# Constraints, Graphs, Algebra, Logic, and complexity 

Moshe Y. Vardi

Rice University

## Constraint Satisfaction Problem (CSP)

Input: $(V, D, C)$ :

- A finite set $V$ of variables
- A finite set $D$ of values
- A finite set $C$ of constraints restricting the values that tuples of variables can take.

Constraint: $(t, R)$

- $t$ : a tuple of variables over $V$
- $R$ : a relation of arity $|t|$

Solution: $h: V \rightarrow D$

- $h(t) \in R$ : for all $(t, R) \in C$

Question: Does $(V, D, C)$ have a solution? I.e., is there an assignment of values to the variables such that all constraints are satisfied?

## Constraint Satisfaction

## Applications:

- belief maintenance
- machine vision
- natural language processing
- planning and scheduling
- temporal reasoning
- type reconstruction
- bioinformatics


## 3-Colorability

3-COLOR: Given an undirected graph $A=(V, E)$, is it 3-colorable?

- The variables are the nodes in $V$.
- The values are the elements in $\{\mathbf{R}, \mathbf{G}, \mathbf{B}\}$.
- The constraints are $\{(\langle u, v\rangle, \rho):(u, v) \in E\}$, where $\rho=\{(R, G),(R, B),(G, R),(G, B),(B, R),(B, G)\}$.


## Introduction to Database Theory

## Basic Concepts:

- Relation Scheme: a set of attributes
- Tuple: mapping from relation scheme to data values
- Tuple Projection: if $t$ is a tuple on $P$, and $Q \subseteq P$, then $t[Q]$ is the restriction of $t$ to $Q$.
- Relation: a set of tuples over a relation scheme
- Relational Projection: if $R$ is a relation on $P$, and $Q \subseteq P$, then $R[Q]$ is the relation $\{t[Q]: t \in R\}$.
- Join: Let $R_{i}$ be a relation over relation scheme $S_{i}$. Then $\bowtie_{i} R_{i}$ is a relation over the relation scheme $\cup_{i} S_{i}$ defined by $\bowtie_{i} R_{i}=\left\{t: t\left[S_{i}\right] \in R_{i}\right\}$.


## Database Perspective of CSP

Given: $\left(V, D,\left\{C_{1}, \ldots, C_{m}\right\}\right)$, where $C_{i}=\left(t_{i}, R_{i}\right)$.
Assume (wlog): Each $t_{i}$ consists of distinct elements.

## Database Perspective:

- $V$ : attributes
- $D$ : values
- $\left(t_{i}, R_{i}\right)$ : relation $R_{i}$ over relation scheme $t_{i}$

Fact: (Bibel, Gyssens, Jeavons, Cohen)
$\left(V, D,\left\{C_{1}, \ldots, C_{m}\right\}\right)$ has a solution iff $\bowtie_{1}^{m} R_{i}$ is nonempty.

## Homomorphisms

Homomorphism: Let $\mathbf{A}=\left(A, R_{1}^{\mathbf{A}}, \ldots, R_{m}^{\mathbf{A}}\right)$ and $\mathbf{B}=\left(B, R_{1}^{\mathbf{B}}, \ldots, R_{m}^{\mathbf{B}}\right)$ be two relational structures. $h: A \rightarrow B$ is a homomorphism from $\mathbf{A}$ to $\mathbf{B}$ if for every $i \leq m$ and every tuple $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$,

$$
R_{i}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \Longrightarrow R_{i}^{\mathbf{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)
$$

The Homomorphism Problem: Given relational structures $\mathbf{A}$ and $\mathbf{B}$, is there a homomorphism $h$ : $\mathrm{A} \rightarrow \mathbf{B}$ ?

Example: An undirected graph $\mathbf{A}=(V, E)$ is 3colorable
there is a homomorphism $h: \mathbf{A} \rightarrow K_{3}$, where $K_{3}$ is the 3-clique.

## Homomorphism Problems

Examples:

- $k$-Clique: $K_{k} \xrightarrow{h}(V, E)$ ?
- Hamiltonian Cycle: $\left(V, C_{|V|}, \neq\right) \xrightarrow{h}(V, E, \neq)$ ?
- Subgraph Isomorphism: $(V, E, \bar{E}) \xrightarrow{h}\left(V^{\prime}, E^{\prime}, \overline{E^{\prime}}\right)$ ?
- s-t Connectivity: $(V, E,\{\langle s, t\rangle\}) \stackrel{h}{\nrightarrow}(\{0,1\},=, \neq)$ ?

