
1

Cluster-Based Algorithms for
Relational Join

The New Computation Model

More Efficient Joins Via Replication

Optimum Strategies for Special Cases

Joint work with Foto Afrati

2

Next-Generation File Systems

Files are very large.

They are divided into chunks.

 Perhaps 16MB to a chunk.

Chunks are replicated at several
compute-nodes.

A master (possibly replicated) keeps
track of all locations of all chunks.

3

Compute Nodes

Organized into racks.

Intra-rack connection typically gigabit
speed.

Inter-rack connection faster by a small
factor.

4

Racks of Compute Nodes

File

Chunks

5

3-way replication of
files, with copies on
different racks.

6

Implementations

GFS (Google File System – proprietary).

HDFS (Hadoop Distributed File System –
open source).

KFS (Kosmix File System).

Clustera (Implementation at U.
Wisconsin).

7

Moving Up the Computation Stack

BigTable (Google retrieval system for
objects).

Hadoop (Open-source implementation
of Google’s map-reduce).

PIG (Yahoo! implementation of
relational algebra/SQL on top of
Hadoop).

8

Reading and Writing Files

Order of elements in a file doesn’t
matter.

 Example: A file could be a collection of
documents; order within a doc matters, but
not the order of docs.

Parallel reading, writing OK.

9

Algorithms

Algorithm = acyclic collection of
processes.

 Arc means the process at the tail feeds some
data to the head.

10

Example Algorithm

11

Communication Cost

Communication cost = sum of sizes of
inputs to all processes of an algorithm.

Also, elapsed communication cost: the
maximum over all paths through the
acyclic graph of the sizes of the inputs
to each of the processes on that path.

12

Why Not Count Output Size?

 Outputs of one process are inputs to
at least one other, or are algorithm
output.

 Algorithm outputs tend to be small
because users can’t make use of too
much information.

13

Why Not Count Processing Time?

In the types of applications we discuss,
work by a process is usually
proportional to input size.

And it occurs in main memory, so we
can do a lot in the time it takes to get
your input over a gigabit line.

14

Natural Join of Relations

Given: a collection of relations, each
with attributes labeling their columns.

Find: Those tuples over all the
attributes such that when restricted to
the attributes of any relation R, that
tuple is in R.

15

Example: Natural Join

A B
0 1
1 2

A C
1 3
2 1

B C
1 2
2 3

The join: A B C
1 2 3

16

Map-Reduce Algorithms

Map processes send inputs to key-
value pairs.

 “keys” are not necessarily unique.

Outputs of Map processes are sorted by
key, and each key is assigned to one
Reduce process.

Reduce processes combine values
associated with a key.

17

Joining by Map-Reduce

Suppose we want to compute
R(A,B) JOIN S(B,C), using k compute
nodes.

R and S are each stored in a chunked
file.

18

Joining by Map-Reduce – (2)

Use a hash function h from B-values to
k buckets.

Many Map processes take chunks from
R and S, and send:

 Tuple R(a,b) to Reduce process h(b).

 Tuple S(b,c) to Reduce process h(b).

19

Joining by Map-Reduce – (3)

If R(a,b) joins with S(b,c), then both
tuples are sent to Reduce process h(b).

Thus, their join (a,b,c) will be produced
there and shipped to the output file.

20

3-Way Join

Consider a chain of three relations:

R(A, B) JOIN S(B, C) JOIN T(C,D)

Example: R, S, and T are “friends”
relations.

We could join any two by the 2-way
map-reduce algorithm shown, then join
the third with the resulting relation.

But intermediate joins are large.

21

3-Way Join – (2)

An alternative is to divide the work
among k = m 2 Reduce processes.

Hash both B and C to m values.

A Reduce process corresponds to a
hashed B-value and a hashed C-value.

22

3-Way Join – (3)

Each S-tuple S(b,c) is sent to one
Reduce process: (h(b), h(c)).

But each tuple R(a,b) must be sent to
m Reduce processes (h(b), x).

And each tuple T(c,d) must be sent to
m Reduce processes (y, h(c)).

23

Example: m = 4; k = 16.

h(b)=0

h(b)=1

h(b)=2

h(b)=3

h(c) =
0 1 2 3

S(b, c)

R(a, b)

T(c, d)

24

3-Way Join – (4)

Thus, any joining tuples R(a,b), S(b,c),
and T(c,d) will be joined at the Reduce
process (h(b), h(c)).

Communication cost: s + mr + mt.

 Convention: Lower-case letter is the size of
the relation whose name is the
corresponding upper-case letter.

• Example: r is the size of R.

25

Comparison of Methods

Suppose for simplicity that:

 Relations R, S, and T have the same size r.

 The probability of two tuples joining is p.

The 3-way join has cost r(2m+1).

Two two-way joins have a cost of:

 3r to read the relations, plus

 pr2 to read the join of the first two.

 Total = r(3+pr).

26

Comparison – (2)

3-way beats 2-way if 2m+1 < 3+pr.

pr is the multiplicity of each join.
 Thus, the 3-way chain-join is useful when

the multiplicity is high.

