
(1 + ε, β)-SPANNER CONSTRUCTIONS FOR GENERAL GRAPHS∗

MICHAEL ELKIN† AND DAVID PELEG‡

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 608–631

Abstract. An (α, β)-spanner of a graph G is a subgraph H such that distH(u,w) ≤ α ·
disttG(u,w) + β for every pair of vertices u,w, where distG′ (u,w) denotes the distance between two
vertices u and v in G′. It is known that every graph G has a polynomially constructible (2κ− 1, 0)-
spanner (also known as multiplicative (2κ − 1)-spanner) of size O(n1+1/κ) for every integer κ ≥ 1,
and a polynomially constructible (1, 2)-spanner (also known as additive 2-spanner) of size Õ(n3/2).
This paper explores hybrid spanner constructions (involving both multiplicative and additive factors)
for general graphs and shows that the multiplicative factor can be made arbitrarily close to 1 while
keeping the spanner size arbitrarily close to O(n), at the cost of allowing the additive term to be
a sufficiently large constant. More formally, we show that for any constant ε, λ > 0 there exists
a constant β = β(ε, λ) such that for every n-vertex graph G there is an efficiently constructible
(1 + ε, β)-spanner of size O(n1+λ).

Key words. spanners, graph algorithms, graph partitions

AMS subject classifications. 05C85, 05C12, 68R10

DOI. 10.1137/S0097539701393384

1. Introduction.

1.1. Motivation and previous results. Spanners for general graphs were in-
troduced in [15] as a tool for constructing synchronizers, and were later studied in
various contexts. Generally speaking, spanners appear to be the underlying graph
structure in a number of constructions in distributed systems and communication
networks (cf. [13]). Spanners have turned out to be relevant also in other contexts.
For instance, in the area of robotics and computational geometry, spanners have been
considered in the Euclidean setting, assuming that the vertices of the graph are points
in space, and the edges are line segments connecting pairs of points (cf. [5, 6, 1] and
the references therein).

Intuitively, spanners can be thought of as a generalization of the concept of a span-
ning tree, allowing the spanning subgraph to have cycles, but aiming towards main-
taining the locality properties of the network. These locality properties revolve around
the notion of stretch, namely, the (worst) multiplicative factor by which distances
increase in the network as a result of using the spanner edges alone and ignoring non-
spanner edges. Formally, given an unweighted graph G = (V,E), we say that the sub-
graph H = (V,E′) (where E′ ⊆ E) is an α-spanner of G if distH(u,w) ≤ α·distG(u,w)
for every u,w ∈ V , where distG′(u, v) denotes the distance between two vertices u
and v in G′, namely, the minimum length of a path in G′ connecting them.

There exists a well-understood tradeoff between the size of a spanner (namely, the
number of edges it uses) and its stretch [14, 1, 4]. Generally speaking, for an integer
parameter κ, a stretch of O(κ) can be guaranteed by a spanner using O(n1+1/κ) edges.
The best known bound for the stretch is 2κ − 1 [1]. This bound is very close to the

∗Received by the editors August 5, 2001; accepted for publication (in revised form) November 12,
2003; published electronically March 30, 2004.

http://www.siam.org/journals/sicomp/33-3/39338.html
†Department of Computer Science, Yale University, New Haven, CT 06520 (elkin@cs.yale.edu).

This author’s work was done at the Weizmann Institute of Science, Rehovot, Israel.
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot, 76100 Israel (peleg@wisdom.weizmann.ac.il). This author’s work was supported in part by
grants from the Israel Science Foundation and the Israel Ministry of Science and Art.

608

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 609

best possible in view of the lower bounds shown in [14, 1, 4], by which for every
odd κ ≥ 3 there exist (infinitely many) n-vertex graphs G = (V,E) for which every
(κ − 2)-spanner requires Ω(n1+4/3κ) edges. In fact, for 3-, 5-, and 9-spanners, even
better lower bounds are known [16].

