

 Modular Approach for Developing
Robust Protocols

Danny Dolev
The Hebrew University

a joint work with M. Ben-Or and E. Hoch

Ensemble

 A group communication system

 Modular and multi-layer structure

 Bob and his team used Nuprl to argue about
the correctness of the modules in Ensemble

 I will describe a modular protocol overcoming
transient and Byzantine faults -- proving its
correctness using formal methods is a real
challenge

Fast Self-Stabilizing Byzantine Tolerant
Digital Clock Synchronization

 Clock synchronization

 Digital clock synchronization

 Self-stabilizing

 Byzantine tolerant

 Fast?

Model
 n nodes.
 Communication via message passing.

 Private channels
 No broadcast channels

 Network is fully connected.
 Synchronous (global beat system).

 No round numbers
 Round = between two consecutive beats

 Up to a third of the nodes may be Byzantine.
 n>3f
 No computational bounds and no cryptography
 Adaptive and can “rush”

 Self-stabilizing.

Problem Definition

 The system is clock_synched at beat r with value
Clock(r) if, for each correct node u, it holds that
u.clock equals Clock(r).

 The k-Clock problem is:
Starting from any state, eventually (at some
beat r) the system becomes clock_synched with
value Clock(r); and from this point on, at beat r+i
the system is clock_synched with value
Clock(r) + i (mod k).

Previous Work - Models
 Two avenues:

 Deterministic / probabilistic
 Timing model

 Timing model:
 Global beat system (a.k.a. “synchronous”)
 Bounded-delay (a.k.a. “semi-synchronous”)

 Bounded-delay has a slightly different problem
definition.

Previous Work – Convergence
Time

Deterministic

Probabilistic

semi-synchronoussynchronous

  22 n fO 

DW95, DDP03, HDD06, DH07

 O f  O f

  6 n fO n 

Previous Work - Models

Deterministic

Probabilistic

semi-synchronoussynchronous

DW95, DDP03, HDD06, DH07

 O f  O f

  6 n fO n  1O

Overview of Solution -
 Assume the existence of a constant round, Byzantine tolerant,

coin-flip module (Feldman-Micali, Katz-Koo)

 Create a “stream” of random bits.

 Construct a 2-Clock from the random stream.

 Construct a 4-Clock using two copies of 2-Clock.

 Construct a k-Clock using one copy of
 4-Clock and the random stream.

What is a common-coin?
 (Not self-stabilizing)
 A distributed algorithm the has a binary bit

output at each correct node.
 With some probability, bit=1 at all correct nodes,

and with some probability, bit=0 at all correct
nodes.

 With some probability bit might be different at
different correct nodes.

 Example for poor probability: each node
privately selects a random bit.

A “stream” of random bits
 Take any common-coin algorithm that:

 is Byzantine tolerant
 operates in a synchronous model
 terminates within constant time
 outputs a random bit, with constant probability
 requires no special initialization

 pre-agreed constants are allowed

 Remark: need not be self-stabilizing.

A “stream” of random bits
 [FM89] provides a common-coin that

terminates within O(1) rounds, and with
constant probability produces a random
bit, while supporting n >3f.

 For the stream of random bits:
 use pipelining to create a self-

stabilizing Byzantine tolerant algorithm
that produces a random bit every
round.

The pipeline

.

.

Output

Execution of round 1

Execution of round 2

Execution of round 3

 Execution of roundΔ-1

 Execution of roundΔ

.

.

Output

.

.

Output

Beat i Beat i+1 Beat i+2

Create a “stream” of random
bits

When you say “random”, what
do you mean?

 Common-coin algorithms usually have 3 stages:
share, decide, recover:
 share + decide : at the end of these stages the

“random” output is determined; however, no set of f
nodes can retrieve it.

 Recover : at the end of this stage, all nodes know
the “random” output.

 Prior to the recovery stage, the Byzantine nodes
do not know the output bit.
During the recovery stage, the output bit
is discovered.

1
round

>1
rounds

How to reach binary consensus
using a common coin?

