
Asynchronous
Pattern Matching

Amihood Amir

Yonatan Aumann, Gary Benson,Tzvika Hartman, Oren Kapah, Gadi Landau, Avivit
Levy, Ohad Lipsky, Nisan Oz, Ely Porat, Steven Skiena, Uzi Vishne

BGU 2009

Motivation

Motivation

In the “old” days: Pattern and text are given in
correct sequential order. It is possible that the
content is erroneous – hence, edit distance.

New paradigm: Content is exact, but the order of
the pattern symbols may be scrambled.

Why? Transmitted asynchronously?
The nature of the application?

Example: Swaps

Tehse knids of typing mistakes are very

common

So when searching for pattern These we are
seeking the symbols of the pattern but with an
order changed by swaps.

Surprisingly, pattern matching with swaps is easier
than pattern matching with mismatches (ACHLP:01)

Example: Reversals

AAAGGCCCTTTGAGCCC

AAAGAGTTTCCCGGCCC

Given a DNA substring, a piece of it can detach and
reverse.

This process still computationally tough.

Question: What is the minimum number of reversals
necessary to sort a permutation of 1,…,n

Global Rearrangements?

Berman & Hannenhalli (1996) called this
Global Rearrangement as opposed to
Local Rearrangement (edit distance).
Showed it is NP-hard.

Our Thesis: This is a special case of errors in the
address rather than content.

Example: Transpositions

AAAGGCCCTTTGAGCCC

AATTTGAGGCCCAGCCC

Given a DNA substring, a piece of it can be
transposed to another area.

Question: What is the minimum number of
transpositions necessary to sort a permutation of
1,…,n ?

Complexity?

Bafna & Pevzner (1998), Christie (1998),
Hartman (2001): 1.5 Polynomial Approximation.

Not known whether efficiently computable.

This is another special case of errors in the address
rather than content.

Example: Block Interchanges

AAAGGCCCTTTGAGCCC

AAGTTTAGGCCCAGCCC

Given a DNA substring, two non-empty
subsequences can be interchanged.

Question: What is the minimum number of block
interchanges necessary to sort a permutation of
1,…,n ?

Christie (1996): O(n)2

Summary
Biology: sorting permutations

Reversals
(Berman & Hannenhalli, 1996)

Transpositions
(Bafna & Pevzner, 1998)

Pattern Matching:

Swaps

(Amir, Lewenstein & Porat, 2002)

NP-hard

?

Block interchanges O(n2)
(Christie, 1996)

O(n log m)

Note: A swap is a block interchange simplification

1. Block size 2. Only once 3. Adjacent

Edit operations map

Reversal, Transposition, Block interchange:

1. arbitrary block size 2. not once 3. non adjacent

4. permutation 5. optimization

Interchange:

1. block of size 1 2. not once 3. non adjacent

4. permutation 5. optimization

Generalized-swap: (O(1) time in parallel)

1. block of size 1 2. once 3. non adjacent

4. repetitions 5. optimization/decision

Swap:

1. block of size 1 2. once 3. adjacent

4. repetitions 5. optimization/decision

Models map

Pattern Matching:

slide pattern along text.

Nearest Neighbor:

pattern and text same size.

Permutation (Ulam):

no repeating symbols.

S=abacb F=bbaca
interchange

S=abacb F=bbaac
interchange

matches

S1=bbaca

S2=bbaac

S=abacb F=bcaba
generalized-swap

matches

O(1) time parallel

S1=bbaca

S2=bcaba

Definitions

Generalized Swap Matching

INPUT: text T[0..n], pattern P[0..m]

OUTPUT: all i s.t. P generalized-swap matches T[i..i+m]

Reminder: Convolution

The convolution of the strings t[1..n] and p[1..m] is
the string t*p such that:

(t*p)[i]=k=1,m(t[i+k-1]p[m-k+1]) for all 1 i n-m

length -length text and m-The convolution of n:Fact
pattern can be done in O(n log m) time using FFT.

In Pattern Matching

Convolutions:

O(n log m) using FFT

210

2423222120

1413121110

0403020100

012

43210

rrr

bababababa

bababababa

bababababa

bbb

aaaaa
b0 b1 b2b0 b1 b2b0 b1 b2

Idea: assign natural numbers to alphabet symbols, and
construct:

T‟: replacing the number a by the pair a2,-a

P‟: replacing the number b by the pair b, b2.

