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Constraint Satisfaction Problem (CSP)

Input: (V, D,C):

• A finite set V of variables

• A finite set D of values

• A finite set C of constraints restricting the values
that tuples of variables can take.

Constraint: (t, R)

• t: a tuple of variables over V

• R: a relation of arity |t|

Solution: h : V → D

• h(t) ∈ R: for all (t, R) ∈ C

Question: Does (V, D,C) have a solution? I.e., is
there an assignment of values to the variables such
that all constraints are satisfied?
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Constraint Satisfaction

Applications :

• belief maintenance

• machine vision

• natural language processing

• planning and scheduling

• temporal reasoning

• type reconstruction

• bioinformatics

• · · ·
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3-Colorability

3-COLOR: Given an undirected graph A = (V,E),
is it 3-colorable?

• The variables are the nodes in V .

• The values are the elements in {R,G,B}.

• The constraints are {(〈u, v〉, ρ) : (u, v) ∈ E},
where ρ = {(R,G), (R, B), (G, R), (G, B), (B,R), (B,G)}.
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Introduction to Database Theory

Basic Concepts :

• Relation Scheme: a set of attributes

• Tuple: mapping from relation scheme to data
values

• Tuple Projection: if t is a tuple on P , and Q ⊆ P ,
then t[Q] is the restriction of t to Q.

• Relation: a set of tuples over a relation scheme

• Relational Projection: if R is a relation on P , and
Q ⊆ P , then R[Q] is the relation {t[Q] : t ∈ R}.

• Join: Let Ri be a relation over relation scheme Si.
Then 1i Ri is a relation over the relation scheme
∪iSi defined by 1i Ri = {t : t[Si] ∈ Ri}.
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Database Perspective of CSP

Given: (V,D, {C1, . . . , Cm}), where Ci = (ti, Ri).

Assume (wlog): Each ti consists of distinct
elements.

Database Perspective :

• V : attributes

• D: values

• (ti, Ri): relation Ri over relation scheme ti

Fact: (Bibel, Gyssens, Jeavons, Cohen)

(V,D, {C1, . . . , Cm}) has a solution iff 1
m
1 Ri is

nonempty.
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Homomorphisms

Homomorphism : Let A = (A, RA
1 , . . . , RA

m) and
B = (B,RB

1 , . . . , RB
m) be two relational structures.

h : A → B is a homomorphism from A to B if for
every i ≤ m and every tuple (a1, . . . , an) ∈ An,

RA

i (a1, . . . , an) =⇒ RB

i (h(a1), . . . , h(an)).

The Homomorphism Problem: Given relational
structures A and B, is there a homomorphism h :
A → B?

Example: An undirected graph A = (V, E) is 3-
colorable

⇐⇒

there is a homomorphism h : A → K3, where K3 is
the 3-clique.
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Homomorphism Problems

Examples:

• k-Clique: Kk
h
→ (V, E)?

• Hamiltonian Cycle: (V,C|V |, 6=)
h
→ (V, E, 6=)?

• Subgraph Isomorphism: (V, E,E)
h
→ (V ′, E′, E′)?

• s-t Connectivity: (V,E, {〈s, t〉})
h

6→ ({0, 1},=, 6=)?

Fact: (Levin, 1973)

The homomorphism problem is NP-complete.
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CSP vs. Homomorphisms

From CSP to Homomorphism :

Given: (V,D, {C1, . . . , Cm}), where Ci = (ti, Ri).

Define A,B:

• A = (V, {t1}, . . . , {tm})

• B = (D,R1, . . . , Rm)

Fact : (V, D,C) has a solution iff there is
homomorphism from A to B.
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CSP vs. Homomorphisms

From Homomorphism to CSP :

Given: A = (A,RA
1 , . . . , RA

m), B = (B,RB
1 , . . . , RB

m).

Define (V, D,C):

• V = A: elements of A are variables.

• D = B: elements of B are values.

