Constraints, Graphs, Algebra, Logic, and complexity

Moshe Y. Vardi

Rice University

Constraint Satisfaction Problem (CSP)

Input: (V, D, C):

- A finite set V of variables
- A finite set D of values
- A finite set *C* of *constraints* restricting the values that tuples of variables can take.

Constraint: (t, R)

- *t*: a tuple of variables over *V*
- R: a relation of arity |t|

Solution: $h: V \to D$

• $h(t) \in R$: for all $(t, R) \in C$

Question: Does (V, D, C) have a solution? I.e., is there an assignment of values to the variables such that all constraints are satisfied?

Constraint Satisfaction

Applications:

- belief maintenance
- machine vision
- natural language processing
- planning and scheduling
- temporal reasoning
- type reconstruction
- bioinformatics
- • •

3-Colorability

3-COLOR: Given an undirected graph A = (V, E), is it 3-colorable?

- The variables are the nodes in V.
- The values are the elements in $\{\mathbf{R}, \mathbf{G}, \mathbf{B}\}$.
- The constraints are $\{(\langle u, v \rangle, \rho) : (u, v) \in E\}$, where $\rho = \{(R, G), (R, B), (G, R), (G, B), (B, R), (B, G)\}$.

Introduction to Database Theory

Basic Concepts:

- Relation Scheme: a set of attributes
- *Tuple*: mapping from relation scheme to data values
- Tuple Projection: if t is a tuple on P, and Q ⊆ P, then t[Q] is the restriction of t to Q.
- *Relation*: a set of tuples over a relation scheme
- *Relational Projection*: if R is a relation on P, and $Q \subseteq P$, then R[Q] is the relation $\{t[Q] : t \in R\}$.
- Join: Let R_i be a relation over relation scheme S_i . Then $\bowtie_i R_i$ is a relation over the relation scheme $\cup_i S_i$ defined by $\bowtie_i R_i = \{t : t[S_i] \in R_i\}.$

Database Perspective of CSP

Given: $(V, D, \{C_1, \ldots, C_m\})$, where $C_i = (t_i, R_i)$. Assume (wlog): Each t_i consists of distinct elements.

Database Perspective:

- V: attributes
- D: values
- (t_i, R_i) : relation R_i over relation scheme t_i

Fact: (Bibel, Gyssens, Jeavons, Cohen) $(V, D, \{C_1, \ldots, C_m\})$ has a solution iff $\bowtie_1^m R_i$ is nonempty.

Homomorphisms

Homomorphism: Let $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$ and $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$ be two relational structures.

 $h : A \to B$ is a *homomorphism* from A to B if for every $i \le m$ and every tuple $(a_1, \ldots, a_n) \in A^n$,

$$R_i^{\mathbf{A}}(a_1,\ldots,a_n) \implies R_i^{\mathbf{B}}(h(a_1),\ldots,h(a_n))$$

The Homomorphism Problem: Given relational structures A and B, is there a homomorphism $h : A \rightarrow B$?

Example: An undirected graph $\mathbf{A} = (V, E)$ is 3-colorable

there is a homomorphism $h : \mathbf{A} \to K_3$, where K_3 is the *3-clique*.

Homomorphism Problems

Examples:

- k-Clique: $K_k \xrightarrow{h} (V, E)$?
- Hamiltonian Cycle: $(V, C_{|V|}, \neq) \xrightarrow{h} (V, E, \neq)$?
- Subgraph Isomorphism: $(V, E, \overline{E}) \xrightarrow{h} (V', E', \overline{E'})$?
- s-t Connectivity: $(V, E, \{\langle s, t \rangle\}) \xrightarrow{h} (\{0, 1\}, =, \neq)$?

Fact: (Levin, 1973) The homomorphism problem is NP-complete.

CSP vs. Homomorphisms

From CSP to Homomorphism:

Given: $(V, D, \{C_1, ..., C_m\})$, where $C_i = (t_i, R_i)$. Define **A**, **B**:

• $\mathbf{A} = (V, \{t_1\}, \dots, \{t_m\})$

•
$$\mathbf{B} = (D, R_1, \dots, R_m)$$

Fact: (V, D, C) has a solution iff there is homomorphism from **A** to **B**.

CSP vs. Homomorphisms

From Homomorphism to CSP:

Given: $A = (A, R_1^A, ..., R_m^A)$, $B = (B, R_1^B, ..., R_m^B)$. Define (V, D, C):

- V = A: elements of **A** are variables.
- D = B: elements of **B** are values.
- $C = \{(t, R_i^{\mathbf{B}}) : t \in R_i^{\mathbf{A}}\}$: constraints derived from \mathbf{A}, \mathbf{B} .

