
Ransomware Prevention using Application
Authentication-Based File Access Control

Or Ami
Department of Computer Science

Ben Gurion University of the Negev
oa@post.bgu.ac.il

Yuval Elovici
Department of Software and

Information Systems Engineering
Ben Gurion University of the Negev

elovici@inter.net.il

Danny Hendler
Department of Computer Science

Ben Gurion University of the Negev
hendlerd@cs.bgu.ac.il

ABSTRACT
Ransomware emerged in recent years as one of the most significant
cyber threats facing both individuals and organizations, inflicting
global damage costs that are estimated upwards of $1 billion in
2016 alone [23]. The increase in the scale and impact of recent
ransomware attacks highlights the need of finding effective coun-
termeasures. We present AntiBotics – a novel system for appli-
cation authentication-based file access control. AntiBotics enfor-
ces a file access-control policy by presenting periodic identifica-
tion/authorization challenges.

We implemented AntiBotics for Windows. Our experimental
evaluation shows that contemporary ransomware programs are
unable to encrypt any of the files protected by AntiBotics and that
the daily rate of challenges it presents to users is very low. We
discuss possible ways in which future ransomware may attempt to
attack AntiBotics and explain how these attacks can be thwarted.

KEYWORDS
Ransomware, Access Control, AntiBotics, Biometrics, Authorization
ACM Reference Format:
Or Ami, Yuval Elovici, and Danny Hendler. 2018. Ransomware Prevention
using Application Authentication-Based File Access Control. In Proceedings
of ACM SAC Conference (SAC’18). ACM, New York, NY, USA, Article 4,
10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Ransomware is a type of malware which, upon infection, blocks
access to the computer or its resources (such as files) until a ransom
is paid. Advanced ransomware (a.k.a. crypto-ransomware, simply
referred to in the following as ransomware) prevent data access
by encrypting computer files. Users are then instructed to pay
the ransom in order to decrypt them. Ransomware emerged in
recent years as one of the most significant cyber threats facing both
individuals and organizations [27]. The increasing popularity of
digital currencies such as BitCoin [20] helped make ransomware
attacks more common, since cryptocurrencies facilitate anonymous
monetary transactions. Indeed, the number of known ransomware
families rose from 30 in 2015 to 101 in 2016, with an increasing
average ransom payment rising from $294 to $1077 [27].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC’18, April 9-13, 2018, Pau,France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The damage caused by ransomware is not just financial, as they
can paralyze public institutions, such as hospitals, that need up-
to-the-minute data to function properly. A recent key example is
the large-scale WannaCry ransomware [28] attack conducted on
May, 2017 that infected more than 230,000 computers in over 150
countries and caused major disruption to over 40 hospitals in the
UK only [9, 21].

The increase in the scale and impact of recent ransomware at-
tacks emphasizes the need of finding countermeasures. While se-
veral techniques for ransomware detection were proposed in recent
years (e.g. [3, 4, 10, 22], see Section 5), effective and difficult-to-
evade solutions for preventing ransowmare-afflicted data loss are
still urgently needed.

Servers, PCs, smartphones, and other types of computing devi-
ces, all provide processes for logging into (a.k.a. signing into) their
system, using user credentials (username/password) and/or biome-
tric identification and authentication devices based on fingerprints,
facial images, etc. Upon successful login, the user’s authenticated
identity determines which system resources in general, and compu-
ter files in particular, the user is authorized to access and in what
manner.

Historically, login mechanisms were developed in order to pre-
vent access by unauthorized humans who may have physical access
to the device or may access it via a communication network. In
recent years, however, the key threats to the security and integrity
of computing devices and their files are posed by automated ma-
licious software. Unfortunately, login mechanisms and biometric
authentication/authorization devices in contemporary computing
devices provide no defense against automated malware attacks.

We present AntiBotics - a novel system for application
authentication-based file access control. AntiBotics harnesses bio-
metric authentication mechanisms and human identification sche-
mes such as CAPTCHA, in order to prevent malicious software in
general, and ransomware in particular, from modifying or deleting
files. AntiBotics enforces a file access-control policy by periodically
presenting identification/authorization challenges, for ensuring
that applications attempting to modify or delete files are invoked
by an authorized user rather than by bots. Via flexible configuration
options, AntiBotics allows an administrator to strike a good balance
between the level of disruption incurred by users (resulting from
the need to respond to challenges) and the level of security that is
gained.

We implemented AntiBotics for Windows by developing a file
system filter driver [18]. We conducted experimental evaluation of
two aspects pertaining to our system’s operation. First, using the
driver, we have logged the file access patterns of a set of users over

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SAC’18, April 9-13, 2018, Pau,France Or Ami, Yuval Elovici, and Danny Hendler

an extended period of time. Based on our analysis of the logs we
show that a very low daily rate of challenges presented to users
suffices to authorize the file-modifying applications they use and
protect the respective application files against unauthorized use.
Second, we performed a large-scale evaluation on thousands of
ransomware samples and verified that none of them was able to
encrypt any of the files protected by AntiBotics.

Although it is encouraging that AntiBotics is able to completely
block the operation of contemporary ransomware, the key question
is the extent to which new ransomware will be able to evade it. We
discuss possible attacks against application authentication-based
file access control. Our analysis shows that it significantly raises
the bar also for future ransomware.

The rest of this paper is organized as follows. In Section 2, we
describe the high-level architecture of AntiBotics and provide sim-
plified pseudo-code of the algorithm used by our Windows imple-
mentation to handle file I/O requests. We report on experimental
evaluation in Section 3. We then discuss, in Section 4, possible coun-
termeasures against
authentication-based file access control systems such as AntiBotics
that may be used by future rasomware. Related work is surveyed
in Section 5. We describe our conclusions and planned future work
in Section 6.