Convolution of T‟ and P‟ gives at every location 2i:

j=0..mh(T‟[2i+j],P‟[j])

where h(a,b)=ab(a-b).

 3-degree multivariate polynomial.

Generalized Swap Matching: a Randomized Algorithm…

Generalized Swap Matching: a Randomized Algorithm…

Since: h(a,a)=0
h(a,b)+h(b,a)=ab(b-a)+ba(a-b)=0,

a generalized-swap match  0 polynomial.

Example:

Text: ABCBAABBC

Pattern: CCAABABBB

1 -1, 4 -2, 9 -3,4 -2,1 -1,1 -1,4 -2,4 -2,9 -3

3 9, 3 9, 1 1,1 1,2 4, 1 1,2 4, 2 4,2 4

3 -9,12 -18,9 -3,4 -2,2 -4,1 -1,8 -8,8 -8,18 -12

Problem: It is possible that coincidentally the result
will be 0 even if no swap match.

Example: for text ace and pattern bdf we get a
multivariate degree 3 polynomial:

We have to make sure that the probability for such a
possibility is quite small.

0222222  effecddcabba

Generalized Swap Matching: a Randomized Algorithm…

Generalized Swap Matching: a Randomized Algorithm…

What can we say about the 0‟s of the polynomial?

By Schwartz-Zippel Lemma prob. of 0degree/|domain|.

Conclude:

Theorem: There exist an O(n log m) algorithm that
reports all generalized-swap matches and reports false
matches with prob.1/n.

Generalized Swap Matching:
De-randomization?

Can we detect 0‟s thus de-randomize the algorithm?

Suggestion: Take h1,…hk having no common root.

It won‟t work,

k would have to be too large !

Generalized Swap Matching: De-randomization?…

Theorem: (m/log m) polynomial functions are required
to guarantee a 0 convolution value is a 0 polynomial.

Proof: By a linear reduction from word equality.

Given: m-bit words w1 w2 at processors P1 P2

Construct: T=w1,1,2,…,m P=1,2,…,m,w2.

Now, T generalized-swap matches P iff w1=w2.

Communication Complexity:
word equality requires exchanging (m) bits,

We get: klog m= (m), so k must be (m/log m).

P1 computes:

w1 * (1,2,…,m)
log m bit result P2 computes:

(1,2,…,m) * w2

Interchange Distance Problem

INPUT: text T[0..n], pattern P[0..m]

OUTPUT: The minimum number of interchanges s.t.
T[i..i+m] interchange matches P.

Reminder: permutation cycle

The cycles (143) 3-cycle, (2) 1-cycle represent 3241.

Fact: The representation of a permutation as a
product of disjoint permutation cycles is unique.

Interchange Distance Problem…

Lemma: Sorting a k-length permutation cycle requires
exactly k-1 interchanges.

Proof: By induction on k.

Theorem: The interchange distance of an m-length
permutation  is m-c(), where c() is the number of
permutation cycles in .

Result: An O(nm) algorithm to solve the interchange
distance problem.

Tighten connection between sorting by
interchanges and generalized-swap matching…

Cases: (1), (2 1), (3 1 2)

Parallel Interchange Operations
Problem

INPUT: text T[0..n], pattern P[0..m]

OUTPUT: The minimum number of parallel
interchange operations s.t. T[i..i+m] interchange
matches P.

Definition: Let S=S1,S2,…,Sk=F, Sl+1 derived from Sl

via interchange Il. A parallel interchange operation is
a subsequence of I1,…,Ik-1 s.t. the interchanges have
no index in common.

Parallel Interchange Operations Problem…

Lemma: Let  be a cycle of length k>2. It is possible to
sort  in 2 parallel interchange operations (k-1
interchanges).

Example: (1,2,3,4,5,6,7,8,0)

generation 1:

(1,8),(2,7),(3,6),(4,5)

(8,7,6,5,4,3,2,1,0)

generation 2:

(0,8),(1,7),(2,6),(3,5)

(0,1,2,3,4,5,6,7,8)

Parallel Interchange Operations Problem…

Theorem: Let maxl() be the length of the longest
permutation cycle in an m-length permutation .
The number of parallel interchange operations
required to sort  is exactly:

1. 0, if maxl()=1.

2. 1, if maxl()=2.

