
Breaking the Circuit Size Barrier for
Secure Computation Under DDH

Elette Boyle1, Niv Gilboa2, and Yuval Ishai3

1 IDC Herzliya, elette.boyle@idc.ac.il
2 Ben Gurion University, gilboan@bgu.ac.il

3 Technion and UCLA, yuvali@cs.technion.ac.il

Abstract. Under the Decisional Diffie-Hellman (DDH) assumption, we
present a 2-out-of-2 secret sharing scheme that supports a compact eval-
uation of branching programs on the shares. More concretely, there is an
evaluation algorithm Eval with a single bit of output, such that if an input
w ∈ {0, 1}n is shared into (w0, w1), then for any deterministic branch-
ing program P of size S we have that Eval(P,w0)⊕ Eval(P,w1) = P (w)
except with at most δ failure probability. The running time of the shar-
ing algorithm is polynomial in n and the security parameter λ, and that
of Eval is polynomial in S, λ, and 1/δ. This applies as a special case to
boolean formulas of size S or boolean circuits of depth logS. We also
present a public-key variant that enables homomorphic computation on
inputs contributed by multiple clients.
The above result implies the following DDH-based applications:

– A secure 2-party computation protocol for evaluating any branching
program of size S, where the communication complexity is linear in
the input size and only the running time grows with S.

– A secure 2-party computation protocol for evaluating any layered
boolean circuit of size S and m outputs with communication com-
plexity O(S/ logS) +m · poly(λ).

– A 2-party function secret sharing scheme, as defined by Boyle et
al. (Eurocrypt 2015), for general branching programs (with inverse
polynomial error probability).

– A 1-round 2-server private information retrieval scheme supporting
general searches expressed by branching programs.

Prior to our work, similar results could only be achieved using fully
homomorphic encryption. We hope that our approach will lead to more
practical alternatives to known fully homomorphic encryption schemes
in the context of low-communication secure computation.

1 Introduction

In this paper we introduce a simple new technique for low-communication
secure computation that can be based on the Decisional Diffie-Hellman
(DDH) assumption and avoids the use of fully homomorphic encryption.
We start with some relevant background.

Since the seminal feasibility results of the 1980s [38, 23, 3, 8], a major chal-
lenge in the area of secure computation has been to break the “circuit
size barrier.” This barrier refers to the fact that all classical techniques
for secure computation required a larger amount of communication than
the size of a boolean circuit representing the function to be computed,
even when the circuit is much bigger than the inputs. The circuit size
barrier applied not only to general circuits, but also to useful restricted
classes of circuits such as boolean formulas (namely, circuits with fan-
out 1) or branching programs (a stronger computational model captur-
ing non-uniform logarithmic-space computations). Moreover, the same
barrier applied also to secure computation protocols that can rely on a
trusted source of correlated randomness, provided that this correlated
randomness needs to be reusable.

The first significant progress has been made in the context of private in-
formation retrieval (PIR), where it was shown that for the bit-selection
function f(x, i) = xi it is possible to break the circuit size barrier ei-
ther in the multi-server model [11, 9], where a client holds i and two
or more servers hold x, or in the two-party model [27] under standard
cryptographic assumptions. However, progress on extending this to other
useful computations has been slow, with several partial results [10, 17,
30, 4, 25] that do not even cover very simple types of circuits such as
general DNF or CNF formulas, let alone more expressive ones such as
general formulas or branching programs.4

All this has changed with Gentry’s breakthrough on fully homomor-
phic encryption (FHE) [33, 19]. FHE enables local computations on en-
crypted inputs, thus providing a general-purpose solution to the problem
of low-communication secure computation. On the down side, even the
best known implementations of FHE [24] are still quite slow. Moreover,
while there has been significant progress on basing the feasibility of FHE
on more standard or different assumptions [36, 7, 21], the set of cryp-
tographic assumptions on which FHE can be based is still very narrow,
and in particular it does not include any of the “traditional” assumptions
that were known in the 20th century.

1.1 Our Contribution

Our new approach was inspired by the recent work on function secret
sharing (FSS) [6] . A (2-party) FSS scheme for a function class F allows
a client to split (a representation of) f ∈ F into succinctly described
functions f0 and f1 such that for any input x we have that f(x) =
f0(x) + f1(x) (over some Abelian group), but each fb hides f .

The notion of FSS was originally motivated by applications to m-server
PIR and related problems. FSS schemes for simple classes of functions
such as point functions were constructed from one-way functions in [22,

4 In the homomorphic encryption for branching programs from [25] (see also [26]), the
size of the encrypted output must grow with the length of the branching program.
When simulating a boolean formula by a branching program, the length of the
branching program is typically comparable to the formula size.

2

6]. However, a result from [6] shows that 2-party FSS for richer circuit
classes, from AC0 and beyond, would imply (together with a mild addi-
tional assumption) breaking the circuit size barrier for similar classes.

The idea is that by encrypting the inputs and applying FSS to the func-
tion f ′ that first decrypts the inputs and then computes f , the parties
can shift the bulk of the work required for securely evaluating f to local
evaluations of f ′0 and f ′1. Thus, breaking the circuit size barrier reduces
to securely distributing the generation of f ′0 and f ′1 from f and the secret
decryption keys, which can be done using standard secure computation
protocols and reused for an arbitrary number of future computations.
This was viewed in [6] as a negative result, providing evidence against
the likelihood of basing powerful forms of FSS on assumptions that are
not known to imply FHE.

We turn the tables by constructing FSS schemes for branching programs
under DDH, which implies low-communication secure 2-party computa-
tion protocols under DDH.

Homomorphic secret sharing. For the purpose of presenting our re-
sults, it is more convenient to consider a dual version of FSS that can also
be viewed as a form of “homomorphic secret sharing,” or alternatively
a variant of threshold FHE [19, 1]. Concretely, a client wants to split a
secret input w ∈ {0, 1}n into a pair of shares (w0, w1), each of which is
sent to a different server. Any strict subset of the shares should compu-
tationally hide w. Each server, holding (a representation of) a function
f ∈ F , can apply an evaluation algorithm to compute yb = Eval(f, wb),
so that y0 + y1 = f(w). Note that this is precisely the original notion of
FSS with the roles of the function and input reversed.5

Cast in the this language, our main technical contribution is such a ho-
momorphic secret sharing scheme, based on DDH, with output group Z2

(or any other Zp), and the class F of functions represented by deter-
ministic6 branching programs. The scheme only satisfies a relaxed form
of the above correctness requirement: for every input w and branching
program P , the probability of producing local outputs that add up to
the correct output P (w) is upper bounded by a parameter δ > 0 which
affects the running time of Eval. This probability is over the randomness
of the sharing. The running time of the sharing algorithm is n · poly(λ),
where λ is a security parameter. The running time of Eval is polynomial
in S, λ, and 1/δ.

We would like to stress that branching programs are quite powerful and
capture many useful real-life computations. In particular, a branching
program of size S can simulate any boolean formula of size S or boolean
circuit of depth log2 S, and polynomial-size branching programs can sim-

5 While one can always switch between the notions by changing the definition of F ,
for classes F that contain universal functions [35, 13] the switch can be done with
polynomial overhead without changing F . This will be the case for all function
classes considered in this work.

6 In fact, our construction can handle a larger class of arithmetic branching programs
over the integers, but correctness only holds as long as all integers involved in inter-
mediate computations are bounded by some fixed polynomial.

3

ulate any computation in the complexity classes NC1 or (non-uniform)
deterministic log-space.
We also present a public key variant of the homomorphic secret sharing
scheme. This variant can be viewed as a threshold homomorphic en-
cryption scheme with secret evaluation keys and additive reconstruction.
That is, there is a key generation algorithm that outputs a single public
key and a pair of secret evaluation keys. Given the public key, an arbi-
trary number of clients can encrypt their inputs. Each server, given the
public ciphertexts and its secret evaluation key, can locally compute an
additive share of the output.
The above results imply the following applications, all based on the DDH
assumption alone.

Succinct secure computation of branching programs. The gen-
eral transformation from FSS to secure two-party computation described
above can be used to obtain succinct two-party protocols for securely
evaluating branching programs with reusable preprocessing. However,
the public-key variant of our construction implies simpler and more effi-
cient protocols. The high level approach is similar to that of other low-
communication secure protocols from different flavors of FHE [19, 1, 29],
except for requiring secret homomorphic evaluation keys and an addi-
tional error-correction sub-protocol. For a two-party functionality with
a total of n input bits and m = m(n) output bits, where each output
can be computed by a polynomial-size branching program (alternatively,
logarithmic space Turing Machine or NC1 circuit), the protocol can be
implemented with a constant number of rounds and n+m·poly(λ) bits of
communication, where λ is a security parameter. To reduce the n·poly(λ)
cost of a bit-by-bit encryption of the inputs, the protocol employs a hy-
brid homomorphic encryption technique from [20].

Breaking the circuit size barrier for “well structured” cir-
cuits. In the case of evaluating a layered circuit C, we can make the total
communication slightly sublinear in the circuit size by partitioning the
computation into segments of logarithmic depth and homomorphically
computing additive shares of the outputs of each segment given additive
shares of the inputs. Concretely, to evaluate a layered circuit of size S
with m output bits, the protocol requires O(S/ logS) +m · poly(λ) bits
of communication. We employ error-correcting codes with encoding and
decoding in NC1 to ensure that errors introduced by the computation of
a segment are corrected before propagating to the next segment.

Function secret sharing. Using a universal branching program we
can reverse the roles of P and w in the above homomorphic secret sharing
scheme, obtaining a polynomial-time 2-party FSS scheme for branching
programs. Unlike the main definition of FSS from [6] here we can only
satisfy a relaxed notion that allows an inverse polynomial error probabil-
ity. However, the error probability can be made negligible in the context
of natural applications. An m-party FSS scheme for circuits was recently
obtained by Dodis et al. [15] under the Learning with Errors (LWE) as-
sumption, by making use of multi-key FHE [28, 12, 29]. Our construction
gives the first FSS scheme that applies to a rich class of functions and
does not rely on FHE.

4

Private information retrieval. Following the application of FSS to
PIR from [6] with a simple repetition-based error-correction procedure,
a consequence of the above result is a 1-round 2-server (computational)
PIR scheme in which a client can privately search a database consisting
of N documents for the existence of a document satisfying a predicate
P , where P is expressed as a branching program applied to the docu-
ment. For instance, any deterministic finite automaton can be succinctly
expressed by such a branching program. The length of the query sent
to each server is polynomial in the size of the branching program and a
computational security parameter, whereas the length of the answer is a
statistical security parameter times logN .

