proof relies on the following simple observations:

(1) If there is a process that completes its operation, there must

be a write to Doorway.
(2) Once a process writes to Doorway, any operation that did

not yet execute line 2 can no longer return 0. Moreover, such

an operation can only set R[p] to either 1 or 3.

(3) Once a process writes 3 to R[p] (in line 12 or line 33), its

response is persistent in Resp . In addition, the value R[p] is
fixed for the rest of the execution, and if p runs sufficiently

long without crashing it returns the value stored in Resp .
(4) A process that returns 0 must have previously written to

Winner.
(5) Assume that process p is the only process that wrote to

Winner. Then, if p runs long enough without crashing, it

eventually returns 0.

If no T&S operation completes in α , then H ′ is obviously lineariz-
able. Therefore, assume that there is a T&S operation that completes

in α , either normally or by completing a T&S.RECOVER execution.
By Observation (1), there is a write to Doorway in α . Let β be the

prefix of α up to, and including, the first such write. No operation

completes in β , otherwise there is an earlier write to Doorway in

α , contradicting our definition of β . Also, by Observation (2), any

operation that did not yet execute line 2 in β can only return 1, and

would set R[p] to either 1 or 3.

The proof is based on the following two claims: 1) at most a

single operation returns 0, and 2) if all operations are allowed to

execute sufficiently long without crashing, then some operation

returns 0. It follows from these two claims that either there is a

single operation pending at β which returns 0 in α , or there is no
such operation, but there is an operation, pending at β , that is also
pending at α . In both cases we can linearize one operation right

after β as returning 0, while the rest can be linearize after it, and

they all return 1. This would prove that H ′ is linearizable.
Following Observation (4), proving there can be no two processes

writing toWinner would establish that only a single operation may

return 0. Assume there is a processp that writes toWinner in line 10.
Then no other process can write toWinner in line 10, since T .t&s
may return 0 at most once. Assume towards a contradiction that

some process q writes to Winner in line 30. Then, by the definition

of β , q did not yet execute line 23 in β . In order to write to Winner,
q must pass the busy-waiting loops in the T&S.RECOVER function,
and thus has to wait for p to set R[p] > 2. By Observation (2), p
executed line 2 in β . Also, p cannot set R[p] to 4 in line 23, as this

would imply that p crashed after executing line 6 and before writing

toWinner (since it reads null in line 20). In particular, p does not

re-execute any part of T&S upon recovery, contradicting the fact



PODC ’18, July 23–27, 2018, Egham, United Kingdom Attiya, Ben-Baruch and Hendler

Algorithm 3 Nesting-safe recoverable TAS object T , program for process p

Shared variables: R[N]: an array, initially [0, . . . ,0]; Winner, Doorway: read/write registers, initially null , true resp.

1: procedure T&S()
2: R[p]← 1

3: if Doorway = false then
4: ret ← 1

5: proceed from line 11

6: R[p]← 2

7: Doorway ← false
8: ret ← T .t&s ()
9: if ret = 0 then
10: Winner← p

11: Resp ← ret
12: R[p]← 3

13: return ret

14: procedure T&S.RECOVER()
15: if R[p] < 2 then
16: proceed from line 2

17: if R[p] = 3 then
18: ret ← Resp
19: return ret
20: if Winner , null then
21: proceed from line 31

22: Doorway ← false
23: R[p]← 4

24: T .t&s ()
25: for i from 0 to p − 1 do
26: await(R[p] = 0 or R[p] = 3)

27: for i from p + 1 to N do
28: await(R[p] = 0 or R[p] > 2)

29: if Winner = null then
30: Winner← p

31: ret ← (Winner , p)
32: Resp ← ret
33: R[p]← 3

34: return ret

it writes to Winner in line 10, since the condition in line 16 can

no longer hold for it. Therefore, it must be that p sets R[p] ← 3

(in line 12 or in line 33), and this happens only after p writes to

Winner. As a result, q gets to line 29 only after p writes to Winner,
and therefore does not write toWinner in line 30, a contradiction.

Assume now there is a process p that writes toWinner in line 30.

As proved above, no process can write to Winner in line 10 in this

case. Assume towards a contradiction there exists another process

q which writes to Winner in line 30. WLOG, assume p < q. After β ,
both p and q are after executing line 2 and before executing line 25.

