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Next-Generation File Systems

Files are very large.

They are divided into chunks.

 Perhaps 16MB to a chunk.

Chunks are replicated at several 
compute-nodes.

A master (possibly replicated) keeps 
track of all locations of all chunks.
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Compute Nodes

Organized into racks.

Intra-rack connection typically gigabit 
speed.

Inter-rack connection faster by a small 
factor.
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Racks of Compute Nodes

File

Chunks
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3-way replication of
files, with copies on
different racks.
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Implementations

GFS (Google File System – proprietary).

HDFS (Hadoop Distributed File System –
open source).

KFS (Kosmix File System).

Clustera (Implementation at U. 
Wisconsin).
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Moving Up the Computation Stack

BigTable (Google retrieval system for 
objects).

Hadoop (Open-source implementation 
of Google’s map-reduce).

PIG (Yahoo! implementation of 
relational algebra/SQL on top of 
Hadoop).
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Reading and Writing Files

Order of elements in a file doesn’t 
matter.

 Example: A file could be a collection of 
documents; order within a doc matters, but 
not the order of docs.

Parallel reading, writing OK.
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Algorithms

Algorithm = acyclic collection of 
processes.

 Arc means the process at the tail feeds some 
data to the head.



10

Example Algorithm
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Communication Cost

Communication cost = sum of sizes of 
inputs to all processes of an algorithm.

Also, elapsed communication cost: the 
maximum over all paths through the 
acyclic graph of the sizes of the inputs 
to each of the processes on that path.
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Why Not Count Output Size?

 Outputs of one process are inputs to 
at least one other, or are algorithm 
output.

 Algorithm outputs tend to be small 
because users can’t make use of too 
much information.
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Why Not Count Processing Time?

In the types of applications we discuss, 
work by a process is usually 
proportional to input size.

And it occurs in main memory, so we 
can do a lot in the time it takes to get 
your input over a gigabit line.
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Natural Join of Relations

Given: a collection of relations, each 
with attributes labeling their columns.

Find: Those tuples over all the 
attributes such that when restricted to 
the attributes of any relation R, that 
tuple is in R.
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Example: Natural Join

A     B
0     1
1     2

A     C
1     3
2     1

B     C
1     2
2     3

The join: A     B     C
1     2     3
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Map-Reduce Algorithms

Map processes send inputs to key-
value pairs.

 “keys” are not necessarily unique.

Outputs of Map processes are sorted by 
key, and each key is assigned to one 
Reduce process.

Reduce processes combine values 
associated with a key.
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Joining by Map-Reduce

Suppose we want to compute       
R(A,B) JOIN S(B,C), using k compute 
nodes.

R and S are each stored in a chunked 
file.
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Joining by Map-Reduce – (2)

Use a hash function h from B-values to 
k buckets.

Many Map processes take chunks from 
R  and S, and send:

 Tuple R(a,b) to Reduce process h(b).

 Tuple S(b,c) to Reduce process h(b).
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Joining by Map-Reduce – (3)

If R(a,b) joins with S(b,c), then both 
tuples are sent to Reduce process h(b).

Thus, their join (a,b,c) will be produced 
there and shipped to the output file.
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3-Way Join

Consider a chain of three relations:

R(A, B) JOIN S(B, C) JOIN T(C,D)

Example: R, S, and T are “friends” 
relations.

We could join any two by the 2-way 
map-reduce algorithm shown, then join 
the third with the resulting relation.

But intermediate joins are large.
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3-Way Join – (2)

An alternative is to divide the work 
among k = m 2 Reduce processes.

Hash both B and C to m values.

A Reduce process corresponds to a 
hashed B-value and a hashed C-value.
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3-Way Join – (3)

Each S-tuple S(b,c) is sent to one 
Reduce process: (h(b), h(c)).

But each tuple R(a,b) must be sent to 
m Reduce processes (h(b), x).

And each tuple T(c,d) must be sent to 
m Reduce processes (y, h(c)).
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Example: m = 4; k = 16.

h(b)=0

h(b)=1

h(b)=2

h(b)=3

h(c) =
0       1      2      3

S(b, c)

R(a, b)

T(c, d)
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3-Way Join – (4)

Thus, any joining tuples R(a,b), S(b,c), 
and T(c,d) will be joined at the Reduce 
process (h(b), h(c)).

Communication cost: s + mr + mt.

 Convention: Lower-case letter is the size of 
the relation whose name is the 
corresponding upper-case letter.

• Example: r is the size of R.
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Comparison of Methods

Suppose for simplicity that:

 Relations R, S, and T have the same size r.

 The probability of two tuples joining is p.

The 3-way join has cost r(2m+1).

Two two-way joins have a cost of:

 3r to read the relations, plus

 pr2 to read the join of the first two.

 Total = r(3+pr).
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Comparison – (2)

3-way beats 2-way if 2m+1 < 3+pr.

pr is the multiplicity of each join.
 Thus, the 3-way chain-join is useful when 

the multiplicity is high.

Example: relations are “friends”; pr is 
about 300.  m 2 = k can be 20,000.