Fact: (Levin, 1973)
The homomorphism problem is NP-complete.

## CSP vs. Homomorphisms

From CSP to Homomorphism:
Given: $\left(V, D,\left\{C_{1}, \ldots, C_{m}\right\}\right)$, where $C_{i}=\left(t_{i}, R_{i}\right)$. Define A, B:

- $\mathbf{A}=\left(V,\left\{t_{1}\right\}, \ldots,\left\{t_{m}\right\}\right)$
- $\mathbf{B}=\left(D, R_{1}, \ldots, R_{m}\right)$

Fact: $(V, D, C)$ has a solution iff there is homomorphism from $\mathbf{A}$ to $\mathbf{B}$.

## CSP vs. Homomorphisms

From Homomorphism to CSP:
Given: $\mathbf{A}=\left(A, R_{1}^{\mathbf{A}}, \ldots, R_{m}^{\mathbf{A}}\right), \mathbf{B}=\left(B, R_{1}^{\mathbf{B}}, \ldots, R_{m}^{\mathbf{B}}\right)$.
Define $(V, D, C)$ :

- $V=A$ : elements of $\mathbf{A}$ are variables.
- $D=B$ : elements of $\mathbf{B}$ are values.
- $C=\left\{\left(t, R_{i}^{\mathbf{B}}\right) \quad: \quad t \in R_{i}^{\mathbf{A}}\right\}$ : constraints derived from $\mathbf{A}, \mathbf{B}$.

Fact: There is homomorphism from $\mathbf{A}$ to $\mathbf{B}$ iff $(V, D, C)$ has a solution.

Conclusion: CSP=Homomorphism Problem

- Feder\&V., 1993
- Garey\&Johnson, 1979: Homomorphism in, CSP not.


# Uniform CSP vs. Non-Uniform CSP 

Uniform CSP:

$$
\{(\mathbf{A}, \mathbf{B}): \exists \text { homomorphism } h: \mathbf{A} \rightarrow \mathbf{B}\}
$$

Complexity of Uniform CSP: NP-complete

Non-uniform CSP: Fix a structure B

$$
\operatorname{CSP}(\mathbf{B})=\{\mathbf{A}: \exists \text { homomorphism } h: \mathbf{A} \rightarrow \mathbf{B}\}
$$

Complexity of Non-Uniform CSP: Depends on B

- $\operatorname{CSP}\left(K_{2}\right)$ is in PTIME (2-Colorability)
- $\operatorname{CSP}\left(K_{3}\right)$ is NP-complete (3-Colorability)


## Complexity of Non-Uniform CSP

Research Program:
Identity the tractable cases of non-uniform CSP
Dichotomy Conjecture: (Feder\&V., 1993)
For every structure B,

- either $\operatorname{CSP}(\mathbf{B})$ is in PTIME
- or $\operatorname{CSP}(\mathbf{B})$ is NP-complete.

Recall: $P \neq N P \Rightarrow N P-N P C-P \neq \emptyset$ (Ladner, 1975)

Intuition: CSP is not expressive enough to diagonalize over PTIME.

# "Evidence" for the Conjecture 

"Evidence 1": (Hell\&Nešetril, 1990)
Let $\mathbf{B}$ be an undirected graph.

- $\mathbf{B}$ bipartite $\Longrightarrow \operatorname{CSP}(\mathbf{B})$ is in PTIME
- $\mathbf{B}$ non-bipartite $\Longrightarrow \operatorname{CSP}(\mathbf{B})$ is NP-complete

Intuition: Every undirected graph homomrphism problem is equivalent either to 2 -COLOR or 3COLOR.

## More "Evidence": Boolean CSP

$B=\{0,1\}$
E.g.: 2-SAT

B:


Dichotomy Theorem: (Schaefer, 1978)
Let B have a Boolean domain, then

- either B is trivial, Horn, anti-Horn, disjunctive, or affine, and $\operatorname{CSP}(\mathbf{B})$ is in PTIME,
- otherwise $\operatorname{CSP}(\mathbf{B})$ is NP-complete.


## Dichotomy and Classification

Question: How far from CSP we need go to get a provable dichotomy?

Feder\&V., 1993: It suffices to consider directed graphs to settle the Dichotomy Conjecture!

Classification Question:
For a given structure B,

- when is $\operatorname{CSP}(\mathbf{B})$ in PTIME?
- when is $\operatorname{CSP}(\mathbf{B})$ NP-complete?


# Recent Progress on the Dichotomy Conjecture 

Theorem: [Bulatov, 2002]
The Dichotomy Conjecture holds when $|B|=3$.