3. 2, if maxl()>2.

Bar-Ilan UniversityBen Gurion University

Error in Address:

Error in Content:

Bar-Ilan UniversityBen Gurion University

Motivation: Architecture.

Assume distributed memory.

Our processor has text and requests pattern of
length m.

Pattern arrives in m asynchronous packets, of the
form:

<symbol, addr>

Example: <A, 3>, <B, 0>, <A, 4>, <C, 1>, <B, 2>

Pattern: BCBAA

What Happens if Address Bits
Have Errors?

In Architecture:

1. Checksums.

2. Error Correcting Codes.

3. Retransmits.

We would like…
To avoid extra transmissions.

For every text location compute the
minimum number of address errors
that can cause a mismatch in this
location.

Our Model…

Text: T[0],T[1],…,T[n]

Pattern: P[0]=<C[0],A[0]>, P[1]=< C[1],A[1]>, …,
P[m]=<C[m],A[m]>;

C[i] є ∑, A[i] є {1,…,m}.

Standard pattern Matching: no error in A.
Asynchronous Pattern Matching: no error in C.
Eventually: error in both.

Address Register
log m bits

“bad” bitsWhat does “bad” mean?

1. bit “flips” its value.
2. bit sometimes flips its value.
3. Transient error.
4. “stuck” bit.
5. Sometimes “stuck” bit.

Bad Bits

We will now concentrate on
consistent bit flips

Example: Let ∑={a,b}

T[0] T[1] T[2] T[3]
a a b b

P[0] P[1] P[2] P[3]
b b a a

P[0] P[1] P[2] P[3]

b b a a
P[00] P[01] P[10] P[11]

P[00] P[01] P[10] P[11]
b b a a

Example: BAD

P[0] P[1] P[2] P[3]

b b a a
P[00] P[01] P[10] P[11]

P[00] P[01] P[10] P[11]
a a b b

Example: GOOD

P[0] P[1] P[2] P[3]

b b a a
P[00] P[01] P[10] P[11]

P[00] P[01] P[10] P[11]
a a b b

Example: BEST

Naive Algorithm

For each of the 2 = m different bit
combinations try matching.

Choose match with minimum bits.

Time: O(m).2

log m

Polynomial multiplication -
What Really Happened?

0 0 0 T[0] T[1] T[2] T[3] 0 0 0

C[-3] C[-2] C[-1] C[0] C[1] C[2] C[3]

Dot products array:

P[0] P[1] P[2] P[3]

What Really Happened?

0 0 0 T[0] T[1] T[2] T[3] 0 0 0

C[-3] C[-2] C[-1] C[0] C[1] C[2] C[3]

P[0] P[1] P[2] P[3]

What Really Happened?

0 0 0 T[0] T[1] T[2] T[3] 0 0 0

C[-3] C[-2] C[-1] C[0] C[1] C[2] C[3]

P[0] P[1] P[2] P[3]

What Really Happened?

0 0 0 T[0] T[1] T[2] T[3] 0 0 0

C[-3] C[-2] C[-1] C[0] C[1] C[2] C[3]

P[0] P[1] P[2] P[3]

What Really Happened?

0 0 0 T[0] T[1] T[2] T[3] 0 0 0

C[-3] C[-2] C[-1] C[0] C[1] C[2] C[3]

P[0] P[1] P[2] P[3]

What Really Happened?

0 0 0 T[0] T[1] T[2] T[3] 0 0 0

C[-3] C[-2] C[-1] C[0] C[1] C[2] C[3]

P[0] P[1] P[2] P[3]

What Really Happened?

0 0 0 T[0] T[1] T[2] T[3] 0 0 0

C[-3] C[-2] C[-1] C[0] C[1] C[2] C[3]

P[0] P[1] P[2] P[3]

Another way of defining the
convolution:

mmjjiPiTjPTC
m

i

,...,;][][])[,(
0




Where we define: P[x]=0

for x<0 and x>m.

FFT solution to the “shift”
convolution:

VXF m )(

BA

1. Compute in time O(m log m)

(values of X at roots of unity).