1.2 Overview of Techniques

We now describe the main ideas behind our construction. It will be con-
venient to use the homomorphic secret sharing view: a client would like
to share an input w between 2 servers so that the servers, on input P ,
can locally compute additive shares of P (w).

Let G be a DDH group of prime order q with generator g. Our con-
struction employs three simple ideas. The first is that a combination of a
threshold version of ElGamal and linear secret sharing allows the servers
to locally multiply an encrypted input x with a linearly secret-shared
value y such that the result z = xy is shared multiplicatively between
the servers; namely the servers end up with elements zi ∈ G such that
the product of the zi is gz. This idea alone is already useful, as it gives
an (m−1)-private m-server protocol for computing any degree-2 polyno-
mial P with small integer coefficients held by the servers on a vector w of
small integers held by the client, where the communication complexity
in each direction is essentially optimal.

What seems to stop us at degree-2 polynomials is the fact that z is now
shared multiplicatively rather than linearly, so the servers cannot mul-
tiply z by a new input encrypted by the client. Moreover, converting
multiplicative shares to additive shares seems impossible without the
help of the client, due to the intractability of computing discrete loga-
rithms in G. The second, and perhaps most surprising, idea is that if we
allow for an inverse polynomial error probability, and assuming there are
only m = 2 servers, the servers can convert multiplicative shares of gz

into linear shares of z without any interaction. For simplicity, suppose
z ∈ {0, 1}. Taking the inverse of the second server’s share, the servers
now hold group elements g0, g1 such that g0 = g1 if z = 0 and g1 = g · g0
if z = 1. Viewing the action of multiplication by g as a cycle over Zq, the
elements g0, g1 are either in identical positions, or g1 is one step ahead.
Conversion is done by picking a pseudo-random δ-sparse7 subset G′ of G
and having each server b ∈ {0, 1} locally find the minimal integer zb ≥ 0
such that gb · gzb ∈ G′. The first such zb is expected to be found in

7 Ideally, such a sparse subset would include each g ∈ G independently with proba-
bility δ. To emulate this efficiently we include each g ∈ G in G′ if φ(g) = 0dlog 1/δe,
where φ is a pseudorandom function.

5

roughly 1/δ steps and if it is not found in (1/δ) log(1/δ) steps, we set
zb = 0. The key observation is that except with O(δ) probability, both
searches will find the same point in G′ and the servers will end up with
integers z1, z2 such that z1 − z2 = z, giving us the desired linear sharing
of z.

Once we have a linear sharing of z, we can freely add it with other values
that have a similar linear representation. We cannot hope to multiply two
linearly shared values, but only to multiply them with another encrypted
input. However, in order to perform such a multiplication, we need to
convert z from the canonical “subtractive” representation to a different
linear representation which is compatible with the ElGamal secret key.

The third idea is that since the coefficients of both linear representations
are known to the client, the client can assist the conversion by providing
an encryption of each input w multiplied by the secret key. This intro-
duces two problems: the first is that semantic security may break down
given a circular encryption of the secret key, which we handle either by
assuming circular-security of ElGamal or (with some loss of efficiency) by
using the circular-secure variant of Boneh et al. [5] instead of standard
ElGamal. A more basic problem is that for the conversion to produce
correct results with high probability, the secrets must be small integers.
This is handled by providing an encryption of each input x multiplied
by each bit of the secret key, and applying a linear combination whose
coefficients are powers of 2 to the linear shares of the products of x and
the bits of the key.

These ideas allow the servers to compute a restricted type of “straight-
line programs” on the client’s input. Such a program consists of a se-
quence of instructions, where each instruction can either load an input
into memory, add the values of two memory locations, or multiply a
memory location by an input. (Note that we cannot multiply two mem-
ory locations; this would allow evaluation of arbitrary circuits.) Such
programs can emulate any branching program of size S by a sequence of
O(S) instructions.

It is instructive to note that the only limit on the number of instructions
performed by the servers is the accumulation of error probabilities. This
is analogous to the accumulation of noise in FHE schemes. However, the
mechanisms for coping with errors are very different: in the context of
known FHE schemes the simplest way of coping with noise is by using
larger ciphertexts, whereas here we can reduce the error probability by
simply increasing the running time of the servers, without affecting the
ciphertext size or the complexity of encryption and decryption at all. We
can also further trade running time for succinctness: the share size in our
basic construction can be reduced by replacing the binary representation
of the secret key with a representation over a larger basis, which leads
to a higher homomorphic evaluation time.

The surprising power of local share conversions, initially studied in [14],
has already been observed in the related contexts of information-theoretic
PIR and locally decodable codes [39, 16, 2]. However, the type of share
conversion employed here is very different in nature, as it is inherently
tied to efficient computation rather than information.

6

Interestingly, our share conversion technique has resemblance to a crypt-
analytic technique introduced by van Oorschot and Weiner for the pur-
pose of parallel collision finding [37], where a set of “distinguished points”
is used to synchronize two different processors.

1.3 Future Directions

This work gives rise to many natural open questions and future research
directions. Can one bootstrap from branching programs to general cir-
cuits without relying on FHE? Can similar results be obtained for more
than 2 parties? Can similar results be based on other assumptions that
are not known to imply FHE? Can the dependence on the error param-
eter δ be eliminated or improved? To what extent can our protocols be
optimized for practical use?
We hope that our approach will lead to faster solutions for some practical
use-cases of FHE.

2 Preliminaries

In this section we define the main primitives we consider and other nec-
essary definitions.

Function representations. We capture a function representation (such
as a circuit, formula, or branching program) by an infinite collection P
of bit strings P (called “programs”), each specifying an input length n
and an output length m, together with an efficient algorithm Evaluate,
such that y ← Evaluate(P,w) (denoted by shorthand notation “P (w)”),
for any input w ∈ {0, 1}n, defines the output of P on w.

Homomorphic secret sharing. A (2-party) Homomorphic Secret Shar-
ing (HSS) for a class of programs P consists of algorithms (Share,Eval),
where Share(1λ, (w1, . . . , wn)) splits the input w into a pair of shares
(share0, share1), and Eval(b, share, P, δ, β) homomorphically evaluates P
on share, where the correct output is additively shared over Zβ except
with error probability δ. When β is omitted it is understood to be β = 2.
We allow Eval to run in time polynomial in its input length and in 1/δ
and require that each shareb output by Share keeps w semantically secure.

Public-Key Variant. We further consider a stronger variant of the
homomorphic secret sharing primitive that supports homomorphic com-
putations on inputs contributed by different clients. In fact, what we
achieve is stronger: there is a single public key that can be used to en-
crypt inputs as in a standard public-key encryption scheme. However,
similar to the original notion of homomorphic secret sharing (and in
contrast to standard homomorphic encryption schemes), homomorphic
computations on encrypted inputs are done in a distributed way and
require two separate (secret) evaluation keys. As before, we require the
reconstruction of the output to be additive.
The corresponding security notion guarantees “semantic”-style secrecy
of an encrypted value, given only the evaluation key of a single server.

7

In a setting consisting of two servers and an arbitrary number of clients,
the above security notion implies that inputs contributed by a set of
uncorrupted clients remain secure even if one of the two servers colludes
with all the remaining clients.

Definition 1 (Distributed-Evaluation Homomorphic Encryption).
A (2-party) Distributed-Evaluation Homomorphic Encryption (DEHE)
for a class of programs P consists of algorithms (Gen,Enc,Eval) with the
following syntax:

– Gen(1λ): On input a security parameter 1λ, the key generation algo-
rithm outputs a public key pk and a pair of evaluation keys (ek0, ek1).

– Enc(pk, w): On a public key pk and a secret input value w ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.

– Eval(b, ek, (ct1, . . . , ctn), P, δ, β): On input party index b ∈ {0, 1}, an
evaluation key ek, vector of n ciphertexts, a program P ∈ P with
n input bits and m output bits, error bound δ > 0, and an integer
β ≥ 2, the homomorphic evaluation algorithm outputs yb ∈ Zmβ ,
constituting party b’s share of an output y ∈ {0, 1}m. When β is
omitted it is understood to be β = 2.

The algorithms Gen and Enc are PPT algorithms, whereas Eval can run
in time polynomial in its input length and in 1/δ.
The algorithms (Gen,Enc,Eval) should satisfy the following correctness
and security requirements:

– Correctness: There exists a negligible function ν such that for every
positive integer λ, input (w1, . . . , wn) ∈ {0, 1}n, program P ∈ P with
input length n, error bound δ > 0, and integer β ≥ 2,

Pr[(pk, (ek0, ek1))← Gen(1λ);

(ct1, . . . , ctn)← (Enc(pk, w1), . . . ,Enc(pk, wn));

yb ← Eval(b, pk(ct1, . . . , ctn), P, δ, β) ∀b ∈ {0, 1} :

y0 + y1 = P (w1, . . . , wn)] ≥ 1− δ − ν(λ),

where addition of y0 and y1 is carried out modulo β.

– Security: The two distribution ensembles C0(λ) and C1(λ) are com-
putationally indistinguishable, where Cw(λ) is obtained by letting
(pk, (ek0, ek1))← Gen(1λ) and outputting (pk, ekb,Enc(pk, w)).

2.1 Miscellaneous

Definition 2 (DDH and Circular Security). Let G = {Gρ} be a set
of finite cyclic groups, where |Gρ| = q and ρ ranges over an infinite index
set. We use multiplicative notation for the group operation and use g ∈
Gρ to denote a generator of Gρ. Assume that there exists an algorithm
running in polynomial time in log q that computes the group operation of
Gρ. Assume further that there exists a PPT instance generator algorithm
IG that on input 1λ outputs an index ρ which determines the group
Gρ and a generator g ∈ Gρ. We say that the Decisional Diffie-Hellman

8

assumption (DDH) is satisfied on G if IG(1λ) = (ρ, g) and for every non-
uniform PPT algorithm A and every three random exponents a, b, c ∈
{0, . . . , q − 1} we have that

|Pr[A(ρ, ga, gb, gab) = 1]− Pr[A(ρ, ga, gb, gc) = 1]| < ε(λ),

for a negligible function ε. We will sometimes write (G, g, q)← IG(1λ).

