
Group-Based Secure Computation:

Optimizing Rounds, Communication,

and Computation

Elette Boyle
IDC Herzliya

eboyle@alum.mit.edu

Niv Gilboa
Ben Gurion University
gilboan@bgu.ac.il

Yuval Ishai
Technion and UCLA

yuvali@cs.technion.ac.il

August 26, 2017

Abstract

A recent work of Boyle et al. (Crypto 2016) suggests that “group-based” cryptographic
protocols, namely ones that only rely on a cryptographically hard (Abelian) group, can be
surprisingly powerful. In particular, they present succinct two-party protocols for securely
computing branching programs and NC1 circuits under the DDH assumption, providing the
first alternative to fully homomorphic encryption.

In this work we further explore the power of group-based secure computation protocols,
improving both their asymptotic and concrete efficiency. We obtain the following results.

• Black-box use of group. We modify the succinct protocols of Boyle et al. so that they
only make a black-box use of the underlying group, eliminating an expensive non-black-box
setup phase.

• Round complexity. For any constant number of parties, we obtain 2-round MPC proto-
cols based on a PKI setup under the DDH assumption. Prior to our work, such protocols
were only known using fully homomorphic encryption or indistinguishability obfuscation.

• Communication complexity. Under DDH, we present a secure 2-party protocol for any
NC1 or log-space computation with n input bits and m output bits using n+(1+o(1))m+
poly(λ) bits of communication, where λ is a security parameter. In particular, the protocol
generates n instances of bit-oblivious-transfer using (4 + o(1)) · n bits of communication.
This gives the first constant-rate OT protocol under DDH.

• Computation complexity. We present several techniques for improving the compu-
tational cost of the share conversion procedure of Boyle et al., improving the concrete
efficiency of group-based protocols by several orders of magnitude.

Keywords: Secure computation, homomorphic secret sharing, share conversion, fully homo-
morphic encryption

1 Introduction

Gentry’s 2009 breakthrough on fully homomorphic encryption (FHE) [RAD78, Gen09] changed
the landscape of the theory of secure computation. FHE enables arbitrary computations on en-
crypted inputs, thereby providing a general-purpose tool for succinct secure computation protocols

1

whose communication complexity is smaller than the circuit size of the function being computed.
FHE-based protocols were also used to minimize the round complexity of secure multiparty com-
putation [LTV12, AJLA+12, MW16, DHRW16].1

On the downside, despite impressive recent progress [HS15, DM15, CGGI16], the concrete
efficiency of current FHE implementations still leaves much to be desired. Moreover, the set of
cryptographic assumptions on which FHE can be based is still quite narrow. These two limitations
may in fact be related, in that attempts at efficient implementation are curbed by the limited variety
of FHE candidates. Indeed, all such candidates rely on similar lattice-related algebraic structures
and are subject to lattice reduction attacks that have a negative impact on concrete efficiency.
In particular, no FHE construction is known under a discrete-log-type assumption or even in the
generic group model. This should be contrasted with standard public-key encryption schemes and
non-succinct secure computation protocols that can be easily (and unconditionally) realized in the
generic group model.

A recent work of Boyle et al. [BGI16] introduced a new technique for succinct secure computation
that can be based on any DDH-hard group. (For better concrete efficiency, it is useful to rely on
stronger assumptions than DDH, such as the circular security of ElGamal encryption.) While the
results obtained using this group-based approach are weaker than corresponding FHE-based results
in several important aspects, they do give hope for better concrete efficiency in useful application
scenarios. The present work is motivated in part by this hope.

More concretely, the approach of [BGI16] replaces the use of FHE by a 2-party homomorphic
secret sharing (HSS) primitive, which turns out to be sufficient for the purpose of succinct secure
two-party computation. An HSS scheme is a secret sharing scheme that supports homomorphic
computations on the shares, such that the output of the computation is compactly shared between
the parties. We in fact make the stronger requirement that the output be additively shared between
the parties over a finite Abelian group. In particular, if the output is a single bit, each output share
can be just a single bit. HSS can be viewed as a dual version of function section sharing [BGI15],
where the roles of the function and the input are reversed, or a weaker version of additive-spooky
encryption [DHRW16].

The main result of [BGI16] is a DDH-based HSS scheme for branching programs, which in
particular captures logspace and NC1 computations. We provide a high level overview of this HSS
scheme in Section 2.6. The HSS scheme of [BGI16] can be used to obtain succinct secure two-party
computation protocols for the same classes. One difficulty in applying this HSS scheme towards
secure computation is that it has an inverse polynomial error probability, and moreover the event
of an error is correlated with the secret input and with bits of the secret key. This difficulty was
addressed in [BGI16] by combining error-correcting codes with general-purpose secure two-party
computation protocols for recovering the correct output from the encoding with negligible error
probability. This approach has a significant overhead in communication and computation, and
requires additional rounds of interaction.

The source of the error in the HSS scheme from [BGI16] is a non-interactive share conversion
procedure, which converts multiplicative shares into additive shares. To perform this conversion
with an error probability bound of δ, the procedure requires O((1/δ) · log(1/δ)) (or expected O(1/δ))
group multiplications.

1As in previous related works, our default notion of secure computation refers to security against passive (semi-
honest) adversaries. In most cases, similar protocols with security against active (malicious) adversaries can be
obtained under the same assumptions by using a suitable version of the GMW compiler [GMW87, NN01, HK07].

2

1.1 Our Contribution

In this work we further explore the power of group-based secure computation protocols, improving
both their asymptotic and concrete efficiency. Following is a detailed overview of our results and
the underlying techniques.

Black-box use of group. The group-based succinct protocols from [BGI16] use general-purpose
secure computation to distribute the key generation of a “public-key” HSS scheme, namely one
that allows joint computation on two or more shared inputs. This procedure leads to poor concrete
efficiency, and makes a non-black-box use of the underlying cryptographic group. We present a
generic approach for obtaining similar results while only making a black-box use of the underlying
group. This approach relies on the plaintext- and key-homomorphism properties of ElGamal en-
cryption (or its circular-secure variant [BHHO08]) and can be used for improving the concrete cost
of group-based protocols.

Minimizing round complexity. For any constant number of parties, we obtain 2-round MPC
protocols based on a Public Key Infrastructure (PKI) setup under the DDH assumption.2 Prior
to our work, such protocols were only known using different flavors of FHE [AJLA+12, MW16,
DHRW16] or indistinguishability obfuscation [GGHR14, DHRW16]. (Granted, the latter protocols
can further support polynomial number of parties, and with milder setup requirements: PKI setup
can be relaxed to a CRS setup by using multi-key FHE, which can be based on LWE [MW16,
DHRW16], or even eliminated by relying on indistinguishability obfuscation [DHRW16].)

Our 2-round protocol is obtained in three steps. In the first step, we construct a 1-round
(PKI-based) distributed HSS scheme, which can be used to jointly share inputs that originate
from multiple clients. This can be used to construct a 2-round protocol in the PKI model that
allows m clients to compute a function of their inputs with the help of two servers (of which at
most one is corrupted), where in this protocol each client sends a single message to each server
and each server sends a single message to each client. The protocol only satisfies a weak notion of
1/poly security (i.e., security with inverse-polynomial simulation error), due to the input-dependent
error of the HSS scheme (inherited from the share conversion procedure of [BGI16]). The protocol
can be used to succinctly evaluate branching programs. Alternatively, it can be used to evaluate
general circuits (at the cost of compromising succinctness) by applying the HSS evaluation to a
low-complexity randomized encoding of the circuit [Yao86, BMR90, AIK05].

The second step achieves security amplification. That is, we improve the security of the above
protocol to hold with negligible simulation error, without increasing the round complexity. This is
done by evaluating a compiled version of the desired computation, which is resilient to leakage on
intermediate computation values. This compilation is obtained by using a virtual “client-server”
MPC protocol to make computations locally random, where the initial messages from clients to
virtual servers are HSS-shared between the two real servers, and the role of each virtual server is
emulated by the two (real) servers via HSS evaluation. This virtual MPC protocol only needs to
provide security against a small fraction of corrupted (semi-honest) virtual servers, but additionally
needs to be robust in the sense that the output can still be computed even when a bounded number
of virtual servers fail. The latter feature is important for coping with the error of the underlying
HSS.

2This implies 3-round protocols in the plain model. Note, however, that unlike the first round in a general 3-round
protocol, a PKI setup is independent of the inputs and the number of parties.

3

A technical issue we need to deal with is that the event of failure in the share conversion
procedure is correlated not only with the input but also with bits of the secret key. To cope with
this type of leakage, we modify the underlying HSS scheme to use a redundant representation of
the secret key that makes leakage of a small number of bits harmless.

To make this security amplification step efficient, we need the virtual MPC protocol to have a
constant number of rounds, and the next message function computed by each server in each round
to be efficiently implementable by branching programs. In particular, we can use 2-round virtual
MPC protocols that apply to constant-degree polynomials and do not require any server-to-server
communication. (Again, general circuits can be handled via randomized encoding.) These protocols
are sufficient for our main feasibility result of 2-round MPC from DDH. We can additionally get
succinct 2-round protocols for NC1 by applying a different type of virtual MPC protocol that
computes NC1 functions in a constant number of rounds with low client-to-server communication,
but additionally requires (a large amount of) server-to-server communication.3 As a corollary, we
get a 2-message 2-party protocol for computing any NC1 function f(x, y) (with output delivered
to one party), where the length of each message is comparable to the length of the corresponding
input (and is independent of the complexity of f).

In the third and final step, we use a player virtualization technique [Bra84, HM00] to transform
the 2-round (m-client) 2-server protocol into a 2-round protocol with m clients and an arbitrary
constant number of servers k. At a high level, this is done by iteratively emulating the computa-
tions of a single server (beginning with a single server in the 2-server protocol) by two separate
servers, via another level of 2-round MPC. Because of the complexity blowup in each iteration, this
virtualization step can only be applied a constant number of times. Such a client-server protocol
readily implies a 2-round (standard) k-party protocol by letting m = k and having each party
emulate the corresponding client and server.

Improving communication complexity. Under DDH, we present a secure 2-party protocol for
any NC1 or log-space computation with n input bits and m output bits using n+(1+o(1))m+poly(λ)
bits of communication, where λ is a security parameter. In particular, the protocol can be used
to generate n instances of

(
2
1

)
-oblivious-transfer (OT) of bits using 4n + o(n) + poly(λ) bits of

communication. This gives the first constant-rate OT protocol under DDH. Constant-rate OT
protocols (with a poor concrete rate) could previously be constructed using a polynomial-stretch
local pseudorandom generator [IKOS08] or the Phi-hiding assumption [IKOS09]. A similar result
to ours can also be obtained under LWE, via the HSS scheme implied by [DHRW16].

The above result is obtained via a new security amplification technique, which provides a simpler
and more efficient alternative to the use of virtual MPC in the second step described above. The
downside is that this approach is restricted to the 2-party setting and requires an additional round
of interaction. The high level idea is as follows. Denote the two parties by P0, P1 and assume that
the functionality f delivers an output only to P1. We rely on a Las-Vegas variant of HSS where
the shared output is guaranteed to be correct (i.e., the two output shares add up to the correct
output) unless P1 outputs ⊥, where the latter occurs with small probability. The idea is to have P1

use
(
m

m−k
)
-OT for m� k in order to block itself from the k output shares of P0 that correspond to

the positions in which it outputs ⊥. Note that the m− k selected output shares can be simulated
given the correct output and the output shares of P1, and thus they do not leak any additional

3Interestingly, this approach does not seem to extend to branching programs using known techniques, since in
known constant-round protocols for branching programs the next message function cannot be efficiently computed
by branching programs.

4

information about the input. To make up for the k lost output bits, we use an erasure code to encode
the output. Since we can make the number of erasures small, we only need to introduce a small
amount of redundancy to the output. A crucial observation which makes this approach useful is that
the above form of “punctured OT” can be implemented with only m+ o(m) bits of communication
by combining general-purpose 2PC with a puncturable pseudo-random function [SW14].

Improving computation complexity. We present several techniques for reducing the compu-
tational cost of the share conversion procedure from [BGI16], improving the concrete efficiency of
group-based protocols (both in [BGI16] and the present work) by several orders of magnitude.

First, we present an optimization that improves the asymptotic worst-case running time of
conversion by an O(log(1/δ)) factor, where δ is the error probability. In the procedure from [BGI16],
a group element h is mapped to the smallest non-negative integer i such that h · gi (where g is
a group generator) belongs to a pseudo-random set of distinguished group elements of density
δ. Allowing δ error probability, O((1/δ) · log(1/δ)) values of i should be checked, requiring a
similar number of group multiplications in the worst case. While the expected number of group
multiplications is O(log(1/δ)), in applications that involve “shallow” computations (where many
short sequences of RMS multiplications are performed in parallel) it is the worst-case time that
dominates the overall performance. The alternative approach we propose is to apply an integer-
valued hash function φ to every group element, and return the (first) value of i in an interval of size
O(1/δ) that minimizes the value of φ(h · gi). This requires only O(1/δ) group multiplications. We
can also get an unconditional implementation of this alternative share conversion by using explicit
constructions of “min-wise independent” hash functions [BCM98, Ind01].

Next, we present several optimization ideas that apply “conversion-friendly groups” towards
improving the concrete running time of share conversion by several orders of magnitude. These
optimizations rely on discrete-log-type assumptions in multiplicative subgroups of Z∗p of a prime
order q, where p = 2q + 1 is a prime which is close to a power of 2, and where g = 2 is a generator
of the subgroup.We propose several concrete choices of such p. The advantage of such a group is
that multiplying a group element h by the generator g can be done by shifting h by one bit to the
left, and adding the difference between p and the closest power of 2 in case that the (removed)
leftmost bit is 1. In fact, one can multiply h by gw, where w is comparable to the machine word
size (say, w = 32) by using a small constant expected number of machine word operations (64-bit
additions or multiplications).

A second observation is that by making a seemingly mild heuristic assumption on the MSB
sequence of the powers h · gi (where h is random), it suffices to search for the first position in the
sequence that contains a stretch of 0’s of length ≈ log(1/δ). Concretely we need a combinatorial
pseudo-randomness assumption asserting that such a stretch occurs roughly as often as expected
in a totally random sequence.

By using an optimized “lazy” strategy for finding the first such stretch of 0’s, the entire share
conversion procedure can be implemented with an amortized cost of less than a single machine
word operation per step. Concretely, the amortized cost is roughly 0.03 machine word additions
and multiplications and 0.2 masking operations per step. This should be compared to a full group
multiplication per step in the procedure of [BGI16]. Combining all the optimizations, one can
perform thousands of RMS multiplications per second (using strong but standard hardware) with
error probability that is small enough for homomorphically computing simple functions.

We note that the latter optimizations do not apply to Elliptic Curve groups, and hence do not
provide the optimal level of succinctness. However, the gain in the computational cost of share

5

conversion is arguably much more significant. We leave open the question of implementing similar
optimizations for the case of Elliptic Curve groups.

2 Preliminaries

2.1 Restricted-Multiplication Straight-Line programs

The homomorphic evaluation of the HSS scheme from [BGI16] supports the evaluation of programs
P in a computational model known as Restricted Multiplication Straight-line (RMS) program [Cle91,
BGI16].

Definition 2.1 (RMS programs). The class of Restricted Multiplication Straight-line (RMS) pro-
grams consists of a magnitude bound 1M and an arbitrary sequence of the four following instruc-
tions, each with a unique identifier id:

• Load an input into memory: (id, ŷj ← ŵi).

• Add values in memory: (id, ŷk ← ŷi + ŷj).

• Multiply value in memory by an input value: (id, ŷk ← ŵi · ŷj).

• Output value from memory, as element of Zβ: (id, β, Ôj ← ŷi).

We assume that the RMS program complies with the given bound M in the sense that for every
input w, the values of all intermediate memory values in the RMS execution on w are at most M .
(For simulating standard branching programs, it suffices to let M = 1.) We define the size of an
RMS program P as the number of its instructions.

RMS programs with M = 2 are powerful enough to efficiently simulate boolean formulas,
logarithmic-depth boolean circuits, and deterministic branching programs (capturing logarithmic-
space computations) [BGI16].

2.2 Circular Security

We present a simplified (weaker) version of the more general notion of key-dependent security as
introduced by Black et al. [BRS02].

Definition 2.2 (Circular Security). We say that a public-key encryption scheme (Gen,Enc,Dec)
with secret key length `(λ) and message space containing {0, 1} is circular secure if there exists a
negligible function ν(λ) for which the following holds for every nonuniform polynomial-time A:

Pr

 (pk, sk)← Gen(1λ),
b← {0, 1},
b′ ← AOb(pk)

: b′ = b

 ≤ 1

2
+ ν(λ),

where the oracle Ob takes no input and outputs the following (where sk(i) denotes the ith bit of
sk):

(C1, . . . , C`), where

{
∀i ∈ [`], Ci ← Enc(pk, 0) if b = 0

∀i ∈ [`], Ci ← Enc(pk, sk(i)) if b = 1
.

We remark that circular security implies standard semantic security.

6

2.3 Puncturable Pseudorandom Functions

Let PRFK(·) be a pseudorandom function family with input space {0, 1}∗, output space {0, 1}
and key K ∈ {0, 1}λ. We call PRFK a puncturable PRF family if there exists a PPT algorithm
Puncture that satisfies the following properties:

• Functionality preserved under puncturing. Puncture takes as input a PRF key K ∈
{0, 1}λ, an input length 1d, set of punctured inputs X = {x1, . . . , xk} ⊆ {0, 1}d and outputs
KX such that for all x′ ∈ {0, 1}d \X, PRFKX (x′) = PRFK(x′).