2 ANTIBOTICS ARCHITECTURE AND
IMPLEMENTATION

The high-level structure of the AntiBotics system is presented in
Figure 1. AntiBotics implements an authentication-based access
control mechanism that assigns access permits to execution objects
based on a policy specified by an administrator and based on the
responses to challenges that are presented upon attempts to modify
or delete files. The key components of the system, presented by
Figure 1, are: 1) the Policy Enforcement Driver (PED), 2) the Policy
Specification Interface (PSI), and 3) the Challenge-Response Ge-
nerator (CRG). A description of these modules, their functionality
and their interactions is now provided. This is followed by a more
technical discussion of the implementation.

Figure 1: High-level structure of the AntiBotics system.

2.1 The Policy Enforcement Driver (PED)
The PED is the AntiBotics module that interacts with the system
software in order to enforce file access-control according to the po-
licy specified by a system administrator using the PSI. In operating
systems supporting 3’rd party file system drivers such as Windows,
the PED may be installed as a file system driver.

Figure 2 depicts a simplified view of the I/O system software
stack of a typical PC. Applications operate in user mode wherein
their access to system resources is limited. In order to perform I/O
in general, or access files in particular, applications must invoke
system calls which trigger the execution of operating system (OS)
services running in kernel mode. Unlike code running in user mode,
OS code has access to hardware devices. I/O requests are directed
to an OS module called the I/O manager, which provides interfaces
that allow I/O devices in general (and storage devices in particular)
to be discovered, organized and operated.

When an application issues a system call in order to invoke
some operation on a file (e.g., to read the file, write to it or delete
it), a corresponding I/O request is generated and delivered to the
I/O manager which, in turn, directs the request to a set of device
drivers that have registered to handle this type of I/O requests. In
modern operating systems, these device drivers are able to perform
pre-processing and post-processing prior to dispatching the request
to the block device driver which communicates directly with the
appropriate storage device.

The AntiBotics PED module is implemented as a Windows file-
system filter driver. We proceed to describe its functionality and
interactions with other modules and defer a more technical discus-
sion of its implementation to Section 2.4.

The PED receives file I/O requests from the I/O manager. Each
request specifies the type of the requested file operation and the
pathname of the file to which the operation should be applied. The
PED is also able to obtain data that identifies the system entity
requesting the operation, such as the process ID (PID) and the
pathname of the program that invokes the I/O operation. AntiBotics
maps this latter data to an execution object and maintains the state
of execution objects.

Figure 2: I/O system and PED file-system driver.

The PED allows read requests to proceed but considers file I/O
requests that may allow a program to rename, modify or delete
a file based on the policy state (edited by the policy specification
interface described in Section 2.2) and the state of the requesting
execution object. After consulting the policy state and the state
of the execution object, the PED considers the I/O request and
proceeds in one of the following manners: 1) The execution object
is allowed to make the requested I/O operation and the request is

Ransomware Prevention using Application Authentication-Based File Access Control SAC’18, April 9-13, 2018, Pau,France

dispatched for execution; 2) The execution object is not allowed to
make the requested I/O operation. The request is not dispatched for
execution; 3) A challenge is issued. The type of the challenge (in our
current implementation either fingerprint scan or CAPTCHA) is
determined according to the policy state. The goal of the challenge
is to ensure that a user (rather than a bot) initiated the file operation
and, optionally, to verify that the user is authorized to perform the
operation. If the challenge is responded to successfully within a
(configurable) timeout, the execution object is allowed to make the
access and is granted a time-limited permit, otherwise the request
is refused and is not dispatched for execution.

2.2 The Policy Specification Interface (PSI)
The policy specification interface is a GUI program that allows
the administrator to configure the AntiBotics policy. It can only
be invoked in admin mode. The administrator’s selections made
using the PSI are recorded in the policy state and then used by the
PED for deciding on whether or not to allow file access and for
determining when and how often to invoke the CRG for issuing
challenges.

Table 1 lists the configuration parameters that can be set by the
PSI. The Folder policy type and Folders list parameters specify which
folders are protected by AntiBotics and which are not. When the
Folder policy type parameter assumes value ’Inclusive’, the default is
not to protect and the list specifies the pathnames of protected fol-
ders. Otherwise the parameter assumes value ’Exclusive’ indicating
that the default is to protect, so the list specifies the pathnames of
folders that are excluded from protection. For example, the AppData
folder where Windows programs often create temporary files may
be excluded from protection by including it in the folders list and
setting Folder policy type=’Exclusive’.

The Protected extensions parameter is a list of file extensions that
are to be protected by AntiBotics, such as, e.g., those of office docu-
ments (doc*, xls*), image files (.jpg, .png), or database files (.mdb),
to name a few. The Execution object type parameter determines
the granularity of authentication. When it assumes value ’PID’,
challenges are issued and permits are granted to specific processes.
Otherwise it assumes value ’PROG’, signifying that authentication
is to be done in coarser granularity, per executable pathname. We
discuss the implications of different Execution object type options
further in Section 2.4.

The Challenge type parameter specifies the type of challenges
issued by AntiBotics. The current AntiBotics implementation sup-
ports authentication using either fingerprint scanning (this is the
default value) or CAPTCHA challenges. The Challenge timeout pa-
rameter determines the period of time (in seconds) within which
a user must respond to a challenge. We describe the challenge-
response mechanism in more details in Section 2.3.

The Permit duration parameter specifies the duration (in minutes)
of the permit granted to an execution object. The Permit scope
parameter determineswhich files an execution object that is granted
a permit may access as long as the permit is active (that is, not
expired). The permit can be either limited to the file that triggered
the challenge (FILE), limited to files of the same type (TYPE), or
allow access to any file type (ALL). Figure 3 presents a screenshot
of the PSI.

2.3 The Challenge Response Generator (CRG)
The CRG is invoked by the PED in admin mode whenever the latter
concludes (after consulting the policy state and the execution object
states data structures) that an attempt to modify or delete a file
made by an execution object cannot be allowed to proceed before
a new challenge is successfully responded to. The authentication
method used by the challenge is determined according to the policy
state.