Hence, in order to get to line 30, q has to wait for p to set R[p]← 3,

that is, to complete its operation. This happens only after p writes

to Winner, thus q reads in line 20 a value different from null and
does not write to Winner, which is a contradiction. This concludes

the proof of the first claim

To prove the second claim, we show that if every active process

is eventually allowed to execute sufficiently long without crashing,

then eventually some process writes toWinner. Assume towards

a contradiction that no process writes toWinner. If no operation

crashes after setting R[p] ← 2 in line 6, then the first operation

to execute line 8 also writes to Winner, which is a contradiction.

Thus, there must be such an operation, and it eventually executes

T&S.RECOVER and sets R[p]← 4 in line 23. Let q be the process with
the smallest identifier to do so. Any operation that does not execute

line 23, when executing for a sufficiently long time without crashing

eventually sets R[p] to 3 and returns. Hence, eventually the follow-

ing holds: for all i < q R[i] ∈ {0,3} holds (since q is the smallest to

execute line 23), and for all i > q R[i] ∈ {0,3,4} holds. Consequently,

eventually q complete the busy-waiting loops in T&S.RECOVER and

writes toWinner in line 30, which is a contradiction. �

3.4 Using Nesting-Safe Recoverable Base
Objects: an Example

A Counter object supports an INC operation that atomically incre-

ments its value and a READ operation. We start by describing a

simple linearizable implementation of a Counter object and then

discuss the changes required for making it a recoverable Counter
satisfying NRL. Each process p has its own entry R[p] in an array

R of integers, initialized to 0. To perform INC, p simply increments

R[p]. In the READ operation, p reads all array entries, sums up the

values and returns the sum.

Claim 2. The Counter algorithm described above is linearizable.

Proof. The correctness argument is as follows. Assume process

p completes a READ operation. Let v be the value it read from R[q].
Since R[q] is monotonically increasing, it must be that R[q] ≤ v
immediately after the READ’s invocation and R[q] ≥ v immediately

before the READ’s response. Therefore, at most v INC operations by

q have been linearized before the READ’s invocation, and at least

v INC operations were linearized before the READ’s response. As
this is true for any q, it implies that, as p computes value val , then
there are at most val INC operations that were linearized before its

READ invocation, and at leastval INC operations that were linearized
before its READ response. In particular, there is a point during READ’s
execution when exactly val INC operations were linearized, so the

READ operation can be correctly linearized at that point. �
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Algorithm 4 Nesting-safe recoverable Counter object N , program for process p

Shared variables: R[N]: an array of recoverable read/write objects, initially [0, . . . ,0]

1: procedure INC()
2: temp ← R[p].READ
3: temp ← temp + 1
4: R[p].WRITE(temp)
5: return ack
6: procedure INC.RECOVER()
7: if LIp < 4 then
8: proceed from line 2

9: else
10: return ack

11: procedure READ()
12: val ← 0

13: for i from 1 to N do
14: val ← val + R[i].READ

15: Resp ← val
16: return val
17: procedure READ.RECOVER()
18: proceed from line 12

Making this implementation recoverable necessitates equipping

both INC and READ operations with a RECOVER function. The pseudo-
code of the recoverable implementation is shown by Algorithm 4.

As we described in Section 2, our system model assumes that a

recovery functionOp.RECOVER has access to LIp - a designated per-

process non-volatile variable identifying the instruction of Op that

p was about to execute when it incurred the crash that triggered

Op.RECOVER. Our implementation of the INC operation, which we

now describe, exemplifies how LIp is used.

The INC operation’s write to R[p] in line 4 is its linearization

point. In order to ensure that R[p] is incremented exactly once in

each INC operation, we use an array R of recoverable read/write

objects, such as the one we described previously, instead of an

array of (non-recoverable) read/write variables. Recall that our

implementation of recoverable WRITE requires that distinct values

will be written, but this imposes no overhead here, since it is ensured

by the counter’s algorithm.

Consider a crash that occurs between INC’s invocation and re-

sponse. If p crashes inside WRITE (invoked by INC in line 4), then

WRITE is the inner-most recoverable operation that was pending.

Consequently, if and when p is resurrected by the system, it does so

by invoking WRITE.RECOVER and, once its recovery is completed,

INC returns in line 5 (unless it crashes again). Otherwise, the sys-

tem invokes INC.RECOVER, which uses LIp in line 7 to determine

whether the last crash inside INC occurred before line 4 – in which

case INC is re-executed, or after it – in which case INC.RECOVER
simply returns.