• Pseudorandom at punctured points. For every non-uniform polynomial-time adversary
(A1,A2) such that A1(1

λ) outputs an input set X = {x1, . . . , xk} ⊆ {0, 1}d, consider an ex-

periment where K
$←− {0, 1}λ and KX ← Puncture(K,X). Then there is a negligible function

µ such that for all λ, |Pr[A2(KX , X, (PRFK(x1), . . . , PRFK(xk)) = 1]−Pr[A2(KX , X, Uk) =
1]| ≤ µ(λ) where Uk is a string drawn uniformly at random from {0, 1}k.

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 2.3 ([GGM86, BW13, BGI14, KPTZ13]). Assuming the existence of a one-way function,
there exists a puncturable PRF with key size |KX | = O(λkd). The PRF can be evaluated at
all points given K or all non-punctured point given KX by using O(2d) invocations of a PRG
G : {0, 1}λ → {0, 1}2λ. The circuit size required for generating KX given a λ-bit K and X is
kd · poly(λ).

2.4 Homomorphic Secret Sharing and DEHE

As in [BGI16], we consider the case of 2-out-of-2 secret sharing, where an algorithm Share is used
to split a secret w ∈ {0, 1}n into two shares, such that each share computationally hides w. The
homomorphic evaluation algorithm Eval is used to locally evaluate a program P ∈ P on the two
shares, such that the two outputs of Eval add up to P (w) modulo a positive integer β (where β = 2
by default), except with δ error probability. The running time of Eval is polynomial in the size of P
and 1/δ. Here we formalize a stronger “Las Vegas” notion of HSS where Eval may output ⊥ with
at most δ probability, and the output is guaranteed to be correct as long as no party outputs ⊥.

Definition 2.4 (Homomorphic Secret Sharing: Las Vegas Variant). A (2-party) Las Vegas Homo-
morphic Secret Sharing (HSS) scheme for a class of programs P consists of algorithms (Share,Eval)
with the following syntax:

• Share(1λ, w): On security parameter 1λ and w ∈ {0, 1}n, the sharing algorithm outputs a pair
of shares (share0, share1). We assume that the input length n is included in each share.

• Eval(b, share, P, δ, β): On input party index b ∈ {0, 1}, share share (which also specifies an
input length n), a program P ∈ P with n input bits and m output bits, an error bound
δ > 0 and integer β ≥ 2, the homomorphic evaluation algorithm either outputs yb ∈ Zmβ ,
constituting party b’s share of an output y ∈ {0, 1}m, or alternatively outputs ⊥ to indicate
failure. When β is omitted it is understood to be β = 2.

7

The algorithm Share is a PPT algorithm, whereas Eval can run in time polynomial in its input
length and in 1/δ. The algorithms (Share,Eval) should satisfy the following correctness and security
requirements:

• Correctness: For every polynomial p there is a negligible ν such that for every positive
integer λ, input w ∈ {0, 1}n, program P ∈ P with input length n, error bound δ > 0 and
integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have

Pr[(share0, share1)← Share(1λ, w); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :

(y0 = ⊥) ∨ (y1 = ⊥)] ≤ δ + ν(λ),

and

Pr[(share0, share1)← Share(1λ, w); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :

(y0 6= ⊥) ∧ (y1 6= ⊥) ∧ y0 + y1 6= P (w)] ≤ ν(λ),

where addition of y0 and y1 is carried out modulo β.

• Security: Each share keeps the input semantically secure.

We will also use a stronger asymmetric version of Las Vegas HSS where only one party (say, P1)
may output ⊥. This is defined similarly to the above, except that conditions y0 = ⊥ and y0 6= ⊥
in the correctness requirement are removed.

2.4.1 Multi-Evaluation HSS

Similarly to [BGI16] (cf. full version Definition 4.2), it is useful to rely on a stronger flavor of
HSS which guarantee that when running polynomially many instances of Eval, the events of error
are indistinguishable from being independent. (We do not achieve full independence because all
instances share a common PRF key used for share conversion.) To keep Eval deterministic, we
include an additional input id where the independence condition is guaranteed as long as all values
of id are distinct. Here we need a variant that applies to the notion of (simulatable) Las Vegas HSS.
We formalize it for the case of standard Las Vegas HSS, and then describe the required modification
for the simulatable variant.

Definition 2.5 (Multi-Evaluation Las Vegas HSS). A (2-party) Multi-Evaluation Las Vegas HSS
scheme for a class of programs P consists of algorithms (Share,Eval) that have the same syntax
as standard Las Vegas HSS (Definition 2.4) except that Eval has an additional input id. The
algorithm Share should satisfy the same security requirement as in Definition 2.4. The algorithm
Eval should satisfy the same correctness requirement as in Definition 2.4 (for every choice of id)
and the following additional independence requirement.

• Independence of failures: For every b ∈ {0, 1}, polynomialsm, s and nonuniform polynomial-
time distinguisher A there is a negligible function ν such that the following holds. For every
positive integer λ, input w ∈ {0, 1}n, programs P1, . . . , Pm(λ) ∈ P of size s(λ) with input

length n, error bound δ > 0, integer β ≥ 2 and distinct identifiers id1, . . . , idm(λ) ∈ {0, 1}λ,
there are error probabilities p1, . . . , pm(λ) ≤ δ such that the advantage of A in distinguishing
between the outputs of the following two experiments is at most ν(λ):

8

– Experiment 1: Output a bit sequence τ1, . . . , τm(λ) where Pr[τi = 1] = pi and the τi
are statistically independent.

– Experiment 2:

∗ (share0, share1)← Share(1λ, w);

∗ For i = 1, . . . ,m(λ): Let yib ← Eval(idi, b, shareb, Pi, δ, β); Output 1 if yib = ⊥ and 0
otherwise.

One can similarly define a multi-evaluation variants of the other flavors of HSS, including the
simulatable Las Vegas variant. In the latter case, we make the additional requirement that the
events of outputting > are indistinguishable from being independent. This is formalized similarly
to the above.

2.5 Distributed Evaluation Homomorphic Encryption (DEHE)

[Elette’s Note: come back to fix this!!!!!]
In this section we define a public-key variant of HSS from [BGI16], referred to as Distributed

Evaluation Homomorphic Encryption (DEHE). A DEHE scheme supports homomorphic computa-
tions on inputs contributed by different clients using a common public key and secret evaluation
keys. The corresponding security notion guarantees computational secrecy of an encrypted input
given the public key, the ciphertext, and evaluation key of any single server. In a setting consisting
of two servers and an arbitrary number of clients, the above security notion implies that inputs
contributed by a set of uncorrupted clients remain secure even if one of the two servers colludes
with all the remaining clients.

Definition 2.6 (Distributed-Evaluation Homomorphic Encryption). A (2-party, 1/poly-error) Distributed-
Evaluation Homomorphic Encryption (DEHE) for a class of programs P consists of algorithms
(Gen,Enc,Eval) with the following syntax:

• Gen(1λ): On input a security parameter 1λ, the key generation algorithm outputs a public
key pk and a pair of evaluation keys (ek0, ek1).

• Enc(pk, w): On a public key pk and a secret input value w ∈ {0, 1}, the encryption algorithm
outputs a ciphertext ct.

• Eval(b, ekb, (ct1, . . . , ctn), P, δ, β): On input party index b ∈ {0, 1}, evaluation key ek, vector
of n ciphertexts, a program P ∈ P with n input bits and m output bits, error bound δ > 0,
and an integer β ≥ 2, the homomorphic evaluation algorithm outputs yb ∈ Zmβ , constituting
party b’s share of an output y ∈ {0, 1}m. When β is omitted it is understood to be β = 2.

The algorithms Gen and Enc are PPT algorithms, whereas Eval can run in time polynomial in its
input length and in 1/δ. The algorithms (Gen,Enc,Eval) should satisfy the following correctness
and security requirements:

• Correctness: For every polynomial p there is a negligible ν such that for every positive
integer λ, input (w1, . . . , wn) ∈ {0, 1}n, program P ∈ P with input length n, error bound
δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have

Pr

 (pk, (ek0, ek1))← Gen(1λ);
(ct1, . . . , ctn)← (Enc(pk, w1), . . . ,Enc(pk, wn));
yb ← Eval(b, ekb, (ct1, . . . , ctn), P, δ, β), b = 0, 1

: y0 + y1 = P (w1, . . . , wn)

 ≥ 1−δ−ν(λ),

9

where addition of y0 and y1 is carried out modulo β.

• Security: For b = 0, 1, the two distribution ensembles C0(λ) and C1(λ) are computation-
ally indistinguishable, where Cw(λ) is obtained by letting (pk, (ek0, ek1)) ← Gen(1λ) and
outputting (pk, ekb,Enc(pk, w)).

2.6 BGI Construction [BGI16]

The work of [BGI16] constructs 2-party HSS (and DEHE) that directly supports homomorphic
evaluation of “Restricted-Multiplication Straight-line” (RMS) programs over small integers. Such
programs support four operations: Load Input to Memory, Add Values in Memory, Multiply Input
by Memory Value, and Output Value. (See full version for formal RMS syntax). We provide here
a high-level description of the [BGI16] construction, which serves as a starting point for many of
our results. In what follows, let G be a DDH-hard group of prime order q with generator g ∈ G,
and let ` = dlog qe. We begin with the BGI construction of HSS based on circular-secure ElGamal:

Secret shares: To secret share a (small integer) input w, the BGI construction samples an
ElGamal key pair (c, e = gc) ∈ Zq × G, and outputs shares as follows: (1) Each party gets an
additive secret share over Zq of the input w and of the product cw (viewed as an element of Zq).
(2) Each party also gets (copies of the same) (` + 1) ElGamal ciphertexts, one encrypting w and
one encrypting each product c(t)w of w with the tth bit of the secret key for t ∈ [`].

Homomorphic evaluation: Evaluation maintains the invariant that (after each instruction) for
each memory value x in the RMS program execution, the value of x and of cx are each held as an
additive secret sharing across the two parties. This directly holds for any “Load Input to Memory”
instruction, and can straightforwardly be achieved for each “Add Values in Memory” instruction by
linear homomorphism of additive secret shares. “Output Value From Memory” to a target group
Zβ (for some integer β ≤ q specified in the RMS program) is achieved by having each party shift his
current share of the relevant memory value by a common rerandomization value and then output
this share mod β.

The primary challenge is in supporting “Multiply Input by Value in Memory.” Recall in such
situation the parties hold additive secret shares of x and cx for the memory value x, and ElGamal
ciphertexts of w and {c(t)w}t∈[`] for the input w. Evaluation takes place in two steps, repeated for
each ciphertext; for example, for the ciphertext encrypting w, we convert the common ElGamal
ciphertext of w and additive secret shares of x and cx to additive secret shares of wx:

1. Use additive secret shares of x and cx to perform distributed ElGamal decryption via “lin-
ear algebra in the exponent,” yielding multiplicative secret shares of gwx. For ciphertext
(gr, gcr+w), the multiplicative share of gwx is (gr)−[share of cx](gcr+w)[share of x].

2. To return the computed shares of gwx back to additive shares of wx, the parties execute a
share conversion procedure referred to as “Distributed Discrete Log,” wherein the parties
output the distance (measured by powers of g) of their share value gzb from the nearest point
in an agreed-upon “distinguished set” in G. Error occurs in this step if parties output with
respect to different distinguished points, which occurs if a distinguished point lies “between”
the parties’ two shares gz0 , gz1 = gz0+wx.

A tradeoff between computation and error can be made, by decreasing the density of distin-
guished points δ, and scaling computation as 1/δ; the resulting error probability is roughly

10

δM , where M is the maximal value of the “payload” wx (corresponding to the “distance”
between the parties’ shares).

By repeating the above 2 steps for w and for each c(t)w, the parties receive additive secret
shares of wx and of each c(t)wx. As a final step, the shares of {c(t)wx}t∈[`] are combined by the
appropriate powers-of-2 linear combination to yield a single set of additive shares of cwx, yielding
the desired invariant for the new memory value wx.

Remark 2.7 (Removing the ElGamal circular security assumption). This can be done by one
of two methods: (1) a standard “leveled” approach, using a sequence of secret keys (growing
the HSS share size by the depth of computation); alternatively, (2) by replacing ElGamal with
the “BHHO” encryption scheme of Boneh, Halevi, Hamburg, and Ostrovsky [BHHO08], which is
provably circular secure based on DDH. Roughly, BHHO ciphertexts are an O(λ)-element extension
of ElGamal, where the first elements are of the form gr1, . . . , g

r
` (for fixed generators g1, . . . , g` and

encryption randomness r), and the final element contains the message as gmsg masked by a subset-
product of the previous elements as dictated by the secret key s ∈ {0, 1}`. In particular, BHHO
decryption follows a direct analog of “linear algebra in the exponent” as in ElGamal, and thus can
be leveraged in the same manner within homomorphic share evaluation, where the new invariant for
each memory value x is holding additive secret shares of x as well as each product stx, for the secret
key bits st, t ∈ [`]. In addition, BHHO supports the same form of plaintext homomorphism required
for DEHE, as discussed above. We refer the reader to [BGI16] for a detailed formal treatment.

2.7 Secure Multiparty Computation

We consider two types of protocols for secure multiparty computation (MPC): standard k-party
MPC protocols and client-server protocols. We refer the reader to [Can00, Gol04] for standard
definitions of MPC protocols and only highlight here the aspects that are particularly relevant to
this work.

In a standard MPC protocol there are k parties who interact with each other in order to compute
a function of their inputs. We say that such a protocol is secure if it is computationally secure
against a static, passive adversary who may corrupt any strict subset of the parties. We use 2PC
to refer to the case k = 2.

Client-server protocols. In a client-server protocol there are m clients and k servers. Only the
clients have inputs and get an output. Clients and servers can communicate over secure point-
to-point channels. We assume protocols in the client-server model to take the following canonical
form: in the first round each client sends a message to each server. Then there may r ≥ 0 rounds
of interaction in which each server can send a message to each other server. We assume the servers
to be deterministic, so that every message sent by a server in a given round is determined by the
messages it received in previous rounds. Finally, there is an output reconstruction round in which
each server sends a message to each client, and where each client computes an output by applying
a local decoding function to the k messages it received.

We specify such a client-server protocol by Π = (Encode,NextMsg,Decode), where Encode(i, xi)
is a randomized function mapping the input of Client i to the k messages it sends in the first round,
NextMsg(i, ~m) is a next message function which determines the messages sent by Server i in in the
current round given the messages ~m it received in previous rounds, and Decode(i, ~m) denote the
output of Client i given the messages ~m it received in the final round. Finally, we will consider by

11

default protocols for functionalities that deliver the same output to all clients. In such a case, we
can assume that each server sends the same message to all clients, and Decode(i, ·) is the same for
all i.

Security and robustness. We say that Π is a t-secure protocol for f if it is secure against a
static, passive (semi-honest) adversary who may corrupt any set of parties that includes at most
t servers and an arbitrary number of clients. Security is defined by the existence of a simulator
Sim(1λ, T, 1n, y) that given a security parameter λ (in the computational case), a set T of corrupted
parties, an input length n, and an output y of f (in the case at least one client is corrupted) outputs a
simulated view of the parties in T . Simulation should be either perfect or computational, depending
on the type of security. We assume computational (k−1)-security by default, but will also consider
protocols that offer perfect t-security for smaller values of t. Note that any secure k-client k-server
protocol for f implies a standard k-party MPC for f by letting Party i simulate both Client i and
Server i.

A t-robust protocol for f is a t-secure protocol with the following additional feature: the clients
obtain the correct output of f even if t servers fail to send messages. Equivalently, the function
Decode outputs the correct output of f at the end of the protocol execution even if up to t of its
inputs are replaced by ⊥.

Succinct MPC. We will consider MPC protocols for a class of programs P, where all parties are
given a “program” P ∈ P (say, a boolean circuit, boolean formula or branching program) as an
input, and their running time should be polynomial in the size of P . See Section 4 of [BGI16]
for a full definition. We refer to an MPC protocol for P as being succinct if the communication
complexity is bounded by a fixed polynomial in the total length of inputs and outputs and the
security parameter, independently of the program size.

MPC with PKI setup. For both flavors of MPC protocols, we consider round complexity
with a public key infrastructure (PKI) setup. A PKI setup allows a one-time global choice of
parameters params ← ParamGen(1λ), followed by independent choices of a key pair (ski, pki) ←
KeyGen(1λ, params) by each party Pi.

4 We assume that each party knows the public keys of all
parties with whom it wants to interact as well as its own secret key. Note that the public keys are
generated independently of any inputs or even the number of other parties in the system. For this
reason we do not count the PKI setup towards the round complexity of our protocols.

3 Black-Box Client-Server HSS and MPC

[Elette’s Note: fix this]
We now define a distributed (client-server) variant of DEHE, analogous to the client-server HSS

variant defined in Section 3.

Definition 3.1 (Client-Server DEHE). Anm-client 2-server (1/poly-error) Client-Server Distributed-
Evaluation Homomorphic Encryption (DEHE) for a class of programs P consists of a distributed
protocol Π and algorithms Enc,Eval, with the following syntax.

4We will only use params to specify a group for ElGamal encryption; hence, we can let params be a common
random string, or even pick params deterministically under a suitable variant of DDH.

12

• Π specifies an interactive protocol between m clients C1, . . . , Cm and two servers S0, S1 whose
output is a public key pk to each client, and an evaluation key ek0, ek1 to each respective
server S0, S1.

• Enc,Eval have the same syntax as in standard DEHE (see Definition 2.6).

The tuple (Π,Enc,Eval) satisfies the same correctness property as in standard DEHE, as well as
the following security property:

• Security: Intuitively, for any corrupted set of clients and at most one server, there exists a
PPT simulator who simulates the collective view of the corrupt entities in Π, together with
an encrypted input w ∈ {0, 1}, without knowledge of w.

Namely, for Corrupt ⊂ {C1, . . . , Cm}∪{S0, S1} and w ∈ {0, 1}, let view(1λ,Corrupt, w) denote
the joint view of the respective clients and/or server within the following experiment:

– Clients C1, . . . , Cm interact as prescribed by Π, using fresh randomness; each client learns
pk and each server Sb learns ekb.

