
Chapter 1
Node-Centric Detection of Overlapping
Communities in Social Networks

Yehonatan Cohen, Danny Hendler, and Amir Rubin

Abstract We present NECTAR, a community detection algorithm that general-
izes Louvain method’s local search heuristic for overlapping community structures.
NECTAR chooses dynamically which objective function to optimize based on the
network on which it is invoked. Our experimental evaluation on both synthetic
benchmark graphs and real-world networks, based on ground-truth communities,
shows that NECTAR provides excellent results as compared with state of the art
community detection algorithms.

1.1 Introduction

Social networks tend to exhibit community structure [1], that is, they may be parti-
tioned to sets of nodes called communities (a.k.a. clusters), each of which relatively
densely-interconnected, with relatively few connections between different commu-
nities. Revealing the community structure underlying complex networks in general,
and social networks in particular, is a key problem with many applications (see
e.g. [2, 3]) that is the focus of intense research. Numerous community detection
algorithms were proposed (see e.g. [4–14]). While research focus was initially on
detecting disjoint communities, in recent years there is growing interest in the detec-
tion of overlapping communities, where a node may belong to several communities.

Many community detection algorithms are guided by an objective function that
provides a quality measure of the clusterings they examine in the course of their
execution. Since exhaustive-search optimization of these functions is generally in-
tractable (see e.g. [15, 16]), existing methods settle for an approximation of the op-
timum and employ heuristic search strategies.
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A key example is Blondel et al.’s algorithm [8], also known by the name “Lou-
vain method” (LM). The algorithm is fast and relatively simple to understand and
use and has been successfully applied for detecting communities in numerous net-
works. It aims to maximize the modularity objective function [9]. Underlying it is a
greedy local search heuristic that iterates over all nodes, assigning each node to the
community it fits most (as quantified by modularity) and seeking a local optimum.
Unfortunately, the applicability of LM is limited to disjoint community detection.

Our Contributions: We present NECTAR, a Node-centric ovErlapping Com-
munity deTection AlgoRithm. NECTAR generalizes the node-centric local search
heuristic of the Louvain algorithm so that it can be applied also to networks possess-
ing overlapping community structure. Several algorithmic issues have to be dealt
with in order to allow the LM heuristic to support multiple community-memberships
per node. First, rather than adding a node v to the single community maximizing an
objective function, v may have to be added to several such communities. However,
since the “correct” number of communities to which v should belong is not a-priori
known to the algorithm, it must be chosen dynamically.

A second issue that arises from multiple community-memberships is that differ-
ent communities with large overlaps may emerge during the algorithm’s execution
and must be merged. We describe the new algorithm and how it resolves these issues
in Section 1.2.

Modularity (used by LM) assumes disjoint communities. Which objective func-
tions should be used for overlapping community detection? Yang and Leskovec [17]
evaluated several objective functions and showed that which is most appropriate de-
pends on the network at hand. They observe that objective functions that are based
on triadic closure provide the best results when there is significant overlap between
communities. Weighted Community Clustering (WCC) [18] is such an objective
function but is defined only for disjoint community structures.

We define Weighted Overlapping Community Clustering (WOCC), a general-
ization of WCC that may be applied for overlapping community detection. More
details can be found in our technical report [19]. Another objective function that fits
the overlapping setting is QE ( [20]) - an extension of modularity for overlapping
communities.

A unique feature of NECTAR is that it chooses dynamically whether to use
WOCC or QE , depending on the structure of the graph at hand. This allows it to pro-
vide good results on graphs with both high and low community overlaps. NECTAR
is the first community-detection algorithm that selects dynamically which objective
function to use based on the graph on which it is invoked.

Local search heuristics guided by an objective function may be categorized as ei-
ther node-centric or community-centric. Node-centric heuristics iterate over nodes.
For each node, communities are considered and it is added to those of them that are
“best” in terms of the objective function. Community-centric heuristics do the oppo-
site: they iterate over communities. For each community, nodes are considered and
the “best” nodes are added to it. In order to investigate which of these approaches
is superior in the context of social networks, we implemented both a node-centric
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and a community-centric versions of NECTAR and compared the two implemen-
tations using both the WOCC and the QE metrics. As can be seen in our technical
report [19], the node-centric approach was significantly superior for both metrics
used.