A more efficient variant of our construction will require a circular security
assumption on the underlying bit encryption scheme, in which an efficient
adversary cannot distinguish encryptions of the bits of the secret key
from encryptions of 0.

Definition 3 (Circular Security). We say that a public-key encryp-
tion scheme (Gen,Enc,Dec) with key length `(λ) and message space con-
taining {0, 1} is circular secure if there exists a negligible function ν(λ)
for which the following holds for every non-uniform PPT A:

Pr

 (pk, sk)← Gen(1λ),
b← {0, 1},
b′ ← AOb(pk)

: b′ = b

 ≤ 1

2
+ ν(λ),

where the oracle Ob takes no input and outputs the following (where sk(i)

denotes the ith bit of sk):

(C1, . . . , C`), where

{
∀i ∈ [`], Ci ← Enc(pk, 0) if b = 0

∀i ∈ [`], Ci ← Enc(pk, sk(i)) if b = 1
.

3 Homomorphic Secret Sharing for Branching
Programs

In this section, we present constructions of homomorphic secret shar-
ing schemes that enable non-interactive evaluation of a certain class of
programs, known as restricted-multiplication straight-line programs. In
particular, this class will include deterministic branching programs.

Definition 4 (RMS programs). The class of Restricted Multiplica-
tion Straight-line (RMS) programs consists of an arbitrary sequence of
the four following instructions, each with a unique identifier id:

– Load an input into memory: (id, ŷj ← ŵi).
– Add values in memory: (id, ŷk ← ŷi + ŷj).
– Multiply value in memory by an input value: (id, ŷk ← ŵi · ŷj).
– Output value from memory, as element of Zβ: (id, β, Ôj ← ŷi).

Our construction will support homomorphic evaluation of straight-line
programs of this form over inputs wi ∈ Z, provided that all intermediate
computation values in Z remain “small” (where the required runtime
grows with this size bound). Our final result is a public-key variant—
i.e., a homomorphic encryption scheme with distributed evaluation (as

9

per Definition 1)—based on DDH, with ciphertext size O(`) group ele-
ments per input (for ` the logarithm of the DDH group size), and where
runtime for homomorphic evaluation of an RMS program of size S with
intermediate computation values bounded by M is poly(λ, S,M, 1/δ).
An important sub-procedure of our homomorphic share evaluation al-
gorithms is a local share conversion algorithm DistributedDLog, which
intuitively converts a multiplicative secret sharing of gx to an additive
secret sharing of the value x, with inverse polynomial probability of error.
In the following subsections, we present: (1) The share conversion proce-
dure DistributedDLog, (2) a simplified version of the homomorphic secret
sharing scheme (in the secret-key setting), assuming circular security of
ElGamal encryption, (3) the analogous public-key construction, and (4)
the final public-key construction based on standard DDH.

3.1 Share Conversion Procedure

We now describe the local share conversion algorithm DistributedDLog,
which receives as input a group element h ∈ G and outputs an integer w.
Loosely speaking, DistributedDLog outputs the distance on the cycle gen-
erated by g ∈ G between h and the first z ∈ G such that a pseudo-random
function outputs 0 on z. DistributedDLog is a deterministic algorithm and
consequently two invocations of the algorithm with the same element h
result in the same output w. Two invocations of the algorithm on inputs
h and h · gµ for a small µ result, with good probability, in outputs w and
w− µ. Therefore, the DistributedDLog algorithm converts a difference of
small µ in the cycle generated by g in G to the same difference over the
integers.
The detailed description of DistributedDLogG,g follows. The algorithm
is hard-wired with ρ defining a group G = Gρ and a generator g ∈ G.
DistributedDLogG,g receives as input h ∈ G, an allowable error probability
δ, maximum difference µ ∈ N, and a pseudo-random function φ : G →
{0, 1}log(4µ/δ). The difference µ specifies the maximum distance from h,
along the cycle that g generates, of an element that is the input to a
parallel invocation of DistributedDLogG,g within a given application.

Algorithm 1 DistributedDLogG,g(h, δ, µ, φ)

1: Set z ← h, w ← 0.
2: while (φ(z) 6= 0log(4µ/δ) and w < 4µ ln(4/δ)

δ
) do

3: z ← z · g, w ← w + 1.
4: end while
5: Output w.

Proposition 1. Let λ be a security parameter, let G = {Gρ} be a set
of finite cyclic groups and let the instance generator algorithm of the
set running on input 1λ return a group G = Gρ with generator g. Let

10

δ > 0, let µ ∈ N, let Fr be a family of PRF defined over G and let
φ : G → {0, 1}log(4/δ) be randomly chosen from all the members of Fr
with domain G. Then, for any h ∈ G and µ′ ≤ µ we have that

DistributedDLogG,g(h, δ, µ, φ)− DistributedDLogG,g(h · g
µ′ , δ, µ, φ) = µ′

with probability greater than 1− δ.

Proof. The values of φ on the sequence of elements traversed by the
variable z in an execution of DistributedDLogG,g(h, δ, µ, φ) can be divided

into three cases. The first case is that φ(h · gc) = 0log(4µ/δ) for some c
in the range 0 ≤ c ≤ µ− 1, the second case is that φ(h · gc) 6= 0log(4µ/δ)

for c = 0, . . . , µ − 1, but φ(h · gc) = 0log(4µ/δ) for some c in the range

µ ≤ c ≤ 4µ ln(4/δ)
δ

and the last case is that neither of the former occurs,

i.e. φ(h · gc) 6= 0log(4µ/δ) for every c = 0, 1, . . . , 4µ ln(4/δ)
δ

.

In the second case, since φ(h · gc) 6= 0log(4µ/δ) for any c = 0, . . . , µ − 1,
the execution of DistributedDLogG,g(h, δ, µ, φ) returns the smallest c, µ ≤
c ≤ 4µ ln(4/δ)

δ
such that φ(h) = 0log(4µ/δ). In DistributedDLogG,g(h ·

gµ, δ, µ, φ) the variable z ranges over the elements h · gµ, . . . , h · gc+µ
and the return value is c− µ. Therefore, DistributedDLogG,g(h, δ, µ, φ)−
DistributedDLogG,g(h · gµ, δ, µ, φ) = µ. By showing that the second case
occurs with probability at least 1− δ we complete the proof.
If R is a random function then the probability that R(h · gc) = 0log(4µ/δ)

for some c, 0 ≤ c ≤ µ− 1 is exactly 1− (1− δ/4µ)µ, which by induction
is at most 1− (1− µδ/4µ) = δ/4. In addition,

Pr[∀c ∈ {0, . . . ,
4µ ln 4

δ

δ
} R(hgc) 6= 0log(4µ/δ)] ≤ (1− δ

4µ
)
4µ ln(4/δ)

δ

< e− ln 4/δ =
δ

4

Since φ is selected randomly from an appropriate family of pseudo-
random functions any non-uniform PPT algorithm can distinguish be-
tween R and φ with negligible probability. Specifically, the probabil-
ity of the first case is bound by |Pr[∃c, 0 ≤ c ≤ µ − 1 φ(h · gc) =
0log(4/δ)]− δ/4| < ε(δ) (for a negligible function ε(δ)), since otherwise an
efficient non-uniform algorithm can distinguish between R and φ by test-
ing their value on hard-coded element (h, δ, µ, φ) and returning 1 if the
result is 0log(4µ/δ). Similarly, the probability of the third case is bound
by |Pr[∀c ∈ {0, . . . , 4 ln(4/δ)

δ
} φ(hgc) 6= 0log(4/δ)]− δ/4| < ε(δ).

The probability of the second case is therefore at least 1− δ
2
− 2ε(δ). ut

3.2 Homomorphic Secret Sharing

We now construct a simple version of the homomorphic secret sharing
scheme, using the procedure DistributedDLog as a sub-routine. The re-
sulting scheme will be a “secret-key” version, in which parties must share
secret key information in order to generate secret shared values that can
be combined via homomorphic evaluation. Further, the security of the

11

scheme will rely on the assumption that the ElGamal encryption scheme
is circular secure. These two restrictions will be removed in the following
subsections.
Consider a DDH group G of prime order q (with λ bits of security) with
generator g, and ` = dlog2 qe. We will use c = c(1), . . . , c(`) to denote bits
of an element c ∈ Zq (i.e., c =

∑`−1
i=0 2ic(i+1)).

Overview of construction. All values generated within the secret
sharing and homomorphic evaluation sit within three “levels.” We will
maintain notation as in the top portion of Figure 1.

Level 1: ElGamal Ciphertexts [[w]]c.
Initial input values w will be “uploaded” into the homomorphic eval-
uation system by generating an ElGamal encryption [[w]]c of the
value w with respect to a common secret key c, as well as encryp-
tions [[c(i)w]]c of each of the products c(i)w for the bits c(i) of the
corresponding key c.

Level 2: Additive secret shares 〈y〉.
Each value y in memory of the RMS program will be maintained via
two sets of additive secret shares: 〈y〉 itself, and 〈cy〉 secret sharing
the product of y with the ElGamal secret key c of the system. We
start with secret shares of this form for each input value (e.g., in the
secret-key setting, these will be generated as part of the Share proce-
dure). Then, after each emulated RMS instruction, we will maintain
the invariant that each newly computed memory value is stored as
secret shares in this fashion.

Level 3: Multiplicative secret shares 〈〈xy〉〉.
Multiplicative secret shares appear only as intermediate values dur-
ing the execution of homomorphic evaluation (of multiplication), and
are then converted back to additive shares via DistributedDLog.

Remark 1 (Valid vs Random). We emphasize that a “valid” encoding
(e.g., [[x]]c, 〈x〉, or 〈〈x〉〉) speaks only to the correctness of decoding, and
does not imply that the encoding is a random such encoding (e.g., a
randomly sampled ciphertext, or fresh secret shares).