– The input w is encrypted with the resulting public key, as ct← Enc(pk, w). The cipher-
text ct is given to all clients and servers.

Then security requires that there exists a PPT simulator Sim such that for any corrupted set
Corrupt ⊂ {C1, . . . , Cm}∪{S0, S1} of clients and servers with {C1, . . . Cm}, {S0, S1} 6⊂ Corrupt
(i.e., for which at least one server and one client is uncorrupted), and every input w ∈ {0, 1},
it holds view(1λ,Corrupt, w)

c∼= Sim(1λ,Corrupt).

[Elette’s Note: end fix]
In order to use HSS or its public-key DEHE variant to obtain secure computation, the secret

sharing procedure (or DEHE key setup) must be performed in a secure distributed fashion. Ap-
plying general-purpose secure computation to do so, as suggested in [BGI16], has poor concrete
efficiency and requires non-black-box access to the underlying group.

To avoid this, we introduce the notion of client-server HSS (Π,Eval), defined as standard HSS,
except that the input is distributed between multiple clients and the centralized sharing algorithm
Share is replaced by a distributed protocol Π. That is, Π allows m clients, each holding a secret input
wi, to share the joint input (w1, . . . , wm) between the servers in a way that supports homomorphic
computations via Eval. We will be interested in constructing client-server HSS (and DEHE) that
only make a black-box access to the underlying group.

The security requirement is that the view of an adversary who corrupts a subset of clients/servers,
leaving at least one client and one server uncorrupted, can be simulated given the inputs of cor-
rupted clients, without knowledge of the inputs of uncorrupted clients. A formal definition of
client-server HSS is deferred to the full version. A “multi-evaluation” version enables independent
executions of Eval without re-executing Π.

Intuitively, in our construction of the joint secret sharing protocol Π, each client Ci will generate
an independent ElGamal key pair (ci, ei), and the joint keys of the system will correspond to
c =

∑
ci ∈ Zq and e =

∏
ei ∈ G, leveraging the key homomorphism of ElGamal. The primary

challenge (mirroring the BGI HSS) is how to generate encryptions of the products c(t)wi, where c(t)

are the bits of the joint secret key c =
∑
ci (where addition is in Zq). To solve this, we leverage

the fact that the BGI construction does not strictly require {0, 1} values for this c(t), but rather

13

can support computations on any sufficiently small values at the expense of greater computation

during the share conversion procedure. We will thus use the (possibly non-Boolean) values
∑

i c
(t)
i

in the place of c(t).
We present the full construction and proof of client-server HSS in the full version. In fact, we

achieve the stronger primitive of multi-evaluation client-server DEHE, which directly implies the
former.

Remark 3.2 (ElGamal Circular Security vs. DDH). For simplicity, throughout the present work
we describe our constructions based on circular security of ElGamal. However, in each case we may
directly remove this circular security assumption, as in [BGI16], by either considering a leveled
variant or replacing ElGamal with a circular-secure variant due to BHHO [BHHO08], as described
in Remark 2.7. Our theorem statements implicitly apply this transformation directly.

Proposition 3.3 (Black-box client-server HSS/DEHE). There exists a multi-evaluation client-
server DEHE protocol (and thus also multi-evaluation client-server HSS) for branching programs
that makes a black-box access to any DDH-hard group.

3.1 Black-Box Succinct Secure Computation

Given a black-boxm-client 2-server multi-evaluation HSS (ΠHSS,EvalHSS) as above, and an arbitrary
general 2PC protocol ΠMPC, we obtain succinct secure m-client 2-server computation for branching
programs based on DDH which makes only black-box use of the DDH group. Namely, to securely
evaluate a program P : (1) the clients and servers interact via ΠHSS to share the clients’ inputs, (2)
the servers homomorphically evaluate λ copies of the desired program P on the resulting shares, and
then (3) run the generic protocol ΠMPC to securely evaluate the most common combined output.

Note that the procedure for combining evaluated shares and taking the majority (in Step 3)
does not require any G group operations (only operations over the output space Zβ), so that general
secure computation of this function is still black-box in the DDH group G.

Theorem 3.4 (Black-box succinct secure computation for branching programs). There exists a
constant-round succinct m-client 2-server protocol ΠBB for branching programs that makes only
black-box access to any DDH-hard group.

Remark 3.5 (1/poly security tradeoff). The round complexity of ΠBB is given by the round com-
plexity HSS sharing protocol ΠHSS plus that of the generic MPC to evaluate the reconstruction-
majority. If one is willing to accept 1/poly security, the MPC reconstruction phase can be replaced
by a direct exchange of the output shares computed in the homomorphic evaluation. The corre-
sponding simulator will follow the same simulation strategy, but will fail with inverse-polynomial
probability, in the event that a homomorphic evaluation error occurs. The resulting protocol will
have rounds(ΠHSS) + 1 rounds.

From here on, all of our protocols make a black-box access to the group except for protocols
that involve k ≥ 3 servers (in client server model) or parties (in the MPC model).

4 DDH-Based 2-Round Protocols over PKI

In this section we present a 2-round secure computation protocol in the PKI setup model for a
constant number of parties and arbitrary polynomial-size circuits, based on DDH. Our starting
point will be the general secure client-server protocol structure given in Theorem 3.4.

14

As discussed in the Introduction, our final 2-round solution removes the extra rounds of inter-
action by means of three main technical steps, which we present in the following three sections:
(1) Constructing a Client-Server HSS whose secret sharing protocol Π can be executed in a single
round of interaction in the PKI model; (2) Amplifying the resulting 2-round client-server protocol
(Remark 3.5) from 1/poly to full security using techniques in leakage resilience; and (3) Compiling
from 2 to any constant number k of servers by iteratively emulating a server’s computation securely
by 2 separate servers.

4.1 Succinct 2-Server Protocol with 1/poly Security

We begin by constructing m-client 2-server HSS whose secret sharing protocol Π takes place via a
single message from each client within the PKI model.

Our construction takes a similar approach to the black-box client-server HSS of the previous
section, where each client owns an independent ElGamal key pair (ci, ei). However, the approach
does not quite work as is. The primary challenge is in agreeing on common encryptions of the

cross-products c
(t)
j wi for different clients Ci, Cj . Recall that HSS evaluation requires not only that

each party holds an encryption of the same value, but in fact the exact same ciphertext.
This remains a problem even if we consider the setting with a public-key infrastructure (PKI).

Namely, even given all clients’ public keys, it is not clear how in a single message of communication

all clients can agree on the same ciphertext of c
(t)
i wj under the joint key

∏
i ei when c

(t)
i and wj are

known by two different clients, and c
(t)
i and wj themselves must remain hidden.

This goal can be achieved, however, for the i, j “pairwise” combination of public keys eiej , by

including an encryption of c
(t)
i under key ei as part of an expanded public key of client Ci. (Note

that the value of c
(t)
i depends only on Ci’s keys themselves and not on inputs or number of parties,

hence this is a valid contribution to the PKI setup.) Namely, given an encryption [[c
(t)
i]]ci of c

(t)
i

(using notation from [BGI16], as per Figure 1), client Cj can use the homomorphic properties of

ElGamal to first shift this to an encryption under ei of the product c
(t)
i wj , and then shift this

ciphertext to an encryption of the same value under key eiej by coordinate-wise multiplying in an
encryption of 0 under key ej . (Note that the second step is necessary in order to hide wj from
client Ci.)

We demonstrate that generating these pairwise c
(t)
i wj ciphertexts under the respective pairwise

keys is enough to support full homomorphic evaluation capability. The new invariant maintained
throughout homomorphic evaluation is that for each memory variable ŷ, the correct value y of
this variable is held as an additive secret sharing 〈y〉, and as a collection of m additive secret
sharings 〈ciy〉, one for the key ci of each client i ∈ [m]. Whenever we wish to perform an RMS

multiplication using a ciphertext [[c
(t)
i wj]]ci+cj , we can combine the corresponding pair of secret

shares 〈(ci + cj)y〉 = 〈ciy〉 + 〈cjy〉, and then proceed as usual as if the secret key were the sum
ci + cj .

As one additional change (which will be useful in future sections), we replace the bit decom-
position (c(t))t∈[`] of a key c with a more general, possibly randomized, representation (ĉ(t))t∈[`′] ←
Decomp(c). The only requirements for correctness are: (1) each value ĉ(t) has small magnitude; and
(2) there exists a Zq-linear reconstruction procedure Recomp for which c = Recomp((ĉ(t))t∈[`′]).

5

5Note that bit decomposition can be expressed in this form, where Decomp(c) := (c(t))t∈[`] and

Recomp((c(t))t∈[`]) :=
∑`
t=1 2t−1c(t).

15

The formal descriptions of (Π1r,Eval1r) are given in Figures 2 and 3.

Lemma 4.1 (One-Round Client-Server HSS). Assume hardness of DDH. Then for any polynomial
m = m(λ), there exists an m-client 2-server HSS (Π1r,Eval1r) for which Π1r is a single round in
the PKI model.

Proof. We defer the proof to the full version. We remark that a crucial property for security is that
any secret value owned by a client Ci is encrypted under a combination of keys that includes his own
key, ci (and distributed as a fresh encryption due to re-randomization). Because of this, semantic
security holds for all honest-client values, by the key homomorphism properties of ElGamal.

Plugging in the client-server HSS (Π1r,Eval1r) to the framework of Theorem 3.4, together with
the round-savings-for-1/poly tradeoff described in Remark 3.5, we directly obtain the following
proposition.

Proposition 4.2 (Succinct 2-server protocol with 1/poly security for branching programs). As-
suming PKI setup and DDH, for any polynomial p(·) and m = m(λ) there is a (succinct) 2-round
m-client 2-server client-server protocol for branching programs with 1/p(λ) security.

4.2 Amplifying Security via Leakage Resilience

The 1/poly security loss in the protocol of Section 4.1 is due to the noticeable probability of (input-
dependent) error in the homomorphic evaluation of the client-server HSS, revealed when evaluated
output shares are directly exchanged. We now develop techniques for addressing this information
leakage without additional communication rounds.

Simulatable Las Vegas HSS. Toward this goal, we first consider and realize two beneficial
properties of a client-server HSS:

– Las Vegas correctness. In such an HSS scheme, servers can output a special symbol ⊥ if they
identify a possible error situation in the homomorphic evaluation. Las Vegas correctness guarantees
that if both servers output a non-⊥ value then correct reconstruction will hold.

– Simulatability of errors. Unfortunately, it will be the case in constructions that servers do not
always agree on whether an error is possible to occur (otherwise error could be removed completely
by having each server recompute in such situation), and learning whether the other server reaches
⊥ may reveal secret information. To address this, we consider a further “simulatability” property
which formally characterizes what information is leaked through this process.

We construct simulatable Las Vegas HSS where the information leakage depends locally on
values of a small number of memory values within the computation of the RMS program and/or
symbols ĉ(t) of the secret key representation.

In the following two subsections, we present our construction of a simulatable Las Vegas HSS
whose secret-sharing protocol is a single round given PKI, and then use this construction as a tool
together with leakage-resilient techniques to obtain a (fully) secure 2-round 2-party computation
protocol in the PKI model.

16

4.2.1 Defining and Obtaining Simulatable Las Vegas HSS

We define a “simulatable” variant of client-server Las Vegas HSS (LV-HSS), where each server has
a secondary output in Eval that represents its knowledge about the other server’s primary output.
The secondary output can either be >, indicating that it is certain that the other server does not
output ⊥, or a predicate Pred (represented by a circuit) that specifies a function of the clients’
inputs ~w and randomness ~r such that the other party outputs ⊥ if and only if Pred(~w,~r) = 1. We
require that the secondary output is > except with at most δ probability. Note that Pred may
depend on the program P being homomorphically evaluated.

Definition 4.3 (Simulatable Client-Server Las Vegas HSS). A (m-client, 2-server) Simulatable
Client-Server Las Vegas HSS scheme for class of programs P consists of a distributed protocol Π
and PPT algorithm Eval, with syntax:

• Π specifies an interactive protocol between m clients C1, . . . , Cm and two servers S0, S1, where
each client Ci begins with input wi, and in the end of executing Π the servers S0, S1 output
homomorphic secret shares share0, share1, respectively, of the joint input (w1, . . . , wm).

• Eval has a second output z such that z is either the symbol > or a predicate Pred : {0, 1}n →
{0, 1} represented by a boolean circuit.

We denote by (share0, share1)← Π(~w;~r,R0, R1) where ~w = (w1, . . . , wm) and ~r = (r1, . . . , rm)
the execution of Π in which each client i ∈ [m] uses input wi and randomness ri, each server
b ∈ {0, 1} uses randomness Rb, and the output to each server Sb is shareb.

The pair (Π,Eval) should satisfy the correctness of Definition 2.4 (with respect to the first output
of Eval), and the following additional requirements:

• Security: There exists a PPT simulator Sim such that for any corrupted set Corrupt ⊂
{C1, . . . , Cm} ∪ {S0, S1} of clients and servers for which at least one server and one client
are uncorrupted, for every polynomial p, and sequence of input vectors ~wλ = (wλ1 , . . . , w

λ
m) ∈

({0, 1}p(λ))m, it holds that view(1λ,Corrupt, ~wλ)
c∼= Sim(1λ,Corrupt, {wi}Ci∈Corrupt, {|wi|}Ci 6∈Corrupt).

• Error simulation: For every polynomial p there is a negligible ν such that for every λ ∈ N,
input w ∈ {0, 1}n, program P ∈ P with input length n, error bound δ > 0 and integer β ≥ 2,
where |P |, 1/δ ≤ p(λ), then for every b ∈ {0, 1},

Pr[(share0, share1)← Π(~w;~r,R0, R1);

(yb, zb)← Eval(b, shareb, P, δ, β) : zb 6= >] ≤ δ + ν(λ),

and for every circuit Pred and c ∈ {0, 1}:

Pr[(share0, share1)← Π(~w;~r,R0, R1); (yb, zb)← Eval(b, shareb, P, δ, β), b = 0, 1 :

(zc = Pred) ∧ (χ(y1−c = ⊥) 6= Pred(~w,~r))] ≤ ν(λ),

where χ(y1−c = ⊥) evaluates to 1 if y1−c = ⊥ and evaluates to 0 otherwise.

17

Algorithm 1 Simulatable SLVDistribDLogG,g(b, h, δ,M, φ)

1: Let DangerZone := {h, hg(−1)b , . . . , hg(−1)bM}.
2: Let SimDangerZone := {hg−M+1, . . . , h, . . . , hgM} and initialize BadValues← ∅.
3: if ∃h′ ∈ SimDangerZone with φ(h′) = 0dlog(2M/δ)e then Let BadValues be the set of z ∈

[M] for which {hg(−1)bz, hg(−1)bz+(−1)b−1
, . . . , hg(−1)

bz+(−1)b−1M} contains some h′ with φ(h′) =
0dlog(2M/δ)e). If BadValues = ∅, set BadValues← >.

4: end if
5: if ∃h′ ∈ DangerZone with φ(h′) = 0dlog(2M/δ)e then Let i = ⊥.
6: else
7: Set h′ ← h, i← 0. Let T = 2Mλ/δ.
8: while (φ(h′) 6= 0dlog(2M/δ)e and i < T) do
9: h′ ← h′ · g, i← i+ 1.

10: end while
11: end if
12: Return (i,BadValues).

Constructing simulatable Las Vegas HSS. Our construction of simulatable (client-server)
LV-HSS will be a variant of the 1-round Client-Server HSS construction, with a modified core
share-conversion sub-routine DistributedDLog (called within ConvertShares), which enables each
party to convert a multiplicative share of gz ∈ G to an additive share of z ∈ Zq (for small z).

Following [BGI16], the procedure DistributedDLog takes as input a share h ∈ G and outputs the
distance on the cycle generated by g ∈ G between h and the first “distinguished” point h′ ∈ G such
that a pseudo-random function (PRF) outputs 0 on h′. Two invocations on inputs h and h · gz for
a small z result, with good probability (over the initial choice of PRF seed), in outputs i and i− z
for some i ∈ Zq. In such case, the DistributedDLog procedure converts a difference of small z in the
cycle generated by g in G to the same difference over Z.

For any h, h · gz ∈ G, DistributedDLog yields an error in two cases:

1. When there exists a distinguished point h′ between the two inputs h, hgz: i.e., h′ = hgi for
some i ∈ {0, . . . , z − 1}.

2. When there does not exist a distinguished point within a fixed polynomial-size range after
which the party will abort.

We construct a simulatable Las Vegas version of this sub-routine, SLVDistribDLog, described in
Algorithm 1. This algorithm has three primary differences from the original procedure DistributedDLog.

1. For simplicity, the end-case abort threshold T is set large enough (2Mλ/δ) so that the proba-
bility of abort over the choice of distinguished points (via the PRF φ) is negligible. Recall the
choice of T gives a tradeoff between error probability and required computation (in [BGI16],
and in our complexity-optimized versions in later sections, the threshold is set to a lower
value).

2. Given an input share h ∈ G, maximum magnitude bound M , and “party id” b ∈ {0, 1}, the
algorithm will now output ⊥ if there is a distinguished point h′ within M steps of h in the

18

direction dictated by b. Recall that this sub-routine will be called simultaneously by party P0

(the “behind” party) holding share h and party P1 (the “ahead” party) holding share h · gz.
In the new procedure, P0 will output ⊥ if any of h · g, . . . , h · gM−1 is distinguished, and P1

will output ⊥ if any of h ·gz−M+1, . . . , h ·gz−1 is distinguished. This will guarantee (no matter
the value of z ∈ [M]) that if there is a distinguished point between the two parties’ shares
then both parties will output ⊥.

This zone of values is denoted DangerZone in SLVDistribDLog.

3. SLVDistribDLog now outputs two values: (1) a Zq-element (or ⊥) as usual, corresponding to
the output additive share, and (2) a subset BadValues ⊂ [M] of values z such that the other
party 1 − b will have a distinguished point h′ within his DangerZone (and output ⊥) if and

only if he runs SLVDistribDLog with input hg(−1)
bz (i.e., our respective inputs h, g(−1)

bz are
multiplicative shares of gz for some z ∈ BadValues).