Fact: There is homomorphism from **A** to **B** iff (V, D, C) has a solution.

Conclusion: CSP=Homomorphism Problem

- Feder&V., 1993
- Garey&Johnson, 1979: Homomorphism in, CSP not.

Uniform CSP vs. Non-Uniform CSP

Uniform CSP:

 $\{(\mathbf{A}, \mathbf{B}) : \exists \text{ homomorphism } h : \mathbf{A} \to \mathbf{B}\}$

Complexity of Uniform CSP: NP-complete

Non-uniform CSP: Fix a structure B

 $CSP(\mathbf{B}) = {\mathbf{A} : \exists \text{ homomorphism } h : \mathbf{A} \to \mathbf{B}}$

Complexity of Non-Uniform CSP: Depends on B

- $CSP(K_2)$ is in **PTIME (2-COLORABILITY)**
- $CSP(K_3)$ is NP-complete (3-COLORABILITY)

Complexity of Non-Uniform CSP

Research Program:

Identity the tractable cases of non-uniform CSP

Dichotomy Conjecture: (Feder&V., 1993)

For every structure B,

- either $\mathrm{CSP}(\mathbf{B})$ is in PTIME
- or $\mathrm{CSP}(\mathbf{B})$ is NP-complete.

Recall: $P \neq NP \Rightarrow NP - NPC - P \neq \emptyset$ (Ladner, 1975)

Intuition: CSP is not expressive enough to diagonalize over PTIME.

"Evidence" for the Conjecture

"Evidence 1": (Hell&Nešetril, 1990) Let B be an *undirected* graph.

- B bipartite \implies CSP(B) is in PTIME
- B non-bipartite \implies CSP(B) is NP-complete

Intuition: Every undirected graph homomrphism problem is equivalent either to 2-COLOR or 3-COLOR.

More "Evidence": Boolean CSP

$$B = \{0, 1\}$$

E.g.: 2-SAT
B:

Dichotomy Theorem: (Schaefer, 1978)

Let B have a Boolean domain, then

- either B is trivial, Horn, anti-Horn, disjunctive, or affine, and CSP(B) is in PTIME,
- otherwise $CSP(\mathbf{B})$ is NP-complete.

Dichotomy and Classification

Question: How far from CSP we need go to get a provable dichotomy?

Feder&V., 1993: It suffices to consider directed graphs to settle the Dichotomy Conjecture!

Classification Question:

For a given structure B,

- when is $CSP(\mathbf{B})$ in PTIME?
- when is $CSP(\mathbf{B})$ NP-complete?

Recent Progress on the Dichotomy Conjecture

Theorem: [Bulatov, 2002] The Dichotomy Conjecture holds when |B| = 3.

Definition: A relational structure $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$ is *conservative* if it contains all possible monadic relations over the domain of the structure.

Intuition: All possible constraints over individual variables are available.

Theorem: [Bulatov, 2003] The Dichotomy Conjecture holds when *B* is conservative.

Sources of Tractability

Empirical Observation: Feder&V., 1993

All known tractable CS problems can be explained as

- combinatorial (Datalog)
- algebraic (group-theoretic)

Classification Conjecture: (Feder&V., 1993) Two explanations for tractability of CSP(B)

- Datalog
- group-theoretic

Bulatov, 2002 showed that the group-theoretic explanation is too weak – more general algebraic techniques required.

Datalog and Non-Uniform CSP

Example: NON 2-COLORABILITY

$$O(X,Y) := E(X,Y)$$

$$O(X,Y) := O(X,Z), E(Z,W), E(W,Y)$$

$$Q := O(X,X)$$

Recall: Datalog \subseteq PTIME **Define:** $\overline{\text{CSP}(\mathbf{B})} = \{\mathbf{A} : \mathbf{A} \notin \text{CSP}(\mathbf{B})\}.$

Datalog vs. Non-Uniform CSP: Explanation for many tractability results

• $\overline{\mathrm{CSP}(\mathbf{B})}$ is expressible in Datalog

Note: $\overline{CSP(B)}$ is positively monotone.

k-Datalog

Definition:

- *k*-Datalog: Datalog with at most *k* variables per rule (NON 2-COLORABILITY is in 4-Datalog)
- $\exists IL^k$: k-variable existential positive infinitary logic
 - variables: x_1, \ldots, x_k
 - no universal quantifiers
 - no negations
 - infinitary conjunctions and disjunctions

Facts: Fix $k \ge 1$

- k-Datalog $\subset \exists IL^k$
- ∃IL^k can be characterized in terms of existential k-pebble games between the Spoiler and the Duplicator.
- There is a PTIME algorithm to decide whether the *Spoiler* or the *Duplicator* wins the existential *k*-pebble game.