However, it is not clear a priori that the stretch must be expressed as a multi-
plicative factor. An alternative notion of additive graph spanners was introduced in
[11, 12]. A subgraph H is an additive β-spanner of G if distH(u,w) ≤ distG(u,w)+β
for every u,w ∈ V . While the results of [11, 12] concerned only special graph classes,
like pyramids, hypercubes and multidimensional grids of degree bounded by 4, a result
demonstrating the potential usefulness of this notion for general graphs was presented
in [7], where it was shown that for every graph G there exists an additive 2-spanner
with Õ(n3/2) edges. Again, this is the best possible up to polylogarithmic factors
given the aforementioned lower bounds. Unfortunately, this result has so far resisted
attempts of extending it to values of κ greater than 2.

In this paper, we study the somewhat more general and unifying concept of
(α, β)-spanners, also introduced in [11]. A subgraph H is an (α, β)-spanner of G
if distH(u,w) ≤ α · distG(u,w) + β for every u,w ∈ V . Cast in this terminology, the
above mentioned results imply that O(n1+1/κ) edges suffice to construct a (2κ−1, 0)-
spanner, for any integer κ ≥ 1, and that Õ(n3/2) edges suffice to construct a (1, 2)-
spanner.

However, intuitively it seems that a tighter bound on the behavior of spanners
may be obtained. In particular, it seems plausible that the multiplicative factor of
2κ−1 is not entirely unavoidable, as it might stem in part due to a “hidden” additive
term affecting mainly the stretching behavior of the spanner with respect to nearby
vertex pairs.

The current paper not only confirms this intuition, but also shows that the mul-
tiplicative stretch can be made arbitrarily close to 1 by allowing the additive term to
be a sufficiently large constant.

1.2. Our results. Our main construction establishes the existence and efficient
constructibility of (1 + ε, β)-spanners of size O(βn1+1/κ) for every n-vertex graph G,
where β = β(κ, ε) is constant whenever κ and ε are. We stress that in our con-
struction, both the stretch and the size of the spanner can be made arbitrarily small
simultaneously, where the tradeoff is between their values on the one hand and the
value of the additive term on the other.

Note that the existence of spanners with properties as described above implies
that for any constant ε, λ > 0 and graph G, there exists a spanning subgraph H with
O(n1+λ) edges which behaves like a (1 + ε)-spanner for “sufficiently distant” pairs
of vertices. More formally, for any constant ε, λ > 0 there exists a constant β(ε, λ)
such that for any n-vertex graph G = (V,E) there exists an efficiently constructible
spanning subgraph H with O(n1+λ) edges such that distH(u,w) ≤ (1 + ε)distG(u,w)
for every pair of vertices u,w ∈ V such that distG(u,w) ≥ β(ε, λ).

We remark that this result is optimal in the sense that the statement becomes false
if either ε or λ is set to zero. Specifically, taking ε = 0 yields a false statement since
for any 0 < λ < 1 there exists an infinite graph family H(λ) such that every n-vertex
graph G ∈ H(λ) has Ω(n1+λ) edges and for any subgraph H of G there exists a pair of
nodes u,w in the graph such that dG(u,w) = Ω(n1/2−λ/2) and dH(u,w) > dG(u,w).
Analogously, setting λ to zero falsifies the statement because for any 0 < ε < 1 and
β(ε) ≥ 1 there exists an infinite graph family Ĥ(ε, β) such that any n-vertex graph
G ∈ Ĥ(ε, β) has n1+Ω(1/β(ε)) edges (i.e., significantly more than O(n) = O(n1+λ))

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

610 MICHAEL ELKIN AND DAVID PELEG

and for any subgraph H of G there exists a pair of nodes u,w in the graph such that
dG(u,w) ≥ β(ε) and dH(u,w) ≥ 2β(ε) [3].

Furthermore, our construction enables us to obtain a multiplicative stretch that is

even smaller than 1+ε for constant ε > 0, i.e., 1+1/polylogn or even 1+2− log n/log(b) n

(where log(b) denotes the b-iterated log function), while still keeping the size of the
spanner equal to O(n1+λ) for arbitrarily small λ > 0, at the cost of increasing the

additive term to polylogn or exp(O(log n/ log(b) n)), respectively.

A straightforward implementation of our construction requires O(|E| · n) time,
but we show that our construction can be implemented even faster, and establish a
tradeoff between the time complexity of the construction algorithm and the additive
term. Specifically, we show that a (1 + ε, β′)-spanner of size O(β′n1+1/κ) can be
constructed in Õ(n2+µ) time for any n-vertex graph G, where the additive term
β′ = β′(κ, ε, µ) is constant whenever κ, ε, and µ are.