Basically, for each possible share of the other party, we can directly determine if it would result
in ⊥, and record the corresponding secret shared value z ∈ [M] if it would. In the notation
of SLVDistribDLog, the window SimDangerZone is of size 2M and captures all possible shifted
windows of size M which could be the DangerZone of the other party, depending on which of
the M possible values of z is the current offset between shares.

In the full version we present a construction of simulatable Las Vegas HSS, using SLVDistribDLog
as a sub-routine. Roughly: At every share conversion step of homomorphic evaluation in EvalSLV,
with some probability there will exist a bad set of plaintext values z ∈ [M] such that if the newly
computed shared value is equal to z then the other party would output ⊥. These sets of bad
values are identified within SLVDistribDLog and are stored as BadValues’s within Eval. A pair
(k,BadValuesk) ∈ Z× 2[M] is added to LeakageInfo if partial computation value yk = z ∈ BadValues
would lead to the other party outputting ⊥. This corresponds to a share conversion for some 〈yk〉.
Similarly, a pair ((k, γ, t),BadValuesk,γ,t) ∈ (Z× [m]× [`])× 2[M] is added to LeakageInfo if partial

computation value ĉ
(t)
γ yk = z ∈ BadValuesk,γ,t would lead to the other party outputting ⊥. This

corresponds to a share conversion for some 〈ĉ(t)γ yk〉. Note that the values yk are defined as a function
of the program P and a given input ~w. The choice of Pred incorporates the P dependency, and
operates on input ~w as well as a subset of (at most λ values of) ĉ(t).

Proposition 4.4. Assume hardness of DDH. Then for any polynomial m = m(λ), the scheme
(ΠSLV,EvalSLV) described above is an m-client 2-server simulatable Las Vegas HSS, where ΠSLV is a
single round in the PKI model. Moreover, with overwhelming probability in λ over the randomness
of Π, the predicate Pred depends on at most λ intermediate variables of the evaluation of the RMS
program P and values ĉ(t).

Remark 4.5 (Asymmetric Las Vegas HSS). In some of our later applications (see Section 5), it
will be advantageous to have an asymmetric notion of Las Vegas HSS, where only one of the two
parties might output ⊥. In these applications, simulatability will not be required. We can achieve
such notion via a simple tweak of our construction by simply removing the option of outputting ⊥
for party P1 within the sub-routine SLVDistribDLog.

19

4.2.2 Secure 2-server Computation from Simulatable LV-HSS and Leakage Resilience

We now combine the simulatable LV-HSS of Proposition 4.4, which yields 2-server protocols with
partial leakage, together with techniques for protecting computation against this leakage, to obtain a
2-round (m-client 2-server) secure computation protocol (in the PKI model) with standard security.

More concretely, the simulatable LV-HSS (ΠSLV,EvalSLV) guaranteed leakage (with high proba-
bility) of up to λ intermediate RMS computation memory values yi and secret-key representation
values ĉ(t).

To protect against leakage of intermediate computation values, we can replace homomorphic
evaluation of the program P with evaluation of a new (“leakage-resilient”) program that takes as

input secret shares w
(1)
i , . . . , w

(k)
i of clients’ inputs wi, and emulates a k-server secure computation

of the program (whose NextMsg computation is in NC1) that recombines secret shares and evaluates
P , while guaranteeing correctness and security against λ out of k server corruptions (referred to as
“λ-robustness”). Indeed, the λ leaked/erred intermediate computation values from HSS evaluation
now correspond directly to revealing/losing the view of up to λ (virtual) servers in the emulated
protocol. For simplicity, we use client-server protocols with no server-server communication, and
so we can even emulate servers by independent HSS executions. Such protocols are known to exist
for secure computation of low-degree polynomials [IK00]; in turn, this yields a solution for secure
computation of general circuits P by instead generating a randomized encoding of the circuit P ,
computable in low degree [Yao86, AIK05].

To deal with the leakage on the values ĉ(t), we further refine the above approach. It will no
longer be sufficient to take the ĉ(t) directly as the bits of the ElGamal secret key c (as in [BGI16]),
since this leakage will compromise the security of the encryptions and thus the HSS. Instead, we
take (ĉ(t))t∈[`′] ← Decomp(c) defined by first additively secret sharing c over Zq into λ + 1 shares,

and then taking the `′ := (λ + 1)` bits of these separate values. Note that the ĉ(t) themselves
are bits (in particular, have small magnitude) and reconstruction is linear over Zq (first perform
powers-of-2 bit reconstruction, then add the resulting values). But, further, any subset of λ values
ĉ(t) are statistically independent of c.

Theorem 4.6 (Security amplification via virtual client-server protocols). Let (ΠSLV,EvalSLV) be the
one-round simulatable Las Vegas client-server HSS from Proposition 4.4, and let (Encode,NextMsg,Decode)
be a λ-robust client-server secure computation protocol with no server-server communication with
NextMsg ∈ NC1 (see Section 2.7). Then for any polynomial m = m(λ), the protocol Π given in
Construction 4.7 is a secure m-client 2-server protocol for general circuits that executes in 2 rounds
in the PKI model.

Construction 4.7 (Secure 2-round m-client 2-server protocol (with PKI)). Input: Each client
begins with input wi.
Tools:

• (“Virtual”) 2λ-robustm-client k-server single-round secure computation protocol (Encode,NextMsg,Decode),
with no server-server interaction (i.e., server computation is a single execution of NextMsg ∈
NC1).

• One-round simulatable LV-HSS (ΠSLV,EvalSLV) from Proposition 4.4.

Protocol:

20

0. PKI: The new PKI consists of k independent copies of the PKI distribution from the simu-
latable LV-HSS; denote each copy by PKI(j).

1. Each client Ci encodes his input as (msg
(1)
i , . . . ,msg

(k)
i)← Encode(i, wi).

2. Communication Round 1: In k parallel executions (one for each virtual server in the
underlying secure computation protocol), using fresh randomness, the clients each send the
corresponding single message as dictated by the one-round sharing protocol ΠSLV, where in

the j’th execution (j ∈ [k]), client Ci uses PKI(j) and input msg
(j)
i .

3. As a result of the previous step, each (real) HSS server Sb learns k shares share
(1)
b , . . . , share

(k)
b ,

one for each virtual server in the secure computation protocol, where share
(j)
b is one share of

all clients’ messages to virtual server j.

4. Each server Sb performs k independent homomorphic evaluations: For each virtual server j ∈
[k], let (output

(j)
b , z

(j)
b) = EvalSLVG,g (b, share

(j)
b ,NextMsg, 1/2kλ), with allowable error probability

1/2kλ. Let outputb = (output
(1)
b , . . . , output

(k)
b), i.e. Sb’s secret share (with possible⊥ symbols)

of the encoded output of the client-server protocol.

5. Communication Round 2: Each server b ∈ {0, 1} sends his evaluated share, outputb, to
all clients.

6. Each client outputs Decode(output0+output1): i.e., recombining the HSS output shares (where
⊥ + h is defined as ⊥) and running the decoding procedure of the client-server protocol on
the resulting output.

Sketch. We defer the formal security proof to the full version and briefly outline the simula-
tor Sim2r(1

λ, {wi}Ci∈Corrupt, y), where Corrupt ⊂ {C1, . . . , Cm} ∪ {S0, S1} is the set of corrupted
clients/servers, and y is the output P (w1, . . . , wm) received by the ideal functionality.

Assume wlog that Sb ∈ Corrupt. Sim2r simulates the HSS shares sent to Sb in the first round on
behalf of each honest client Ci, by generating an HSS sharing with respect to PKI(j) of 0 for each

virtual server j ∈ [k]. For j ∈ [k], Sim2r computes (output
(j)
b , z

(j)
b) = EvalSLVG,g (b, share

(j)
b ,NextMsg,

1/2kλ) on Sb’s shares. Let CorruptVirtS = {j ∈ [k] : z
(j)
b = Pred

(j)
b 6= >} be the virtual servers j for

which output
(j)
1−b might be ⊥ (thus leaking information). By Proposition 4.4, with overwhelming

probability |CorruptVirt| ≤ λ (by correctness and independence of executions) and each Pred
(j)
b

depends on the input and at most λ values of ĉ(t) for the key c within the corresponding j’th HSS
execution.

Sim2r then runs the simulator for the underlying (virtual) m-client k-server protocol, for cor-
rupted clients CorruptVirtC = Corrupt ∩ {C1, . . . , Cm} and corrupted (virtual) servers CorruptVirtS , for
corrupted inputs {wi}Ci∈Corrupt. The resulting simulated viewVirt contains, in particular, the mes-

sages {msg
(j)
i }Ci /∈Corrupt received by each corrupt virtual server j ∈ CorruptVirtS from honest clients

Ci, and all (pre-Decode) values output(1), . . . , output(k).

For j ∈ [k], Sim2r simulates the output share output
(j)
1−b as follows. Sample λ random bits to

serve as the bits (ĉ(t))t∈[λ] of the jth key that Pred
(j)
b depends on (if z

(j)
b = Pred

(j)
b 6= >). If j /∈

CorruptVirtS , or if Pred
(j)
b (msg(j), (ĉ(t))t∈[λ]) = 0, then output

(j)
1−b = output(j) − output

(j)
b . Otherwise,

output
(j)
1−b = ⊥.

21

Theorem 4.9 is an application of the above, obtained by using the virtual client-server protocol
of [IK00] for evaluating low-degree polynomials. Our final result follows from generic transforma-
tions using low-degree randomized encodings [AIK05].

Theorem 4.8 (MPC for low-degree polynomials [IK00]). For any t,m, d ∈ N there is a 2-round,
m-client, k-server, perfectly t-robust protocol with no server-server interaction, for the class of
degree-d polynomials over F2, where k = O(dt). When evaluating a vector of ` polynomials on n
inputs, the computation of each server can be implemented by a circuit of depth O(log(n+ `+ k)).

Theorem 4.9 (Succinct 2-server protocol for low-degree polynomials). Assuming PKI setup and
DDH, there is a succinct 2-round 2-server client-server protocol for evaluating degree-d polynomials,
for any constant d.

Corollary 4.10 (2-server protocol for circuits). Assuming PKI setup and DDH, there is a (non-
succinct) 2-round 2-server client-server protocol for circuits.

Note that while this solution yields 2 rounds of communication, the amount of information
communicated is greater than the program size. In the full version, we describe a more complex
solution achieving succinct 2-round secure computation for the class of NC1 programs.

4.3 From 2 to k Servers

As the final step, we compile the 2-round m-client 2-server protocol into a 2-round m-client k-server
protocol, for any constant k ∈ O(1). This is achieved by iteratively emulating the role of one server
by two servers via the original 2-server protocol. A similar notion of party emulation has appeared
within many contexts in the literature (e.g., [Bra84, HM00]). In each step of this process, the
next-message-function computed by the emulated server is realized by using a 2-round client-server
protocol involving the m clients and the 2 emulating servers. This increases the number of servers
by 1, while still maintaining security as long as only a strict subset of the servers are corrupted.
The communication and computation complexity of the protocol increase by a factor of poly(λ) in
each such step. Repeating k − 1 times, we get the following.

Theorem 4.11 (2-round k-server client-server protocol). Assume PKI setup and DDH. Then for
any constant k ≥ 2 there is a 2-round k-server client-server protocol (alternatively, a 2-round
k-party MPC protocol) for circuits.

5 Optimizing Communication

In the previous section, we eliminated the inverse polynomial error and leakage of HSS by using
secret-sharing of the inputs and applying virtual client-server MPC protocols to compute on these
shares. In this section we describe a simpler alternative approach that has better asymptotic and
concrete communication complexity (and better computational complexity as well) at the cost
of requiring an additional round of interaction. In contrast to the previous approach, the current
approach applies only to the case of 2PC and does not apply to the more general case of client-server
MPC.

22

The high level idea is as follows. Denote the two parties by P0, P1 and assume that the function-
ality f delivers an output only to P1. We rely on an asymmetric Las-Vegas HSS (see Definition 2.4)
where the output of Eval is guaranteed to be correct (i.e., the two output shares add up to the
correct output) unless P1 outputs ⊥, where the latter occurs with at most δ probability. The idea is
to have P1 use

(
m

m−k
)
-bit-oblivious-transfer (denoted by

(
m
−k
)
-OT) in order to block itself from the

k output shares of P0 that correspond to the positions in which it outputs ⊥. Note that the m− k
selected output shares can be simulated given the correct output and the view of P1, and thus they
do not leak any additional information about the input. To make up for the k lost output bits, we
use an erasure code to encode the output. Since we can make the number of erasures small, we
only need to introduce a small amount of redundancy to the output.

Punctured OT. A key observation is that by setting the error parameter δ to be sufficiently small,
we can ensure that the

(
m
−k
)
-OT parameters are such that k is much smaller than m. We refer to

OT in this parameter regime as punctured OT and show how to implement it very efficiently by
using a puncturable PRF.

A puncturable PRF [SW14] is a standard PRF family FK equipped with a puncturing algorithm
Puncture that given a set of points X = {x, . . . , xk} ⊆ {0, 1}d produces an evaluation key KX that
allows an evaluation of the PRF on all inputs except those in X. Moreover, the PRF values on
the inputs in X should be indistinguishable from random given KX . See full version for a formal
definition. As was shown in [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs
from a length-doubling PRG can be used to obtain a puncturable PRF for X = {x1, . . . , xk} ⊆
{0, 1}d with key size |KX | = O(λkd). The evaluation of F at all points given K or at all non-
punctured point given KX requires O(2d) invocations of a PRG G : {0, 1}λ → {0, 1}2λ. The circuit
size required for generating KX given a λ-bit K and X is kd · poly(λ).

A protocol for
(
m
−k
)
-OT can be implemented using a puncturable PRF and any general-purpose

2PC protocol (e.g., Yao’s protocol [Yao86, LP09]) in the following natural way.

• Sender’s input: s ∈ {0, 1}m, where every i ∈ [m] is represented by a d-bit string.

• Receiver’s input: X ⊂ [m] where |X| = k.

• Given primitives: a puncturable PRF (FK ,Puncture), an ideal 2PC oracle Π.

1. Invoke Π on the randomized functionality that, on Receiver input X, delivers a random PRF
key K to Sender and constrained PRF key KX to Receiver.

2. Sender computes and sends s′ ∈ {0, 1}m where s′i = si ⊕ FK(i).

3. Receiver outputs (i, s′ ⊕ FKX (i)) for i ∈ [m] \X.

Analysis. Correctness is straightforward. Security follows from the fact that the values of FK on
all inputs i ∈ [m] \X are pseudorandom given KX . Thus, a simulator can simulate the receiver’s
view given the receiver’s output by just running the protocol with an arbitrary s that is consistent
with the output. Plugging in Yao’s protocol6 for implementing Π, we get the following theorem.

6We do not attempt here to optimize the concrete efficiency of this secure computation. Given the current speed
of secure 2PC protocols for AES, even a naive implementation is expected to be quite efficient.

23

Theorem 5.1 (Punctured OT via puncturable PRF). Suppose a
(
2
1

)
-OT protocol exists. Then there

is a protocol for
(
m
−k
)
-OT with m+k · logm ·poly(λ) bits of communication, where the computational

complexity consists of O(m) invocations of a length-doubling PRG G : {0, 1}λ → {0, 1}2λ and
poly(λ) additional computation.

We turn to describe our communication-efficient technique for eliminating the inverse polyno-
mial error of HSS. In addition to punctured OT, our second ingredient is a simple randomized
erasure correcting code.

Lemma 5.2 (Erasure correcting code). There is a randomized linear encoding function Cr :
{0, 1}m → {0, 1}m+m/λ that can correct a 1/λ2 rate of random erasures with all but m · negl(λ)
probability.

Proof. A message x ∈ {0, 1}m is encoded by (x, y1, . . . , ym/λ) where yi is the parity of a random
subset of λ2/2−1 bits of x. By a Chernoff bound, except with m ·negl(λ) probability, every bit of x
is involved in at least λ/3 sets, where every set (including the corresponding parity check) contains

an erasure with at most λ2/2
λ2

= 1/2 error probability. Hence, for any fixed xi, the probability that

all sets involving xi contain an erasure is at most 2−λ/3. Hence, the probability that some xi cannot
be recovered is bounded by m · negl(λ) as required.

Finally, we combine punctured OT and erasure codes to give a succinct 2PC protocol for
branching programs. This protocol avoids the use of virtual client-server MPC and can thus achieve
better communication rate and computational complexity than its counterpart from Section 4.2.

The protocol is similar to the protocol for branching programs from [BGI16] (cf. Theorem 4.5
in full version), which evaluates m branching programs on inputs of total length n using n + m ·
poly(λ) bits of communication, except for the following differences. First, instead of repeating
each output bit λ times, the functionality is modified so that the outputs are encoded using the
randomized erasure code of Lemma 5.2 (where a PRG is used to pick the randomness r with
sublinear communication). Second, instead of applying a standard DEHE to compute shares of the
output encoding, we use a (multi-evaluation) asymmetric Las Vegas variant in which P1 outputs ⊥
whenever there is a risk of error. We set the error parameter δ to be a sufficiently small 1/poly(λ)
so that: (1) except with negl(λ) probability, the number of ⊥ outputs is bounded by k = m/λ2,

and (2) the communication complexity of
(
m′

−k
)
-OT, where m′ = m + m/λ, is m + o(m). Finally,

P1 uses punctured OT to retrieve the output shares of P0 in the positions where it did not output
⊥. Note that, by the definition of asymmetric Las Vegas HSS, the shares obtained from P0 are
determined by the shares of P1 and the output (except with negligible probability), and hence they
can be simulated given the output.

The above protocol gives rise to the following theorem.