• C = {(t, RB

i ) : t ∈ RA

i }: constraints derived
from A,B.

Fact : There is homomorphism from A to B iff
(V,D,C) has a solution.

Conclusion : CSP=Homomorphism Problem

• Feder&V., 1993

• Garey&Johnson, 1979: Homomorphism in, CSP
not.
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Uniform CSP vs. Non-Uniform CSP

Uniform CSP:

{(A,B) : ∃ homomorphism h : A → B}

Complexity of Uniform CSP: NP-complete

Non-uniform CSP: Fix a structure B

CSP(B) = {A : ∃ homomorphism h : A → B}

Complexity of Non-Uniform CSP: Depends on B

• CSP(K2) is in PTIME (2-COLORABILITY)

• CSP(K3) is NP-complete (3-COLORABILITY)
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Complexity of Non-Uniform CSP

Research Program:

Identity the tractable cases of non-uniform CSP

Dichotomy Conjecture: (Feder&V., 1993)

For every structure B,

• either CSP(B) is in PTIME

• or CSP(B) is NP-complete.

Recall : P 6= NP ⇒ NP − NPC − P 6= ∅ (Ladner,
1975)

Intuition : CSP is not expressive enough to
diagonalize over PTIME.
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“Evidence” for the Conjecture

“Evidence 1”: (Hell&Nešetril, 1990)

Let B be an undirected graph.

• B bipartite =⇒ CSP(B) is in PTIME

• B non-bipartite =⇒ CSP(B) is NP-complete

Intuition : Every undirected graph homomrphism
problem is equivalent either to 2-COLOR or 3-
COLOR.
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More “Evidence”: Boolean CSP

B = {0, 1}

E.g.: 2-SAT

B:

x ∨ y:
0 1
1 0
1 1

¬x ∨ y:
0 0
0 1
1 1

¬x ∨ ¬y:
0 0
0 1
1 0

Dichotomy Theorem: (Schaefer, 1978)

Let B have a Boolean domain, then

• either B is trivial, Horn, anti-Horn, disjunctive, or
affine, and CSP(B) is in PTIME,

• otherwise CSP(B) is NP-complete.

13



Dichotomy and Classification

Question : How far from CSP we need go to get a
provable dichotomy?

Feder&V., 1993: It suffices to consider directed
graphs to settle the Dichotomy Conjecture!

Classification Question:

For a given structure B,

• when is CSP(B) in PTIME?

• when is CSP(B) NP-complete?
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Recent Progress
on the Dichotomy Conjecture

Theorem : [Bulatov, 2002]
The Dichotomy Conjecture holds when |B| = 3.

Definition : A relational structure B = (B,RB
1 , . . . , RB

m)
is conservative if it contains all possible monadic
relations over the domain of the structure.

Intuition : All possible constraints over individual
variables are available.

Theorem : [Bulatov, 2003]
The Dichotomy Conjecture holds when B is
conservative.
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Sources of Tractability

Empirical Observation : Feder&V., 1993

All known tractable CS problems can be explained
as

• combinatorial (Datalog)

• algebraic (group-theoretic)

Classification Conjecture: (Feder&V., 1993)

Two explanations for tractability of CSP(B)

• Datalog

• group-theoretic

Bulatov, 2002 showed that the group-theoretic
explanation is too weak – more general algebraic
techniques required.
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Datalog and Non-Uniform CSP

Example: NON 2-COLORABILITY

O(X, Y ) : − E(X,Y )

O(X, Y ) : − O(X,Z), E(Z,W ), E(W,Y )

Q : − O(X,X)

Recall: Datalog ⊆ PTIME

Define: CSP(B) = {A : A 6∈ CSP(B)}.