The additive terms involved in our constructions are roughly β(κ, ε)=κlog log κ−logε

and β′(κ, ε, µ) = max{β(κ, ε), κ− log µ}. Although optimizing these additive terms is
not in the focus of the current paper, we remark that β and β′ are always

O((log n)log
(3) n), because κ = O(log n). Indeed, for κ = Ω(log n) the size of the

spanner becomes almost linear (i.e., O(n · (log n)log
(3) n)).

Finally, analysis of our construction for specific small values of κ enables us to
derive some secondary results. First, a construction of an additive 2-spanner of size
O(n3/2) can be derived. This is tight up to a constant factor due to lower bound
of [16], and improves upon the construction of [7] by a logarithmic factor. However,
the running time of our construction is O(n5/2) instead of Õ(n2) of the construction
of [7]. Additionally, a construction of a (1 + ε, 4)-spanner of size O(ε−1n4/3) can
be derived. This improves the previously known construction of a multiplicative 5-
spanner of size O(n4/3). The details of the analysis of our algorithm for small values
of κ were presented in the preliminary versions of this paper [9, 10] and are omitted
here.

Since the appearance of a preliminary version of this paper [10], a more time-
efficient construction of (1 + ε, β)-spanners for general graphs was devised in [8].
Specifically, it is shown therein that (1 + ε, β′′)-spanners of size O(β′′n1+1/κ) can be
constructed in O(|E|nµ) time, where the additive term β′′ = β′′(κ, ε, µ) is constant
whenever κ, ε, and µ are. The improved running time of the construction of [8] makes
it possible to use (1+ ε, β)-spanners as a building block of the most efficient currently
known algorithm for computing almost shortest paths with constant almost additive
error from s, 1 � s � n, sources. However, the additive term β′′ in the construction
of [8] is asymptotically greater than the additive term β′ in the present construction.

2. The construction algorithm. In this section we present the polynomial
time algorithm that for any constant 0 < ε < 1 and constant integer κ ≥ 2, and
for any n-vertex graph G, constructs a (1 + ε, β)-spanner with O(βn1+1/κ) edges,
where β = β(ε, κ) is a constant (independent of n and of any other parameter of the
graph).

We start with some necessary definitions. We refer to the vertex and edge sets
of a subgraph G′ by V (G′) and E(G′), respectively. For any subgraph G′ = (V ′, E′)
and any integer � ≥ 0 and vertex v ∈ V ′, we denote the �-neighborhood of v in G′ by
ΓG′

� (v) = {u | distG′(v, u) ≤ �}. For any subset of vertices U ⊆ V ′, denote the set of

neighbors of U in G′ by ΓG′
(U) = {z | ∃u ∈ U such that (u, z) ∈ E′}. We also denote

Γ�(v) = ΓG
� (v) and Γ(U) = ΓG(U).

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 611

Input: Graph G = (V,E).
Output: Spanned partition G, subgraph H.

1. U ← V ; G ← ∅; S ′ ← ∅; E(H) ← ∅;
2. While U 	= ∅ do:

(a) Pick an arbitrary vertex v ∈ U ;
(b) S ← {v};
(c) While |S ∪ Γ(S) ∩ U | ≥ n1/κ|S| do:

• S ← S ∪ Γ(S) ∩ U ; /* the cluster
(d) Ŝ ← S ∪ Γ(S) ∩ U ; /* the shell
(e) Form a BFS spanning tree T for (v, S);
(f) S ′ ← S ′ ∪ {(v, Ŝ)}; G ← G ∪ {(v, S, T)}; U ← U \ S;

3. For every (v, Ŝ) ∈ S ′ do:
(a) Create a BFS spanning tree T ′ rooted at v for Ŝ (namely, a tree

spanning Ŝ and yielding shortest paths to v in the induced subgraph
G(Ŝ));

(b) E(H) ← E(H) ∪ E(T ′);
4. Return(G, H);

Fig. 1. Procedure Down Part.