Definition: A relational structure $\mathbf{B}=\left(B, R_{1}^{\mathbf{B}}, \ldots, R_{m}^{\mathbf{B}}\right)$ is conservative if it contains all possible monadic relations over the domain of the structure.

Intuition: All possible constraints over individual variables are available.

Theorem: [Bulatov, 2003]
The Dichotomy Conjecture holds when $B$ is conservative.

## Sources of Tractability

Empirical Observation: Feder\&V., 1993
All known tractable CS problems can be explained as

- combinatorial (Datalog)
- algebraic (group-theoretic)

Classification Conjecture: (Feder\&V., 1993)
Two explanations for tractability of $\operatorname{CSP}(\mathbf{B})$

- Datalog
- group-theoretic

Bulatov, 2002 showed that the group-theoretic explanation is too weak - more general algebraic techniques required.

## Datalog and Non-Uniform CSP

Example: Non 2-Colorability

$$
\begin{aligned}
O(X, Y) & :-E(X, Y) \\
O(X, Y) & :-O(X, Z), E(Z, W), E(W, Y) \\
Q & :-O(X, X)
\end{aligned}
$$

Recall: Datalog $\subseteq$ PTIME
Define: $\overline{\operatorname{CSP}(\mathbf{B})}=\{\mathbf{A}: \mathbf{A} \notin \operatorname{CSP}(\mathbf{B})\}$.
Datalog vs. Non-Uniform CSP: Explanation for many tractability results

- $\overline{\operatorname{CSP}(\mathbf{B})}$ is expressible in Datalog

Note: $\overline{\operatorname{CSP}(\mathbf{B})}$ is positively monotone.

## $k$-Datalog

## Definition:

- $k$-Datalog: Datalog with at most $k$ variables per rule (Non 2-Colorability is in 4-Datalog)
- $\exists \mathrm{IL}^{k}: \quad k$-variable existential positive infinitary logic
- variables: $x_{1}, \ldots, x_{k}$
- no universal quantifiers
- no negations
- infinitary conjunctions and disjunctions

Facts: Fix $k \geq 1$

- $k$-Datalog $\subset \exists \mathrm{IL}^{k}$
- $\exists \mathrm{IL}^{k}$ can be characterized in terms of existential $k$-pebble games between the Spoiler and the Duplicator.
- There is a PTIME algorithm to decide whether the Spoiler or the Duplicator wins the existential $k$-pebble game.


## Existential $k$-Pebble Games

A, B: structures

- Spoiler: places on or removes a pebble from an element of $\mathbf{A}$.
- Duplicator: tries to duplicate move on B.

A: $a_{1}, a_{2}, \ldots, a_{l} \quad l \leq k$
B: $b_{1}, b_{2}, \ldots, b_{l}$

- Spoiler wins: $h\left(a_{i}\right)=b_{i}, 1 \leq i \leq l$ is not a homomorphism.
- Duplicator wins: otherwise.

Fact: (Kolaitis\&V., 1995)
B satisfies the same $\exists \mathrm{IL}^{k}$ sentences as $\mathbf{A}$ iff the Duplicator wins the existential $k$-pebble game on A, B.

## $k$-Datalog and CSP

Theorem: (Kolaitis\&V., 1998): TFAE for $k \geq 1$ and a structure B:

- $\overline{\operatorname{CSP}(\mathbf{B})}$ is expressible in $k$-Datalog
- $\overline{\operatorname{CSP}(\mathbf{B})}$ is expressible in $\exists \mathrm{IL}^{k}$
- $\operatorname{CSP}(\mathbf{B})=\{\mathbf{A}:$ Duplicator wins the existential $k$-pebble game on $\mathbf{A}$ and $\mathbf{B}\}$.

Intuition: $\overline{\operatorname{CSP}(\mathbf{B})} \in k$-Datalog implies that existence of homomorphism is equivalent to the Duplicator winning the existential $k$-pebble game.

## $k$-Datalog and CSP

Proposition: (Kolaitis\&V., 1998)
For a fixed structure $\mathbf{B}$, there is a $k$-Datalog program $\rho_{\mathbf{B}}^{k}$ such that $\rho_{\mathbf{B}}^{k}(\mathbf{A})$ is nonempty iff the Spoiler wins the existential $k$-pebble game on $\mathbf{A}, \mathbf{B}$.
$\rho_{\mathrm{B}}^{k}:$

- If $\rho_{\mathbf{B}}^{k}(\mathbf{A})$ is nonempty, then $\mathbf{A} \notin \operatorname{CSP}(\mathbf{B})$.
- If $\overline{\operatorname{CSP}(\mathbf{B})}$ is definable in $k$-Datalog, then it is definable by $\rho_{\mathbf{B}}^{k}$.
- Open question: Decide for a given $\mathbf{B}$ whether $\operatorname{CSP}(\mathbf{B})$ is definable by $\rho_{\mathbf{B}}^{k}$.