Existential *k*-**Pebble Games**

A, B: structures

- **Spoiler**: *places* on or *removes* a pebble from an element of **A**.
- Duplicator: tries to duplicate move on B.

A: $a_1, a_2, ..., a_l$ $l \le k$ **B**: $b_1, b_2, ..., b_l$

- Spoiler wins: $h(a_i) = b_i$, $1 \le i \le l$ is not a homomorphism.
- Duplicator wins: otherwise.

Fact: (Kolaitis&V., 1995)

B satisfies the same $\exists IL^k$ sentences as **A** iff the Duplicator wins the existential *k*-pebble game on **A**, **B**.

k-Datalog and CSP

Theorem: (Kolaitis&V., 1998): TFAE for $k \ge 1$ and a structure **B**:

- $\overline{\text{CSP}(\mathbf{B})}$ is expressible in *k*-Datalog
- $\overline{\mathrm{CSP}(\mathbf{B})}$ is expressible in $\exists \mathrm{IL}^k$
- $CSP(B) = \{A : Duplicator wins the existential$ $k-pebble game on A and B\}.$

Intuition: $\overline{\text{CSP}(\mathbf{B})} \in k$ -Datalog implies that existence of homomorphism is equivalent to the Duplicator winning the existential k-pebble game.

k-Datalog and CSP

Proposition: (Kolaitis&V., 1998) For a fixed structure **B**, there is a *k*-Datalog program $\rho_{\mathbf{B}}^{k}$ such that $\rho_{\mathbf{B}}^{k}(\mathbf{A})$ is nonempty iff the Spoiler wins the existential *k*-pebble game on **A**, **B**.

 $ho_{\mathbf{B}}^k$:

- If $\rho_{\mathbf{B}}^k(\mathbf{A})$ is nonempty, then $\mathbf{A} \notin \mathrm{CSP}(\mathbf{B})$.
- If $\overline{\mathrm{CSP}(\mathbf{B})}$ is definable in *k*-Datalog, then it is definable by $\rho_{\mathbf{B}}^k$.
- <u>Open question</u>: Decide for a given B whether $\overline{CSP(B)}$ is definable by ρ_{B}^{k} .

Classification Questions

For a given structure B:

- Is $\overline{\text{CSP}(\mathbf{B})}$ in *k*-Datalog, for a fixed k > 0?
- Is $\overline{\text{CSP}(\mathbf{B})}$ in *k*-Datalog, for some k > 0?

Group Theory

Example: Affine satisfiability - linear equations mod 2

 $x_1 - x_2 + x_3 = 1$ $x_1 + x_2 - x_3 = 1$

Definition: $CSP(\mathbf{B}) \in Subgroup$ if there is a finite group G such that each k-ary relation in \mathbf{B} is a coset of G^k .

Theorem: Feder&V., 1993

 $CSP(\mathbf{B}) \in Subgroup \text{ implies } CSP(\mathbf{B}) \in PTIME.$

Jeavons et al.: extensions of the algebraic framework.

The Product Operation

Definition: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *product* of these graphs is the graph $G_1 \times G_2 = (V_1 \times V_2, E_1 \times E_2)$, where $(\langle u, u' \rangle, \langle v, v' \rangle) \in E_1 \times E_2$ iff $(u, v) \in E_1$ and $(u', v') \in E_2$.

Note: This definition can be extended to pairs of relational structures.

Polymorphisms

Definition: Let $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$ be a relational structure. A *k*-ary polymorphism is a homomorphism $f : \mathbf{B}^k \to \mathbf{B}$ (closure condition).

 $Poly(\mathbf{B})$: set of polymorphisms of \mathbf{B}

Theorem: [Bulatov&Krokhin&Jeavons, 2000] $Poly(\mathbf{B_1}) = Poly(\mathbf{B_2}) \Rightarrow CSP(\mathbf{B_1}) \equiv_p CSP(\mathbf{B_2}).$

Conclusion: $Poly(\mathbf{B})$ characterizes the complexity of $CSP(\mathbf{B})$.

The Algebraic Approach to CSP: Study $Poly(\mathbf{B})$.

Definition: A *Maltsev operation* is a ternary function f such that f(a, a, b) = f(b, a, a) = b for all a, b in it domain.

Theorem [Bulatov, 2002]

If $Poly(\mathbf{B})$ contains a Maltsev operation, then $CSP(\mathbf{B})$ is in PTIME.

Back to Datalog

Definition: A *k*-ary *near-unanimity operation* is a *k*-ary function *f* such that $f(x_1, x_2, ..., x_k) = a$ whenever at least k - 1 of the x_i 's equal *a*.