We conducted extensive competitive analysis of NECTAR (using a node-centric
approach) and nine other state-of-the-art overlapping community detection algo-
rithms. Our evaluation was done using both synthetic graphs and real-world net-
works with ground-truth communities, based on several commonly-used metrics.
NECTAR outperformed all other algorithms in terms of average detection quality
and was best or second-best for almost all networks. Our code is publicly available
for download.1

Background: We now briefly describe a few key notions directly related to our
work. Louvain method [8] is a widely-used disjoint community detection algorithm,
based on a simple node-centric search heuristic that seeks to maximize the modu-
larity [9] objective function. Chen et al. extended the definition of modularity to the
overlapping setting [20]. For a collection of sets of nodes C , their extended modu-
larity definition, denoted QE(C ), is given by:

QE(C ) =
1

2|E| ∑
C∈C

∑
i, j∈C

[
Ai j−

kik j

2|E|

]
1

OiO j
, (1.1)

where A is the adjacency matrix, ki is the degree of node i, and Oi is the number of
communities i is a member of. If C is a partition of network nodes, QE reduces to
(regular) modularity.

Yang and Leskovec [17] conducted a comparative analysis of 13 objective func-
tions in order to determine which captures better the community structure of a net-
work. They show that which function is best depends on the network at hand. They
also observe that objective functions that are based on triadic closure provide the
best results when there is significant overlap between communities.

Weighted Community Clustering (WCC) [18] is such an objective function. It
is based on the observation that triangle structures are much more likely to exist
within communities than across them. This observation is leveraged for quantifying
the quality of graph partitions (that is, non-overlapping communities). It is formally
defined as follows. For a set of nodes S and a node v, let t(v,S) denote the number
of triangles that v closes with nodes of S. Also, let vt(v,S) denote the number of
nodes of S that form at least one triangle with v. WCC(v,S), quantifying the extent
by which v should be a member of S, is defined as:

WCC(v,S) =

{
t(v,S)
t(v,V ) ·

vt(v,V )
|S\v|+vt(v,V\S) if t(v,V )> 0

0 otherwise,

1 NECTAR code and documentation may be downloaded from:
https://github.com/amirubin87/NECTAR.
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where V is the set of graph nodes. The cohesion level of a community S is defined
as WCC(S) = 1

|S| ∑v∈S WCC(v,S). Finally, the quality of a partition C = {S1, . . . ,Sk}
is defined as the following weighted average: WCC(C ) = 1

|V | ∑
k
i=1 |Si| ·WCC(Si).

NECTAR uses Weighted Overlapping Community Clustering (WOCC) - our
generalization of WCC that can be applied to overlapping community detection.

1.2 NECTAR: a Detailed Description

The high-level pseudo-code of NECTAR is given by Algorithm 1. The input to the
NECTAR procedure (see line 4) is a graph G =<V,E > and an algorithm parameter
β ≥ 1 that is used to determined the number of communities to which a node should
belong in a dynamic manner (as we describe below).

NECTAR proceeds in iterations (lines 12–27), which we call external iterations. In
each external iteration, the algorithm performs internal iterations, in which it iter-
ates over all nodes v ∈V (in some random order), attempting to determine the set of
communities to which node v belongs such that the objective function is maximized.

We implemented two overlapping community objective functions: the extended
modularity function [20], denoted QE(C ), and WOCC - our generalization of the
WCC function [18]. These implementations are described in our technical report
[19,21]. NECTAR selects dynamically whether to use WOCC or QE , depending on
the rate of closed triangles in the graph on which it is invoked. If the average number
of closed triangles per node in G is above the trRate threshold, then WOCC is more
likely to yield good performance and it is used, otherwise the extended modularity
objective function is used instead (lines 5–8). We use trRate = 5, as this provides
a good separation between communities with high overlap (on which WOCC is
superior) and low overlap (on which extended modularity is superior).

Each internal iteration (comprising lines 13–22) proceeds as follows. First, NECTAR
computes the set Cv of communities to which node v currently belongs (line 14).
Then, v is removed from all these communities (line 15). Next, the set Sv of v’s
neighboring communities (that is, the communities of C that contain one or more
neighbors of v) is computed in line 16. Then, the gain in the objective function value
that would result from adding v to each neighboring community (relative to the
current set of communities C ) is computed in line 17. Node v is then added to the
community maximizing the gain in objective function and to any community for
which the gain is at least a fraction of 1/β of that maximum (lines 18–19).2 Thus, the
number of communities to which a node belongs may change dynamically through-
out the computation, as does the set of communities C .

If the internal iteration did not change the set of communities to which v belongs,
then v is a stable node of the current external iteration and the number of stable
nodes (initialized to 0 in line 13) is incremented (lines 20–21).

2 If no gain is positive, v remains as a singleton.
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Figure 1: NECTAR algorithm.