The current AntiBotics implementation supports fingerprint scan
(this is the default value) or CAPTCHA challenges. Figure 4 presents
a screenshot of such a challenge. The challenge provides the user
with the following information: Identification of the execution
object – the program pathname and process ID, name of the file
about to be modified/delete, and the time of access attempt.

If the challenge is responded to successfully within the timeout
configured in the policy state, a positive response is sent to the PED.
Otherwise, when the timeout expires, a negative response is sent to
the PED but the challenge window remains on screen. If and when
the user will attempt to respond to it, she will receive a message
that it was timed-out and a new challenge will be presented. A rate-
limiting mechanism prevents execution objects from generating
challenges at a too-high rate.

Figure 3: Policy specification interface screenshot.

2.4 Windows Implementation
We implemented AntiBotics for Windows systems. We chose to im-
plement the PED module as a file system filter driver (FSFD) [1, 2].
Filter drivers allow modifying the behavior of a file system by log-
ging, modifying or preventing I/O operations. The ability to inspect
file system requests and to optionally modify or prevent them is
useful for many applications, such as antivirus, file encryption and
remote file replication, to name a few.

Figure 5 presents a simplistic view of the structure of a Windows
file system drivers stack, consisting of several file system filter

SAC’18, April 9-13, 2018, Pau,France Or Ami, Yuval Elovici, and Danny Hendler

Table 1: AntiBotics Configuration Parameters.

Name Description Default
Folder policy type Folder policy specification type: Inclusive or Exclusive. Inclusive
Folders list List of protected or unprotected folders. Desktop, Documents
Protected extensions List of file extensions to be protected. -
Execution object type Execution object type: PID or PROG. PROG
Challenge type Type of challenges presented for authorizing file access. BIOMETRIC
Challenge timeout Time (in seconds) within which challenge must be responded to. 90 seconds
Permit duration Permit duration (in minutes). 240 minutes
Permit scope Files permit applies to: FILE, TYPE or ALL. ALL

Figure 4: Screenshot of Fingerprint scan challenge.

drivers and a single storage device driver. Typically, I/O requests
(termed I/O request packets – IRPs) are transferred from one driver
to the other down the chain of drivers in the stack and responses
are transferred back upwards in the reverse order. The AntiBotics
PED is attached as the bottommost filter driver. Since a file system
drivers stack such as that of Figure 5 exists per each file system
volume, the PED is added in general to (the bottom of) several such
stacks.

Figure 5: Windows file system driver stack (simplistic).

As we explain in Section 4, filter drivers provide robustness
against attempts to unload them after system boot. In order to
reduce development time, our implementation uses the Eldos Cal-
lbackFilter platform which implements a legacy file system filter
driver and exposes an API for the filter driver’s management and
processing [7].

Algorithm 1 presents a simplified pseudo-code of the manner in
which the PED handles file I/O requests.1 The input consists of the
pathname of the file to which the operation is about to be applied
(targetFile) and the IRP structure.

Handling a file I/O request starts by obtaining the execution
object (line 3). Execution then switches according to the type of
the requested operation. If file creation is attempted and the policy
specifies that the file is to be protected, a permit for the new file is
automatically generated and associated with the execution object
(lines 5–9). This allows programs to modify the files they created
without presenting challenges to the user, as long as the permit
generated upon creation remains active. AntiBotics maintains a
hash map named permits which maps execution objects to their sets
of permits. This enables quick lookups of execution object permits.

When an execution object attempts to open a protected file
(line 10), AntiBotics checks if the file is about to be opened with
write permission (line 11). If this is the case, then a permit for
opening the file may be required and the mod flag is set in line 12

to ensure that the target file is handled further in lines 27–30. We
note that a possible alternative for preventing a file open in write
mode that may be considered is to implement lazy protection by
allowing the file open to succeed and enforce protection only when
the execution object invokes a write operation. As we explain in
Section 3, however, this alternative strategy fails against some
existing ransomware.

Moving a file from one position to another in the directories
hierarchy is technically a rename operation applied to the file. Re-
name operations must be protected against malicious use. As an
example, consider a file named File.txt in a folder C: \FolderA. In
order to move this file to folder C:\FolderB, one can rename the file’s
pathname from C:\FolderA \File.txt to C: \FolderB \File.txt. If a file
with the destination pathname already exists, an override option
is available that will overwrite this file. Indeed, some ransomware
use this option in order to delete user files without explicitly invo-
king a delete or write operation. Consequently, if a rename request
requires to modify or override a protected file, the execution object
must hold an active permit for the destination file (as well as for
the target).

Rename operations are the more complicated case and are dealt
with as follows. First, the mod flag is set in line 15 to ensure that
the file to which the rename operation is applied (the target file)
is handled further in lines 27–30. Then, if the destination file is an
execution object, all its permits are deleted in lines 16–17 (if it is
1In the actual implementation, the pseudo-code of Algorithm 1 is partitioned between
several functions, each dealing with specific I/O requests.

Ransomware Prevention using Application Authentication-Based File Access Control SAC’18, April 9-13, 2018, Pau,France

not an execution object, then these two lines have no effect). As we
explain in Section 4, this is in order to block possible future path
hijacking attacks that attempt “stealing” AntiBotics permits. If the
operation is about to rename a folder, then the folderRen function is
called (in line 18. Note that we assume that the expressions in this
line are evaluated from left to right) in order to block possible future
folder exclusion attacks (see Section 4). The folderRen function is
described shortly. If it returns true, signifying that the rename is
about to remove protection for some files in the renamed folder, the
authorize function (explained soon) is called to determine whether
the folder rename should be allowed (line 19). Otherwise, if the
destination file exists and should be protected (line 20), the authorize
function is called to determine whether overwriting it should be
allowed (line 21).