For a subset of vertices W ⊆ V , let G(W) denote the subgraph of G induced by
W . With a slight abuse of notation, for a subset E′ ⊆ E of edges, let G(E′) denote
the graph (V (E′), E′), where V (E′) = {v ∈ V | ∃e ∈ E′s.t. v ∈ e}. A subset of
vertices C ⊆ V is called a cluster if its induced subgraph G(C) is connected. A triple
(v, S, T) is called a spanned cluster if v ∈ S, and T is a connected spanning tree of
S. (Note that S itself is not necessarily connected, and the tree T may span also
some vertices that do not belong to S.) The radius of a spanned cluster (v, S, T)
is rad(v, S, T) = max{distG(T)(v, u) | u ∈ S}, and the diameter is diam(v, S, T) =
max{distG(T)(u,w) | u,w ∈ S}. Since in a spanned cluster (v, S, T), the tree T is
necessarily connected, the radius and the diameter of a spanned cluster are always
finite. The spanned clusters (vi, Si, Ti) and (vj , Sj , Tj) are disjoint if Si∩Sj = ∅. A set
of disjoint spanned clusters {(vi, Si, Ti)} is called a spanned partition. For any pair of
vertex sets U1, U2 ⊆ V denote distG(U1, U2) = min{distG(u1, u2) | u1 ∈ U1, u2 ∈ U2}.
For a spanned partition U , a cluster S, and an integer �, denote

ΓU
� (S) = {(vi, Si, Ti) ∈ U | distG(Si, S) ≤ �} .

2.1. The initial partitioning procedure. Our algorithm starts by invoking
Procedure Down Part, described in Figure 1. This procedure is a variant of the pro-
cedures for constructing partitions due to [14, 7]. The procedure creates a spanned
partition G, which we also call the ground partition, since the algorithm uses it as
a basis for constructing other partitions. (This partition satisfies that

⋃
i Si = V ;

the partitions constructed later on may be partial, i.e., they will not necessarily have
this property.) For each cluster that the procedure creates, it also builds a “shell”
consisting of the cluster and one external layer, in a way similar to the partitioning
algorithm of [2]. The procedure also creates a subgraph H, which is a subset, and in
some sense a core, of the spanner created by the algorithm. This subgraph H consists
of the union of the breadth first search (BFS) trees of all the shells created by the pro-
cedure. (Given a cluster S centered at a vertex v in the graph G, a BFS tree for (v, S)
is a tree spanning S which yields shortest paths to v in the induced subgraph G(S).)

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

612 MICHAEL ELKIN AND DAVID PELEG

Let us next establish some basic properties concerning the output of Procedure
Down Part. Given a spanned partition S = {(vj , Sj , Tj)}, denote by Ai(S) the
subset of spanned clusters of S with radius i,

Ai(S) = {(v, S, T) ∈ S | rad(v, S, T) = i}.

For any spanned partition S denote the minimum cluster size by Š(S) = minS∈S |S|.
Lemma 2.1. Let G be the ground partition returned by Procedure Down Part.

Then Š(Aj(G)) ≥ nj/κ for any integer 0 ≤ j ≤ κ− 1.
Proof. Consider a spanned cluster (v, S, T) ∈ Aj(G). By definition of Aj(G),

rad(v, S, T) = j. Each cluster constructed by Procedure Down Part starts with
radius zero, and each iteration of the internal while loop (step 2(c)) of the procedure
increases the radius of the cluster by at most 1. Hence the cluster (v, S, T) was
involved in the loop for at least j iterations. In each iteration its size grew by a factor
of at least n1/κ. The lemma follows.

Next, we argue that the subgraph H returned by Procedure Down Part is
sparse.

Lemma 2.2. |E(H)| = O(n1+1/κ).
Proof. For every cluster S ∈ S, the shell consists of Ŝ = S ∪Γ(S)∩U at the time

of insertion, so by the condition of step 2(c) for selecting the cluster, |Ŝ| < n1/κ · |S|.
Hence the number of edges inserted into H in step 3 of Procedure Down Part is
bounded by ∑

S∈S
|S|n1/κ = n1/κ

∑
S∈S

|S| = O(n1+1/κ),

since the clusters S are disjoint.
An additional important property of the ground partition G and the subgraph

H returned by the invocation Down Part(G) is that for any pair of neighboring
clusters of G and for any edge e between these clusters, there is an edge between
these clusters in H that is incident to one of the endpoints of e. More specifically, we
introduce the following key definition.