1 const maxIter← 20
2 const α ← 0.8
3 const trRate← 5

4 Procedure NECTAR(G=<V,E>, β ){
5 if triangles(G)/|V | ≥ trRate then
6 use WOCC
7 else
8 use QE

9 end
10 Initialize communities
11 i← 0

12 repeat
13 s← 0 forall v ∈V do
14 Cv ← v’s communities
15 Remove v from all Cv communities
16 Sv←{C ∈ C

∣∣∃u : u ∈C∧ (v,u) ∈ E}
17 D←{∆(v,C)|C ∈ Sv}
18 C′v←{C ∈ Sv|∆(v,C) ·β ≥ max(D)}
19 Add v to all the communities of C′v
20 if C′v =Cv then
21 s++
22 end
23 merge(α)
24 if merge reduced communities num. then
25 s←0
26 i++
27 until (s = |V |)∨ (i = maxIter)

After all nodes have been considered, the possibly-new set of communities is
checked in order to prevent the emergence of different communities that are too
similar to one another. This is done by the merge procedure (whose code is not
shown), called in line 23. It receives as its single parameter a value α and merges any
two communities whose relative overlap is α or more. If the number of communities
was reduced by merge, the counter of stable nodes is reset to 0 (lines 24–25).

The computation proceeds until either the last external iteration does not cause
any changes (hence the number of stable nodes equals |V |) or until the maximum
number of iterations is reached (line 27), whichever occurs first. We have set the
maximum number of iterations to 20 (line 1) in order to strike a good balance be-
tween detection quality and runtime. In practice, the algorithm converges within a
fewer number of iterations in the vast majority of cases. For example, in our exper-
iments on synthetic graphs with 5000 nodes, NECTAR converges after at most 20
iterations in 99.5% of the executions.

LM is a hierarchical clustering algorithm that has a second phase.We imple-
mented a hierarchical version of NECTAR. However, since in all our experiments
the best results were obtained in the first hierarchy level, we only describe the non-
hierarchical version of NECTAR (Algorithm 1).

1.3 Experimental Evaluation

Xie et al. [22] conducted a comparative study of state-of-the-art overlapping com-
munity detection algorithms. We compare NECTAR with the following 5 of the
key performers out of the 14 algorithms they evaluated: the Greedy Clique Expan-
sion (GCE) algorithm [23], the Cfinder algorithm [12], the Order Statistics Local
Optimization Method (OSLOM) [13], the Community Overlap PRopagation Al-
gorithm (COPRA) [24], and the Speaker-Listener Label Propagation Algorithm
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(SLPA) [10]. In addition, we also evaluate the following four algorithms: Fuzzy-
Infomap [14], Big-Clam [25], Link-Clustering (LC) [26], and DEMON [27]. Details
regarding these algorithms and the parameters we used when invoking them can be
found in our technical report [19, 21].

We conducted competitive analysis using both synthetic networks and real-world
networks with ground-truth. We evaluated results using the widely-used Normalized
Mutual Information (NMI) [5], Omega-index [28], and Average F1 score [29] met-
rics (descriptions of these metrics can be found in [21]). Our evaluation shows that
NECTAR outperformed all other algorithms in terms of average detection quality
and provided best or second-best results for almost all networks, as we describe
now.

Synthetic Networks: Lancichinetti et al. [30] introduced a set of benchmark graphs
(henceforth the LFR benchmark), parameterized on: the number of nodes, n, the
average node degree, k, the number of overlapping nodes, On, the number of com-
munities an overlapping node belongs to, Om, community sizes (varied in our ex-
periments between 20− 100 for big communities and between 10− 50 for small
communities), and more. We mostly use the LFR parameter values used by [22].3

We generate 10 instances for each combination of parameters and take the average
of the results for each algorithm and each metric over these 10 instances. For each
algorithm, we present the results for the algorithm parameter value that maximizes
this average.

Figure 1.1 presents the average performance of the four best algorithms in terms
of NMI as a function of Om (the number of communities to which each of the On
overlapping nodes belongs), for k ∈ {10,40} and On ∈ {2500,5000}. The Omega-
index and average-F1 score results follow the same trends and are thus omitted for
lack of space. They can be found in our technical report [19].

With only a few exceptions, it can be seen that the performance of the algorithms
decreases as Om increases. This can be attributed to the fact that the size of the
solution space increases with Om.

We focus first on the results on graphs with a higher number of overlapping nodes
(Om = 2500) and high average degrees (k = 40). The rate of triangles in these graphs
is high (approx. 30 on average) and so NECTAR employs WOCC. NECTAR is the
clear leader for big communities. It achieves the best results for almost all values of
Om and its relative performance improves as Om increases, confirming that the com-
bination of NECTAR’s search strategy and the WOCC objective function is suitable
for graphs with significant overlap. Cfinder improves its relative performance as Om
increases and is the second performer for Om ∈ {4,7,8}. For small communities,
Cfinder has the lead with NECTAR being second best and OSLOM third for most
values of Om, and NECTAR taking the lead for Om = 8.