When an execution object attempts to perform either one of the
WRITE, DELETE, SETEOF or SETALLOCATIONSIZE operation
types (the latter two change the file’s size), AntiBotics marks that
the execution object requests to modify the target file (lines 23–24).

After exiting the switch of lines 4–25, AntiBotics checks whether
the target file is about to bemodified (line 25). If this is the case and it
should be protected (line 27), the authorize function (described next)
is invoked to determine whether modification should be allowed
and its response is recorded in the processRequest flag (line 28).

If the target is an execution object, all its permits are deleted in
line 30 in order to block path hijacking attacks against AntiBotics
(see Section 4). Finally, if access to both target and destination files
(if this is a rename operation) is to be allowed, the IRP is passed on
to the next stack driver, otherwise the requested access is denied
(lines 32–36).

The authorize function is called (in lines 21 and 28 of handleRe-
quest) for determining whether or not a file I/O request should be
allowed. It receives as operands a reference to the execution object
EO that made the request and the name of the targetFile.

First, the permits of the execution object are retrieved (line 37).
If at least one of these permits allows modifying/deleting targetFile,
authorize returns true, notifying handleRequest that access is allo-
wed (lines 38–42). If no such permit exists, the CRG is invoked for
issuing a new challenge in line 43 (see Section 2.3).

If the challenge was responded to successfully within the chal-
lenge timeout, the CRG returns a SUCCESS indication. In this case,
a new permit for the target file is created and added to the execution
object’s permits set and authorize returns true (lines 44–46), noti-
fying handleRequest that the request is allowed, otherwise false is
returned (line 48), notifying handleRequest that the request should
be rejected.

The folderRen function is called in line 18 of handleRequest when
a folder is about to be renamed. Its tasks are to update the PSI’s
folders list if required, and to determine if the rename might be a
folder exclusion attack for removing file protection (see Section 4).
To perform its first task, the function iterates over the PSI folders list
(lines 52–63) in order to find paths that are descendants of targetFile
and to update their pathname.

To perform its second task, folderRen checks in line 64 whether
the target folder is protected but will lose its protection after being
renamed and returns true or false accordingly.

Algorithm 1: handleRequest(tarдetFile, irp)

1 mod ← false, processRequest← true
2 opType← irp.requestType
3 EO← getExecObject()
4 switch opType do
5 case CREATE : do
6 if isProtected(targetFile) then
7 newPermit← createPermit(targetFile)
8 permits[EO]← permits[EO]

⋃
{newPermit}

9 break ;
10 case OPEN : do
11 if isRW(irp.AccessMode) then
12 mod ← true
13 break;
14 case RENAME do
15 mod ← true
16 destFile← irp.destFile

17 permits[destFile]← ∅
18 if isFolder(targetFile) & folderRen(targetFile, destFile)

then
19 processRequest← authorize(EO, targetFile)
20 else if exists(destFile) & isProtected(destFile) then

21 processRequest← authorize(EO, destFile)
22 break;
23 caseWRITE,DELETE,SETEOF,SETALLOCSIZE: do
24 mod← true
25 end
26 if mod then
27 if isProtected(tarдetFile) then
28 processRequest & = authorize(EO, targetFile)
29 end
30 permits[targetFile]← ∅ ;
31 end
32 if processRequest then
33 Pass the IRP to the next driver
34 else
35 return accessDenied
36 end

3 EXPERIMENTAL EVALUATION
In the following section we report on two experiments we con-
ducted. In the User File-Access Patterns experiment, we logged the
file-related activity of a population of users over an extended period
of time. We then analyzed the resulting log files in order to find a
good tradeoff point (expressed by specific values of PSI parameters)
between the level of security provided by AntiBotics and the level
of disruption incurred by users.

In the Ransomware Prevention experiment, we tested a large
number of contemporary ransomware samples downloaded from
VirusTotal [25]. For each malware, we recorded the types of files
it attacks and the manner in which it attempts to modify them.
We verified that AntiBotics succeeds in blocking all these attacks.

SAC’18, April 9-13, 2018, Pau,France Or Ami, Yuval Elovici, and Danny Hendler

Algorithm 2: authorize(EO, tarдetFile)

37 EOpermits← permits[EO]
38 for permit in EOpermits do
39 if permit.allows(targetFile) then
40 return true
41 end
42 end
43 if CRG.issueChallenge()==SUCCESS then
44 newPermit← createPermit(targetFile)
45 permits[EO]← permits[EO]

⋃
{newPermit}

46 return true
47 else
48 return false
49 end

Algorithm 3: f olderRen(tarдetName,destName)

50 targetProtected ← PSI.FolderPolicy == Exclusive
51 destProtected ← tagetProtected
52 for folder in Folders list do
53 if targetName starts with folder then
54 targetProtected ← PSI.FolderPolicy == Inclusive
55 end
56 if destName starts with folder then
57 destProtected ← PSI.FolderPolicy == Inclusive
58 end
59 if folder starts with targetName then
60 newPath← folder.replace(targetName, destName)
61 PSI.FolderList← PSI.FolderList \ {folder}

⋃
{newPath}

62 end
63 end
64 return targetProtected and not destProtected

Surprisingly, as we describe in Section 3.2, this necessitated a change
of our initial design.

3.1 User File-Access Patterns Experiment
To conduct this experiment, we installed a modified version of the
AntiBotics Windows PED driver in the personal computers of 36
employees of an R&D organization, 33 of which are software de-
velopers and the rest belong to administrative staff. The modified
driver generates a log line per every file I/O operation that modi-
fies, deletes, renames or opens a file in write mode (see Algorithm
1) but does not provide any protection and does not trigger any
challenges. File types to which accesses are logged include all file
types attacked by contemporary ransomware, such as office files,
images and movies, and source-code extensions.