How to reach binary consensus
using a common coin?

 Goal: reach consensus on non-faulty nodes’
input values.

 Method: each round, “do something” such that:
 if all nodes agree on the consensus-value at the

beginning of the round, they continue to do so;
 if not, then with some probability all non-faulty nodes

agree on the output value.
 Do this “forever”.

 eventually all non-faulty nodes will agree;
and will stay so forever

How to reach binary consensus
using a common coin?

 “Do Something”:
 Send input value to all nodes
 If received n-f copies of the same value, take it as

output
 Otherwise, take the common coin as the output
 (consider output of this round to be the input of the

next round)
 “Proof”: if some node received n-f copies of “1”,

then no one received n-f copies of “0”. Thus, if
the random bit is “1”, all nodes have the same
output.

Back to 2-Clock…

Construct a 2-Clock from the
random stream

 Intuitive concept:
 each round, send the value (1 – u.clock) to all
 if received less than (n – f) copies of the same value,

use the random bit as the new value
 Problem: adversary might be aware of the

current random bit before it sends its “clock
messages” of the current round. Thus, if the
random bit is “1”, it can send clock value
“0”; preventing the non-faulty nodes to
ever agree on the clock value.

Construct a 2-Clock from the
random stream

 Solution: use the random bit output regarding
messages from the previous round only.
 each round, send 1-clock value (possibly “?”) to all

nodes
 consider received messages with “?” as carrying the

value of the next random bit
 if received less than n-f copies of the same value, set

the new clock value to “?”
 Disclaimer: messages sent the current round

may depend of the random bit, but not
messages sent in previous rounds!!!

Construct a 2-Clock from the
random stream

 End of round i: the set of node values is {v, ?}
for some specific v.

 Round i+1:
 Each correct node sends “v” or “?”.
 Each correct node considers“?” as “rand”.

(With constant probability rand := v)
 Each correct node checks if it has n-f copies of “v”.

 If true, set u.clock := “1-v”;
 Else, set u.clock := “?”.

(With constant probability, all correct nodes
set u.clock := “1-v”)

1

2-Clock example

Time

0

0

1

0 1

0 1

0

0

0 0 1

1

1

?

1 ?

1 ?

0

0

1 1 0

1

1

1

0

0

?

10

0

0

0

0 0

0 0

*

*

0 0 *

01

Construct a 2-Clock from the
random stream

Construct a 2-Clock from the
random stream

 Each round there is a constant probability that
the system converges.

 Therefore, the convergence time is constant in
expectation.

 Moreover, the probability that the system does
not converge decreases exponentially.

Construct a 4-Clock using two
copies of 2-Clock

 Basic idea: run 2 copies of 2-Clock, one for the
most significant bit and one for the least
significant bit.

 Convergence time is still constant in
expectation.

Construct a 4-Clock using two
copies of 2-Clock

Construct a k-Clock using one copy
of 4-Clock and the random stream

 Could repeat the same “trick” as for the 4-Clock;
however, it would incur a logarithmic overhead in
convergence time and message complexity.

 Instead, using a single instance of 4-Clock, there are 4
phases of send-and-receive.
 Use Turpin-Coan’s 3-phase protocol to reach a multi-valued

consensus from a binary consensus;
 Use a 1-phase probabilistic protocol to reach a binary

consensus;
 In 4-phases there is a constant probability

that the nodes agree on a clock value.
 The 4-clock and k-clock values are not related.

Summary of Solution
 Assume the existence of a constant round coin-flip module

(Feldman-Micali, Katz-Koo)

 Create a “stream” of random bits.

 Construct a 2-Clock from the random stream.

 Construct a 4-Clock using two copies of 2-Clock.

 Construct a k-Clock using one copy of
 4-Clock and the random stream.

Overview of the other modules
 Create a constant round coin-flip module.

 Oblivious Leader Election.

 Moderated VSS.

 Grade-cast (a weak form of agreement).

 Verifiable Secret Sharing (assuming broadcast).

Bob !!! – back to work

With occasional resting

Thank you!