The bottom portion of Figure 1 describes two pairing operations that
constitute cross-level computations. The first, MultShares, “multiplies” a
level-1 encoding by a level-2 encoding. Namely, it takes as input a level-1
(ElGamal ciphertext) encoding of x under key c, and level-2 (additive
secret sharing) encodings of y, and of cy (the product of y with the El-
Gamal secret key), and outputs a level-3 (multiplicative secret sharing)
encoding of the product xy. The second, ConvertShares, converts from
a level-3 (multiplicative) encoding back down to a level-2 (additive) en-
coding, with some probability of error, as dictated by given parameters.
Roughly, the intermediate values of homomorphic evaluation will be
maintained in level-2 (additive) secret shared form. Any linear combi-
nation of such shares can be performed directly. Multiplication between
a value in memory and an input value will be performed by perform-
ing the MultShares between the input value (encoded in level 1) and the
relevant memory value (encoded in level 2). This will yield an encoding
of the product, but in level 3 (i.e., as multiplicative shares). To return

12

Notation. For x ∈ Zq (or x ∈ Z with x < q).
Items in which both parties receive same value.

– [[x]]c = (g, h) ∈ G2 for which h/gc = gx. That is, ElGamal ciphertext of x
w.r.t. key c.

Items in which each party receives a separate share.
– 〈x〉 = Additive secret shares x1, x2 ∈ Zq for which x1 + x2 = x ∈ Zq.
– 〈〈x〉〉 = “Multiplicative” secret shares h1, h2 ∈ G for which h1 · h2 = gx ∈ G.

Pairing Operations.
Let φ : {0, 1}λ ×G→ {0, 1}` be a given PRF

– MultShares
(

[[x]]c, 〈y〉, 〈cy〉
)
→ 〈〈xy〉〉.

1. Denote [[x]]c = (h1, h2) ∈ G2.

2. Compute 〈〈xy〉〉 = h
〈y〉
2 h

−〈cy〉
1 .

– ConvertShares(b, 〈〈x〉〉, id, δ′,M) → 〈x〉, with party identifier b ∈ {0, 1}, nonce id,
error parameter δ′ and max size bound M .
1. Denote by φ′ : G→ {0, 1}blog(4M/δ

′)c the appropriate prefix output of φ(id, ·).
2. Let xb denote the present party b’s share of 〈〈x〉〉.

If b = 1, then replace xb ← x−1
b // i.e., convert so that x0/x1 = gx.

3. Let x′b ← DistributedDLogG,g(〈〈x〉〉, δ′,M, φ′).
4. If b = 0, output x′0. If b = 1, output −x′1. // Output additive shares

Fig. 1: Notation for components of the homomorphic secret sharing
scheme, and pairing operations for transforming between different com-
ponents.

the computed product back to level 2, the parties will execute the pair-
ing procedure ConvertShares, which essentially runs the DistributedDLog
procedure from the previous subsection.

Remark 2 (Variable Types). Note that the relevant values are nearly all
elements of G (e.g., elements of ElGamal ciphertexts) or of Zq (e.g., the
values cyi, as well as shares of SubtShare). An important exception to
this are the values wi, yi, which are interpreted as (small) integers. When
necessary for computation, we will sometimes perform a type cast back
and forth between Z and Zq, using the notation (int)(x) ∈ Z for x ∈ Zq,
and (x mod q) ∈ Zq for x ∈ Z.

A few calculations provides us with the following two claims on these
pairing procedures (see full version of this work for details).

Claim (MultShares). For all values x, y ∈ Zq and any key c ∈ Zq, then
on input a valid level-1 encoding [[x]]c with respect to key c, and valid
level-2 encodings 〈y〉, 〈cy〉, the output of MultShares([[x]]c, 〈y〉, 〈cy〉) is a
valid level-3 encoding 〈〈xy〉〉 of the product xy ∈ Zq.

Claim (ConvertShares). For every δ > 0,M ∈ N, every polynomial-time
algorithm A,

Pr
[
φ← PRFGen(1λ); (x, µ)← Aφ(1λ) : µ < M,DistributedDLog(〈〈x〉〉, id, δ′,M)

]
13

Homomorphic Secret Sharing Scheme - ShareG,g(1
λ, w1, . . . , wn)

Inputs: 1λ and input values w1, . . . , wn ∈ Z
– Sample a PRF with input {0, 1}n ×G and output {0, 1}`: φ← PRFGen(1λ).
– Sample an ElGamal secret key: c← Zq.
– For each input wi, sample the following values:

1. ElGamal encryptions of:
(a) Of wi ∈ Z: let [[wi]]c ← Enc(gc, wi) ∈ G2.
(b) Of (c(t) · wi) ∈ Z: i.e., for each t ∈ [`], let [[c(t)wi]]c ← Enc(gc, c(t)wi).

2. Additive secret sharings of:
(a) Of wi ∈ Z: let 〈wi〉 ← AdditiveShare(1λ, wi).
(b) Of cwi ∈ Zq: let 〈cwi〉 ← AdditiveShare(1λ, cwi).

– For each b ∈ {0, 1}, output shareb =
{
φ,
(

[[wi]]c,
{

[[c(t)wi]]c
}
t∈[`]

, 〈wi〉b, 〈cwi〉b
)
i∈[n]

}
.

Fig. 2: Share generation procedure ShareG,g for secret sharing an input
w via the homomorphic secret sharing scheme.

We present the secret sharing scheme Share in Figure 2, and the corre-
sponding homomorphic operations on shares Eval in Figure 3. Note that
we distinguish variables of the straight-line program from the actual val-
ues by using ŷi as opposed to yi, etc.
We remark that our combined construction obtains a generalization of
the notion of HSS from Section 2 both extending beyond the Boolean
setting to support arithmetic computations over small integers, and al-
lowing multiple outputs of the program from possibly different groups
Zβ (as specified by the program description P). The restricted case of
the definition coincides with our construction with size bound M set to
1 and all program outputs in a fixed group Zβ .

Theorem 1 (Homomorphic Secret Sharing). Assume that ElGa-
mal is circular secure (as per Definition 3). Then the scheme (Share,Eval)
as specified in Figures 2, 3 is a secure homomorphic secret sharing scheme
for the class of deterministic branching programs.

Proof. We analyze the correctness and security of (Share,Eval) in the
following claims.

Claim (Correctness of Eval). For every input w1, . . . , wn ∈ Zq and every
Restricted Multiplication Straight-line program P (as in Definition 4) of
size S for which all intermediate values yi ∈ Z in the execution of P are
bounded in size by M , then

Pr[(share0, share1)← ShareG,g(1
λ, w1, . . . , wn) :

EvalG,g(share0, P,M, δ) + EvalG,g(share1, P,M, δ)

= P (w1, . . . , wn)] ≥ 1− δ.

Proof. Fix input w1, . . . , wn ∈ Zq and allowable RMS program P (for
which all intermediate values in the execution of P are bounded in size
by M).

14

Homomorphic Share Evaluation of RMS Programs - EvalG,g(b, share, P,M, δ)
Inputs: Homomorphic secret share value share, RMS program description P of size ≤ S,
plaintext size bound M ∈ Z, error bound δ.
Take δ′ = δ/((`+ 1)MS).

Parse share as in Figure 2. Parse P as a sequence of instructions (as in Definition 4);
for each sequential instruction, perform the corresponding sequence of operations:

Instruction (id, ŷj ← ŵi):

1: Let 〈yj〉 ← 〈wi〉 and 〈cyj〉 ← 〈cwi〉, where 〈wi〉, 〈cwi〉 are as in share.

Instruction (id, ŷk ← ŷi + ŷj):

1: Compute 〈yk〉 ← 〈yi〉+ 〈yj〉, directly on the additive shares (over Zq).
2: Compute 〈cyk〉 ← 〈cyi〉+ 〈cyj〉, on the additive shares (over Zq).

Instruction (id, ŷk ← ŵi · ŷj):
1: Let [[wi]]c and {[[c(t)wi]]c}t∈[`] be the ElGamal ciphertexts associated with wi,

and let 〈yj〉 and 〈cyj〉 the additive secret shares associated with yj .
2: Compute the pairing 〈〈wiyj〉〉 = MultShares([[wi]]c, 〈yj〉, 〈cyj〉), as in Figure 1.
3: Execute Share Conversion: 〈wiyj〉 = ConvertShares(b, 〈〈wiyj〉〉, (id, 0), δ′,M, φ),

as in Figure 1.
4: for t = 1 to ` do // Repeat above process for each c(t) ·yk in the place of yk
5: Compute 〈〈c(t)wiyj〉〉 = MultShares([[c(t)wi]]c, 〈yj〉, 〈cyj〉).
6: Execute 〈c(t)wiyj〉 = ConvertShares(b, 〈〈c(t)wiyj〉〉, (id, t), δ′,M, φ).
7: end for
8: Compute 〈cwiyj〉 =

∑`
t=1 2t−1〈c(t)wiyj〉.

9: Set 〈yk〉 ← 〈wiyj〉 (from Step 3) and 〈cyk〉 ← 〈cwiyj〉.

Instruction (id, β, Ôj ← ŷi):

1: Shift 〈yi〉 share by rerandomization offset: 〈yi〉 ← 〈yi〉+ φ(id, g), over Zq.
// Note that shifting both shares does not change the shared value

2: Convert share from Zq to Zβ : i.e., 〈Oi〉 ← 〈yi〉 mod β.
3: Output 〈Oi〉.

Fig. 3: Procedures for performing homomorphic operations on secret
shares. Here, notation 〈y〉 is used to represent this party’s share of the
corresponding subtractive secret shared pair. Evaluation maintains the
invariant that each of the additive secret shares 〈yi〉 encode the correct
current computation value of ŷi.

15

We first address the probability of error due to execution of the Share
Conversion Procedure DistributedDLog. Observe that each call to DistributedDLog
takes place with a unique nonce value (id, t) where id is the instruction id
(unique for each instruction) and for each distinct value t ∈ {0, 1, . . . , `}.
This means that while all calls share the same psuedorandom function
φ (as sampled during the Share secret sharing procedure), each execu-
tion makes use of disjoint regions of the PRF domain, which by the
pseudorandomness guarantee, is computationally indistinguishable from
independently sampled PRFs. Now, observe that the homomorphic eval-
uation of program P performs at most S(`+ 1) executions of the Share
Conversion Procedure (with error parameter δ′ = δ/(` + 1)MS). From
Proposition 1, for any pair of values h and h′ = h · gd with d ≤ M , the
probability (over the randomness of the PRF seed s) that the outputs
a, a′ ∈ Z of the respective parties do not satisfy a′ = a+d is bounded by
δ′d, which is in turn bounded by δ′M ; thus, by a union bound no such
errors will occur with probability δ′(`+ 1)MS = δ.