Example: relations are Web links; pr is 
about 15.  m 2 = k can be 64.
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Some Questions

When we discussed the 3-way chain-
join, we used attributes B and C for the  
map-key (index for the Reduce 
processes).

Why not include A and/or D?

Why use the same number of buckets 
for B and C?
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Share Variables

For the general problem, we use a 
share variable for each attribute.

 The number of buckets into which values 
of that attribute are hashed.

Convention: The share variable for an 
attribute is the corresponding lower-
case letter.

 Example: the share variable for attribute A 
is always a.
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Share Variables – (2)

The product of all the share variables is 
k, the number of Reduce processes.

The communication cost of a multiway 
join is the sum of the size of each 
relation times the product of the share 
variables for the attributes that do not
appear in the schema of that relation.
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Example: Minimizing Cost

Consider the cyclic join                    
R(A, B) JOIN S(B, C) JOIN T(A, C)

Cost function is rc + sa + tb.

Construct the Lagrangean:                 
rc + sa + tb – (abc – k)

Take derivative wrt each share variable, 
then multiply by that variable.

 Result is 0 at minimum.
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Example – Continued

d/da of rc + sa + tb – (abc – k)   is          
s – bc.

Multiply by a and set to 0: sa – abc = 0.

Note: abc = k : sa = k.

Similarly, d/db and d/dc  give:               
sa = tb = rc = k.

Solution: a = (krt /s 2)1/3; b = (krs /t 2)1/3;    
c = (kst /r 2)1/3;

Cost = rc + sa + tb = 3(krst )1/3.
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Dominated Attributes

Certain attributes can’t be in the map-
key.

A dominates B if every relation of the 
join with B also has A.

Example:

R(A,B,C) JOIN S(A,B,D) JOIN T(A,E) JOIN U(C,E)

Every place with B

Also has A
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Example – (2)

 Cost expression:

rde + sce + tbcd + uabd 

 Since b appears wherever a does, if 
there were a minimum-cost solution 
with b > 1, we could replace b by 1 
and a by ab, and the cost would 
lower.

R(A,B,C) JOIN S(A,B,D) JOIN T(A,E) JOIN U(C,E)
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Dominated Attributes – Continued

Thus, we do not put any dominated 
attribute in the map-key.

This rule explains why, in the 
discussion of the chain join

R(A, B) JOIN S(B, C) JOIN T(C,D)

we did not put A or D in the map key.
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Solving the General Case

Unfortunately, there are more complex 
cases than dominated attributes, where 
the equations derived from the 
Lagrangean imply a positive sum of 
several terms = 0.

We can fix, generalizing dominated attributes, 
but we have to branch on which attribute 
needs to be eliminated from the map-key.
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Solving – (2)

Solutions not in integers:

 Drop an attribute with a share < 1 from 
the map-key and re-solve.

 Round other nonintegers, and treat k as a 
suggestion, since the product of the 
integers may not be k.
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Special Case: Star Joins

A star join combines a large fact table
F(A1,A2,…,An) with tiny dimension tables
D1(A1,B1), D2(A2,B2),…, Dn(An ,Bn ).

 There may be other attributes not shown, 
each belonging to only one relation.

Example: Facts = sales; dimensions tell 
about buyer, product, etc.
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Star-Join Pattern

A1 A2

A3A4

B1 B2

B3B4
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Star Joins – (2)

Map-key = the A’s.

 B’s are dominated.

Solution: di ai = k for all i.

 That is, the shares are inversely 
proportional to the dimension-table sizes.
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Cool Application of Star Join Result

Fact/dimension tables are often used 
for analytics.

 Example: fact table is all sales records; 
dimension tables give info about 
customers, products, suppliers, etc.

Aster Data approach: partition fact 
table among nodes permanently; 
replicate needed pieces of dimension 
tables.
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Star-Join Application – (2)

Our solution lets you partition the fact 
table to k nodes.

Replication of tuples in the dimension 
tables is minimized.
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Chain Joins

A chain join  has the form

R(A0, A1) JOIN R(A1, A2) JOIN … JOIN R(An -1, An)

 Other attributes may appear, but only in one 
relation.

A0 and An are dominated; other 
attributes are in the map-key.

AnA2
A3 An -1A1A0

. . .
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Special Case: All Relations 
Have the Same Size

Illustrates strange behavior.

 Even and odd n have very different 
distributions of the share variables.

Even n : a2 = a4 = … = an -2 = 1;        
a1 = a3 = … = an -1 = k 2/n
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Pattern for Even n
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Odd n, Equal Relation Sizes

Even a’s grow exponentially.

 That is, a4 = a2
2; a6 = a2

3; a8 = a2
4,…

The odd a’s form the inverse sequence.

 That is, a1 = an -1; a3 = an -3; a5 = an -5;…
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Pattern for Odd n
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Summary

1. Multiway joins can be computed by 
replicating tuples and distributing them 
to many compute nodes.

2. Minimizing communication requires us to 
solve a nonlinear optimization.

3. Method wins for star queries and queries 
on high-fanout graphs.

4. Exact solution for chain and star queries.