Datalog vs. Non-Uniform CSP : Explanation for
many tractability results

• CSP(B) is expressible in Datalog

Note: CSP(B) is positively monotone.
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k-Datalog

Definition:

• k-Datalog: Datalog with at most k variables per
rule (NON 2-COLORABILITY is in 4-Datalog)

• ∃ILk: k-variable existential positive infinitary
logic

– variables: x1, . . . , xk

– no universal quantifiers
– no negations
– infinitary conjunctions and disjunctions

Facts: Fix k ≥ 1

• k-Datalog ⊂ ∃ILk

• ∃ILk can be characterized in terms of
existential k-pebble games between the Spoiler
and the Duplicator.

• There is a PTIME algorithm to decide whether
the Spoiler or the Duplicator wins the existential
k-pebble game.
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Existential k-Pebble Games

A,B: structures

• Spoiler : places on or removes a pebble from an
element of A.

• Duplicator: tries to duplicate move on B.

A: a1, a2, . . . , al l ≤ k

B: b1, b2, . . . , bl

• Spoiler wins: h(ai) = bi, 1 ≤ i ≤ l is not a
homomorphism.

• Duplicator wins: otherwise.

Fact : (Kolaitis&V., 1995)

B satisfies the same ∃ILk sentences as A iff the
Duplicator wins the existential k-pebble game on
A,B.
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k-Datalog and CSP

Theorem: (Kolaitis&V., 1998): TFAE for k ≥ 1 and
a structure B:

• CSP(B) is expressible in k-Datalog

• CSP(B) is expressible in ∃ILk

• CSP(B) = {A : Duplicator wins the existential
k-pebble game on A and B}.

Intuition: CSP(B) ∈ k-Datalog implies that
existence of homomorphism is equivalent to the
Duplicator winning the existential k-pebble game.
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k-Datalog and CSP

Proposition : (Kolaitis&V., 1998)
For a fixed structure B, there is a k-Datalog program
ρk
B

such that ρk
B
(A) is nonempty iff the Spoiler wins

the existential k-pebble game on A,B.

ρk
B

:

• If ρk
B
(A) is nonempty, then A 6∈ CSP(B).

• If CSP(B) is definable in k-Datalog, then it is
definable by ρk

B
.

• Open question: Decide for a given B whether
CSP(B) is definable by ρk

B
.
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Classification Questions

For a given structure B:

• Is CSP(B) in k-Datalog, for a fixed k > 0?

• Is CSP(B) in k-Datalog, for some k > 0?
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Group Theory

Example : Affine satisfiability - linear equations
mod 2

x1 − x2 + x3 = 1
x1 + x2 − x3 = 1

Definition : CSP (B) ∈ Subgroup if there is a finite
group G such that each k-ary relation in B is a coset
of Gk.

Theorem : Feder&V., 1993

CSP (B) ∈ Subgroup implies CSP (B) ∈ PTIME.

Jeavons et al.: extensions of the algebraic
framework.
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The Product Operation

Definition : Let G1 = (V1, E1) and G2 = (V2, E2)
be two graphs. The product of these graphs is
the graph G1 × G2 = (V1 × V2, E1 × E2), where
(〈u, u′〉, 〈v, v′〉) ∈ E1×E2 iff (u, v) ∈ E1 and (u′, v′) ∈
E2.

Note : This definition can be extended to pairs of
relational structures.
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Polymorphisms

Definition : Let B = (B,RB
1 , . . . , RB

m) be a
relational structure. A k-ary polymorphism is a
homomorphism f : Bk → B (closure condition).

Poly(B): set of polymorphisms of B

Theorem : [Bulatov&Krokhin&Jeavons, 2000]
Poly(B1) = Poly(B2) ⇒ CSP (B1) ≡p CSP (B2).

Conclusion : Poly(B) characterizes the complexity
of CSP (B).

The Algebraic Approach to CSP : Study Poly(B).

Definition : A Maltsev operation is a ternary
function f such that f(a, a, b) = f(b, a, a) = b for
all a, b in it domain.

Theorem [Bulatov, 2002]
If Poly(B) contains a Maltsev operation, then
CSP (B) is in PTIME.
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Back to Datalog

Definition : A k-ary near-unanimity operation is a
k-ary function f such that f(x1, x2, . . . , xk) = a

whenever at least k − 1 of the xi’s equal a.