Example: Majority is a near-unanimity operation.

Theorem: [Feder&V., 1993] If $Poly(\mathbf{B})$ contains a near-unanimity function, then $\overline{CSP}(\mathbf{B})$ is definable in Datalog.

More on Datalog

Definition: A *k*-ary weak near-unanimity operation is a *k*-ary function *f* such that $(a, a, \dots, a) =$ *a*, and $f(b, a, \dots, a) = f(a, b, a, \dots, a) = \dots =$ $f(a, a, \dots, b)$, for all *a*, *b* in the domain.

Definition: A structure *B* is a *core* if every homomorphism $h : \mathbf{B} \to \mathbf{B}$ is an isomorphism.

WLOG: Restrict attention to cores

Theorem: [Barto&Kozik, 2009] $\overline{CSP}(\mathbf{B})$ is definable in Datalog iff Poly(B) contains weak near-unanimity operations for all sufficiently large arities. This condition can be checked in exponential time.

Uniform Tractability

General Problem: $CSP(\mathcal{C}, \mathcal{D})$, where \mathcal{C}, \mathcal{D} are classes of structures

• is there a homomorphism from A to B, where $A \in C$ and $B \in D$.

Question: When is $CSP(\mathcal{C}, \mathcal{D})$ tractable?

• Non-uniform case: CSP(All, B) for a fixed structure B.

Another imortant case: When is $CSP(\mathcal{C}, All)$ tractable?

Bounded Treewidth

Definition: A *tree decomposition* of a structure $\mathbf{A} = (A, R_1, \dots, R_m)$ is a labeled tree *T* such that

- Each label is a non-empty subset of *A*;
- For every R_i and every $(a_1, \ldots, a_n) \in R_i$, there is a node whose label contains $\{a_1, \ldots, a_n\}$.
- For every *a* ∈ *A*, the nodes whose label contain *a* form a subtree.

The *treewidth* tw(A) of A is defined by

$$\operatorname{tw}(\mathbf{A}) = \min_{T} \{ \max\{ \text{label size in } T \} \} - 1$$

Note: Generalizes the treewidth of a graph.

Tree Decomposition

Bounded Treewidth and CSP

$$\mathcal{T}_k = \{\mathbf{A} : \operatorname{tw}(\mathbf{A}) \le k\}$$

Theorem: (Freuder, 1990) $CSP(\mathcal{T}_k, All)$ is in PTIME.

Note:

- Complexity is exponential in k.
- Determining treewidth of **B** is NP-hard.
- Checking if treewidth is k is in linear time.

Complexity of Query Evaluation

Expression Complexity: Fix B

 $\{Q: Q(\mathbf{B}) \text{ is nonempty}\}$

Data Complexity: Fix Q

 $\{\mathbf{B}: Q(\mathbf{B}) \text{ is nonempty}\}\$

Exponential Gap: (V., 1982)

- Data complexity of FO: LOGSPACE
- Expression complexity of FO: *PSPACE-complete*

Mystery: practical query evaluation

Variable-Confined Queries

Definition: FO^k is first-order logic with at most k variables.

In Practice: (V., 1995)

- Queries often can be rewritten to use a small number of variables.
- Variable-confined queries have lower expression complexity.
- E.g.: expression complexity of FO^k is *PTIME*complete

CSP and Database Queries

Theorem: Chandra&Merlin, 1977

Given A, we can construct in polynomial time an existential, positive, conjunctive first-order query Q_A such that $h : A \to B$ iff $Q_A(B)$ is nonempty.

Definition: The *core* of a structure is its (unique) minimal homomorphic substructure. Let C_k consists of structures with cores of treewidth at most k.

Lemma: Chandra&Merlin, 1977

 $Q_{\mathbf{A}}$ is logically equivalent to $Q_{\mathbf{core}(\mathbf{A})}$

Theorem: [Kolaitis&V., 1998] core(A) has treewidth k iff Q_A is expressible in existential, positive FO with k + 1 variables.

Corollary [Dalmau&Kolaitis&V., 2002] $CSP(C_k, All)$ is tractable; can be solved using *k*-Datalog.

Lower Bounds

Theorem: [Grohe, 2005] Assume $FPT \neq W[1]$. Then $CSP((\mathcal{A}), All)$ is tractable only if $\mathcal{A} \subseteq C_k$.

Theorem: [Atserias&Bulatov&Dalmau, 2007] $CSP((\mathcal{A}), All)$ is solarble by *k*-Datalog only if $\mathcal{A} \subseteq C_k$.

In Conclusion

CSP: a paradigmatic problem with connection to

- Graph theory,
- Algebra, and
- Logic,

with several outstanding open questions of theoretical and practical importance.