Assume, then, that every Share Conversion execution returns without er-
ror; that is, that for every such h, h′ we have DistributedDLogG,g(h, δ

′,M, φ)−
DistributedDLogG,g(h

′, δ′,M, φ) = logg h− logg h
′. We prove that follow-

ing invariant is maintained at each step of homomorphic evaluation:
Invariant: For every memory item ŷi, let yi ∈ Z denote the
correct value that should be presently stored in memory. Then
the shares 〈yi〉 = (yAi , y

B
i) ∈ Z2

q and 〈cyi〉 = (vA, vB) ∈ Z2
q held

by the parties satisfy:
(a) (int)(yAi + yBi) = yi ∈ Z (where addition is in Zq).
(b) vA + vB = cyi ∈ Zq.

Note that the invariant holds vacuously at the start of Eval, as all memory
locations are empty. Consider each instruction type of P .
1. Loading memory items (id, ŷj ← ŵi). By construction of Share, we

have that 〈wi〉 and 〈cwi〉 are valid Zq secret sharings of wi and
cwi. This directly gives us invariant (b). Further, we have 〈wi〉 =
(wAi , w

B
i) ∈ Z2

q such that wAi + wBi = wi mod q. Since wi ∈ Z is
bounded by 0 ≤ wi ≤ M < q, this implies that (int)(wAi + wBi) =
wi ∈ Z.

2. Linear combination (id, ŷk ← ŷi + ŷj). The additive secret sharing
scheme is linearly homomorphic with respect to Zq (implying invari-
ant (b)). Recall we are guaranteed that no intermediate computation
value (in particular, yk, yi, yj ∈ Z) will ever have magnitude greater
than M < q. Thus, as above, the desired invariant (a) holds as well
for 〈yk〉.

3. Multiplication of memory value with input (id, ŷk ← ŵi·ŷj). Consider
the resulting shares 〈yk〉 and 〈cyk〉.
By Claim 3.2, the shares 〈〈wiyj〉〉 computed via MultShares constitute
a valid level-3 sharing of the product wiyj (as per Figure 1). Since
we are in the case where DistributedDLog does not err, the resulting
converted shares 〈wiyj〉 encode exactly the value wiyj ∈ Zq. Since
wiyj is an intermediate computation value yk in the evaluation of
P , we have 0 ≤ wiyj ≤M < q. Thus, invariant (a) holds.
Consider now 〈cyk〉. From precisely the same argument as above
(since we are in the case where DistributedDLog does not err), we

16

have for each t ∈ [`] that the computed intermediate value 〈c(t) · yk〉
is a level-2 encoding of the corresponding value c(t)yk ∈ Zq. Since yk
is an intermediate computation value in P we have 0 ≤ yk ≤M < q,
and so for c(t) ∈ {0, 1}, then 0 ≤ c(t) · yk ≤ M < q. Thus, it holds
(int)(vAt − vBt) = c(t) · wi · yj ∈ Z.
Combining the respective values over t ∈ [`], it holds

(∑
t∈[`] 2tvAt

)
−(

−
∑
t∈[`] 2tvBt

)
= −

∑
t∈[`] 2t(vAt − vBt) = −

∑
t∈[`] 2tc(t) · wi · yj =

−c · wi · yj ∈ Zq. Therefore, invariant (b) holds.
4. Output value from memory (id, β, Ôj ← ŷi). The invariants (a),(b)

hold inductively for the existing shares of yi. In particular, 〈yi〉 =
(yAi , y

B
i) ∈ Z2

q for which (int)(yAi − yBi) = yi ∈ Z. Since both parties
apply the identical offset φ(id, g) to their shares, this property is pre-
served; i.e., invariant (a) holds. Invariant (b) is trivially maintained,
as the shares of 〈cyi〉 are untouched.
Now, consider the validity of the output value Oj . Since 0 ≤ yi < M ,
then either

(int)
(
yAi + φ(id, g)

)
− (int)

(
yBi + φ(id, g)

)
= yi, (1)

or

(int)
(
yAi + φ(id, g)

)
− (int)

(
yBi + φ(id, g)

)
= yi − q (2)

and (int)(yBi + φ(id, g)) ≥ q −M. (3)

In case (1), it holds that

(int)
(
yAi + φ(id, g)

)
mod β − (int)

(
yBi + φ(id, g)

)
mod β =

yi (mod β),

as desired; it remains to bound the probability of case (2). By the
pseudo-randomness of φ, then over the random sampling of φ ←
PRFGen(1λ), the probability of (int)(x + φ(id, g)) ≥ q −M for any
of the S partial computation value shares x encountered during the
course of execution is bounded by S(M/q)+ν(λ) for some negligible
function λ. Note that this holds unconditionally, as it constitutes
an efficient test for φ. Finally, since q = |G| and G is a DDH-hard
group, then necessarily q ∈ λω(1), implying for sufficiently large λ
that this probability S(M/q) + ν(λ) is bounded above by our choice
of allowable per-instruction error δ′.

Claim (Security of Share). Based on the assumption that ElGamal is
a weakly circular secure encryption scheme (as per Definition 3), then
Share is a computationally secure secret sharing scheme.

Proof. We prove that the distribution of a single party’s share resulting
from Share is computationally indistinguishable from a distribution that
is independent of the shared values w1, . . . , wn, via two hybrids.

Hybrid 0: Honest share distribution for party b ∈ {0, 1}. That is,
HonestShareG,g(1

λ, w1, . . . , wn, b) defined by

{shareb : (share0, share1)← ShareG,g(1
λ, w1, . . . , wn)}.

17

Hybrid 1: Distribution SimShare′G,g(1
λ, w1, . . . , wn, b), consisting of hon-

est secret shares, but with additive secret shares replaced by uniform
values:
1. Sample honest share (share0, share1)← ShareG,g(1

λ, w1, . . . , wn),

and parse shareb =

{
φ,

(
[[wi]]c,

{
[[c(t)wi]]c

}
t∈[`]

, 〈wi〉b, 〈cwi〉b
)
i∈[n]

}
.

2. Sample random shares vi, v
′
i ← Zq∀i ∈ [n] (replacing the shares

〈wi〉b, 〈cwi〉b), and output

{
φ,

(
[[wi]]c,

{
[[c(t)wi]]c

}
t∈[`]

, vi, v
′
i

)
i∈[n]

}
.

Hybrid 2: Fully simulated shares, as follows.
Distribution SimShareG,g(1

λ, n, b):
1. Sample a PRF with input {0, 1}n × G and output {0, 1}`: φ ←

PRFGen(1λ).
2. Sample an ElGamal secret key c← Zq, and compute the public

key e = gc.
3. For each input i ∈ [n],

(a) Sample (`+1) ElGamal encryptions of 0: [[0i,t]]c ← EncElGamal(e, 0),
for t ∈ {0, 1, . . . , `}.

(b) Sample two random secret shares vi, v
′
i ← Zq (as in the

previous hybrid).

4. Output

{
φ,
(

[[0i,0]]c, {[[0i,t]]c}t∈[`] , vi, v
′
i

)
i∈[n]

}
.

Observe that for any w1, . . . , wn ∈ Z and b ∈ {0, 1} the distributions
HonestShareG,g(1

λ, w1, . . . , wn, b) and SimShare′G,g(1
λ, w1, . . . , wn, b) are

identically distributed, by the perfect security of the 2-out-of-2 secret
sharing scheme. Now, suppose there exists b∗ ∈ {0, 1}, inputs w∗1 , . . . , w

∗
n ∈

Z each satisfying 0 ≤ w∗i ≤ q, a nonuniform polynomial-time adversary
A∗, and non-negligible function ε for which

Pr
[
chall← {0, 1}; shareb∗ ← ChallengeGen(1λ, w∗1 , . . . , w

∗
n, b
∗, chall);

guess← A(1λ, shareb∗) : guess = chall
]
> ε(λ),

where ChallengeGen(1λ, w∗1 , . . . , w
∗
n, b
∗, chall) is sampled for chall = 0 as

SimShare′G,g(1
λ, w∗1 , . . . , w

∗
n, b
∗), and for chall = 1 as SimShareG,g(1

λ, n, b∗).
Such an adversary can directly be used to break the weak circular secu-
rity of the ElGamal encryption.
Indeed, consider an adversary B′ in the weak circular security game (see
Definition 3) for ElGamal, with b∗, w∗1 , . . . , w

∗
n ∈ {0, 1} hardcoded, who

proceeds as follows:
1. B receives a challenge ElGamal public key pk.
2. For every i ∈ [n], generate an encryption of w∗i : [[w∗i]]c ← Enc(pk, w∗i).
3. For every i ∈ [n] for which w∗i 6= 0, query the Weak Circular Security

oracleO, and receive a vector of ElGamal ciphertexts ([[xi,1]]c, . . . , [[xi,`]]c),
which are either encryptions of xi,t = 0 ∀t ∈ [`], or encryptions of
the bits xi,t = c(t) of the secret key c.
For each t ∈ [`], take [[xi,tw

∗
i]]c := ([[xi,t]]c)

w∗i .
4. For every i ∈ [n] for which w∗i = 0, sample ` encryptions of 0: i.e.,

for each t ∈ [`], take [[xi,t]]c ← EncElGamal(pk, 0).

18

5. Sample a PRF with input {0, 1}n × G and output {0, 1}`: φ ←
PRFGen(1λ).

6. Sample 2n random values for the “additive secret shares”: i.e., vi ←
Zq, v′i ← Zq for each i ∈ [n].

7. Let shareb∗ :=

{
φ,
(

[[w∗i]]c, {[[xi,tw∗i]]c}t∈[`] , vi, v
′
i

)
i∈[n]

}
.

8. Output guess← A∗(1λ, shareb∗).
Note that for any fixed 0 ≤ w < q, the distribution {r ·w ∈ Zq : r ← Zq}
is identically distributed to {r ← Zq} since Zq is a field (and thus w 6= 0
has a multiplicative inverse). This means for both v = 0, 1, the distribu-
tion {([[v]]c)

w : [[v]]c ← EncElGamal(pk, v)} = {(gr)w, (gr+v)w) : ri,t ← Zq}
is identical to {(gr, gr+vw) : r ← Zq} = {[[vw]]c ← EncElGamal(pk, vw)}.
Therefore, if the circular security oracle O provided encryptions of the
bits of the secret key c then shareb∗ is distributed precisely as SimShare′G,g(1

λ,
w∗1 , . . . , w

∗
n, b
∗), and if it provided encryptions of 0 then shareb∗ is dis-

tributed precisely as SimShareG,g(1
λ, n, b∗). Security of the secret sharing

scheme follows.