We now describe the results on graphs with lower numbers of overlapping nodes
(Om = 500) and low average degree (k = 10). The rate of triangles in these graphs is
low (approx. 3.5 on average) and so NECTAR employs extended modularity. NEC-

3 For more details on parameter values used for LFR, refer to [21].
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TAR provides the best performance for both small and large communities for almost
all values of Om. The relative performance of Cfinder deteriorates as compared with
its performance on high-overlap graphs. It is not optimized for sparser graphs, since
its search for communities is based on locating cliques. OSLOM is second best on
these graphs, having the upper hand for Om = 1 and providing second-best perfor-
mance for Om > 1. These results highlight the advantage of NECTAR’s capability
of selecting the objective function it uses dynamically according to the properties of
the graph at hand.

Summarizing the results of the tests we conducted on 96 different synthetic graph
types, NECTAR is ranked first, with average rank of 1.58, leading in 33 out of 96 of
the tests, followed by OSLOM, with average rank of 2.79.

Real-World Networks: We conducted our competitive analysis on two real-world
networks - Amazon’s product co-purchasing network and the DBLP scientific col-
laboration network. We downloaded both from Stanford’s Large Network Dataset
Collection [31]. The Amazon graph consists of 334,863 nodes and 925,872 edges.
Nodes represent products and edges are between commonly co-purchased products.
Products from the same category are viewed as a ground-truth community.

The DBLP graph consists of 317,080 nodes and 1,049,866 edges. Nodes corre-
spond to authors and edges connect authors that have co-authored a paper. Publica-
tion venues (specifically, conferences) are used for defining ground-truth communi-
ties. Thus, the set of authors that have published in the same conference is viewed
as a ground-truth community.

In [17], Yang and Leskovec rate the quality of ground-truth communities of Ama-
zon and DBLP (as well as those of additional networks) using six scoring functions,
such as modularity, conductance, and cut ratio. They rank ground-truth communities
based on the average of their ranks over the six corresponding scores and maintain
the 5,000 top ground-truth communities per each network. These are the ground-
truth communities provided as part of the datasets of [31].

The left part of figure 1.2 presents the results of the seven best algorithms on
Amazon. The right part refers to results on DBLP. The rate of triangles in the Ama-
zon graph is low, and so NECTAR employs extended modularity. NECTAR provides
the best performance with an overall score of 2.062, approximately 3.5% more than
InfoMap, which is second best. NECTAR has second-best average F1 score, lagging
only slightly behind Cfinder. In terms of Omega-index, NECTAR is second-best as
well, lagging behind InfoMap, and Cfinder is the last performer.

In the DBLP network, the rate of triangles is high, and so NECTAR employs
WOCC. Cfinder has the highest overall score, enjoying a small margin of approxi-
mately 2.5% w.r.t. NECTAR, which is second-best. LC is the third performer, with
a score lower than NECTAR’s by approximately 8%. In terms of NMI, Cfinder is
first with a score of 0.657 and NECTAR is third best, lagging behind by approxi-
mately 5.5%. NECTAR has the highest average F1 score, but Cfinder’s score is only
approximately 1% smaller. COPRA obtains the third score, nearly 17% less than
NECTAR’s. All algorithms fair poorly in terms of their Omega-index.
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Fig. 1.1: Four best performers over synthetic networks in terms of NMI
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Fig. 1.2: Seven best performers over real-world networks
In order to assess the impact of dynamic objective function selection, we com-

pared NECTAR with two variants that consistently used either QE or WOCC. In
cases of disagreement, NECTAR’s score was, on average, 30% higher than that of
the WOCC version and 13% higher than the QE version.

We also measured time complexity on numerous networks, while varying the
number of nodes and the average node degree. NECTAR’s average running time
was second best among all evaluated algorithms.

1.4 Conclusions

We introduced NECTAR, a novel overlapping community detection algorithm that
generalizes Louvain’s search heuristic and selects dynamically which objective
function to optimize, depending on the structure of the graph at hand. Our eval-
uation shows that NECTAR outperforms all other algorithms in terms of average
detection quality. Analysis of our empirical results shows that extended modularity
yields better results on networks with low average node degrees and low community
overlap, whereas WOCC yields better results on networks with higher degrees and
overlap. The fact that NECTAR is able to provide excellent results on both types of
networks highlights the importance of objective function dynamic selection, as well
as the general applicability of Louvain’s search heuristic.
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