Example : Majority is a near-unanimity operation.

Theorem : [Feder&V., 1993]
If Poly(B) contains a near-unanimity function, then
CSP (B) is definable in Datalog.
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More on Datalog

Definition : A k-ary weak near-unanimity operation
is a k-ary function f such that (a, a, · · · , a) =
a, and f(b, a, · · · , a) = f(a, b, a, · · · , a) = · · · =
f(a, a, · · · , b), for all a, b in the domain.

Definition : A structure B is a core if every
homomorphism h : B → B is an isomorphism.

WLOG: Restrict attention to cores

Theorem : [Barto&Kozik, 2009]
CSP (B) is definable in Datalog iff Poly(B) contains
weak near-unanimity operations for all sufficiently
large arities. This condition can be checked in
exponential time.
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Uniform Tractability

General Problem : CSP(C,D), where C,D are
classes of structures

• is there a homomorphism from A to B, where
A ∈ C and B ∈ D.

Question : When is CSP(C,D) tractable?

• Non-uniform case: CSP(All, B) for a fixed
structure B.

Another imortant case : When is CSP(C, All)
tractable?
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Bounded Treewidth

Definition: A tree decomposition of a structure
A = (A, R1, . . . , Rm) is a labeled tree T such that

• Each label is a non-empty subset of A;

• For every Ri and every (a1, . . . , an) ∈ Ri, there is
a node whose label contains {a1, . . . , an}.

• For every a ∈ A, the nodes whose label contain
a form a subtree.

The treewidth tw(A) of A is defined by

tw(A) = min
T

{max{label size in T}} − 1

Note: Generalizes the treewidth of a graph.
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Tree Decomposition

Figure 1: Treewidth 2
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Bounded Treewidth and CSP

Tk = {A : tw(A) ≤ k}

Theorem: (Freuder, 1990)

CSP(Tk, All) is in PTIME.

Note:

• Complexity is exponential in k.

• Determining treewidth of B is NP-hard.

• Checking if treewidth is k is in linear time.
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Complexity of Query Evaluation

Expression Complexity: Fix B

{Q : Q(B) is nonempty}

Data Complexity: Fix Q

{B : Q(B) is nonempty}

Exponential Gap : (V., 1982)

• Data complexity of FO: LOGSPACE

• Expression complexity of FO: PSPACE-complete

Mystery : practical query evaluation
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Variable-Confined Queries

Definition : FOk is first-order logic with at most k

variables.

In Practice : (V., 1995)

• Queries often can be rewritten to use a small
number of variables.

• Variable-confined queries have lower expression
complexity.

• E.g.: expression complexity of FOk is PTIME-
complete
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CSP and Database Queries

Theorem : Chandra&Merlin, 1977

Given A, we can construct in polynomial time an
existential, positive, conjunctive first-order query QA

such that h : A → B iff QA(B) is nonempty.

Definition : The core of a structure is its (unique)
minimal homomorphic substructure. Let Ck consists
of structures with cores of treewidth at most k.

Lemma : Chandra&Merlin, 1977

QA is logically equivalent to Qcore(A)

Theorem: [Kolaitis&V., 1998]
core(A) has treewidth k iff QA is expressible in
existential, positive FO with k + 1 variables.

Corollary [Dalmau&Kolaitis&V., 2002]
CSP(Ck, All) is tractable; can be solved using k-
Datalog.
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Lower Bounds

Theorem : [Grohe, 2005]
Assume FPT 6= W [1]. Then CSP((A), All) is
tractable only if A ⊆ Ck.

Theorem : [Atserias&Bulatov&Dalmau, 2007]
CSP((A), All) is solavble by k-Datalog only if
A ⊆ Ck.
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In Conclusion

CSP: a paradigmatic problem with connection to

• Graph theory,

• Algebra, and

• Logic,

with several outstanding open questions of theoretical
and practical importance.
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