Theorem 5.3 (Optimized 2PC for branching programs). Assuming DDH, there is a constant-round
secure 2-party protocol for evaluating any sequence of m branching programs of size S on inputs
(x0, x1) of total length n, using n+ (1 + o(1))m+poly(λ) bits of communication and poly(λ) ·m ·S2

computation.

As a corollary, we get the following near-optimal protocol for OT.

Corollary 5.4 (Constant-rate bit-OT). Assuming DDH, there is a constant-round secure 2-party
protocol for evaluating n instances of bit-OT with (4 + o(1))n+ poly(λ) bits of communication and
poly(λ) · n computation.

24

Combining Corollary 5.4 with the GMW protocol for secure circuit evaluation using bit-OT [GMW87],
we get the following corollary.

Corollary 5.5 (MPC for general circuits). Assuming DDH, there is a secure 2-party protocol for
evaluating any circuit C of size S with O(S) + poly(λ) bits of communication.

This should be compared with a similar protocol from the full version of [BGI16] (cf. The-
orem 4.10) in which the communication complexity has an additional (depth + output) · poly(λ)
term.

6 Optimizing Computation

A bottleneck of the performance of the HSS scheme in [BGI16] and the schemes in this paper is
the computation time of homomorphically evaluating RMS multiplications. The time required for
the multiplication is almost entirely the result of `+ 1 executions of ConvertShares and MultShares.

We present three optimizations of these procedures. The first optimizes the worst case asymp-
totic running time of the share conversion algorithm by a log(1/δ) factor, but does not improve the
expected running time. The second optimization, which is incompatible with the first, optimizes
the concrete running time of the conversion. The third balances the computational complexity of
ConvertShares and MultShares to reduce the overall running time of evaluating an RMS multiplica-
tion.

6.1 Improving Worst-Case Conversion Time via Min-Hashing

The first optimization we consider applies to the share conversion algorithm DistributedDLog from
Figure 1. This algorithm uses a pseudo-random function to define a sparse set of distinguished
group elements, and returns the minimal i such that g · hi belongs to the distinguished set. This
scheme has two disadvantages: first, while its expected run time is O(M/δ) (where M is an upper
bound on the difference between inputs and δ is an upper bound on the error probability), its worst-
case run time is bigger by a factor of O(log 1/δ). This difference can be significant in a scenario
of performing many share conversions in parallel, where the worst-case running time dominates.
A second, and mainly theoretical, disadvantage is that the conversion is based on a cryptographic
assumption instead of being unconditional.

We address both issues by using the alternative conversion procedure described in Figure 4. The
high level idea is to apply a hash function φ to every group element h ·gi in a range i = 0, . . . , T −1,
and return the (first) value of i that minimizes the value of φ(h · gi). We argue that if φ has the
property that the minimum of φ(h · gi) is as likely to occur for every choice of i, then the error
probability δ is bounded by 2M/T , making the worst-case run time T = O(M/δ). In general, we
can rely on the following approximate version.

Definition 6.1 (min-wise independence). [BCM98, Ind01] Let H = {hi : [N]→ [N]} be a family
of hash functions. We say that H is (k, ε)-minwise independent if for any X ⊂ [N] where |X| ≤ k
and x ∈ [N] \X we have

Pr
h∈H

[h(x) ≤ minh(X)] ≤ 1

|X|+ 1
(1 + ε).

25

Algorithm 2 LVConb,G,g(h, δ,M, φ)

1: if b = 0 then
2: Let DangerZone := {h, hg, . . . , hgM}.
3: if ∃h′ ∈ DangerZone with φ(h′) = 0dlog(2M/δ)e then
4: Return ⊥.
5: end if
6: end if
7: Set h′ ← h, i← 0.
8: while (φ(h′) 6= 0dlog(2M/δ)e) do
9: h′ ← h′ · g, i← i+ 1.

10: end while
11: Return i.

Considering X to be the set of i’s that both parties have in common, picking h from a min-wise
independent family of hash functions ensures that the probability of the minimum being attained
outside this set is roughly the ratio between the difference M and the overlap |X|.

Claim 6.2. Let 0 ≤ z < M and let h0, h1 be such that h1 = h0 · gz. If φ is drawn at random from
a (T, ε)-minwise independent family H, then

Pr[DistributedDLog′G,g(h1, δ,M, φ)− DistributedDLog′G,g(h0, δ,M, φ) 6= z] ≤ δ(1 + ε)

Proof. Consider the set X0 = {h0 ·gi : 0 ≤ i < T} and X1 = {h1 ·gi : 0 ≤ i < T}. Let X = X0∩X1.
An error can occur only if the first minimum value of φ on X0 is attained at X0 \X1 or the first
minimum value of φ on X1 is attained at X1 \ X0. Since the size of the difference between the
two sets is bounded by 2M and the intersection size is T −M , the probability of an error is upper
bounded by (1 + ε)2M/(T −M) = δ(1 + ε).

The function φ can either be instantiated with a PRF, in which case ε ≤ negl(λ) whenever
M ≤ poly(λ), or unconditionally using a small family of min-wise independent hash functions
constructed in [Ind01].

6.2 Optimizing the Conversion

Consider Algorithm 2, which is a one-sided version of the share conversion in Algorithm 1. Algo-
rithm 2 executes until a distinguished point is found.

A straightforward implementation of this algorithm for a group element h ∈ G requires com-
puting the sequence h, hg,. . . , hgi for a generator g, computing a pseudo-random function on each
element and choosing the first distinguished point (or alternatively the minimal value). A natural
strategy for this implementation is to choose the group G to be a group over elliptic curves, since
the resulting ciphertexts would be relatively short and group operations would be relatively fast.

We explore a different implementation of the conversion step which tests whether a sub-sequence
of elements hgi, . . . , hgi+j includes a distinguished point without explicitly computing each element
in the sub-sequence. To achieve this idea we work over groups Z∗p with special structure rather
than over an EC group and terminate the conversion algorithm upon reaching a distinguished point.

26

Therefore, the following optimizations are incompatible with reducing the worst-case running time
via min-hashing as suggested in Section 6.1.

The first idea is to decide if an element h′ = hgi ∈ G is distinguished without using a PRF φ.
We say that h′ is distinguished if the binary representation of h′ has d leading zeroes, where d is a
parameter given to the conversion algorithm, i.e., h′ < 2dlog pe−d. (One should think of d as being
roughly equal to log2(1/δ), where δ is the target failure probability for the conversion algorithm.)

The second idea is to consider pseudo-Mersenne primes, i.e. primes of the form p = 2n − γ
for small γ, in which the element 2 generates a large sub-group. We refer to such primes as
conversion friendly. A class of conversion-friendly primes which are relatively common are pseudo-
Mersenne primes p which are safe, i.e. p = 2q + 1 for a prime q and which satisfy p ≡ ±1 mod 8.
For such primes the sub-group G that includes all the quadratic residues modulo p is of size
q. Since q is prime, every element in G generates the sub-group and one of these elements is
2 since p ≡ ±1 mod 8. Examples of useful conversion-friendly primes include 21280 − 7243217,
21536 − 11510609 and 22048 − 1942289.

The best currently known attack against DDH over pseudo-Mersenne primes is to use the Special
Number Field Sieve (SNFS) [Pol88] to compute discrete logarithms modulo the prime. The current
record for using the SNFS to compute discrete logarithms is 1024 bits by Fried et al. [FGHT17]. In
the somewhat related task of factoring Mersenne primes the current record being 21199−1 [KBL14].
To account for the speedup offered by SNFS, the bit-length of the special primes we use needs to be
roughly 50% bigger than that of a general prime to provide a similar level of security. For instance,
a 2048-bit special p is roughly comparable to a 1340-bit general p [FGHT17].

Working over conversion-friendly primes computing 2h mod p given h can be done by shifting
the bit representation of h one bit to the left, removing the most significant bit and adding γ to
the result if the removed bit is 1. Therefore, computing the next element of the sequence h, . . . , hgi

involves little more than a comparison of the bit, an addition, and testing whether the d most
significant bits of the result are zero.

We empirically validated that, in the groups Z∗p we use, if h ∈ G is chosen randomly then the
MSB sequence of hgi behaves like a random bit-string with respect to the expected number of
steps required to find a sequence of d zeros, which is roughly 2d+1 (it is precisely 2d+1− 2 [Nie73]).
Note that it is easy to modify the conversion algorithm to use a random starting point h, since
the two servers can shift their respective elements h0, h1 by the same (pseudo-)random element r,
maintaining the difference between h0 and h1. Thus, to ensure conversion error δ, it suffices to use
d = dlog2(1/δ)e+ 1.

Further savings in the computation of the MSB sequence are possible by taking advantage of
hardware architectures that enable fast multiplication of w-bit words. If h = a12

n−w + a0 for
0 ≤ a0 < 2n−w, 0 ≤ a1 < 2w then 2wh ≡ a02

w + a1γ mod p. Note that if γ << 2w then computing
2wh requires one multiplication of words and with high probability one addition of words.

It is possible to test if any of the 2w − d elements h, 2h mod p, . . . , 22w−d−1h mod p are distin-
guished by checking whether the 2w most significant bits of h include the substring 0d. That can
be done efficiently in a standard computer architecture by dividing the 2w bits into strips of length
d/2 and checking whether any of the strips is 0d/2. If none of the strips are 0d/2 then the sequence
h, 2h, . . . , 2w−d/2−1h does not contain a distinguished point. In this case, after finding the longest
0 suffix of the first 2w bits of h, the next element to be examined is 2wh. If one of the strips is
0d/2 then the bits on both its sides are examined to check if the strip is part of a 0d pattern, which
determines a distinguished point.

27

To conclude, by using conversion-friendly groups and the zero-sequence heuristic, the implemen-
tation of the share conversion algorithm reduces to the following two tasks: (1) generating the MSB
sequence of the group elements hgi, i = 0, 1, 2, . . .; (2) finding the first occurrence of the pattern 0d

in a given bit-sequence. Both tasks can be implemented using less than a machine instruction per
step i.

Define the number of conversion steps that Algorithm 2 makes to be 0 if the algorithm returns
⊥ and i if it returns i. An interesting property of the above algorithm for finding distinguished
points is that it is almost independent of the size of the underlying group. We implemented the
algorithm achieving an average rate of 1.6 billion conversion steps a second. The implementation
ran on a commodity laptop, Dell Latitude 3550, with an Intel i7-5500 CPU based on the Broadwell
architecture, running single-threaded at 2.4 GHz. The implementation used 32-bit words together
with multiplications of two 32 bit operands into a 64 bit product.

Word Multiplications Additions Masking operations No. of Conversion
size per step per step per step steps per second

32 bits 0.031 0.031 0.22 1.6 billion
w bits 1

w
1
w

+ γ
2w

2
w

(
⌈
w
d

⌉
+ d

2d/2
) –

Table 1: Performance figures for the conversion step over a prime p = 2n − γ with d zero bits
determining a distinguished point.

Table 1 measures the average number of multiplications, additions and bit level operations
(bit-by-bit logical AND of words and shifts) for a conversion step in a 32-bit architecture and in
a general w-bit architecture. The table makes it clear that a conversion step requires on average
well below a single instruction for these operations. The actual implementation requires slightly
more than one instruction per step but that is possibly due to other system considerations such as
memory access time.

The natural alternative to our algorithm, as previously noted, is to let G be a group over an
elliptic curve, compute the sequence h, g · h, . . . , gi · h by i point additions and test whether each
one is a distinguished point. Assuming a good implementation for elliptic-curves that achieves four
million point additions per second for 160-bit curves is still slower by more than two orders of
magnitude compared to conversions over conversion-friendly primes.

6.3 Optimizing RMS Multiplication

An RMS multiplication involves multiplying an input w by a memory variable y. An input w
is represented by a pair (ga, gac+w) and ` pairs (gat , gatc+wc

(t)
) for an `-bit ElGamal private key

c = c(1), . . . , c(`). A memory variable y is represented by a (subtractive) sharing of y and of yc
over the integers. The homomorphic evaluation of wy requires two modular exponentiations and a
conversion procedure for each of these `+ 1 pairs. Consider the following optimizations.

Short key. In a “short-key” version of ElGamal the key size is reduced to twice the value of a
concrete security parameter [KK04]. Even for Pseudo-Mersenne primes the best known attacks
on a short key c run in time 2c/2, e.g. giant-step baby-step, Pollard’s Rho algorithm or Pollard’s
Lambda Algorithm. Therefore, choosing a 160-bit key is sufficient for 80 bits of security.

Large key basis. Instead of representing the ElGamal secret key c by ` bits c(1), . . . , c(`) the key
can be represented in a larger basis B by using `′ = d`/ logBe digits e(1), . . . , e(`

′). The impact

28

on RMS evaluation is that an ElGamal ciphertext (gat , gatc+we
(t)

) encrypts an integer we(t) in the
range 0, . . . , B− 1 and therefore the average running time of the conversion algorithm increases by
a factor of B. On the other hand, the number of exponentiations, the required storage and the
ciphertext size are all reduced by log2B.

Time-memory trade-off for fixed base exponentiation. Every exponentiation in evaluating
RMS multiplications uses a base that is part of the encrypted input. For a given integer R, which
we call the tradeoff parameter, a base h can be replaced by {hj·2iR | 0 ≤ i < `/R, 0 < j < 2R}
reducing exponentiation to a product of appropriate elements in this set. The number of modular
multiplications without the optimization is more than ` (e.g. with a sliding-window algorithm) and
is only d`/Re − 1 given the optimization. Therefore, as R grows the computation time decreases
linearly with R while the required memory increases to d`/Re · (2R − 1) group elements.

The following table summarizes various performance measures for a single binary RMS multi-
plication. It uses approximations of the analytic expressions described in the following paragraphs.

Parameter Analytic
expression

Failure probability d`/ logB + 1e(B − 1)/2d

Group operations d`/ logB + 1e `+2d
R

Expected conv. steps d`/ logB + 1e2d+1

Public key size (DEHE) 2d`/ logBe+ 5
Share size per input (HSS) d`/ logB + 2e
ciphertext size per input (DEHE) 2d`/ logB + 1e
Preprocessing memory d`/ logB + 1e(`+ 2d)(2R − 1)/R

Table 2: Parameters of a single RMS multiplication of binary values as a function of ` (secret key
bit length, ` = 160 by default), B (basis size), R (modular exponentiation parameter, R = 1 by
default), and d (the pattern length of the conversion algorithm). All sizes are measured in group
elements.

Concrete choice of parameters. We now give concrete analytical expressions that show some
possible tradeoffs between the different parameters. For the following analysis, we let p be a
conversion-friendly prime and G be the group of quadratic residues modulo p. As discussed above,
we make the (empirically validated) assumption that the bit sequence defined by the MSB of hgi,
i = 0, 1, 2, . . ., with a random starting point h, behaves like a random bit sequence as far as the
expected first occurrence of the pattern 0d goes.

We further let ` denote the bit-length of the secret key (typically ` = 160), B denote the key
basis (typically B = 2, 4 or 16) and R a tradeoff parameter that reduces the computational cost of
fixed-basis exponentiations via precomputation, as discussed above (typically R = 1 or 8). We let
α denote the number of conversion steps per second (roughly 1.6 · 109 in our implementation), and
γ denote the number of multiplications modulo p per second (roughly 106 in our implementation
for 1536-bit primes). Realizing RMS multiplication of binary values with failure probability ε, in
which one of the parties reports errors, as in Algorithm 2 it suffices to let the distinguished point
pattern length be d =

⌈
log (B−1)(d`/ logBe+1)

ε

⌉
. This setting of parameters gives rise to the following

performance:

29

• The number of (binary) RMS multiplications per second is at least

αγ⌈
`

logB + 1
⌉
(α(`+2d+3R)

R + γ · 2d+1)
.

• The share size per input is 2d`/ logBe+ 3 group elements for both HSS and DEHE variants
with security in the standard model. The share size for the HSS variant is d`/ logBe + 2 if
heuristic security (or alternatively security in the random oracle model) is sufficient.

• The extra storage per input used for speeding up fixed-base exponentiations is at most S
4
=⌈

`
logB + 1

⌉
(
⌈
`+d
R

⌉
+
⌈
d
R

⌉
)(2R − 1) group elements if R > 1 and is zero if R = 1.

• The (offline) computation time per input is S/γ seconds.

In the following we provide the detailed calculation leading to the above expressions. The
target error probability for the whole RMS operation is ε and therefore the error probability of
each of the d`/ logBe + 1 conversions must be no more than ε/(d`/ logBe + 1). An error in
the conversion occurs if a distinguished point exists between the two elements that are converted
to integers. The maximum distance between these elements in the cycle over G is B − 1 and
therefore the probability of a random element being a distinguished point must be at most ε/(B −
1)(d`/ logBe+1). As a consequence, the number of leading zeroes, d, which defines a distinguished

point is d =
⌈

log (B−1)(d`/ logBe+1)
ε

⌉
.

The key is represented in base B by c = (e(d`/ logBe), . . . , e(1)). The share size for an input w
is determined by the representation of w as the subtractive shares of w and of wc over Zq and by

the d`/ logBe + 1 pairs (gat , gatc+we
(t)

) ∈ G2, t = 1, . . . , d`/ logBe and (ga, gac+we
(t)

) ∈ G2. The
subtractive shares are elements in Zq and their size in our implementation is less than the size of a
single element in G. Together with the `+1 pairs of elements in G there are at most 2(d`/ logBe+2)
group elements altogether.

A possible optimization for the share size in the HSS variant is introduced in [BGI16] and
suggests choosing the first element in each of the ElGamal pairs from a pseudo-random distribution.
Then, the share includes a seed for a pseudo-random generator instead of the ` + 1 first elements
of the pair. The result is that the share size is only d`/ logBe + 2 at the cost of the computation
being only heuristically secure. Note that this optimization does not work in the DEHE variant
since a client does not know the ElGamal secret key.