Definition 2.3. A spanned partition S of a graph G = (V,E) is said to be
adjacency-preserving with respect to a subgraph H such that E(H) ⊆ E if it satisfies
the following two properties.
(P1) For any spanned cluster (v, S, T) ∈ S, there exists a BFS spanning tree T ′ for

(v, S) such that E(T ′) ⊆ E(H).
(P2) For any pair of neighboring clusters (v1, S1, T1), (v2, S2, T2) ∈ S (i.e., such that

distG(S1, S2) = 1) and for any edge e = (u1, u2) ∈ E such that u1 ∈ S1 and
u2 ∈ S2, there exists either a node u′

2 ∈ S2 such that (u1, u
′
2) ∈ E(H) or a

node u′
1 ∈ S1 such that (u′

1, u2) ∈ E(H). In the former (resp., latter) case,
the edge e is said to be spanned through the cluster S2 (resp., S1).

Note that in the definition above, if the edge (u1, u2) is spanned through the
cluster Si, for i ∈ {1, 2}, then distH(u1, u2) ≤ diam(Si) + 1.

Lemma 2.4. Let (G, H) be the pair returned by Procedure Down Part(G). Then
the spanned partition G is adjacency-preserving with respect to H.

Proof. To prove that the pair (G, H) satisfies property (P1) of Definition 2.3, con-
sider some spanned cluster (v, S, T). Note that at step 3(a) of Procedure Down Part,
the BFS spanning tree T ′ of its shell Ŝ rooted at v was inserted into the subgraph
H. Note that such a tree is, in particular, a BFS spanning tree for S rooted at v
(although not necessarily the same as T), completing the proof of property (P1).

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 613

To prove that (G, H) satisfies property (P2) as well, consider some pair of neigh-
boring spanned clusters (v1, S1, T1) and (v2, S2, T2), and some edge e = (u1, u2) be-
tween them, such that u1 ∈ S1 and u2 ∈ S2. Assume, without loss of generality, that
the cluster S1 was created before the cluster S2. Consider the iteration of the main
loop of Procedure Down Part on which S1 was created. Denote by U ′ the set U at
the beginning of this iteration. Note that at this stage all the nodes of S1 and S2 were
still uncovered, i.e., S1, S2 ⊆ U ′, and thus in particular u1, u2 ∈ U ′. It follows that e
is in G′ = G(U ′), the subgraph of G induced by U ′, and hence u2 ∈ ΓG′

(S1) ⊆ Ŝ1.

Denote the radius of S1 by ρ = rad(v1, S1, T1). By step 2(c) of Procedure
Down Part, ΓG′

ρ (v1) = S1 and ΓG′

ρ+1(v1) = Ŝ1. Recalling that u2 ∈ Ŝ1 \ S1, we
conclude that distG′(v1, u2) = ρ + 1.

The spanning tree T ′ constructed for Ŝ1 at step 3(a) of Procedure Down Part

spans Ŝ1, and thus u2 ∈ V (T ′). Since T ′ is a BFS spanning tree with respect to
v1 in the induced subgraph G′(Ŝ1), and since distG′(v1, u2) = ρ + 1, it follows that
the parent z1 of u2 in T ′ satisfies distG′(v1, z1) = ρ, and thus z1 ∈ ΓG′

ρ (v1) = S1, as
required.

2.2. The superclustering procedure. We next proceed to describing the su-
perclustering procedure SC. The procedure receives a spanned partition C, identifies
its “dense” sets of clusters, and merges them into superclusters. By a dense set of
clusters we mean a set containing “fairly many” clusters, which are “close enough”
to each other. These qualitative notions are quantified by two additional parameters.
The size parameter σ of Procedure SC specifies the minimum number of clusters
close to a given cluster S that justifies creating a supercluster around S that will
contain them, whereas the distance parameter δ specifies when two clusters are con-
sidered to be close. Procedure SC returns a spanned partition C′ which contains the
superclusters created and a subgraph H that will later be added into the spanner.
When Procedure SC finishes creating superclusters, it remains with a collection R of
original clusters of the input partition that were left untouched. Procedure SC then
finds shortest paths between close pairs in the collection R and inserts these paths as
well into the output subgraph H. The size parameter σ controls also the number of
pairs of close R clusters and therefore the size of the subgraph H. The procedure is
described in Figure 2.