## Classification Questions

For a given structure $\mathbf{B}$ :

- Is $\overline{\operatorname{CSP}(\mathbf{B})}$ in $k$-Datalog, for a fixed $k>0$ ?
- Is $\overline{\operatorname{CSP}(\mathbf{B})}$ in $k$-Datalog, for some $k>0$ ?


## Group Theory

Example: Affine satisfiability - linear equations mod 2
$x_{1}-x_{2}+x_{3}=1$
$x_{1}+x_{2}-x_{3}=1$

Definition: $\operatorname{CSP}(\mathbf{B}) \in$ Subgroup if there is a finite group $G$ such that each $k$-ary relation in $\mathbf{B}$ is a coset of $G^{k}$.

Theorem: Feder\&V., 1993
$\operatorname{CSP}(\mathbf{B}) \in$ Subgroup implies $\operatorname{CSP}(\mathbf{B}) \in$ PTIME .

Jeavons et al.: extensions of the algebraic framework.

## The Product Operation

Definition: Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. The product of these graphs is the graph $G_{1} \times G_{2}=\left(V_{1} \times V_{2}, E_{1} \times E_{2}\right)$, where $\left(\left\langle u, u^{\prime}\right\rangle,\left\langle v, v^{\prime}\right\rangle\right) \in E_{1} \times E_{2}$ iff $(u, v) \in E_{1}$ and $\left(u^{\prime}, v^{\prime}\right) \in$ $E_{2}$.

Note: This definition can be extended to pairs of relational structures.

## Polymorphisms

Definition: Let $\mathrm{B}=\left(B, R_{1}^{\mathrm{B}}, \ldots, R_{m}^{\mathrm{B}}\right)$ be a relational structure. A $k$-ary polymorphism is a homomorphism $f: \mathbf{B}^{k} \rightarrow \mathbf{B}$ (closure condition).
Poly (B): set of polymorphisms of $\mathbf{B}$
Theorem: [Bulatov\&Krokhin\&Jeavons, 2000]
$\operatorname{Poly}\left(\mathbf{B}_{1}\right)=\operatorname{Poly}\left(\mathbf{B}_{2}\right) \Rightarrow \operatorname{CSP}\left(\mathbf{B}_{1}\right) \equiv_{p} \operatorname{CSP}\left(\mathbf{B}_{2}\right)$.
Conclusion: $\operatorname{Poly}(\mathbf{B})$ characterizes the complexity of $\operatorname{CSP}(\mathbf{B})$.
The Algebraic Approach to CSP: Study Poly(B).
Definition: A Maltsev operation is a ternary function $f$ such that $f(a, a, b)=f(b, a, a)=b$ for all $a, b$ in it domain.
Theorem [Bulatov, 2002]
If $\operatorname{Poly}(\mathbf{B})$ contains a Maltsev operation, then $\operatorname{CSP}(\mathbf{B})$ is in PTIME.

## Back to Datalog

Definition: A $k$-ary near-unanimity operation is a $k$-ary function $f$ such that $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=a$ whenever at least $k-1$ of the $x_{i}$ 's equal $a$.
Example: Majority is a near-unanimity operation.
Theorem: [Feder\&V., 1993]
If $\operatorname{Poly}(\mathbf{B})$ contains a near-unanimity function, then $\overline{C S P}(\mathbf{B})$ is definable in Datalog.

## More on Datalog

Definition: A $k$-ary weak near-unanimity operation is a $k$-ary function $f$ such that $(a, a, \cdots, a)=$ $a$, and $f(b, a, \cdots, a)=f(a, b, a, \cdots, a)=\cdots=$ $f(a, a, \cdots, b)$, for all $a, b$ in the domain.

Definition: A structure $B$ is a core if every homomorphism $h: \mathbf{B} \rightarrow \mathbf{B}$ is an isomorphism.

WLOG: Restrict attention to cores
Theorem: [Barto\&Kozik, 2009]
$\overline{C S P}(\mathbf{B})$ is definable in Datalog iff Poly $(B)$ contains weak near-unanimity operations for all sufficiently large arities. This condition can be checked in exponential time.