Logging was conducted for one month during March, 2017. We
then analyzed the logs in order to compute the rate in which chal-
lenges will be presented to users as a function of the Permit duration,
Permit scope and Execution object type parameter values, assuming
all folders are protected. Figure 6 presents the average number of
challenges per day that would be required on average according

to the logs as a function of the permit duration, assuming that
Permit scope is set to ’All’. Blue bars (respectively red bars) present
the number of challenges if Execution object type is set to ’PID’
(respectively, set to ’PROG’).

As can be expected, the number of challenges is a monotonically
non-increasing function of the permit duration. Setting the object
type to ’PROG’ always results in a lower number of challenges
as compared with setting it to ’PID’. This is because if a permit
is granted to a program then it applies to all processes executing
that program but when the type equals ’PID’ a challenge has to
be issued for each such process separately. For most of the range
values, authentication at the level of programs produces below
60% the number of challenges compared with authenticating at the
process level.

As we discuss in section 4, program-level authentication may
allow more future ransomware attacks against AntiBotics as com-
pared with process-level authentication, but we estimate these may
be blocked. We therefore use program-level authentication in the
rest of our experimental evaluation. Based on the user access pat-
tern experiment we choose to conduct the rest of the experimental
evaluation with the parameter Permit scope=ALL and Permit dura-
tion=4 hours as these values strike a very good balance between
the daily number of challenges required (only slightly more than 3)
and the size of the window of vulnerability to some attack types
against AntiBotics (see section 4). Figure 7 presents a partition of
the challenges according to the types of files that triggered them for
the permit duration we chose. The largest gap between challenge
rates of program-level and process-level authentication is when .csv
files are accessed since some Python development environments
generate multiple processes running the Python interpreter.

Figure 6: Average number of challenges per day as a function
of permit duration for PermitScope=’ALL’.

3.2 Ransomware Prevention Experiment
The ransomware prevention experimentwas conducted using Cuckoo
Sandbox. Cuckoo is an open source automated malware analysis
system [29]. We used Cuckoo in order to automate the process
of testing 13,301 ransomware samples that we downloaded from

Ransomware Prevention using Application Authentication-Based File Access Control SAC’18, April 9-13, 2018, Pau,France

Figure 7: Required challenges distribution per file type, Permit duration=240mins and PermitScope=’ALL’.

VirusTotal in the course of April, 2017. Each sample was ran by
Cuckoo in a separate Windows 7 virtual machine (VM). We in-
stalled in each VM the AntiBotics system. We populated the follo-
wing 4 locations in the file system of each VM with 46 files, each
with its own distinct file extension: C:\Protected, Desktop, Docu-
ments, and C:\NotProtected. AntiBotics was configured such that
the C:\NotProtected folder is the only folder excluded from pro-
tection. This allowed us to determine if the tested ransomware
was active, by checking whether or not one or more of the files in
C:\NotProtected changed or was deleted in the course of the experi-
ment.2 In terms of protected extensions, AntiBotics was configured
to protect all 46 extensions, which include file types attacked by
contemporary ransomware (see extension names in Figure 7).

In each test, a single ransomware sample was ran until either
all its processes terminated or a 20-minute timeout expired. Using
Cuckoo, a report was generated after each test, listing all files that
existed when the test started. For each such file, the report contains
2 hash values, computed based on its contents before and after the
test (or a special value indicating that the file did not exist after
the test). Using these tests, we were able to compute the rates of
encrypted files for protected and unprotected folders.

Table 2 presents the results of the experiment per each ran-
somware family. The number presented next to each family is the
number of samples that were active, that is, the number of family
samples that modified at least a single file. Columns 3 and 4 pre-
sent the rates (in percentages) of attack success on protected and
unprotected folders. These rates were calculated by computing for
each test of an active sample the rates of modified/deleted files in
protected and unprotected folders and then computing the average
rates per family. As can be seen, the rates of encrypted files in the
unprotected folder are positive for all malware families. In contrast,
none of the files in the rest of the file system was changed by any
ransomware sample.

The fact that none of the protected files was encrypted by any
of the ransomware samples may seem obvious, since, as of now,
ransomware do not need to circumvent authentication-based file
access control mechanisms (we hope this will change in the near
future). We were therefore surprised to find, upon performing the
ransomware prevention experiment on a previous version of Anti-
Botics, that the Spora ransomware family was able to encrypt files
also in protected folders! We now explain how this came into pass.

2A ransomware may become inactive if it is unable to communicate with its C&C
server.

Table 2: Ransomware family encryption rates

Family # Encryption Rate Encryption Rate
Protected Unprotected

Locky 164 0 0.6521
Cryptowall 13 0 0.4347
CTBLocker 54 0 0.6521
Sage 570 0 0.7369
Criakl 5 0 0.7173
Cerber 2310 0 0.6521
Revenage 49 0 0.7391
Spora 29 0 0.5072
TeslyaCrypt 12 0 0.5326
JigSaw 7 0 0.6739
WannaCryptor 22 0 0.8260

The previous version of AntiBotics employed lazy protection.
That is, file open operations were always allowed to succeed and
protection was enforced only when the execution object invoked
a write operation. It turns out that Spora ransomware encrypt
files by using the following mechanism: after opening a victim file
in write mode, file contents are mapped into the Spora process
address space and encrypted by direct writes to RAM. Thus, the
Spora process never issues file write operations. Instead, writes to
disk are performed by the Windows system process (PID 4) when
writing dirty memory pages to disk.

We do not know whether Spora behaves this way in order to
evade detection or for improving performance. Regardless of its
motivation, since AntiBotics does not restrict file accesses made
by the system process, this allowed Spora to successfully encrypt
protected files. We fixed this problem by employing a more eager
protection scheme in which we block file open requests in write
mode, as explained in Section 2.4.

4 DISCUSSION OF POSSIBLE RANSOMWARE
COUNTERMEASURES

Our experimental evaluation shows that AntiBotics provides 100%
protection against contemporary ransomware. In the following, we
analyze a few possible ways in which future ransomware may at-
tempt to attack the authentication-based file access control scheme
employed by it.