2. For polynomial multiplication
compute values of product polynomial at roots
of unity
in time O(m log m).

3. Compute the coefficient of the product polynomial,
again in time O(m log m).

VBFAF mm )()(

)()(1 VF m 

A General Convolution C

},...,0{},...,0{: mmf j 

)(,...,1;)]([][])[,(
0

mOjifPiTjPTC
m

i

jf 


f

Bijections ; j=1,….,O(m)jf

Consistent bit flip as a Convolution

Construct a mask of length log m that has 0 in every
bit except for the bad bits where it has a 1.

Example: Assume the bad bits are in indices
i,j,k є{0,…,log m}. Then the mask is

i j k

000001000100001000

An exclusive OR between the mask and a pattern index
Gives the target index.

Example:

Mask: 0010 Index: 1010

1000

Index: 1000

1010

Our Case:

PT Denote our convolution by:

Our convolution: For each of the 2 =m masks,
let jє{0,1}

log m

log m





m

i

ijPiTjPT
0

][][][

To compute min bit flip:

][],...,0[mjPjP 

Let T,P be over alphabet {0,1}:

For each j, is a permutation of P.

Thus, only the j ‟s for which

= number of 1 „s in T

are valid flips.

Since for them all 1‟s match 1‟s and all 0‟s match 0‟s.

Choose valid j with minimum number of 1‟s.

][jPT 

Time

All convolutions can be computed in time O(m)

After preprocessing the permutation functions
as tables.

Can we do better? (As in the FFT, for example)

2

Idea – Divide and Conquer-
Walsh Transform

PTPT


 ,

PT 

1. Split T and P to the length m/2 arrays:

2. Compute

3. Use their values to compute
in time O(m) .

Time: Recurrence: t(m)=2t(m/2)+m

Closed Form: t(m)=O(m log m)

PPTT


,,,

Details

VV


,

}1,0{
logm

i

]1[]0[][iii VVV 


Constructing the Smaller Arrays

Note: A mask can also be viewed as a
number i=0,…, m-1 . For :

,
0 1 2 3 4 . . . m-2 m-1

V[0]+V[1], V[2]+V[3], . . . ,V[m-2]+V[m-1]

V[0]-V[1], V[2]-V[3], . . . ,V[m-2]-V[m-1]

]1[]0[][iii VVV 


}1,0{
1log 


m

i

V =

V =

+

-

Putting it Together

2

][][
]0[

iPTiPT
iPT

 


2

][][
]1[

iPTiPT
iPT

 


 PT

PT 

 PT

0 1 10 11 1110 1111

0 1 111

0 1 111+

Putting it Together

2

][][
]0[

iPTiPT
iPT

 


2

][][
]1[

iPTiPT
iPT

 


 PT

PT 

 PT

0 1 10 11 1110 1111

0 1 111

0 1 111-

Putting it Together

2

][][
]0[

iPTiPT
iPT

 


2

][][
]1[

iPTiPT
iPT

 


 PT

PT 

 PT

0 1 10 11 1110 1111

0 1 111

0 1 111+

Putting it Together

2

][][
]0[

iPTiPT
iPT

 


2

][][
]1[

iPTiPT
iPT

 


 PT

PT 

 PT

0 1 10 11 1110 1111

0 1 111

0 1 111 -

Putting it Together

2

][][
]0[

iPTiPT
iPT

 


2

][][
]1[

iPTiPT
iPT

 


 PT

PT 

 PT

0 1 10 11 1110 1111

0 1 111

0 1 111+ - -+

Why does it work ????

Consider the case of i=0
PT 

 PT

 PT

dot product

T t0 t1

P p0 p1

T- t0- t1

P- p0-p1

T+ t0+ t1

P+ p0+p1

dot product

dot product

Consider the case of i=0
PT 

 PT

 PT

dot product

T t0 t1

P p0 p1

T- t0- t1

P- p0-p1

T+ t0+ t1

P+ p0+p1

dot product

dot product

Need a way to get this

Consider the case of i=0
PT 

 PT

 PT

dot product

T t0 t1

P p0 p1

T- t0- t1

P- p0-p1

T+ t0+ t1

P+ p0+p1

dot product

dot product

Need a way to get this from these…

Lemma:
T a c
P b d

To get the dot product: ab+cd

from: (a+c)(b+d) and (a-c)(b-d)

Add: (a+c)(b+d) = ab + cd + cb + ad
(a-c)(b-d) = ab + cd – cb – ad

Get: 2ab+2cd

Divide by 2: ab + cd

Because of distributivity it works for entire dot product.