A memory variable y is represented by subtractive shares of y and yc over the integers. The
expected value of a share y1 of y is the expected distance from a random element in G to a
distinguished point, which is assumed to be 2d. For similar reasons, since c < 2`, the expected
value of a share (yc)1 of yc is at most 2`+d. RMS multiplication of an input w by a memory

variable y begins by computing d`/ logBe+ 1 elements of the type (gat)(yc)1 · (gatc+we(t))y1 . Using
the time-memory tradeoff optimization with parameter R for that computation requires calculating
and storing the elements {(gat)j·2iR | 0 ≤ i < (` + d)/R, 0 < j < 2R} and {(gatc+we(t))j·2iR | 0 ≤
i < d/R, 0 < j < 2R}. Therefore the total number of stored group elements is⌈ `

logB
+ 1
⌉(⌈`+ d

R

⌉
+
⌈ d
R

⌉)
(2R − 1)

and each stored element can be computed with a single modular multiplication.

30

To compute a bound on the number RMS multiplications per second we separate each RMS
multiplication to a conversion phase and a modular multiplication phase and bound the rate at
which these phases can be computed. In a single RMS multiplication there are d`/ logBe + 1
conversions. Taking into account the expected number of steps in a single conversion and the rate
of conversion steps per second we have that the expected rate of conversion phases per second
is α
d`/ logB+1e2d+1 . The number of modular multiplications in a modular multiplication phase is

d`/ logB + 1e(dd/Re + d(` + d)/Re + 1). Therefore, the rate of modular-multiplication phases
per second is at least γ

d`/ logB+1e((`+2d)/R+3) . We compute the number of RMS multiplications per
second by allocating a fraction η of a second to the conversion phases, a fraction of 1 − η to the
multiplication phases and noting that

ηα

d`/ logB + 1e2d+1
=

(1− η)γ

d`/ logB + 1e((`+ 2d)/R+ 3)

and that the two quantities are equal to the rate of RMS multiplications. Solving for η we obtain
the above expression.

In Table 3 we summarize the performance of the system for several typical parameters. We note
that using by faster (but still inexpensive) hardware and parallelism, e.g. [Por15], one could realize
thousands of RMS multiplications per second with failure probability that suffices for realizing
simple but nontrivial computations.

Error Base Tradeoff Length of Share Memory RMS mult.
param. dist. point (bytes) (bytes) per second

ε = 2−5

B = 4 R = 1 d = 13 21000 42000 62
B = 4 R = 8 d = 13 21000 127 · 106 338
B = 16 R = 1 d = 15 10750 21500 104
B = 16 R = 8 d = 15 10750 64.2 · 106 360

ε = 2−10

B = 4 R = 1 d = 18 21000 42000 23.4
B = 4 R = 8 d = 18 21000 137.5 · 106 34.7
B = 16 R = 1 d = 20 10750 21500 16.1
B = 16 R = 8 d = 20 10750 69.6 · 106 18.2

ε = 2−15

B = 4 R = 1 d = 23 21000 42000 1.15
B = 4 R = 8 d = 23 21000 137.5 · 106 1.17
B = 16 R = 1 d = 25 10750 21500 0.57
B = 16 R = 8 d = 25 10750 75 · 106 0.58

Table 3: Performance of RMS multiplications with prime 21536 − 11510609, key length ` = 160,
α = 1.6 ·109 conversion steps per second (as implemented on a standard Dell Latitude 3550 laptop,
with an Intel i7-5500 CPU based on the Broadwell architecture, running single-threaded at 2.4
GHz), and assuming γ = 106 modular multiplications per second.

Acknowledgements. We thank Antoine Joux for discussions, suggestions, and pointers that
helped improve the results of Section 6. We also thank Geoffroy Couteau and the anonymous
Eurocrypt reviewers for helpful comments.

The first author was supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and
ERC starting grant 307952. The second author was supported by ISF grant 1638/15, a grant

31

by the BGU Cyber Center, the Israeli Ministry Of Science and Technology Cyber Program and
by the European Union’s Horizon 2020 ICT program (Mikelangelo project). The third author
was supported by a DARPA/ARL SAFEWARE award, DARPA Brandeis program under Con-
tract N66001-15-C-4065, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174,
and 1065276, NSF-BSF grant 2015782, ISF grant 1709/14, BSF grant 2012378, a Xerox Faculty
Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa
Foundation Research Grant. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views ex-
pressed are those of the authors and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

References

[AIK05] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. In CCC, pages 260–274, 2005.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In EUROCRYPT, pages 483–501, 2012.

[BCM98] Andrei Z. Broder, Moses Charikar, and Michael Mitzenmacher. A derandomization
using min-wise independent permutations. In RANDOM, pages 15–24, 1998.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In PKC, pages 501–519, 2014.

[BGI15] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In Advances in Cryptology
- EUROCRYPT, pages 337–367, 2015.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In CRYPTO, pages 509–539, 2016. Full version: IACR
Cryptology ePrint Archive 2016: 585 (2016).

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision diffie-hellman. In CRYPTO 2008, pages 108–125, 2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

[Bra84] Gabriel Bracha. An asynchronous [(n − 1)/3]-resilient consensus protocol. In PODC,
pages 154–162, 1984.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in
the presence of key-dependent messages. In SAC, pages 62–75, 2002.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In ASIACRYPT, pages 280–300, 2013.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, pages 143–202, 2000.

32

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In CRYPTO, pages 521–536, 2006.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT,
pages 3–33, 2016.

[Cle91] Richard Cleve. Towards optimal simulations of formulas by bounded-width programs.
Computational Complexity, 1:91–105, 1991.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO, pages 93–122, 2016.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption
in less than a second. In EUROCRYPT, pages 617–640, 2015.

[FGHT17] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. A kilobit hid-
den SNFS discrete logarithm computation. In Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages
202–231, 2017.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[Gol04] Oded Goldreich. Foundations of Cryptography — Basic Applications. Cambridge Uni-
versity Press, 2004.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in
two rounds. In CRYPTO, pages 111–129, 2007.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures
in perfect multiparty computation. J. Cryptology, 13(1):31–60, 2000.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In EUROCRYPT, pages
641–670, 2015.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In FOCS, pages 294–304,
2000.

33

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via per-
fect randomizing polynomials. In ICALP, pages 244–256, 2002.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In STOC, pages 433–442, 2008.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[Ind01] Piotr Indyk. A small approximately min-wise independent family of hash functions. J.
Algorithms, 38(1):84–90, 2001.

[KBL14] Thorsten Kleinjung, Joppe W. Bos, and Arjen K. Lenstra. Mersenne factorization
factory. In ASIACRYPT, pages 358–377, 2014.

[KK04] Takeshi Koshiba and Kaoru Kurosawa. Short exponent diffie-hellman problems. In
PKC, pages 173–186, 2004.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In CCS, pages 669–684, 2013.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC, pages
1219–1234, 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In EUROCRYPT, pages 735–763, 2016.

[Nie73] Peter Nielsen. On the expected duration of a search for a fixed pattern in random data
(corresp.). IEEE Transactions on Information Theory, 19(5):702–704, 1973.

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In STOC, pages 590–599, 2001.

[Pol88] John Pollard. Factoring with cubic integers. Unpublished Manuscript, 1988.

[Por15] Thomas Pornin. Optimizing MAKWA on GPU and CPU. Cryptology ePrint Archive,
Report 2015/678, 2015.

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of secure computation, pages 169–179. 1978.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, pages 475–484, 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

34

A “BGI” HSS Scheme: from [BGI16]

For completeness, we present the complete BGI homomorphic secret sharing scheme construc-
tion. Figure 1 includes relevant notations, pairing operations, and the share conversion algorithm
DistributedDLog. Figure 6 gives the corresponding algorithms Enc and Eval.

Remark A.1 (Additive vs Subtractive Sharing). The HSS constructions of [BGI16] maintain values
in a positive form of additive and multiplicative secret shares for notational convenience, but then
must convert back and forth to their inverse (ie., subtractive or division shares) for computations.
In the diagrams here, we directly represent in the negative versions, to remove the need for extra
inversion computation steps.

B Black-Box Client-Server HSS & DEHE

In this appendix we formally define and construct client-server HSS (and DEHE) that makes black-
box use of the DDH-hard group G.

Definition B.1 (Client-Server HSS). An m-client 2-server (1/poly-error) Client-Server Homomor-
phic Secret Sharing (HSS) for a class of programs P consists of a distributed protocol Π and PPT
algorithm Eval, with the following syntax:

• Π specifies an interactive protocol between m clients C1, . . . , Cm and two servers S0, S1, where
each client Ci begins with input wi, and in the end of executing Π the servers S0, S1 output
homomorphic secret shares share0, share1, respectively, of the joint input (w1, . . . , wm).

• Eval(b, share, P, δ, β) has the same syntax as in standard HSS. That is, on input party index
b ∈ {0, 1}, share share (which also specifies an input length n), a program P ∈ P with n input
bits and ` output bits, an error bound δ > 0 and integer β ≥ 2, the homomorphic evaluation
algorithm either outputs yb ∈ Z`β, constituting party b’s share of an output y ∈ {0, 1}`, or
alternatively outputs ⊥ to indicate failure. When β is omitted it is understood to be β = 2.

The pair (Π,Eval) should satisfy the following correctness and security properties:

• Correctness: For every polynomial p there is a negligible ν such that for every positive
integer λ, input ~w = (w1, w2, . . . , wm) of total length n, program P ∈ P with input length n,
error bound δ > 0 and integer β ≥ 2, where |P |, 1/δ ≤ p(λ), we have

Pr[(share0, share1)← Π(1λ, ~w); yb ← Eval(b, shareb, P, δ, β), b = 0, 1 :

y0 + y1 6= P (~w)] ≤ δ + ν(λ),

where addition of y0 and y1 is carried out modulo β.

• Security: For Corrupt ⊂ {C1, . . . , Cm} ∪ {S0, S1} and ~w = (w1, . . . , wm) ∈ {0, 1}n, let
view(1λ,Corrupt, ~w) denote the joint view of the corrupted parties within the following exper-
iment:

– Clients C1, . . . , Cm interact as prescribed by Π, with inputs w1, . . . , wm, respectively,
using fresh randomness. Each server Sb outputs shareb.

35

Then security requires that there exist a PPT simulator Sim such that for any corrupted set
Corrupt ⊂ {C1, . . . , Cm}∪{S0, S1} of clients and servers with {C1, . . . Cm}, {S0, S1} 6⊂ Corrupt
(i.e., for which at least one server and one client are uncorrupted), every polynomial p, and
sequence of input vectors ~wλ = (wλ1 , . . . , w

λ
m) ∈ ({0, 1}∗)m such that |wλi | ≤ p(λ), it holds

that view(1λ,Corrupt, ~wλ)
c∼= Sim(1λ,Corrupt, {wi}Ci∈Corrupt, {|wi|}Ci 6∈Corrupt).

B.1 Black-Box Client-Server HSS Construction

We attain a black-box client-server HSS building from the HSS of BGI [BGI16] by leveraging three
homomorphic properties of ElGamal:

1. Key hom: Given key pairs (c1, e1) and (c2, e2), then encryptions under public key e1 · e2
correspond to secret key c1 + c2.

2. Plaintext hom 1: Given ElGamal encryptions of plaintexts x1 and x2, under the same public
key e, their componentwise product is an encryption of the plaintext x1 + x2 under e.

3. Plaintext hom 2: Given an ElGamal encryption (h1, h2) of unknown value x under public key
e, together with a known value w, one can generate a (freshly distributed) encryption of the
product wx.

Recall that in the BGI construction, the secret sharing of an input w consists of: (1) additive
secret share over Zq of the input w and of the product cw, for a system ElGamal secret key c; (2)
identical copies of (`+ 1) ElGamal ciphertexts, one encrypting w and one encrypting each product
c(t)w of w with the t’th bit of the secret key, for t ∈ [`]. (See discussion in Section 2.6 for an more
extended overview.)

The construction. Within the joint secret sharing protocol Π, each client Ci will generate
an independent ElGamal key pair (ci, ei), and the joint keys of the system will correspond to
c =

∑
ci ∈ Zq and e =

∏
ei ∈ G, leveraging the key homomorphism of ElGamal. Additive secret

shares of the combined key c can be obtained by having each party additively secret share his key
ci. Given the collection of public keys {ei}, each client can directly encrypt his input wi under
the combined public key e =

∏
ei. It then remains to generate encryptions of the products c(t)wi,

where c(t) are the bits of the joint secret key c =
∑
ci (where addition is in Zq). Note that by

Plaintext homomorphism 2 (above), it suffices to generate encryptions of the bits c(t) themselves
(since client Ci can convert such an encryption to one of c(t)wi, given wi in the clear).

The other plaintext-homomorphism property of ElGamal (above) gets us partway toward this

goal. Each client Cj can encrypt the bits c
(t)
j of his own secret key under the joint key e, which can

be combined via Plaintext homomorphism 1 (above) to an encryption of
∑

j∈[m] c
(t)
j under e. Note

that this is not the same as the t’th bit of the combined key
∑

j∈[m] cj (indeed, this value likely will
not even lie in {0, 1}). However, we observe that the BGI construction does not strictly require
{0, 1} values for this c(t), but rather used the bit representation for convenience and can support
computations on any sufficiently small values at the expense of greater computation during the
share conversion procedure.

As such, we can replace the role of the bits of the joint key c(t) with any combination of small-
magnitude values which can be combined over Zq to reconstruct c. In our case, we will use exactly

36

the sums c
(t)
sum =

∑
i∈[m] c

(t)
i ∈ {0, . . . ,m} of the bits of the keys ci of the m clients. We have

c =
∑`

t=1 2t−1c
(t)
sum ∈ Zq as desired, and each sum is bounded in magnitude by the number of

clients m. This means that if each intermediate memory value in the computation of program P
is bounded in size by M , then the maximum magnitude of multiplicatively values we will need to

convert to additive shares will be mM , corresponding to the product c
(t)
sumy for some memory value

y.
A formal description of our black-box client-server DEHE construction is given in Figure 8.
In our construction, we make use of the notations of [BGI16] to denote ElGamal ciphertexts,

additive secret shares, and “multiplicative” secret shares, as well as two of their “share pairing”
operations MultShares, ConvertShares, and their core share conversion sub-routine DistributedDLog.
Definitions of these items are given in Figure 1.

Proposition B.2 (Black-box client-server DEHE). Assuming circular security of ElGamal, there
exists a client-server DEHE protocol for branching programs that makes a black-box access to any
DDH-hard group.

Remark B.3 (Multi-eval black-box client-server DEHE). We can directly obtain a multi-evaluation
version of the construction, as per Appendix 2.4.1, where several independent executions of Eval
can take place cheaply without requiring further communication. This is because the randomness of
Eval is determined by a pseudo-random function φ, which can be leveraged to give “fresh” additional
randomness for a second execution by simply evaluating φ each time on a disjoint set of its input
space.

Proof. Correctness. The ultimate construction (Π,Enc,Eval) differs from the BGI DEHE construc-
tion (Gen,Enc,Eval) in only two aspects: (1) In BGI, the ciphertexts [[c(t)]]c in the public key
corresponded to encryptions of bits of the secret key c, whereas here they correspond to larger-
magnitude values (up to m) satisfying the same linear reconstruction property, and (2) Each exe-
cution of ConvertShares within homomorphic Eval is run with magnitude bound mM , instead of M .
The only difference introduced by (1) is that the share conversion procedure will err with higher
probability, scaling with the new larger magnitude; however, this is directly taken care of by (2), in
effect increasing the runtime complexity of DistributedDLog to maintain the same error guarantees.

Security. We construct the desired simulator algorithm below. Essentially, Sim simulates honest

parties faithfully, except that all encryptions (of w, c
(t)
i) under the joint public key are replaced by

encryptions of 0.

Sim(1λ,Corrupt):

1. Denote Sb = {S0, S1} ∩ Corrupt (i.e., either a corrupt server or empty).

2. Client Round 1: Perform the following on behalf of each uncorrupted client i ∈ [m].

(a) Sample a fresh ElGamal key pair ci ← Zq, e = gci . Send ci, ei to all clients.

(b) Sample a random “secret share” vi ← Zq and a random string ri ← {0, 1}λ, and send
both vi, ri to server Sb.

3. Client Round 2: Perform the following on behalf of each uncorrupted client i ∈ [m].

(a) Let e =
∏
j∈[m] ej , where ej is the value sent by client j in the previous round.

37

(b) Sample ` encryptions of 0 (instead of the bits of his key ci): i.e., for t ∈ [`], let [[c
(t)
i]]c ←

EncElGamal(e, 0).

(c) Send ([[c
(t)
i]]c)t∈[`] to all clients.

4. Client Output:

(a) For each t ∈ [`], let [[c(t)]]c =
∏
j∈[m][[c

(t)
i]]c be the coordinate-wise product in G2.

(b) Output pk =
(
e, ([[c(t)]]c)t∈[`]

)
.

5. Simulation of Enc(w):

(a) Sample an encryption of 0 (instead of w): i.e., let [[w]]c ← EncElGamal(e, 0).

(b) Sample ` encryptions of 0 (instead of homomorphically generating an encryption of
c(t)w): i.e., for t ∈ [`], let [[c(t)w]]c ← EncElGamal(e, 0).

(c) Output
(
[[w]]c, ([[c

(t)w]]c)t∈[`]
)

as the simulated encryption of w.

Claim B.4. Assume circular security of ElGamal encryption. Then for any legal set of corruptions
Corrupt ⊂ {C1, . . . , Cm}∪{S0, S1} (i.e., with {C1, . . . , Cm}, {S0, S1} 6⊂ Corrupt) and any w ∈ {0, 1},
it holds that view(1λ,Corrupt, w)

c∼= Sim(1λ,Corrupt).

Proof. Indistinguishability of the simulated view for two inputs w,w′ ∈ {0, 1} follows by three
hybrids.

In the first hybrid, (if there exists a corrupted server Sb), we replace all additive secret shares
given to Sb by truly random values in Zq. By perfect security of the secret sharing, these distribu-
tions are identical.