3.3 Public-Key HSS for Branching Programs

In the construction of the previous section, secret shares of an input w
consisted of ElGamal encryptions [[w]]c, {[[c(t)w]]c}t∈[`] and additive secret
shares 〈w〉, 〈cw〉, where c was a (freshly sampled) key for ElGamal. At
face value, it would seem that one must know the value of the key c
in order to generate these values—meaning, in turn, that homomorphic
computation can only be performed on the data of a single user who
generates the key c. In this section, we demonstrate that by leveraging the
homomorphic properties of ElGamal encryption, we can in fact generate
all required values for a secret sharing of w while maintaining security,
given only “public key” information independent of the input w. That
is, we obtain homomorphic encryption with distributed evaluation, as
discussed in Section 2.
More formally, we now consider a separate procedure Gen for generating
common setup information pk and secret evaluation keys ek0, ek1 (which
we consider to be given to two servers). Given access to pk, a user can
“upload” his input w to the system via Enc. Then, given their respective
evaluation keys, two servers can perform non-interactive homomorphic
computations on all users’ inputs via Eval.
In our construction, the algorithm Gen will sample an ElGamal key pair,
and will output pk consisting of encryptions [[1]]c, {[[c(t)]]c}t∈[`] and evalu-
ation keys ekb corresponding to additive secret shares of 〈c〉. In Enc, a user
computes the necessary ciphertexts [[w]]c and {[[c(t)w]]c}t∈[`] for his in-
put w by simply exponentiating the ciphertexts in pk component-wise by
w, (i.e., making use of multiplicative homomorphism of ElGamal). The
final required values 〈w〉, 〈cw〉 can be obtained directly by the servers
within Eval by performing the procedure for a homomorphic multiplica-
tion between the “input value” w (i.e., given [[w]]c, {[[c(t)]]c}t∈[`]) together
with “memory value” 1 (i.e., given a trivial sharing 〈1〉 together with 〈c〉
from ek).
A formal description of the algorithms Gen,Enc,Eval is given in Figure 4.

19

Theorem 2 (DEHE). Assume that ElGamal is circular secure (as per
Definition 3). Then the scheme (Gen,Enc,Eval) as given in Figure 4 is a
secure Distributed-Evaluation Homomorphic Encryption scheme for the
class of deterministic branching programs.

Proof. Correctness. To reduce to Theorem 1, it suffices to demonstrate:
(1) the values [[w]]c, {[[c(t)w]]c}t∈[`] as generated in Enc are valid level-1

encodings of w and {c(t)w}t∈[`]; and (2) the values 〈w〉, 〈cw〉 as generated
in Eval are valid level-2 encodings of w and cw. Property (1): Recall [[w]]c
was obtained as (hw1 , h

w
2) for (h1, h2) a valid level-1 encoding of 1. This

means h2h
−c
1 = g1, which implies (hw2)(hw2)−c = gw, as desired. Same

for each [[c(t)w]]c. Property (2): Holds by the correctness of homomorphic
RMS multiplication evaluation of Eval as per Theorem 1.
Security. Semantic security of the scheme follows as in Theorem 1, as-
suming circular security of ElGamal. Namely, the view of a server holding
ekb consists of information theoretically hiding secret shares, ciphertexts
of values independent of the secret key, and vectors of ciphertexts en-
crypting the vector (c(1)w, . . . , c(`)w) for various inputs w. An adversary
distinguishing between this view and one consisting of random share el-
ements and ciphertexts of 0 can be used to break the circular security of
ElGamal, precisely as in Theorem 1.

Comparing the complexity of the public-key scheme (Gen,Enc,Eval) to
that of the secret-key scheme (Share,Eval) from the previous section, we
see that the computation cost to the user for uploading inputs w1, . . . , wn
via Enc is essentially equivalent to the cost of sharing the inputs via Share
(exponentiating given ciphertexts by the respective inputs in one case,
versus encrypting the values directly in the other), but the cost of each
“load input” instruction (id, ŷj ← ŵi) within the homomorphic evalu-
ation now incurs the cost of a multiplication step to generate additive
secret shares 〈wi〉, 〈cwi〉 given only 〈c〉 and the uploaded ElGamal ci-
phertexts associated with wi, as opposed to being essentially for free for
the client to generate 〈wi〉, 〈cwi〉 when he knew the values of wi, cwi.

3.4 Removing the Circular Security Assumption

We now show how to remove the ElGamal circular security assumption
in the construction of distributed-evaluation homomorphic encryption in
the previous section, yielding a scheme that relies solely on DDH. Our
new construction replaces ElGamal encryption with the ElGamal-like
cryptosystem of Boneh, Halevi, Hamburg, and Ostrovsky (BHHO) [5],
which is provably circular secure based on DDH. At a high level, BHHO
ciphertexts possess an analogous structure of “linear algebra in the ex-
ponent,” which allows us to mirror the same procedure we used with El-
Gamal for multiplicatively pairing a ciphertext with an additively shared
value.
It will be convenient to consider a slightly modified version of the BHHO
scheme, given below, in which the message space is a subset of the ex-
ponent space Zq instead of the group G itself (i.e., the multiplication by

20

Distributed-Evaluation Homomorphic Encryption: Gen,Enc,Eval

Gen(1λ):

1. Sample a PRF with input {0, 1}n ×G and output {0, 1}`: φ← PRFGen(1λ).
2. ElGamal Key Setup:

(a) Sample a DDH-hard group and generator (G, g, q)← IG(1λ).
(b) Sample an ElGamal key pair: c← Zq.

3. Sample ElGamal encryptions:
(a) The constant 1 ∈ Zq: let [[1]]c ← Enc(gc, 1).
(b) The bits of the secret key c: ∀i ∈ [`], let [[ci]]c ← Enc(gc, ci).

4. Sample 2-out-of-2 additive secret sharings:
(a) The constant 1 ∈ Zq: 〈1〉 ← AdditiveShare(1). // Included for notational con-

venience
(b) The bits of the secret key c: ∀t ∈ [`], let 〈ct〉 ← AdditiveShare(c(t)).

5. Output pk =
(
G, g, [[1]]c, {[[c(t)]]c}t∈[`]

)
, ekb =

(
pk, 〈1〉, {〈c(t)〉}t∈[`]

)
.

EncG,g(pk, w):
1. Parse pk as in Gen above.
2. Compute the following ElGamal ciphertexts:

(a) Of w ∈ Z: parse [[1]]c = (h1, h2), and let [[w]]c = (hw1 , h
w
2) ∈ G2.

(b) Of c(t)w ∈ Z: i.e., for each t ∈ [`], parse [[c(t)]]c = (h
(t)
1 , h

(t)
2) let [[c(t)w]]c =

((h
(c)
1)w, (h

(c)
2)w).

3. Output ([[w]]c, {[[c(t)w]]c}t∈[`]).

EvalG,g(b, ek, ct, P, δ,M):

1. Parse ek as in Gen above; interpret 1̂ as loaded into memory, via 〈1〉, {〈c(t)〉}t∈[`]
as given.

2. Parse P as a sequence of instructions (as in Definition 4).
3. For each instruction (id, ŷk ← ŷi + ŷj), (id, ŷk ← ŵi · ŷj), or (id, Ôj ← ŷi), perform

the corresponding sequence of operations as given in Figure 3.
4. For each instruction (id, ŷj ← ŵi), execute (id, ŷj ← ŵi · 1̂).

Fig. 4: Construction of “public-key” variant of homomorphic secret shar-
ing: i.e., homomorphic encryption with distributed evaluation.

21

message m in standard encryption is replaced by gm). Since decryption
of such scheme requires taking discrete log, efficient decryption will hold
for a polynomial-size message space.

Definition 5 (BHHO Encryption [5]). Let G be a group of prime
order q and g a fixed generator of G. The size of G is determined by a
security parameter λ, in particular, 1/q is negligible in λ. The BHHO
public-key encryption scheme for polynomial-size message space Msg ⊂
Zq is as follows:

– Key Generation. Let ` := d3 log2 qe. Choose random g1, . . . , g` ← G
and a random secret key vector s = (s1, . . . , s`) ← {0, 1}`. Let h =
(gs1 · · · gs``)−1 and define the public and secret keys to be

pkBHHO := (g1, . . . , g`, h), skBHHO = (gs1 , . . . , gs`).

– Encryption. To encrypt m ∈ Msg, choose a random r ← Zq and
output the ciphertext

(gr1 , . . . , g
r
` , h

r · gm).

– Decryption. Let (c1, . . . , c`, d) be a ciphertext and skBHHO = (v1, . . . , v`)
a secret key. Do:
• Decode the secret key: For i = 1, . . . , `, set si ← 0 if vi = 1 and
si ← 1 otherwise.

• Output m ∈ Msg for which gm = d · (cs11 · · · c
s`
`).

Theorem 3 (Circular Security of BHHO [5]). Assuming DDH, the
BBHO public-key encryption scheme satisfies circular security, as per
Definition 3.

In order to emulate the homomorphic evaluation procedure of the previ-
ous sections, there are two steps we must modify:
First, we must provide a means for pairing a BHHO ciphertext of an input
w with additive secret sharings of a value x to obtain a multiplicative
secret sharing of gwx. For ElGamal this was done given 〈x〉 and 〈cx〉, and

computing h
〈x〉
2 h

−〈cx〉
1 . Now, for BHHO, we can perform an analogous

“partial decryption” procedure given shares 〈x〉 and {〈six〉}i∈[`], for the
bits si of the BHHO secret key. The corresponding pairing computation
is given as MultShares in Figure 5.
Once we obtain a multiplicative secret sharing of gwx, we can perform
the same share-conversion procedure DistributedDLog from the previous
sections to return to an additive secret sharing of wx (with some error
probability δ). But, to be able to perform a future pairing as above, we
additionally must generate additive secret sharings 〈wxsi〉 for each of the
bits si of the secret key (analogous to generating 〈cwx〉 in the ElGamal
case). Conveniently, this BHHO task is actually slightly simpler than
that for ElGamal: whereas before we had to deal with the large size of
the secret key c ∈ Zq by operating on a bit decomposition of c and then
reconstructing, here the secret key (s1, . . . , s`) is already interpreted as
a binary vector. This means we can perform the multiplication steps
directly without requiring the decomposition/reconstruction steps.