Cross-Process Code injection: In this type of attack, a malicious
program places its code within the address space of another process
and executes it. A ransomware may try to identify a legitimate

SAC’18, April 9-13, 2018, Pau,France Or Ami, Yuval Elovici, and Danny Hendler

running process that has an active permit and inject into it malicious
code in order to gain file write access without triggering AntiBotics
challenges. Another alternative is for the ransomware to inject
itself to the legitimate process and wait until it is granted a permit.

While this type of attack is possible, it is more difficult than
regular cross-process code injection, since the attacker must find
a window of vulnerability when the legitimate process possesses
permits for the files it wants to encrypt. Moreover, if the AntiBo-
tics Permit scope parameter is set conservatively to ’FILE’ (hence a
permit is only granted for accessing the file that triggered a chal-
lenge), then the extent of damage inflicted by the ransomware is
greatly reduced. More generally, existing security mechanisms such
as Microsoft’s Windows Defender ATP are already able to detect
cross-process code injection attempts [19].

Service shutdown: An obvious way for a ransomware to prevent
AntiBotics from interfering with its malicious activity is to simply
prevent it from running by unloading the PED driver. However,
since the PED driver is implemented as a file system filter driver,
an attacker cannot unload the driver while the system is running
even if it gains admin mode privileges [16].

Path hijacking: as the reader may recall, when the Execution
object type is set to ’PROG’, permits are granted to executable path-
names. In this case, a ransomware may attempt to gain file access
by locating an executable that holds an active permit to the file and
by overwriting it. The current version of AntiBotics defends against
such attacks by deleting all the permits of an executable once it is
about to be modified (see lines 16–17 and line 30 of Algorithm 1), so
that once the overwriting ransomware attempts to modify/write a
file, a new challenge will be presented to it.

Folder exclusion: in order to remove the AntiBotics protection, a
ransomware may try to rename an ancestor of a protected folder in
order to exclude it from protection. AntiBotics thwarts such attacks
by presenting a challenge whenever it identifies a move (rename)
attempt whose result is such an exclusion (see Algorithm 3).

Are there additional ways in which future ransomware will
be able to attempt circumventing authentication-based file access
control if they have to? The answer to this question is most probably
positive and so we do not claim that the above list of attacks is
exhaustive. Nevertheless, we do estimate that authentication-based
file access control holds the potential for significantly raising the
bar for future ransomware.

5 RELATEDWORK
More than 20 years ago, Young and Yung [30] identified the potential
hazards that may result from combining the power of cryptography
with malicious code in order to mount extortion based attacks.
They analyzed and demonstrated a few such attacks. Unfortunately,
their predictions came true. Gröbert et al. [8] presented several
automated methods for identifying cryptographic primitives within
binary programs. Lestringant et al. [12] proposed an algorithm with
the same goal based on data flow graph isomorphism.

Several detection techniques that specifically target ransomware
were proposed in recent years. Ahmadian at el. [3] proposed a
mechanism for detecting the process of key exchange between the
ransomware and the C&C server. However, as observed in [5], not
all ransomware require an external key since a ransomware can

contain a hardcoded public key which allows it to run offline and
encrypt files without communication to a C&C .

Kharraz et al.[10] conducted a long-term study of ransomware
attacks and found that a majority of ransomware simply locked the
victim’s computer without encrypting user files. The prevalence
of Cryptolockers within the general population of ransomware
rose significantly in recent years, however. They also provide an
analysis of ransomware file system activity based on which they
propose a general methodology for detection. In later work by
Kharraz et at. [10] they presented UNVEIL – a dynamic analysis
system for ransomware detection. Their approach is to construct an
artificial user environment and detect when ransomware attempts
to interact with user data. UNVEIL computes the entropy level of
data written to files in that environment, since high entropy may
serve as indication of encrypted data.

Scaife at el.[22] propose an early warning system that monitors
file changes and attempts to detect several behavioral indicators
for ransomware activity. At a high level, these indicators are hints
that user files are being transformed from being usable to being
unusable. Their primary indicators are file-type change, similarity
of file contents before and after change, and entropy levels. Like us,
they use the Eldos platform for monitoring application file accesses.
Lee et al. [11] propose CloudRPS, a system for monitoring network,
file and server activity for ransomware detection. Mbol et al. [14]
focus on the detection of ransomware transformations applied to
image files using an entropy-based approach.

Similarly to this work, Continella et al. [6] maintain that pure-
detection approaches are insufficient for countering ransomware
attacks. They propose an approach that combines automatic ran-
somware detection and transparent file-recovery capability at the
file system level. They implemented ShieldFS, an add-on Windows
driver that acts as a copy-on-write mechanism, allowing to roll-back
all file modifications done by a process if and when it becomes a
suspect by deviating from a detection model. Detection models can
be generated either per process or per a “meta process”, the latter
option more appropriate for multi-process ransomware. Both the
long- and short-term behavior of processes are monitored. In addi-
tion to checking file I/O system calls, ShieldFS scans the memory of
running processes in order to detect evidence to the application of
cryptographic primitives, which is a strong ransomware detection
signal. Their experimental evaluation shows high detection accu-
racy and low false positive rates.

Shukla et al. [24] discuss some previous proposals for ransom-
ware detection and show that static approaches are insufficient.
They propose a dynamic system for mobile ransomware detection
that can adapt to changing ransomware attack patterns.

A few works address ransomware attacks against mobile devices.
Andronio et al. [4] analyze the characteristics of mobile ransom-
ware families and present the HELDROID detector. It employs static
analysis tools for detecting code paths that may indicate attempts
to encrypt files on externa media. Taking a very different approach,
Mercaldo et al. [15] and Mercaldo et al. [15] employ formal metho-
dologies for detecting ransomware based on binary program static
analysis. Song et al. [26] propose an Android ransomware detection
algorithm based on monitoring process behavior in terms of CPU,
memory, and I/O usage. Maiorca et al. [13] proposed R-PackDroid,

Ransomware Prevention using Application Authentication-Based File Access Control SAC’18, April 9-13, 2018, Pau,France

a detector for Android ransomware based on information extracted
from system API packages.