Note that in step 2(b)ii, while augmenting the set of edges T ′ associated with
a supercluster S′ by adding the edges of the shortest path Pi, we do not insert the
vertices of this path into the vertex set S′ associated with this supercluster. The reason
is that these vertices are clustered in other clusters of the ground partition and they
may be superclustered separately. In other words, the same vertex may participate
in the shortest path connecting two clusters of one supercluster, and at the same
time be clustered in another supercluster. Hence T ′ is not necessarily contained in
E(G(S′)).

Intuitively, the following lemma states that Procedure SC does not destroy the
adjacency-preservation property.

Lemma 2.5. Let the triple (C′, H ′,R) be the output of the invocation SC(G, C, σ,
δ) for a graph G = (V,E), its spanned partition C and some arbitrary σ and δ.
Suppose that the spanned partition C is adjacency-preserving with respect to some
subgraph H of G such that E(H) ⊆ E. Then the output spanned partitions C′ and R
are adjacency-preserving with respect to H ∪H ′.

Proof. Note first that the adjacency-preservation property is monotone in both
parameters (i.e., if a spanned partition S̃ is adjacency-preserving with respect to

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

614 MICHAEL ELKIN AND DAVID PELEG

Input: Graph G = (V,E), spanned partition C = {(vi, Si, Ti)} of G, integers σ,
δ ≥ 1.
Output: Spanned partition C′ = {(v′i, S′

i, T
′
i)} of G, subgraph H ′, collection R of

unmerged clusters.
1. E(H ′) ← ∅; U ← C; C′ ← ∅;
2. while there exists a spanned cluster (v, S, T) ∈ U such that |ΓU

δ (S)∩U| ≥
σ do:
(a) S′ ←

⋃
(vi,Si,Ti)∈ΓU

δ
(S) Si;

(b) i T ′ ← T ;
ii For every Si such that (vi, Si, Ti) ∈ ΓU (S) do:

A. Compute the shortest path Pi in G between the clusters S
and Si;

B. E(T ′) ← E(T ′) ∪ E(Pi) ∪ E(Ti);
(c) C′ ← C′ ∪ {(v, S′, T ′)};
(d) U ← U \ ΓU

δ (S);
(e) E(H ′) ← E(H ′) ∪ E(T ′);

3. R ← U ; /* Remaining (unmerged) clusters */
4. For every pair of spanned clusters (vi, Si, Ti), (vj , Sj , Tj) ∈ R such that

distG(Si, Sj) ≤ δ do:
(a) Compute the shortest path Pij between Si and Sj in G;
(b) E(H ′) ← E(H ′) ∪ E(Pij);

5. Return(C′, H ′,R);

Fig. 2. Procedure SC.

some subgraph H̃, then this spanned partition is adjacency-preserving with respect
to any subgraph H̄ such that E(H̃) ⊆ E(H̄) ⊆ E). Also, if C̄ ⊆ C̃, and C̃ is
adjacency-preserving with respect to some subgraph H̃, then the spanned partition C̄
is adjacency-preserving with respect to H̃ as well.

Now the statement of the lemma regarding the spanned partition R follows
from the observation that R ⊆ C, and from the assumption of the lemma that C
is adjacency-preserving with respect to H.

It remains to establish the lemma for C′. Observe that the pair (C′, H ∪ H ′)
satisfies property (P1) of Definition 2.3, by the same assumption of the lemma, and
by step 2(e) of Procedure SC. To prove that the pair (C′, H ∪H ′) satisfies property
(P2) as well, consider a pair of neighboring superclusters (v1, S1, T1), (v2, S2, T2) ∈ C′,
and an edge (u1, u2) ∈ E between them such that u1 ∈ S1 and u2 ∈ S2. By step 2(a)
of Procedure SC, S1, S2 ⊆

⋃
S̃i∈C S̃i. Hence there exist clusters S̃i, S̃j ∈ C such that

(a) S̃i ⊆ S1, (b) S̃j ⊆ S2, (c) u1 ∈ S̃i, and (d) u2 ∈ S̃j . Since C is adjacency-preserving

with respect to H, it follows from (c) and (d) that there exists either a node uj ∈ S̃j

such that the edge (u1, uj) is in E(H), or a node ui ∈ S̃i such that the edge (ui, u2)
is in E(H). In either case, we are done by (a) and (b).