In the second hybrid, we replace the vectors of encryptions ([[c
(t)
i]]c)t∈[`] with encryptions of 0

under key c, making use of the circular security property of ElGamal. Note that although these
ciphertexts are under the joint key c =

∑
i ci, by the key homomorphism of ElGamal within the

reduction we can convert ciphertexts under key ci to ones under key c while preserving the plaintext.
In the third hybrid, now that all side information on the secret keys ci is removed, we may

appeal to standard semantic security of ElGamal to remove all remaining encryptions under the
joint key c with encryptions of 0. As above, this can be done as long as at least one client Ci is
uncorrupted, as there is still an unknown key contribution ci.

Note that a client-server DEHE directly yields a construction of client-server HSS: In the HSS
protocol ΠHSS, the clients and servers first run ΠDEHE of the DEHE to generate a global pk and
evaluation keys ek0, ek1 to the respective servers, and then the final secret shares shareb of the
clients’ inputs will consist of pk, ekb, and encryptions ŵ1 . . . , ŵm of the clients’ inputs, where each
ŵi is generated by client Ci as ŵi ← Enc(pk, wi) and sent to both servers.

Because of this, we immediately obtain the following corollary.

Corollary B.5 (Black-box client-server HSS). Assume ElGamal is circular secure. There exists a
client-server HSS protocol for branching programs that makes a black-box access to any DDH-hard
group.

38

B.2 Black-Box Secure Computation for Branching Programs

We now use the black-box client-server HSS (or DEHE) to obtain succinct secure computation
making black-box use of the group G. For simplicity, we treat the case where clients’ inputs wi are
each a single bit.

Construction B.6 (Black-Box Secure Computation for Branching Progs ΠBB). Parties:
Clients C1, . . . , Cm, servers S0, S1.
Global inputs: DDH group G, g, q, program P , parameter δ.
Inputs: Clients C1, . . . , Cm hold secret inputs w1, . . . , wm ∈ {0, 1}.
Output: Each client outputs P (w1, . . . , wm).
Tools: m-client 2-server Multi-Eval HSS (ΠHSS,EvalHSS), and generic MPC protocol ΠMPC.

1. Share inputs: The clients and servers execute the client-server HSS protocol ΠHSS, where
each client Ci and server Sb emulates the corresponding role in ΠHSS. As a result, each server
Sb learns a respective HSS share value, shareb.

2. Homomorphically Evaluate: Each server performs λ multi-evaluation homomorphic eval-
uations on their respective share: i.e., for j = 1, . . . , λ, let yjb ← EvalG,g(b, shareb, P, δ) using

the HSS scheme. Recall each yjb ∈ Zβ for some β ∈ Z as specified in P .

3. Reconstruct: The servers participate in generic secure computation protocol ΠMPC on re-

spective inputs (yj0)j∈[λ], (y
j
1)j∈[λ] to evaluate function f defined by f

(
(yj0)j∈[λ], (y

j
0)j∈[λ]

)
=

majorityj∈[λ](y
j
0 − yj1) ∈ Zβ. The output of this computation is sent to and output by all

clients.

Proof. Let A be a PPT adversary in the client-server secure computation protocol, who corrupts
a subset of entities Corrupt ⊂ {C1, . . . , Cm} ∪ {S0, S1}, such that at least one client and one server
is uncorrupt. Consider the following simulator SimBB(1λ, {wi}Ci∈Corrupt), which receives from the
ideal functionality the correct final output y = P (w1, . . . , wm). First, SimBB executes the HSS
simulator,

view1
A ← SimHSS(1λ,Corrupt, {wi}Ci∈Corrupt, {1}Ci /∈Corrupt).

If Corrupt ∩ {S0, S1} = ∅, the simulator SimBB outputs the value of view1
A, together with the final

output y. Otherwise, if Sb ∈ Corrupt, then SimBB locates from within view1
A the value shareb, corre-

sponding to Sb’s (simulated) HSS share (which is used as Sb’s input to the final MPC execution),
executes the MPC simulator as view2

A ← SimMPC(1λ, {Sb}, shareb), and outputs (view1
A, view

2
A, y).

By a straightforward hybrid argument, indistinguishability of the real and SimBB-simulated
views follows by the security of the underlying HSS and MPC primitives.

C MPC Results for 2-Round Construction

We rely on the following results about MPC protocols in the client-server model.

Theorem C.1 (MPC for low-degree polynomials). [IK00] For any positive integers t,m, d there
is a 2-round, m-client, k-server, perfectly t-robust protocol for the class of degree-d polynomials

39

over F2, where k = O(dt). When evaluating a vector of ` polynomials on n inputs, each message
sent by a client is of length O(n log k), the message sent by each server is of length O(` log k),
and the computation of each server can be implemented by a circuit of size poly(n, `, k) and depth
O(log(n+ `+ k)).

The following theorem is obtained by using packed secret sharing based on algebraic geometric
codes.

Theorem C.2 (Constant-rate MPC for finite functions). [CC06, IKOS09] Let f be a finite function
mapping m client inputs to m client outputs. For any positive integers t there is a 2-round, m-
client, k-server, perfectly t-robust protocol for evaluating t instances of f , where k = O(t). Each
client in this protocol sends O(1) bits to each server and each server sends O(1) bits to each client
(independently of t).

The following theorem is used for succinct protocols for NC1. This is the only case in which we
need to rely on an MPC protocol that involves server-to-server communication.

Theorem C.3 (MPC for NC1). Suppose there is a PRF in NC1. Then for any positive integers
t,m there is a constant-rounds, m-client, k-server, computationally t-robust protocol for formulas,
where k = O(t). When evaluating a boolean formula of size S on n input bits, each client sends to
each server a message of length O(n log k+λ) in the first round, and each server sends a single bit
in the final round. The servers’ next message function NextMsg for each round is computable by a
formula of size poly(S, k,m).

Proof. (sketch) We rely on the fact that every formula f of size S admits a degree-3 randomized
encoding f̂ of size poly(S), where decoding can also be done by a formula of size poly(S). An
encoding of this type can be realized using an information-theoretic variant of Yao’s garbled circuit
construction (cf. [IK02]). The protocol proceeds as follows. In the first round, each client secret-
shares its input between the servers, and sends a PRF key to each server. Each server i expands
the PRF keys received from each client into polynomial-length random strings, and uses their XOR
as its private randomness ri. In the next two rounds, the servers run a perfectly t-robust k-party
MPC protocol for degree-3 polynomials to compute a randomized encoding (of length poly(S)) of
the output of f . The randomness of the encoding is taken from the random inputs ri. Finally, the
servers locally decode the output y of f from the output of the encoding f̂ , and sends y to the
clients. Since t < k, we get robustness.

We do not know whether Theorem C.3 can be generalized to the case of branching programs.
While we do have polynomial-size degree-3 randomized encodings for branching programs [IK00],
decoding requires the computation of a determinant or similar functions. Computations of this
type are conjectured to be unrealizable by polynomial-size deterministic branching programs.

D Additional 2-Round MPC Results

We first note that if we modify the 2-round protocol for constant-degree polynomials by replacing
Theorem C.1 with a virtual client-server protocol based on algebraic geometric codes (Theorem C.2)
we get the following “constant rate” oblivious transfer protocol.

Theorem D.1 (Constant-rate bit-OT via AG codes). Assuming PKI setup and DDH, there is a
2-message protocol realizing n instances of bit-OT with O(n) + poly(λ) bits of communication.

40

Towards obtaining succinct 2-round protocols for NC1, we need to rely on the protocol of
Theorem C.3 as the virtual MPC protocol. The server-to-server communication in this protocol
introduces an additional difficulty, since (unlike all previous protocols) here we need to perform
joint computation on the views of different virtual servers. This means that the initial messages
sent to these servers should be homomorphically secret-shared together. However, this joint HSS
of server views introduces an additional difficulty: since all these views are shared using the same
ElGamal secret key c, leakage caused by share conversion may depend not only on information that
is local to one server but also on bits of this global c.

Fortunately, the above dependence is easy to eliminate via further randomization of the bit
decomposition of c, ensuring that any small subset of these bits is statistically independent of c.
This randomization is done by first additively sharing c into λ random keys ci whose sum (modulo
p) is c, and decomposing each ci into its λ bits. The resulting λ2-bit representation has the property
that every λ bits can be perfectly simulated (jointly) without knowing c. This suffices for jointly
simulating the bits leaked by failure of the share conversion.

Using this approach we get the following theorem.

Theorem D.2 (Succinct protocols for NC1). Assuming PKI setup and DDH, there is a succinct 2-
round 2-server client-server protocol (alternatively, a 2-message 2PC protocol with one-sided output)
for boolean formulas.

E Omitted Proofs/Figures

E.1 Proof of Lemma 4.1

Proof. Correctness. From the BGI HSS construction and analysis, it is known that the share
conversion procedure properly coverts a ciphertext [[x]]c under key c and additive shares 〈y〉, 〈cy〉
collectively to additive shares of the product xy, except with δ′ error probability. We leverage
this exact property within our construction, except with different choices of the key c: either a
single party’s key ci, or the pairwise joint key (ci + cj) of two parties. Following along each of
the homomorphic evaluation steps, and combining the linear homomorphism of the additive secret
shares to obtain shares of 〈(ci+cj)y〉 given 〈ciy〉, 〈cjy〉, correctness aside from total error probability
δ follows by a union bound.

Security. The proof of security follows that of the client-server DEHE from section B.1. The
only core difference is that secrets are published encrypted under pairwise subsets of the secret keys
of clients. However, any secret value owned by a client Ci is encrypted under a combination of keys
that includes his own key, ci. Note that all such released ciphertexts are distributed as honestly
sampled encryptions of the corresponding plaintext under the joint key, because of the step of
re-randomization. Then, by the key homomorphism of ElGamal, this directly implies semantic
security hiding of the corresponding ciphertexts. This extends as well to the case where the secret
plaintexts are key bits, assuming ElGamal circular security (again, since in a reduction we can

translate challenge ciphertexts ([[c
(t)
i]]ci)t∈[`] to ([[c

(t)
i]]ci+cj)t∈[`] for any cj ∈ Zq).

E.2 Simulatable Las Vegas Homomorphic Evaluation algorithm

Described in full in Figure 9.

41

E.3 Proof of Proposition 4.4

Proof. We prove that Construction ?? is a simulatable LV-HSS as required. Correctness and
security follow as in the previous constructions. We now consider the property of error simulation.
We must demonstrate two items.

First, we bound the probability over the randomness of (share0, share1) ← ΠSLV that we have
SimOutput 6= >. Recall that SimOutput 6= > exactly when there exists at least one pair (k,BadValues)
in the set LeakageInfo. In each execution of SLVDistribDLog, such a pair is added when there ex-
ists a distinguished point within the 2M -size window SimDangerZone ⊂ G. Since each group
element h ∈ G is selected as a distinguished point via a pseudo-random function indistinguish-
ably from being selected independently at random, the probability of this event is bounded by
1− (1− δ/(2M))2M ≤ 1− (1− (2M)δ/(2M)) = δ. Note that although future share values depend
on previously computed values, and thus on the choice of PRF, they depend only on the output
values of the PRF, and no input is used more than once, thus pseudo-randomness is guaranteed to
hold.

Second, we claim that if SimOutput 6= >, then the output predicate Pred correctly simulates
the output share (⊥ or not) of the second party. Recall the second party P1−b will output ⊥ if and
only if he receives ⊥ as the output in any execution of SLVDistribDLog. Given the share hb of party
Pb in an SLVDistribDLog execution, there are M possible values for the share h1−b of P1−b into the
corresponding execution, and each such value corresponds to a window DangerZonez (z ∈ [M]) for
P1−b. If there is no distinguished point within any of these M DangerZonez windows, then it is
guaranteed that P1−b will not output ⊥ within this SLVDistribDLog execution. Further, if there is
a distinguished point within one or multiple DangerZonez’s, then the identification of whether P1−b
will output ⊥ will be exactly determined by whether the true value converted in this step is equal
to one of the bad choices of z ∈ [M]. This is directly captured by the sets BadValues. Finally, note
that Pred can indeed be computed given the inputs and randomness (~w,~r) of clients within the
execution of ΠSLV.

The true memory value yk of a partial computation can be computed as a function of the

program P , shareb (as described) and inputs ~w. The true value of c
(t)
γ for some γ ∈ [m] can be

directly computed as a function of the randomness rγ used by the single client Cγ . Now, the error
parameter of Eval is set so that the probability of an error occurring in any share conversion proce-
dure is δ, and error occurs in each conversion independently. This means that with overwhelming
probability in λ, no more than λ conversions will result in error in total, meaning LeakageInfo will
contain at most λ pairs. Altogether, this implies as desired that (with overwhelming probability)
Pred will depend on at most λ intermediate memory values yk and on the randomness rγ of at most
λ different clients.

42

Secret Sharing Notation. For small x ∈ Z (or x ∈ Zq for the case of 〈x〉).

Items in which both parties receive same value.

• [[x]]c = (h1, h2) ∈ G2 for which h2/(h1)
c = gx. I.e., ElGamal ciphertext of x w.r.t. key c.

Items in which each party receives a separate share.

• 〈x〉 = Additive secret shares (x1, x2) ∈ Z2
q for which x1 − x2 = x ∈ Zq.

• 〈〈x〉〉 = “Multiplicative” secret shares (h1, h2) ∈ G2 for which h1/h2 = gx ∈ G.

Pairing Operations.
Let φ : {0, 1}λ ×G→ {0, 1}` be a given PRF.

• MultShares
(

[[x]]c, 〈y〉, 〈cy〉
)
→ 〈〈xy〉〉.

1. Denote [[x]]c = (h1, h2) ∈ G2.

2. Compute 〈〈xy〉〉 = h
〈y〉
2 h

−〈cy〉
1 .

• ConvertShares(b, 〈〈x〉〉, id, δ,M) → 〈x〉, with party identifier b ∈ {0, 1}, execution identifier id,
error parameter δ and max size bound M .

1. Denote by φ′ : G→ {0, 1}dlog(2M/δ)e the appropriate prefix output of φ(id, ·).
2. Let xb denote the present party b’s share of 〈〈x〉〉.
3. Output ib ← DistributedDLogG,g(xb, δ,M, φ′).

Share Conversion Sub-Routine. DistributedDLogG,g(h, δ,M, φ)

1: Set h′ ← h, i← 0. Let T := [2M ln(2/δ)]/δ.
2: while (φ(h′) 6= 0dlog(2M/δ)e and i < T) do
3: h′ ← h′ · g, i← i+ 1.
4: end while
5: Output i.

Figure 1: Notation, pairing operations, and share conversion algorithm, as used in [BGI16]. For
simplicity we describe the scheme with subtractive (and division) secret sharing instead of converting
back and forth between additive and subtractive (resp., multiplicative and division) shares; see
discussion in full version.

43

One-Round Client-Server HSS (using PKI): m-client secret sharing protocol Π1r.
Global parameters: G, g, q. Let `′ be the output size of Decomp.
Inputs: Each client Ci for i ∈ [m] holds input wi ∈ {0, 1}.
Outputs: Each server Sb for b ∈ {0, 1} learns shareb of all inputs.

Public-Key Infrastructure: Each client Ci’s public-key information consists of:

• An ElGamal private key ci ← Zq, known exclusively by Ci.

• A public key pki =
(
ei, ([[ĉ

(t)
i]]ci)t∈[`′]

)
consisting of:

– ElGamal public key ei = gci .

– For t ∈ [`′], an ElGamal ciphertext under key ei of the t’th symbol of (ĉ
(t)
i)t∈[`′] ←

Decomp(ci); i.e., [[ĉ
(t)
i]]ci ← EncElGamal(ei, ĉ

(t)
i).

Client Round 1: Each client i ∈ [m] performs the following:

1. Generate ciphertexts of “owned” data wi and ĉ
(t)
i wi under self key ei:

(a) Encrypt input wi: i.e., [[wi]]ci ← EncElGamal(ei, wi).

(b) For each t ∈ [`′], encrypt ĉ
(t)
i wi: i.e., [[ĉ

(t)
i wi]]ci ← EncElGamal(ei, ĉ

(t)
i wi).

2. Generate ciphertexts of “joint” data ĉ
(t)
j wi under pairwise keys eiej for j 6= i:

For each client j ∈ [m], j 6= i and key-bit t ∈ [`′], generate ciphertext of ĉ
(t)
j wi as follows:

(a) Let ej and [[ĉ
(t)
j]]cj denote the ElGamal public key and tth-key-bit ciphertext within

the public key pkj of client j.

(b) Sample a fresh encryption of 0 under key eiej ; i.e., (h01, h
0
2)← EncElGamal(eiej , 0).

(c) Let (h1, h2) = [[ĉ
(t)
j]]cj ∈ G2 within the public key of Client Cj .

(d) Compute [[ĉ
(t)
j wi]]ci+cj as follows:

i. Let (h′1, h
′
2) = (hwi1 , h

wi
2 (hwi1)ci). //Decrypts to ĉ

(t)
j wi with key ci + cj

ii. Rerandomize using the ciphertext of 0. Namely, take [[ĉ
(t)
j wi]]ci+cj =

(h′1h
0
1, h
′
2h

0
2).

3. Send all ciphertexts [[wi]]ci , {[[ĉ
(t)
i wi]]ci}t∈[`′], {[[ĉ

(t)
j wi]]ci+cj}i 6=j∈[m],t∈[`′] to both servers.

4. Other items:

(a) Produce an additive secret sharing 〈ci〉 ← AdditiveShare(ci) of the key ci. and send
each resulting share 〈ci〉b to the corresponding server b.

(b) Sample a random string ri ← {0, 1}λ (for PRF seed) and send ri to both servers.

Server Output: Each server b ∈ {0, 1} performs the following:

1. Take r =
∑

i∈[m] ri. Let φ = PRFGen(1λ; r) be a PRF from {0, 1}λ ×G→ {0, 1}`′ .