Viewed collectively, it seems that all prior proposals for ransom-
ware detection are statistical in nature in the sense that they may
incur false positives/negatives. Often they also need to accumulate
sufficient data before the ransomware can be identified, which may
allow it to encrypt a number of files before it is detected. An excep-
tion to the latter limitation is ShieldFS [6], since it allows roll-back
of modifications upon detection. To the best of our knowledge, our
work is the first to propose using authentication-based file access
control for ransomware prevention. Unlike previous suggestions,
our proposal prevents ransomware from accessing all protected
files in the first place.

6 CONCLUSIONS AND FUTUREWORK
We present AntiBotics, a system that harnesses biometric authenti-
cation mechanisms such as fingerprint scanning and human iden-
tification schemes such as CAPTCHA in order to prevent ran-
somware from modifying or deleting files. AntiBotics enforces
a file access-control policy by periodically presenting identifica-
tion/authorization challenges, for ensuring that applications at-
tempting to modify or delete files are invoked by an authorized
user rather than by bots.

We implemented AntiBotics for Windows by developing a file
system filter driver and conducted a large-scale evaluation on thou-
sands of ransomware samples, verifying that none of them was able
to encrypt any of the files protected by it. We then analyzed a few
possible ways in which future ransomware may attempt to attack
the authentication-based file access control scheme employed by it
and discussed how these attacks can be thwarted.

We logged the file-related activity of a population of 36 R&D
organization employees over a period of one month. Analysis of
the resulting log files shows that an average daily rate of only
about 3 challenges per user suffices to authorize the file-modifying
applications they use and protect the respective application files
against unauthorized use.

While prior proposals for ransomware detection may incur false
positives/negatives and often need to accumulate sufficient data
before the ransomware can be identified (possibly allowing it to
encrypt a number of files before it is detected), authentication-based
file access control prevents ransomware from accessing all protected
files in the first place. This is not to say that authentication-based
file access is a silver bullet for ransomware prevention, as there
are most probably additional ways in which future ransomware
will attempt circumventing it (if they have to) in addition to the
list of attacks we discuss in Section 4. Nevertheless, we estimate
that authentication-based file access control holds the potential for
significantly raising the bar for future ransomware.

Shortly after implementing AntiBotics and registering a provi-
sional patent3, Microsoft announced Windows 10 Insider Preview
Build 16232, introducing controlled folders [17]. Windows Defender
allows defining which applications are white-listed for accessing
files in a controlled folder. If a non white-listed application at-
tempts accessing a controlled folder, a notification appears and the

3Provisional patent number 62/507,245 protecting AntiBotics, was registered on May
17, 2017.

user must confirm the access. Controlled folders do not support
biometric-based authentication and grant white-listed applications
unlimited access to controlled folder files. AntiBotics, on the other
hand, supports biometric-based authentication and also provides
configurable limited-time permits that provide better protection
against code injection attacks.

In our current implementation, all newly created permits are
set according to the same global Permit duration and Permit scope
configuration parameters, independently of the PID or program
to which they are granted. Their granularity is also determined
globally according to the system-wide Execution object type para-
meter. Judging from the evaluation results presented by Figure 7,
it may be beneficial to support different configuration options for
different protected file types, since for some types (such as image
files) the rates of challenges for the ’PID’ and ’PROG’ settings of the
execution object type are almost identical, while for others (most
notably the .csv type) there is a very large difference. Security-wise,
it is better to provide permits to a specific process rather than to all
processes (instantiating some program) if both options yield more-
or-less the same level of user disruption. We leave these extensions
of AntiBotics for future work.

Acknowledgments: This research was supported by the Cyber
Security Research Center at Ben-Gurion University.

REFERENCES
[1] [n. d.]. What is a driver? https://docs.microsoft.com/en-us/windows-hardware/

drivers/gettingstarted/what-is-a-driver-.
[2] [n. d.]. What Is a File System Filter Driver? https://docs.microsoft.com/en-us/

windows-hardware/drivers/ifs/what-is-a-file-system-filter-driver-.
[3] Mohammad Mehdi Ahmadian, Hamid Reza Shahriari, and Seyed Mohammad

Ghaffarian. 2016. Connection Monitor & Connection Breaker: A Novel Approach
for Prevention and Detection of High Survivavle Ransomwares. (2016).

[4] NicolÂťo Andronio, Stefano Zanero, and Federico Maggi. 2015. HELDROID:
Dissecting and Detecting Mobile Ransomware. 18th International Symposium,
RAID (2015).

[5] Lucian Constantin. 2016. New Locky ransomware version can operate in off-
line mode. Technical Report. http://www.pcworld.com/article/3095865/security/
new-locky-ransomware-version-can-operate-in-offline-mode.html.

[6] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,
Alessandro Barenghi, Stefano Zanero, and Federico Maggi. 2016. ShieldFS: a
self-healing, ransomware-aware filesystem. In Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACM, 336–347.

[7] Eldos. [n. d.]. CallbackFilter. https://www.eldos.com/cbflt/.
[8] Felix Gröbert, Carsten Willems, and Thorsten Holz. 2011. Automated identifica-

tion of cryptographic primitives in binary programs. In International Workshop
on Recent Advances in Intrusion Detection. Springer, 41–60.

[9] The Guardian. 2017. NHS seeks to recover from global cyber-attack as secu-
rity concerns resurface. https://www.theguardian.com/society/2017/may/12/
hospitals-across-england-hit-by-large-scale-cyber-attack. (2017).

[10] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 3–24.

[11] Jeong Kyu Lee, Seo Yeon Moon, and Jong Hyuk Park. 2016. CloudRPS: a cloud
analysis based enhanced ransomware prevention system. The Journal of Super-
computing (2016), 1–20.