22

We remark that BHHO ciphertexts are multiplicatively homomorphic in
the same fashion as ElGamal, which allows us to obtain a public-key
variant of the secret sharing scheme precisely as in the previous section.
The required procedure of modifying a ciphertext of some message x to
one encrypting xy given y is explicitly described as ([[x]]s)

y in Figure 5.

In Figure 5, we provide the modified notation and pairing procedures
for this setting. The remaining notations 〈x〉, 〈〈x〉〉 and pairing operation
ConvertShares will remain as in the previous sections (Figure 1). Given
these sub-procedures, we present in Figures 6 and 7 the corresponding
algorithms Gen,Enc,Eval.

DDH-Based Notation and Pairing Operations
Let s = (s1, . . . , s`) ∈ {0, 1}`.

– Notation: [[x]]s = (g′1, . . . , g
′
`, h
′) ∈ G`+1 for which gx = h′ ·

∏
t∈`(g

′
t)
st .

That is, BHHO ciphertext of x w.r.t. secret key s is the new level-1 encoding.

– Pairing: MultShares
(

[[x]]s, 〈y〉, {〈sty〉}t∈[`]
)
→ 〈〈xy〉〉.

1. Denote [[x]]s = (g′1, . . . , g
′
`, h
′) ∈ G`+1.

2. Compute 〈〈xy〉〉 = (h′)〈y〉 ·
∏
t∈[`](g

′
i)
〈sty〉.

– Pairing: ([[x]]s)
y, for ciphertext [[x]]s ∈ G`+1 and plaintext y ∈ Zq.

1. Denote [[x]]s = (g′1, . . . , g
′
`, h
′) ∈ G`+1.

2. Output [[xy]]s :=
(
(g′1)y, . . . , (g′`)

y, (h′)y
)
∈ G`+1.

Fig. 5: Modified DDH-based notation and pairing operations, making use
of BHHO encryption [5].

Theorem 4 (DEHE from DDH). Assuming DDH, then the scheme
(Gen,Enc,Eval) as given in Figures 6, 7 is a secure Distributed-Evaluation
Homomorphic Encryption scheme for the class of deterministic branch-
ing programs.

4 Applications

In this section we describe applications of our homomorphic secret shar-
ing scheme and its public-key variant in the context of secure computa-
tion. We restrict the attention to security against semi-honest parties;
to get similar asymptotic efficiency in the presence of malicious parties,
one can apply general-purpose compilation techniques [23, 30]. For lack
of space, formal protocol descriptions and security proofs are postponed
to the full version.

4.1 Succinct Protocols for Branching Programs

Our protocols for branching programs can be based either on the weaker
HSS primitive via the transformation from [6], or can be built more di-
rectly from the public-key variant. We present here the latter approach,

23

DDH-Based Distributed-Evaluation HE: Gen and Enc Algorithms

Gen(1λ):

1. Sample a PRF with input {0, 1}n ×G and output {0, 1}`: φ← PRFGen(1λ).
2. BHHO Key Setup:

(a) Sample a DDH-hard group and generator (G, g, q)← IG(1λ).
(b) Sample a BHHO secret key: s← {0, 1}`.

3. Sample BHHO encryptions:
(a) The constant 1 ∈ Zq: let [[1]]c ← Enc(e, 1).
(b) The bits of the secret key s: ∀i ∈ [`], let [[si]]s ← Enc(e, si).

4. Sample 2-out-of-2 additive secret sharings:
(a) The constant 1 ∈ Zq: 〈1〉 ← AdditiveShare(1). // Included for notational con-

venience
(b) The bits of the secret key s: ∀i ∈ [`], let 〈si〉 ← AdditiveShare(si).

5. Output pk =
(
G, g, [[1]]s, {[[si]]s}i∈[`]

)
, ekb =

(
pk, 〈1〉, {〈si〉}i∈[`]

)
.

EncG,g(pk, w):

1. Compute the following values:
(a) BHHO encryption of w ∈ Z: let [[w]]s = ([[1]]s)

w ∈ G`+1.
(b) BHHO encryptions of (w · si) ∈ Z: i.e., for each i ∈ [`], let [[siw]]s = ([[si]]s)

w.
2. Output ([[w]]s, {[[siw]]s}i∈[`]).

Fig. 6: DDH-based homomorphic encryption with distributed evaluation,
making use of the BHHO cryptosystem.

which is more direct. For simplicity, we restrict the attention to the case
of evaluating a single branching program P on inputs x0, x1 held by
Party 0 and Party 1 respectively. This can be extended in a straightfor-
ward way to functions with m bits of output that are computed either
by m separate branching programs or by a single RMS program.

The simplest protocol proceeds as follows. The two parties run a general-
purpose protocol (such as Yao’s protocol) to distribute the key generation
Gen. In the end of this sub-protocol, both parties hold a public key pk and
each holds a secret evaluation key skb. While this step may be expensive,
its complexity depends (polynomially) only on the security parameter λ,
and moreover the same key setup can be used for evaluating an arbitrary
number of branching programs on an arbitrary number of inputs. In this
basic version of the protocol, the key generation protocol is the only step
that does not make a black-box use of the underlying DDH group.

Next, each party uses Enc(pk, ·) to encrypt every bit of its input, and
sends the encryptions to the other party. Finally, the two parties locally
run Eval to generate additive (mod-2) shares of the output P (x0, x1). If
Eval had negligible error, the parties could simply exchange their shares
of the output, since the share sent to Party b is determined by the output
and the share computed by Party b.

The fact that Eval has a non-negligible error δ is problematic for two rea-
sons. First, it poses a correctness problem. This can be fixed by setting
δ to be a constant (say, δ = 1/4), running σ independent instances of

24

DDH-Based Homomorphic Evaluation - EvalG,g(ek, b, share, P,M, δ)
Inputs: Homomorphic secret share parameters params, shared value share, RMS pro-
gram description P of size ≤ S, plaintext size bound M ∈ Z, error bound δ.
Take δ′ = δ/((k + 1)MS).

Parse ek as in Figure 6, and interpret 1̂ as loaded into memory, via 〈1〉, {〈si〉}i∈[`] as
given. Parse P as a sequence of instructions (as in Definition 4); for each sequential
instruction, perform the corresponding sequence of operations described below.

Instruction (id, ŷj ← ŵi):

1: Execute the multiplication operation (id, ŷj ← ŵi · 1̂), as described below.

Instruction (id, ŷk ← ŷi + ŷj):

1: Compute 〈yk〉 ← 〈yi〉+ 〈yj〉, directly on the additive shares (over Zq).
2: For each t ∈ [`], compute 〈styk〉 ← 〈styi〉+ 〈styj〉 (over Zq).

Instruction (id, ŷk ← ŵi · ŷj):
1: Let [[wi]]s and {[[stwi]]s}t∈[`] be the BHHO ciphertexts associated with wi, and
〈yj〉 and {〈styj〉}t∈[`] the additive secret shares associated with yj .

2: Compute 〈〈wiyj〉〉 = MultShares([[wi]]s, 〈yj〉, {〈styj〉}t∈[`]), as in Figure 5.
3: Execute Share Conversion: 〈wiyj〉 = ConvertShares(b, 〈〈wiyj〉〉, δ′,M, φ).

// DistributedDLog will yield subtractive shares of wi · yj
4: for t = 1 to ` do // Repeat above process for each st · yk
5: Compute 〈〈stwiyj〉〉 = MultShares([[stwi]]s, 〈yj〉, {〈styj〉}t∈[`]).
6: Execute Share Conversion: 〈stwiyj〉 = ConvertShares(b, 〈〈stwiyj〉〉, δ′,M, φ).
7: end for
8: Let 〈yk〉 ← 〈wiyj〉 and 〈styk〉 ← 〈stwiyj〉, for each t ∈ [`].

Instruction (id, β, Ôj ← ŷi):

1: Shift 〈yi〉 share by rerandomization offset: 〈yi〉 ← 〈yi〉+ φ(id, g), over Zq.
// Note that shifting both shares does not change the shared value

2: Convert share from Zq to Zβ : i.e., 〈Oi〉 ← 〈yi〉 mod β.
3: Output 〈Oi〉.

Fig. 7: Procedures for performing homomorphic operations on secret
shares. Here, notation 〈y〉 is used to represent this party’s share of the
corresponding subtractive secret shared pair. Evaluation maintains the
invariant that each of the additive secret shares 〈yi〉 encode the correct
current computation value of ŷi.

25

Eval, for a statistical security parameter σ,8 and outputting the majority
value. This approach is also problematic, because each of the σ output
bits may leak information about the inputs. Instead, the parties apply
the σ instances of Eval locally, and distribute the reconstruction function
(computing majority of XORs) using general-purpose secure computa-
tion. This ensures that only the correct output is revealed with negligible
correctness and secrecy error.
The communication complexity of the above protocol is n·poly(λ), where
n = |x0|+|x1|. This can be improved to n+poly(λ) by using the following
hybrid encryption techniques [20]. Let Fr be a pseudorandom function
computable in NC1, which can be based on DDH [31]. Following the
key generation phase, each party encrypts a random key rb for F . Then,
instead of separately encrypting each bit of xb, Party b masks every bit
i of its input using Frb(i) and sends to the other party all of the masked
bits. The value of P on the inputs can now be expressed as the value
of a (polynomially larger) publicly known branching program P ′ on the
inputs r0, r1, where P ′ is determined by P and the masked inputs. The
evaluation of P ′ is repeated σ times as before. This yields the following:

Theorem 5. Under the DDH assumption, there exists a constant-round
secure 2-party protocol for evaluating branching programs of size S on
inputs (x0, x1) of total length n, using n+poly(λ) bits of communication.