2. Let shareb =

(
m,φ,

{
〈ci〉b

}
i∈[m]

,
(

[[wi]]ci , {[[ĉ
(t)
i wi]]ci}t∈[`′], {[[ĉ

(t)
j wi]]ci+cj}i 6=j∈[m],t∈[`′]

)
i∈[m]

)
.

Figure 2: One-round m-client 2-server HSS secret sharing protocol Π1r. (Decomp,Recomp) refer to
a decomposition procedure with low-magnitude shares and linear reconstruction (generalizing bit
decomposition).

44

One-Round Client-Server Homomorphic Evaluation EvalG,g(b, share, P, δ)
Inputs: Party identifier b ∈ {0, 1}, homomorphic secret share value share, RMS program description
P of size ≤ S, error bound δ.

Parse share as in Figure 2. Parse P as a magnitude bound 1M and sequence of RMS instructions.
Take δ′ = δ/((`′ + 1)MS). We describe here homomorphic evaluation of multiplication, and defer
the other RMS operations to the full version.

Instruction (id, ŷk ← ŵα · ŷj):

1. Produce shares 〈wαyj〉 (using [[wα]]cα and 〈yj〉, 〈cαyj〉):
1: Compute 〈〈wαyj〉〉 = MultShares([[wα]]cα , 〈yj〉, 〈cαyj〉), as in Figure 1.
2: Execute 〈wαyj〉 = ConvertShares(b, 〈〈wαyj〉〉, (id, 0), δ′,M, φ), as in Figure 1.
3: Set 〈yk〉 ← 〈wαyj〉.

2. Produce shares 〈cγwαyj〉 for each γ ∈ [m]: (using [[ĉ
(t)
γ wα]]cα+cγ and 〈yj〉, 〈cαyj〉, 〈cγyj〉)

1: for γ = 1 to m do
2: if α = γ then define cα,α := cα. Let 〈cα,αyj〉 = 〈cαyj〉.
3: else define cα,γ := cα + cγ . Compute 〈cα,γyj〉 = 〈cαyj〉+ 〈cγyj〉.
4: end if
5: for t = 1 to `′ do
6: Compute 〈〈ĉ(t)γ wαyj〉〉 = MultShares([[ĉ

(t)
γ wα]]cα,γ , 〈yj〉, 〈cα,γyj〉).

7: Execute 〈ĉ(t)γ wαyj〉 = ConvertShares(b, 〈〈ĉ(t)γ wαyj〉〉, (id, t), δ′,M, φ).
8: end for
9: Compute 〈cγwαyj〉 = Recomp((〈ĉ(t)γ wαyj〉)t∈[`′]).

10: Set 〈cγyk〉 ← 〈cγwαyj〉.
11: end for

Figure 3: One-round m-client 2-server homomorphic evaluation algorithm Eval. Evaluation main-
tains the invariant that for each memory value ŷi the servers hold: (1) additive shares 〈yi〉, and (2)
m sets of additive shares 〈cαyi〉, for the secret key cα of each of the m clients. Here, i, j, k denote
memory indices, t ∈ [`′] denotes an index of a key representation, and α, γ ∈ [m] denote client ids.

Min-Based Share Conversion. DistributedDLog′G,g(h, δ,M, φ)

1: Set h′ ← h, i← 0, min =∞. Let T := d2M/δe+M .
2: while i < T do
3: y ← φ(h′)
4: if y < min then imin ← i, min← y
5: end if
6: h′ ← h′ · g, i← i+ 1
7: end while
8: Output imin.

Figure 4: Alternative Min-based share conversion algorithm. The function φ can either be a PRF
or a min-wise independent hash function.

45

BGI Homomorphic Secret Sharing Scheme - Share(1λ, w)
Let AdditiveShare(x) for x ∈ Zq return a random pair 〈x〉 = (x0, x1) ∈ Z2

q subject to x0 − x1 = x.
(For x ∈ Z, this is done for x (mod q) ∈ Zq).

Inputs: 1λ and input w = w1, . . . , wn ∈ Z

• Sample a DDH-hard group (G, g)← IG(1λ).

• Sample a PRF φ← PRFGen(1λ) with input {0, 1}λ ×G and output {0, 1}`.

• Sample an ElGamal secret key: c← Zq, where q = |G|.

• For each input wi, sample the following values:

1. ElGamal encryptions:

(a) of wi ∈ Z: let [[wi]]c ← EncElGamal(g
c, wi) ∈ G2. //gc is ElGamal public key of c

(b) of (c(t)wi) ∈ Z: i.e., for each t ∈ [`], let [[c(t)wi]]c ← EncElGamal(g
c, c(t)wi).

2. Subtractive secret sharings:

(a) of wi ∈ Z: let 〈wi〉 ← AdditiveShare(wi).

(b) of cwi ∈ Zq: let 〈cwi〉 ← AdditiveShare(cwi).

• For each b ∈ {0, 1}, output shareb =
{
φ,
(

[[wi]]c,
{

[[c(t)wi]]c
}
t∈[`] , 〈wi〉b, 〈cwi〉b

)
i∈[n]

}
.

Figure 5: Share generation procedure Share for secret sharing an input w via the homomorphic
secret sharing scheme. For simplicity we describe the scheme with subtractive secret sharing instead
of additive as in BGI (see Remark A.1).

46

BGI Homomorphic Share Evaluation of RMS Programs - EvalG,g(b, share, P, δ)
Inputs: Party identifier b ∈ {0, 1}, homomorphic secret share value share, RMS program description
P of size ≤ S, error bound δ.

Parse share as in Figure 5. Parse P as in Definition 2.1, as a magnitude bound 1M and sequence
of instructions. Take δ′ = δ/((`+ 1)MS).

For each sequential instruction in P , perform the corresponding sequence of operations:

Instruction (id, ŷj ← ŵi):

1: Let 〈yj〉 ← 〈wi〉 and 〈cyj〉 ← 〈cwi〉, where 〈wi〉, 〈cwi〉 are as in share.

Instruction (id, ŷk ← ŷi + ŷj):

1: Compute 〈yk〉 ← 〈yi〉+ 〈yj〉, directly on the subtractive shares (over Zq).
2: Compute 〈cyk〉 ← 〈cyi〉+ 〈cyj〉, directly on the subtractive shares (over Zq).

Instruction (id, ŷk ← ŵi · ŷj):
1: Let [[wi]]c and {[[c(t)wi]]c}t∈[`] be the ElGamal ciphertexts associated with wi, and let 〈yj〉

and 〈cyj〉 the subtractive secret shares associated with yj .
2: Compute the pairing 〈〈wiyj〉〉 = MultShares([[wi]]c, 〈yj〉, 〈cyj〉), as in Figure 1.
3: Execute Share Conversion: 〈wiyj〉 = ConvertShares(b, 〈〈wiyj〉〉, (id, 0), δ′,M, φ), as in Fig-

ure 1.
4: for t = 1 to ` do // Repeat above process for each c(t)wi in the place of wi
5: Compute 〈〈c(t)wiyj〉〉 = MultShares([[c(t)wi]]c, 〈yj〉, 〈cyj〉).
6: Execute 〈c(t)wiyj〉 = ConvertShares(b, 〈〈c(t)wiyj〉〉, (id, t), δ′,M, φ).
7: end for
8: Compute 〈cwiyj〉 =

∑`
t=1 2t−1〈c(t)wiyj〉.

9: Set 〈yk〉 ← 〈wiyj〉 (from Step 3) and 〈cyk〉 ← 〈cwiyj〉.

Instruction (id, β, Ôj ← ŷi):

1: Shift 〈z〉 share by rerandomization offset: 〈z〉 ← 〈z〉+ φ(id, g), over Zq.
// Note that shifting both shares does not change the shared value in Zq

2: Convert share from Zq to Zβ: 〈Oj〉 ← 〈z〉 mod β.
3: Output 〈Oj〉.

Figure 6: Procedures for performing homomorphic operations on secret shares. For simplicity we
describe the scheme with subtractive and division secret sharing (see Remark A.1). Note that we
distinguish variables of the straight-line program from the actual values by using ŷi as opposed to
yi, etc. Here, notation 〈y〉 is used to represent this party’s share of the corresponding subtractive
secret sharing. Evaluation maintains the invariant that each of the subtractive secret shares 〈yi〉
encode the correct current computation value of ŷi.

47

BGI Distributed-Evaluation Homomorphic Encryption (DEHE): Gen,Enc,Eval.

Gen(1λ):

1. Sample a PRF φ← PRFGen(1λ) with input {0, 1}λ ×G and output {0, 1}`.

2. ElGamal key setup:

(a) Sample a DDH-hard group and generator (G, g)← IG(1λ).

(b) Sample an ElGamal secret key: c← Zq, where q = |G|.
Let e = gc be the corresponding ElGamal encryption key.

3. Sample ElGamal encryptions:

(a) The constant 1 ∈ Zq: let [[1]]c ← EncElGamal(e, 1).

(b) The bits of the secret key c: ∀t ∈ [`], let [[c(t)]]c ← EncElGamal(e, c
(t)).

4. Sample 2-out-of-2 additive secret sharings:

(a) The constant 1 ∈ Zq: 〈1〉 ← AdditiveShare(1). // Included for notational convenience

(b) The secret key c: let 〈c〉 ← AdditiveShare(c).

5. Output pk =
(
G, g, e, [[1]]c, {[[c(t)]]c}t∈[`]

)
, ekb = (pk, 〈1〉, 〈c〉).

EncG,g(pk, w):

1. Parse pk as in Gen above.

2. Compute the following ElGamal ciphertexts:

(a) Of w ∈ Z: let [[w]]c ← EncElGamal(e, w).

(b) Of c(t)w ∈ Z: for each t ∈ [`], parse [[c(t)]]c = (h
(t)
1 , h

(t)
2), sample a fresh encryption of 0

(h′1, h
′
2)← EncElGamal(e, 0), and let [[c(t)w]]c = ((h

(t)
1)w · h′1, (h

(t)
2)w · h′2).

3. Output ([[w]]c, {[[c(t)w]]c}t∈[`]).

EvalG,g(b, ek, ct, P, δ):

1. Parse ek as in Gen above; interpret 1̂ as loaded into memory, via 〈1〉, 〈c〉 as given.

2. Parse P as a sequence of instructions (as in Definition 2.1).

3. For each instruction (id, ŷk ← ŷi + ŷj), (id, ŷk ← ŵi · ŷj), or (id, Ôj ← ŷi), perform the
corresponding sequence of operations as given in Figure 6.

4. For each instruction (id, ŷj ← ŵi), execute (id, ŷj ← ŵi · 1̂).

Figure 7: BGI construction of homomorphic encryption with distributed evaluation (DEHE). For
simplicity we describe the scheme with subtractive and division secret sharing (see Remark A.1).

48

Black-Box Client-Server DEHE: m-client protocol Π.
Inputs: Global parameters G, g, q. Let ` := dlog qe.
Outputs: All clients learn pk. Each server b ∈ {0, 1} learns evaluation key ekb.

Client Round 1: Each client i ∈ [m] performs the following:

1. Sample an ElGamal secret key ci ← Zq.
2. Compute the corresponding ElGamal public key ei = gci ∈ G and send ei to all clients.

3. Secret share 〈ci〉 ← AdditiveShare(ci) and send each resulting share 〈ci〉b to the corre-
sponding server b.

4. Sample a random string ri ← {0, 1}λ and send ri to both servers.

Client Round 2: Each client i ∈ [m] performs the following:

1. Let e =
∏
j∈[m] ej , where ej is the value sent by client j in the previous round.

2. Each party Pi encrypts the bits of his respective secret key ci: namely, for every t =

1, . . . , `, let [[c
(t)
i]]c ← EncElGamal(e, c

(t)
i). (Recall ElGamal encryption is black-box in G.)

3. Send ([[c
(t)
i]]c)t∈[`] to all clients.

Client Output: Each client i ∈ [m] performs the following:

1. For each bit t ∈ [`] of the secret key, combine ciphertexts as [[c(t)]]c =
∏
j∈[m][[c

(t)
j]]c,

where multiplication is performed coordinate-wise.

2. Output pk =
(
e, ([[c(t)]]c)t∈[`]

)
.

Server Output: Each server b ∈ {0, 1} performs the following:

1. Let 〈cj〉b and rj denote the values received by client j ∈ [m] in Round 1.

2. Take 〈c〉b =
∑

j∈[m]〈cj〉b ∈ Zq.

3. Take r =
∑

j∈[m] rj and compute a PRF key with input {0, 1}λ ×G and output {0, 1}`

using randomness r: i.e., φ = PRFGen(1λ; r).

4. Output ekb = (m, 〈c〉b, φ).

Black-Box Client-Server DEHE: algorithms Enc,Eval

See Appendix A (Figure 7) for a full description of the BGI [BGI16] DEHE construction.

EncG,g(pk, w): Same as BGI. That is,

1. Parse pk =
(
e, ([[c(t)]]c)t∈[`]

)
.

2. Compute the following ElGamal ciphertexts:

(a) Of w ∈ Z: let [[w]]c ← EncElGamal(e, w).

(b) Of c(t)w ∈ Z: for each t ∈ [`], parse [[c(t)]]c = (h
(t)
1 , h

(t)
2), sample a fresh encryption of 0

(h′1, h
′
2)← EncElGamal(e, 0), and let [[c(t)w]]c = ((h

(t)
1)w · h′1, (h

(t)
2)w · h′2).

3. Output ([[w]]c, {[[c(t)w]]c}t∈[`]).

EvalG,g(b, ek, ct, P, δ):

1. Parse ek = (m, 〈c〉, φ). Parse P as a sequence of RMS program instructions.

2. Execute as specified in the BGI construction (Figure 7), except for the following modification:

For each call to ConvertShares made (to execute an instruction (id, ŷk ← ŵi · ŷj)), replace
parameter M ∈ Z (as specified in P) with mM ∈ Z, where m is the number of clients.

Figure 8: Client-Server DEHE (Π,Enc,Eval) making black-box use of the DDH group G.

49

Simulatable Las Vegas Homomorphic Evaluation EvalSLVG,g (b, share, P, δ)
Inputs: Party identifier b ∈ {0, 1}, homomorphic secret share value share, RMS program description
P of size ≤ S, error bound δ.

Parse share as in Figure 2. Parse P as in Definition 2.1. Take δ′ = δ/((` + 1)mMS). Initialize
LeakageInfo ← 0. For each instruction (id, ŷj ← ŵα) or (id, ŷk ← ŷi + ŷj) in P , evaluate as in
Figure 3. For each other instruction in P , perform the following:

Instruction (id, ŷk ← ŵα · ŷj):

1. Produce shares 〈wαyj〉: (using [[wα]]cα and 〈yj〉, 〈cαyj〉)
1: Compute the pairing 〈〈wαyj〉〉 = MultSharesSLV([[wα]]cα , 〈yj〉, 〈cαyj〉), as below.
2: Let (〈wαyj〉,BadValuesk) = ConvertSharesSLV(b, 〈〈wαyj〉〉, (id, 0), δ′,M, φ).
3: Set 〈yk〉 ← 〈wαyj〉 and LeakageInfo← LeakageInfo ∪ {(k,BadValuesk)}

2. Produce shares 〈cγwαyj〉 for each γ ∈ [m]: (using [[c
(t)
γ wα]]cα+cγ and 〈yj〉, 〈cαyj〉, 〈cγyj〉)

1: for γ = 1 to m do
2: if α = γ then define cα,α := cα. Let 〈cα,αyj〉 = 〈cαyj〉.
3: else define cα,γ := cα + cγ . Compute 〈cα,γyj〉 = 〈cαyj〉+ 〈cγyj〉.
4: end if
5: for t = 1 to ` do
6: Compute 〈〈c(t)γ wαyj〉〉 = MultSharesSLV([[c

(t)
γ wα]]cα,γ , 〈yj〉, 〈cα,γyj〉).

7: Evaluate (〈c(t)γ wαyj〉,BadValuesk,γ,t) = ConvertSharesSLV(b, 〈〈c(t)γ wαyj〉〉, (id, t), δ′,M, φ).
8: end for
9: Compute 〈cγwαyj〉 =

∑`
t=1 2t−1〈c(t)γ wαyj〉.

10: Set 〈cγyk〉 ← 〈cγwαyj〉.
11: LeakageInfo← LeakageInfo ∪

(⋃
γ∈[m],t∈[`]{((k, γ, t),BadValuesk,γ,t)}

)
12: end for

Instruction (id, β, Ôj ← ŷi):

1: Compute 〈Oj〉 as in Instruction (id, β, Ôj ← ŷi) of Figure 3.
2: If LeakageInfo = ∅, Let SimOutput← >.

3: Else, let SimOutput be predicate Pred =
∨

(yk ∈ BadValuesk) ∨
∨

(c
(t)
γ yk ∈ BadValuesk,γ,t)

corresponding to the pairs in LeakageInfo.
4: Output (〈Oj〉,SimOutput).

Procedure MultSharesSLV
(
[[x]]c, 〈y〉, 〈cy〉

)
→ 〈〈xy〉〉:

1. If 〈y〉 = ⊥ or 〈cy〉 = ⊥, return ⊥. Else, return MultShares
(
[[x]]c, 〈y〉, 〈cy〉

)
as in Figure 1.

Procedure ConvertSharesSLV(b, 〈〈x〉〉, id, δ,M)→ (〈x〉,BadValues):

1. If 〈〈x〉〉 = ⊥, then return ⊥.

2. Denote by φ′ : G→ {0, 1}dlog(2M/δ)e the appropriate prefix output of φ(id, ·).

3. Let xb denote the present party b’s share of 〈〈x〉〉.

4. Return (ib,BadValues)← SLVDistribDLogG,g(xb, δ,M, φ′).

Figure 9: Simulatable (one-round, client-server) LV-HSS evaluation algorithm Eval, with corre-
sponding sub-routines. φ : {0, 1}λ ×G→ {0, 1}` denotes a given PRF.

50