T+ a+c
P+ b+d

T- a-c
P- b-d

If mask is 00001:
T a c
P b d

To get the dot product: ad+cb

from: (a+c)(b+d) and (a-c)(b-d)

Subtract: (a+c)(b+d) = ab + cd + cb + ad
(a-c)(b-d) = ab + cd – cb – ad

Get: 2cb+2ad

Divide by 2: cb + ad

Because of distributivity it works for entire dot product.

T+ a+c
P+ b+d

T- a-c
P- b-d

What happens when other bits
are bad?

If LSB=0 , mask i0 on T x P
is mask i on T+ x P+ and T- x P-

meaning, the “bad” bit is at half the index.

P P+

What it means is that appropriate pairs are multiplied ,
and single products are extracted from pairs as seen
in the lemma.

If Least Significant Bit is 1

If LSB=1 , mask i1 on
is mask i on

meaning, the “bad” bit is at half the index. But there
Is an additional flip within pairs.

P P+

What it means is that appropriate pairs are multiplied ,
and single products are extracted from pairs as seen
in the lemma for the case of flip within pair.

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11 a21

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11 a21 . . . am1

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11 a21 . . . am1

. . .
Slog m =a0 log m

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11 a21 . . . am1

. . .
Slog m =a0 log m a1 log m

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11 a21 . . . am1

. . .
Slog m =a0 log m a1 log m a2 log m

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11 a21 . . . am1

. . .
Slog m =a0 log m a1 log m a2 log m . . . am log m

General Alphabets

1. Sort all symbols in T and P.

2. Encode {0,…,m} in binary, i.e. log m bits per symbol.

3. Split into log m strings:

S = A0 A1 A2 . . . Am
a00 a01 a02 … a10 a11 a12 … a20 a21 a22 … am0 am1 am2 …

S0 = a00 a10 a20 . . . am0

S1 = a01 a11 a21 . . . am1

. . .
Slog m =a0 log m a1 log m a2 log m . . . am log m

General Alphabets

4. For each Si: Write list of masks that achieves
minimum flips.

5. Merge lists and look for masks that appear in all.

Time: O(m log m) per bit.
O(m log2 m) total.

Other Models

1. Minimum “bad” bits (occasionally flip).

2. Minimum transient error bits?

3. Consistent flip in string matching model?

4. Consistent “stuck” bit?

5. Transient “stuck” bit?

Note: The techniques employed in asynchronous
pattern matching have so far proven different
from traditional pattern matching.

Results

• |T|=|P|=m, flipped bits problem :
O(m log m).

• |T|=|P|=m, faulty bits problem:
deterministically O(|S|mlog 3),
randomly O(m log m).

• |T|=|P|=m, faulty bits problem:
deterministically approximated to c>1
O(|S|mlog 3 /log c-1m).

• |T|=n, |P|=m=2k, faulty bits problem:
deterministically O(|S|nm log m) .

FFT over Z2

Formal polynomials

Probabilistic
proof

The problem we have seen

 Interchange Rearrangement Problem:

INPUT: input string S and target string T.

GOAL: Rearrange S to T by interchanges.

 Cost of rearrangement.

The problem:

Find distance (=minimum cost).

Example:

S=abacb

T=bbaac

bbaca bbaac=T

History

 The interchange rearrangement problem is

classical and well-studied.

 The mathematician Cayley studied this problem

back in 1849.

 Focused on permutation strings case:

strings with no repetitions of elements.

 General strings case is an

open question since 1849!

Our Challenge

Study the interchange rearrangement problem for

general strings (possibly repeating symbols).

Solve the open problem of Cayley

Generalize the study under various length-

weighted cost models.

Recently, interest in such cost models, e.g.

[Bender et al., SODA04].

Our results

NP-hard for general strings in unit cost model,
BUT

polynomial time comput./approx. in various other
cost models.

General stringsPermutationsBinary Strings value

NP-hard

O(m) 1.5-approx.

O(m)O(m)=0

O(m) 3-approx.O(m) 2-approx.O(m3)0<1/log m

O(m3) ||-
approx.

O(m) 2-approx.O(m3)1/log m><1

O(m)O(m)O(m)=1

O(m) 2-approx.O(m) 2-approx.O(m)1<log 3

O(m)O(m)O(m)>log 3

A summary of results for L-interchange distance problem

D-type

I-type

Thank You