4.2 Breaking the Circuit size Barrier for “Well
Structured” Circuits

We turn to the question of reducing the communication complexity of
evaluating a deep boolean circuit C of size S and depth D. We assume
for simplicity that the circuit is layered in the sense that its S gates can
be partitioned into D+ 1 layers such that the gates from layer i (except
input gates) receive their inputs from gates of layer i − 1. This can be
generalized to a broader class of “well-structured” circuits that captures
most instances of circuits that arise naturally.
Given a layered circuit as above, we divide the layers into intervals of
dlogSe consecutive layers, and pick for every interval the layer that has
the smallest number of gates (except for the input layer). Overall, we have
at most D/ logS “special” layers, whose total size is at most S/ logS. In
addition, the output layer is considered the last special layer.
The crucial observation is that each output of a new special layer can be
expressed as a circuit of depth O(logS) applied to values of the previous
special layer. The protocol will compute the values of the special layers
one at a time, by using the previous protocol for branching programs,
except that the reconstruction protocol is only applied in the end. That
is, given additive shares of special layer i, each party encrypts his shares
and the parties apply Eval on a function (computable by polynomial-size

8 Here we assume that the events of error in different instances of Eval are independent.
This can be enforced by using a fresh set of pseudorandom values for each share
conversion.

26

branching programs) that first reconstructs the value and then computes
the outputs of special layer i+ 1.
To avoid a multiplicative factor of σ in communication, we need to apply
a more efficient error correction procedure for intermediate layers. To this
end, we apply an asymptotically good error-correcting code, with encod-
ing and decoding in NC1, for encoding the values of each special layer.
(Many such codes are known to exist; see, e.g., [34]; moreover, by using
a Las-Vegas type algorithm for the share conversion it suffices to correct
erasures.) The computation performed by Eval will start by reconstruct-
ing the noisy encoding of layer i (using XOR), then apply a decoder to
recover the actual values of layer i, then compute the outputs of layer
i + 1, and then encode these outputs. If the error probability δ of Eval
is smaller than the relative error correction radius of the code, the error
rate in the encoded output will be within the error-correction radius with
overwhelming probability. Thus, we can use a general-purpose protocol
for decoding the correct outputs from the shared noisy encoding. This
approach yields the following theorem.

Theorem 6. Under the DDH assumption, there exists a secure 2-party
protocol for evaluating any layered boolean circuit of size S and output
length m using O(S/ logS) +m · poly(λ) bits of communication.

4.3 Function Secret Sharing and Generalized PIR

Function Secret Sharing. As discussed in the Introduction, homo-
morphic secret sharing can be viewed as a “dual” notion of function
secret sharing, as defined in [6]. In a homomorphic secret sharing scheme
for a class of programs P, given a share of a secret input w and a public
program P ∈ P, one can locally compute a share of Π(w). In a function
secret sharing (FSS) scheme for function class F , given a share of a se-
cret function (represented by a “program”’) and a public input x, one
can locally compute a share of f(x). In particular, given a homomorphic
secret sharing scheme supporting a class of programs P containing a uni-
versal program U , one can directly obtain a FSS scheme for P, by secret
sharing a description of the secret program P ∈ P, and then shares of
the evaluation of P on an input x can be obtained by homomorphically
evaluating the universal program Ux(·) on the given shares. If for each
program P ∈ P the homomorphic secret sharing scheme produces out-
put error on the evaluation of P with probability δ (over the randomness
of the secret sharing), then for each input x in the domain of f , the
resulting FSS scheme will also yield an output error with probability δ.
Thus, as a corollary of our homomorphic secret sharing scheme, we ob-
tain a DDH-based FSS scheme for branching program with an arbitrary
inverse polynomial error. The resulting FSS key size corresponds to the
size of a homomorphic secret share of a description of the secret function:
namely, a fixed polynomial in the size of the branching program S and
security parameter λ.

Private Information Retrieval. A motivating application regime
of function secret sharing (and thus our homomorphic secret sharing

27

scheme) is that of 2-server private information retrieval (PIR) for ex-
pressive query classes [6]. As we demonstrate, such applications can be
achieved with negligible error even when starting with FSS with inverse-
polynomial error δ. Together with our construction of such δ-FSS, this
gives us DDH-based 2-server PIR for queries expressed by branching pro-
grams. Useful examples include counting or retrieving matches that are
specified by conjunction queries or fuzzy match predicates (e.g., requir-
ing that a document contains at least a given threshold of keywords from
a given list).

A (standard) FSS scheme for a program class P can be used to obtain
secure 2-server PIR schemes for classes of queries related to P, via three
basic steps. For simplicity, we focus our treatment to querying the count
of database entries satisfying a (secret) predicate f ∈ F .9 (1) The client
generates FSS shares P0, P1 of the desired query P and sends one share
to each server. (2) The servers locally compute, and reply with, the linear
combination

∑
x∈DB Pb(x) for database DB (where the output group of

P, P0, P1 is ZN for N = |DB|). (3) Then, leveraging the linearity of FSS
reconstruction, the client can recover the desired output

∑
x∈DB P (x) =∑

x∈DB P0(x) +
∑
x∈DB P1(x). To extend this approach to δ-FSS, we

execute several independent parallel instances of the δ-FSS scheme, and
compute the majority of the resulting execution outputs. If the .

Acknowledgements. We thank an anonymous reviewer for pointing
out the relevance of [37].

Research done in part while visiting the Simons Institute for the The-
ory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant
#CNS-1523467. Supported by ERC starting grant 259426.

First author was additionally supported by ISF grant 1709/14 and ERC
starting grant 307952. Second author was additionally supported by ISF
grant 1638/15, a grant by the BGU Cyber Center, the Israeli Min-
istry Of Science and Technology Cyber Program and by the European
Union’s Horizon 2020 ICT program (Mikelangelo project). Third author
was additionally supported by ISF grant 1709/14, BSF grant 2012378, a
DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF
grants 1228984, 1136174, 1118096, and 1065276. This material is based
upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views ex-
pressed are those of the author and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation,
or the U.S. Government.

References

1. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan,
and D. Wichs. Multiparty computation with low communication,

9 Using sketching or coding techniques (e.g., [32, 18]), this approach can be extended
to recovery of data entries satisfying a hidden predicate.

28

computation and interaction via threshold FHE. In EUROCRYPT,
pages 483–501, 2012.

2. A. Beimel, Y. Ishai, E. Kushilevitz, and I. Orlov. Share conversion
and private information retrieval. In Proc. CCC, pages 258–268,
2012.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In STOC, pages 1–10, 1988.

4. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF formulas on
ciphertexts. In Proc. TCC 2005, pages 325–341, 2005.

5. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-
secure encryption from decision diffie-hellman. In Proc. CRYPTO
2008, pages 108–125, 2008.

6. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In
Advances in Cryptology - EUROCRYPT, pages 337–367, 2015.

7. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE.

8. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In STOC, pages 11–19, 1988.

9. B. Chor and N. Gilboa. Computationally private information re-
trieval (extended abstract). In Proceedings of 29th Annual ACM
Symposium on the Theory of Computing, pages 304–313, 1997.

10. B. Chor, N. Gilboa, and M. Naor. Private information retrieval by
keywords. IACR Cryptology ePrint Archive, 1998:3, 1998.

11. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private infor-
mation retrieval. J. ACM, 45(6):965–981, 1998.

12. M. Clear and C. McGoldrick. Multi-identity and multi-key leveled
FHE from learning with errors. In Proc. CRYPTO 2015, pages 630–
656, 2015.

13. S. A. Cook and H. J. Hoover. A depth-universal circuit. SIAM J.
Comput., 14(4):833–839, 1985.

14. R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudoran-
dom secret-sharing and applications to secure computation. In Proc.
TCC 2005, pages 342–362, 2005.

15. Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryp-
tion and its applications. IACR Cryptology ePrint Archive, 2016:272,
2016. To appear in Crypto 2016.

16. K. Efremenko. 3-query locally decodable codes of subexponential
length. In Proc. STOC, pages 39–44, 2009.

17. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. N.
Wright. Secure multiparty computation of approximations. In Proc.
ICALP, pages 927–938, 2001.

18. M. Finiasz and K. Ramchandran. Private stream search at the same
communication cost as a regular search: Role of LDPC codes. In
Proc. ISIT, pages 2556–2560, 2012.

19. C. Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169–178, 2009.

20. C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. D.
Smith. Using fully homomorphic hybrid encryption to minimize
non-interative zero-knowledge proofs. J. Cryptology, 28(4):820–843,
2015.

29

21. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO (1), pages 75–92, 2013.

22. N. Gilboa and Y. Ishai. Distributed point functions and their appli-
cations. In Proc. EUROCRYPT 14, pages 640–658, 2014.

23. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority.
In STOC, pages 218–229, 1987.

24. S. Halevi and V. Shoup. Bootstrapping for helib. In Proc. EURO-
CRYPT 2015, pages 641–670, 2015.

25. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted
data. In Proc. TCC 2007, pages 575–594, 2007.

26. A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and Q. Tang. Opti-
mal rate private information retrieval from homomorphic encryption.
PoPETs, 2015(2):222–243, 2015.

27. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SIN-
GLE database, computationally-private information retrieval. In
Proc. FOCS 97, pages 364–373, 1997.

28. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic
encryption. In Proc. STOC 2012, pages 1219–1234, 2012.

29. P. Mukherjee and D. Wichs. Two round multiparty computation via
multi-key FHE. In Proc. EUROCRYPT 2016, pages 735–763, 2016.

30. M. Naor and K. Nissim. Communication preserving protocols for
secure function evaluation. In In Proc. STOC, pages 590–599, 2001.

31. M. Naor and O. Reingold. Number-theoretic constructions of ef-
ficient pseudo-random functions. In Proc. FOCS, pages 458–467,
1997.

32. R. Ostrovsky and W. Skeith III. Private searching on streaming
data. In Proc. CRYPTO 2005, pages 223–240, 2005.

33. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks
and privacy homomorphisms. In Foundations of secure computation,
pages 169–179. Academic, New York, 1978.

34. D. A. Spielman. Linear-time encodable and decodable error-
correcting codes. IEEE Trans. Information Theory, 42(6):1723–
1731, 1996.

35. L. G. Valiant. Universal circuits (preliminary report). In Proc. STOC
1976, pages 196–203, 1976.

36. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
homomorphic encryption over the integers. In Proc. EUROCRYPT
2010, pages 24–43, 2010.

37. P. C. van Oorschot and M. J. Wiener. Parallel collision search with
cryptanalytic applications. J. Cryptology, 12(1):1–28, 1999.

38. A. C.-C. Yao. How to generate and exchange secrets (extended
abstract). In Proc. FOCS, pages 162–167, 1986.

39. S. Yekhanin. Towards 3-query locally decodable codes of subexpo-
nential length. In Proc. STOC, pages 266–274, 2007.

30