We chose to implement the counter’s READ operation as strictly

recoverable. This was accomplished in our implementation by hav-

ing READ write its response value, immediately before it returns, to

a shared-memory variable Resp , used by p only. This ensures that

a recoverable operation that invokes the counter’s READ operation

is able to access its response even if the process fails immediately

after N .READ returns.

Algorithm 4 demonstrates how recoverable base objects that

satisfy the NRL condition can be used in our model for constructing

more complex recoverable objects (satisfying the same condition)

relatively easily. Modular constructions, such as that of Algorithm

4, leverage the following key property guaranteed by NRL: base

recoverable operations are guaranteed to be linearized correctly be-

fore they return, even in the presence of multiple crashes, allowing

the implemented recoverable operation to proceed correctly.

4 RELATEDWORK
Golab and Ramaraju [13] define an abstract individual-process

crash-recovery model to study the recoverable mutual exclusion
(RME) problem. RME is a generalization of the standard mutual

exclusion problem, whereby a process that crashes while accessing

a lock is resurrected eventually and allowed to execute recovery

actions. The RME problem was further studied in [12, 18]). Addi-

tional work investigated lock recoverability in different models

[1, 5–7, 23].

A consistency condition specifies how to derive the semantics of

a concurrent implementation of a data structure from its sequential
specification. This requires to disambiguate the expected results of

concurrent operations on the data structure, as done for example in

linearizability [16]. Linearizability guarantees a locality property

required for nesting, but it cannot be directly used for specifying

recoverable objects, since it has no notion of an aborted or failed

operation, and hence, no notion of recovery.

Several consistency conditions for the crash-recovery model

were suggested, aiming to maintain the consistent state of concur-

rent objects. However, none of them ensures that a process is able to

infer whether the failed operation completed and, if so, to obtain its

response value, hence they cannot be directly used as a correctness

condition for modular constructions of recoverable objects.

Aguilera and Frølund [2] proposed strict linearizability as a cor-

rectness condition for recoverable objects. It treats the crash of a

process as a response, either successful or unsuccessful, to the inter-

rupted operation. Strict linearizability preserves both locality [15]

and program order. Guerraoui and Levy [14] define persistent atom-
icity. It is similar to strict linearizability, but allows an operation

interrupted by a failure to take effect before the subsequent invo-

cation of the same process, possibly after the failure. They also

proposed transient atomicity, which relaxes this criterion even fur-

ther and allows an interrupted operation to take effect before the

subsequent write response of the same process. Both conditions

ensure that the state of an object will be consistent in the wake of

a crash, but they do not provide locality.
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Berryhill et al. [3] present an alternative condition, called recov-
erable linearizability, which achieves locality but may compromise

program order following a crash. Whereas [2, 3, 14] consider an

individual process failures model in which any subset of the pro-

cesses may crash-fail at any time, Izraelevitz et al. [17] consider a

simultaneous failures model, in which processes always crash-fail

together. Under this model, persistent atomicity and recoverable

linearizability are indistinguishable.

Several previous works investigated transactional access of per-

sistent shared objects and NVRAM-based system recovery [4, 19–

22, 24, 25]. Coburn et al. [8] presented NV-heaps, a software user-
level library that allows using NVRAM directly for storing object

state and recovery data. Cohen et al. [9] recently presented an effi-

cient logging protocol for NVRAM. Friedman et al. [11] presented

three concurrent lock-free queue algorithms exhibiting different

tradeoffs between consistency and efficiency.

5 DISCUSSION
We presented a novel abstract model and correctness criterion for

non-volatile memory, supporting modular construction of complex

recoverable objects from simpler recoverable base objects. We gave

algorithms for recoverable versions of widely-used primitive shared-

memory operations such as read, write, test-and-set and compare-

and-swap, and showed they can be used to construct a recoverable

counter object.

An intriguing research direction is to devise and prove the cor-

rectness of more complex data structures (such as lists, stacks,

queues and search trees), whose (non-recoverable) lock-free imple-

mentations from reads, writes, and CAS operations are known.

The model we presented in this paper assumes that the sys-

tem provides recovery functions with access to a per-process non-

volatile variable identifying the instruction that the process was

about to execute when it crashed. In future work, we plan to in-

vestigate how best to relax this requirement while allowing the

algorithm to explicitly label critical “check-points” (typically corre-

sponding to write operations) for facilitating correct recovery.
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