[12] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. 2015. Automated
identification of cryptographic primitives in binary code with data flow graph iso-
morphism. In Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security. ACM, 203–214.

[13] Davide Maiorca, Francesco Mercaldo, Giorgio Giacinto, Corrado Aaron Visaggio,
and Fabio Martinelli. 2017. R-PackDroid: API package-based characterization
and detection of mobile ransomware. In Proceedings of the Symposium on Applied
Computing. ACM, 1718–1723.

[14] Faustin Mbol, Jean-Marc Robert, and Alireza Sadighian. 2016. An efficient appro-
ach to detect torrentlocker ransomware in computer systems. In International
Conference on Cryptology and Network Security. Springer, 532–541.

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/what-is-a-driver-
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/what-is-a-driver-
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/what-is-a-file-system-filter-driver-
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/what-is-a-file-system-filter-driver-
http://www.pcworld.com/article/3095865/security/new-locky-ransomware-version-can-operate-in-offline-mode.html
http://www.pcworld.com/article/3095865/security/new-locky-ransomware-version-can-operate-in-offline-mode.html
https://www.eldos.com/cbflt/
https://www.theguardian.com/society/2017/may/12/hospitals-across-england-hit-by-large-scale-cyber-attack
https://www.theguardian.com/society/2017/may/12/hospitals-across-england-hit-by-large-scale-cyber-attack

SAC’18, April 9-13, 2018, Pau,France Or Ami, Yuval Elovici, and Danny Hendler

[15] Francesco Mercaldo, Vittoria Nardone, Antonella Santone, and Corrado Aaron
Visaggio. 2016. Ransomware steals your phone. Formal methods rescue it. In
International Conference on Formal Techniques for Distributed Objects, Components,
and Systems. Springer, 212–221.

[16] Microsoft. 2017. Advantages of the Filter Manager Model.
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/
advantages-of-the-filter-manager-model. (2017).

[17] Microsoft. 2017. Enable Controlled Folder Access. https://docs.microsoft.
com/en-us/windows/threat-protection/windows-defender-exploit-guard/
enable-controlled-folders-exploit-guard. (2017).

[18] Microsoft. 2017. File system minifilter driver. https://docs.microsoft.com/en-us/
windows-hardware/drivers/ifs/file-system-minifilter-drivers. (2017).

[19] Microsoft. 2017. Uncovering cross-process injection with Windows Defender ATP.
Technical Report. Microsoft, https://blogs.technet.microsoft.com/mmpc/2017/03/
08/uncovering-cross-process-injection-with-windows-defender-atp/.

[20] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[21] Sky News. 2017. NHS cyberattack: List of hospitals hit by ransomware strike.

https://www.symantec.com/outbreak/?id=wannacry. (2017).
[22] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin R.B Butler. 2016. Cryp-

toLock (and Drop It): Stopping Ransomware Attacks on User Data. IEEE 36th
International Conference on Distributed Computing Systems. (2016).

[23] Info security. 2017. Ransomware Cost Businesses $1bn in 2016. https://www.
infosecurity-magazine.com/news/ransomware-cost-businesses-1bn-in/. (2017).

[24] Manish Shukla, Sutapa Mondal, and Sachin Lodha. 2016. POSTER: Locally Vir-
tualized Environment for Mitigating Ransomware Threat. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,
1784–1786.

[25] Hispasec Sistemas. 2004. Virus total. http://www.virustotal.com. (2004).
[26] Sanggeun Song, Bongjoon Kim, and Sangjun Lee. 2016. The Effective Ransomware

Prevention Technique Using Process Monitoring on Android Platform. Mobile
Information Systems 2016 (2016).

[27] Symantec. 2016. Internet Security Threat Report. Technical Report. Symantec.
[28] Symantec. 2017. WannaCry ransomware. http://news.sky.com/story/

nhs-cyberattack-full-list-of-organisations-affected-so-far-10874493. (2017).
[29] The Cuckoo Sandbox Developers Team. 2017. Cuckoo. https://cuckoosandbox.

org/. (2017).
[30] Adam Young and Moti Yung. 1996. Cryptovirology: Extortion-based security

threats and countermeasures. In Proceedings 1996 IEEE Symposium on Security
and Privacy. IEEE, 129–140.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/advantages-of-the-filter-manager-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/advantages-of-the-filter-manager-model
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-exploit-guard/enable-controlled-folders-exploit-guard
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-exploit-guard/enable-controlled-folders-exploit-guard
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-exploit-guard/enable-controlled-folders-exploit-guard
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/file-system-minifilter-drivers
https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/file-system-minifilter-drivers
https://blogs.technet.microsoft.com/mmpc/2017/03/08/uncovering-cross-process-injection-with-windows-defender-atp/
https://blogs.technet.microsoft.com/mmpc/2017/03/08/uncovering-cross-process-injection-with-windows-defender-atp/
https://www.symantec.com/outbreak/?id=wannacry
https://www.infosecurity-magazine.com/news/ransomware-cost-businesses-1bn-in/
https://www.infosecurity-magazine.com/news/ransomware-cost-businesses-1bn-in/
http://www.virustotal.com
http://news.sky.com/story/nhs-cyberattack-full-list-of-organisations-affected-so-far-10874493
http://news.sky.com/story/nhs-cyberattack-full-list-of-organisations-affected-so-far-10874493
https://cuckoosandbox.org/
https://cuckoosandbox.org/

	Abstract
	1 Introduction
	2 AntiBotics Architecture and Implementation
	2.1 The Policy Enforcement Driver (PED)
	2.2 The Policy Specification Interface (PSI)
	2.3 The Challenge Response Generator (CRG)
	2.4 Windows Implementation

	3 Experimental Evaluation
	3.1 User File-Access Patterns Experiment
	3.2 Ransomware Prevention Experiment

	4 Discussion of Possible Ransomware Countermeasures
	5 Related work
	6 Conclusions and Future Work
	References