## Uniform Tractability

General Problem: $\operatorname{CSP}(\mathcal{C}, \mathcal{D})$, where $\mathcal{C}, \mathcal{D}$ are classes of structures

- is there a homomorphism from $\mathbf{A}$ to $\mathbf{B}$, where $\mathbf{A} \in \mathcal{C}$ and $\mathbf{B} \in \mathcal{D}$.

Question: When is $\operatorname{CSP}(\mathcal{C}, \mathcal{D})$ tractable?

- Non-uniform case: $\operatorname{CSP}(A l l, B)$ for a fixed structure B.

Another imortant case: When is $\operatorname{CSP}(\mathcal{C}, A l l)$ tractable?

## Bounded Treewidth

Definition: A tree decomposition of a structure $\mathbf{A}=\left(A, R_{1}, \ldots, R_{m}\right)$ is a labeled tree $T$ such that

- Each label is a non-empty subset of $A$;
- For every $R_{i}$ and every $\left(a_{1}, \ldots, a_{n}\right) \in R_{i}$, there is a node whose label contains $\left\{a_{1}, \ldots, a_{n}\right\}$.
- For every $a \in A$, the nodes whose label contain $a$ form a subtree.

The treewidth $\operatorname{tw}(\mathbf{A})$ of $\mathbf{A}$ is defined by

$$
\operatorname{tw}(\mathbf{A})=\min _{T}\{\max \{\text { label size in } T\}\}-1
$$

Note: Generalizes the treewidth of a graph.

## Tree Decomposition



Figure 1: Treewidth 2

# Bounded Treewidth and CSP 

$$
\mathcal{T}_{k}=\{\mathbf{A}: \operatorname{tw}(\mathbf{A}) \leq k\}
$$

Theorem: (Freuder, 1990) $\operatorname{CSP}\left(\mathcal{T}_{k}\right.$, All $)$ is in PTIME.

Note:

- Complexity is exponential in $k$.
- Determining treewidth of $\mathbf{B}$ is NP-hard.
- Checking if treewidth is $k$ is in linear time.


# Complexity of Query Evaluation 

Expression Complexity: Fix B

$$
\{Q: Q(\mathbf{B}) \text { is nonempty }\}
$$

Data Complexity: Fix $Q$
$\{\mathbf{B}: Q(\mathbf{B})$ is nonempty $\}$

Exponential Gap: (V., 1982)

- Data complexity of FO: LOGSPACE
- Expression complexity of FO: PSPACE-complete

Mystery: practical query evaluation

## Variable-Confined Queries

Definition: $\mathrm{FO}^{k}$ is first-order logic with at most $k$ variables.

In Practice: (V., 1995)

- Queries often can be rewritten to use a small number of variables.
- Variable-confined queries have lower expression complexity.
- E.g.: expression complexity of $\mathrm{FO}^{k}$ is PTIMEcomplete


## CSP and Database Queries

Theorem: Chandra\&Merlin, 1977
Given A, we can construct in polynomial time an existential, positive, conjunctive first-order query $Q_{\mathbf{A}}$ such that $h: \mathbf{A} \rightarrow \mathbf{B}$ iff $Q_{\mathbf{A}}(\mathbf{B})$ is nonempty.

Definition: The core of a structure is its (unique) minimal homomorphic substructure. Let $\mathcal{C}_{k}$ consists of structures with cores of treewidth at most $k$.

Lemma: Chandra\&Merlin, 1977
$Q_{\mathbf{A}}$ is logically equivalent to $Q_{\text {core(A) }}$

Theorem: [Kolaitis\&V., 1998]
core(A) has treewidth $k$ iff $Q_{\mathbf{A}}$ is expressible in existential, positive FO with $k+1$ variables.

Corollary [Dalmau\&Kolaitis\&V., 2002] $\operatorname{CSP}\left(\mathcal{C}_{k}\right.$, All $)$ is tractable; can be solved using $k$ Datalog.

## Lower Bounds

Theorem: [Grohe, 2005]
Assume $F P T \neq W[1]$. Then $\operatorname{CSP}((\mathcal{A}), A l l)$ is tractable only if $\mathcal{A} \subseteq \mathcal{C}_{k}$.

Theorem: [Atserias\&Bulatov\&Dalmau, 2007] $\operatorname{CSP}((\mathcal{A}), A l l)$ is solavble by $k$-Datalog only if $\mathcal{A} \subseteq \mathcal{C}_{k}$.

## In Conclusion

## CSP: a paradigmatic problem with connection to

- Graph theory,
- Algebra, and
- Logic,
with several outstanding open questions of theoretical and practical importance.