Example: relations are “friends”; pr is
about 300. m 2 = k can be 20,000.

Example: relations are Web links; pr is
about 15. m 2 = k can be 64.

27

Some Questions

When we discussed the 3-way chain-
join, we used attributes B and C for the
map-key (index for the Reduce
processes).

Why not include A and/or D?

Why use the same number of buckets
for B and C?

28

Share Variables

For the general problem, we use a
share variable for each attribute.

 The number of buckets into which values
of that attribute are hashed.

Convention: The share variable for an
attribute is the corresponding lower-
case letter.

 Example: the share variable for attribute A
is always a.

29

Share Variables – (2)

The product of all the share variables is
k, the number of Reduce processes.

The communication cost of a multiway
join is the sum of the size of each
relation times the product of the share
variables for the attributes that do not
appear in the schema of that relation.

30

Example: Minimizing Cost

Consider the cyclic join
R(A, B) JOIN S(B, C) JOIN T(A, C)

Cost function is rc + sa + tb.

Construct the Lagrangean:
rc + sa + tb – (abc – k)

Take derivative wrt each share variable,
then multiply by that variable.

 Result is 0 at minimum.

31

Example – Continued

d/da of rc + sa + tb – (abc – k) is
s – bc.

Multiply by a and set to 0: sa – abc = 0.

Note: abc = k : sa = k.

Similarly, d/db and d/dc give:
sa = tb = rc = k.

Solution: a = (krt /s 2)1/3; b = (krs /t 2)1/3;
c = (kst /r 2)1/3;

Cost = rc + sa + tb = 3(krst)1/3.

32

Dominated Attributes

Certain attributes can’t be in the map-
key.

A dominates B if every relation of the
join with B also has A.

Example:

R(A,B,C) JOIN S(A,B,D) JOIN T(A,E) JOIN U(C,E)

Every place with B

Also has A

33

Example – (2)

 Cost expression:

rde + sce + tbcd + uabd

 Since b appears wherever a does, if
there were a minimum-cost solution
with b > 1, we could replace b by 1
and a by ab, and the cost would
lower.

R(A,B,C) JOIN S(A,B,D) JOIN T(A,E) JOIN U(C,E)

34

Dominated Attributes – Continued

Thus, we do not put any dominated
attribute in the map-key.

This rule explains why, in the
discussion of the chain join

R(A, B) JOIN S(B, C) JOIN T(C,D)

we did not put A or D in the map key.

35

Solving the General Case

Unfortunately, there are more complex
cases than dominated attributes, where
the equations derived from the
Lagrangean imply a positive sum of
several terms = 0.

We can fix, generalizing dominated attributes,
but we have to branch on which attribute
needs to be eliminated from the map-key.

36

Solving – (2)

Solutions not in integers:

 Drop an attribute with a share < 1 from
the map-key and re-solve.

 Round other nonintegers, and treat k as a
suggestion, since the product of the
integers may not be k.

37

Special Case: Star Joins

A star join combines a large fact table
F(A1,A2,…,An) with tiny dimension tables
D1(A1,B1), D2(A2,B2),…, Dn(An ,Bn).

 There may be other attributes not shown,
each belonging to only one relation.

Example: Facts = sales; dimensions tell
about buyer, product, etc.

38

Star-Join Pattern

A1 A2

A3A4

B1 B2

B3B4

39

Star Joins – (2)

Map-key = the A’s.

 B’s are dominated.

Solution: di ai = k for all i.

 That is, the shares are inversely
proportional to the dimension-table sizes.

40

Cool Application of Star Join Result

Fact/dimension tables are often used
for analytics.

 Example: fact table is all sales records;
dimension tables give info about
customers, products, suppliers, etc.

Aster Data approach: partition fact
table among nodes permanently;
replicate needed pieces of dimension
tables.

41

Star-Join Application – (2)

Our solution lets you partition the fact
table to k nodes.

Replication of tuples in the dimension
tables is minimized.

42

Chain Joins

A chain join has the form

R(A0, A1) JOIN R(A1, A2) JOIN … JOIN R(An -1, An)

 Other attributes may appear, but only in one
relation.

A0 and An are dominated; other
attributes are in the map-key.

AnA2
A3 An -1A1A0

. . .

43

Special Case: All Relations
Have the Same Size

Illustrates strange behavior.

 Even and odd n have very different
distributions of the share variables.

Even n : a2 = a4 = … = an -2 = 1;
a1 = a3 = … = an -1 = k 2/n

44

Pattern for Even n

45

Odd n, Equal Relation Sizes

Even a’s grow exponentially.

 That is, a4 = a2
2; a6 = a2

3; a8 = a2
4,…

The odd a’s form the inverse sequence.

 That is, a1 = an -1; a3 = an -3; a5 = an -5;…

46

Pattern for Odd n

47

Summary

1. Multiway joins can be computed by
replicating tuples and distributing them
to many compute nodes.

2. Minimizing communication requires us to
solve a nonlinear optimization.

3. Method wins for star queries and queries
on high-fanout graphs.

4. Exact solution for chain and star queries.