2.3. The main algorithm. We proceed with the description of our main al-
gorithm, named Algorithm Sp Cons. Our construction uses parameters κ, J , and
Υ, to be fixed explicitly later on. The following analysis is valid for any nonnega-
tive integers κ, J , and Υ that satisfy 1 ≤ J ≤ �log κ and Υ = Ω((κ/2J−3)J). Set
tj = (κ − 2j−1) / (2j−1κ) and δj = δj(Υ, J) = Υj/J for every 1 ≤ j ≤ J . Also for

every 1 ≤ j ≤ J − 1 set σj = ntJ−j−tJ−j+1 = n2j−J

. Denote τj = [κtJ+1−j , κtJ−j) for

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 615

Input: Graph G = (V,E), integers κ, J,Υ > 1.
Output: Subgraph H

1. (G, H) ← Down Part(G);
2. C′ ← ∅;
3. For j = 1 to J − 1 do:

(a) C ← C′ ∪
⋃

i∈τj
Ai(G);

(b) (C′, H ′,R) ← SC(G, C, σj , 2δj(Υ, J));
(c) E(H) ← E(H) ∪ E(H ′);

4. R ← C′ ∪
⋃

i∈τJ
Ai(G);

5. For every pair of spanned clusters (vi, Si, Ti), (vj , Sj , Tj) ∈ R such that
distG(Si, Sj) ≤ 2δJ(Υ, J) do:
(a) Calculate the shortest path Pij between Si and Sj ;
(b) E(H) ← E(H) ∪ E(Pij).

6. Return H as the resulting spanner.

Fig. 3. Algorithm Sp Cons.

1 ≤ j ≤ J − 1 and τJ = [κt1, κ). Observe that for j ≤ J ≤ �log κ, tj is nonnegative.
The parameters Υ and J will be chosen in a such a way that Υ1/J will be a rather
large constant, so the parameters δj for 1 ≤ j ≤ J are just the consecutive powers
of this constant. These powers will serve as distance thresholds, and will grow as the
algorithm proceeds.

As already mentioned, the algorithm starts by forming the ground partition G.
The ground partition contains a subset Z =

⋃
i<tJκ

Ai(G) of singleton clusters, that
is, clusters that contain single vertex, and therefore have radius 0 (these properties
of the clusters of the set Z will be ensured by the appropriate choice of the pa-
rameters J and κ). After forming the ground partition G, the algorithm invokes
iteratively Procedure SC. On each iteration the procedure forms a new spanned
partition with fewer clusters (each of which is larger), and also takes care of clus-
ters that were not merged into superclusters, by interconnecting pairs of nearby
clusters by paths which are added to the subgraph H. More specifically, the in-
put spanned partition C of Procedure SC on iteration j, j = 1, 2, . . . , J − 1, is the
union of the output spanned partition C′ of the previous (j−1)st iteration (for j = 0,
C′ = ∅), and of the appropriate subset Qj =

⋃
i∈τj

Ai(G). The radii and the sizes
of the clusters of Qj grow with j. Algorithm Sp Cons repeats these iterations until
we are left with a sufficiently small number of large clusters. The pairs of nearby
clusters among these large clusters in the final spanned partition are again inter-
connected by shortest paths. These shortest paths are inserted into the subgraph
H. At the end of this process, H contains the spanning trees of the shells of all
the clusters and superclusters created through the process, and also all the shortest
paths between clusters and superclusters that were created throughout the execution.
Note that the notion of a “nearby” pair of clusters changes from one iteration of
the algorithm to another. Specifically, on iteration j, pairs of clusters at distance
δj(Υ, κ) are considered close. This change corresponds to the increase of clusters
radii.

A formal description of the algorithm is given in Figure 3. Figure 4 provides a
schematic illustration.

Remark. The spanned partition R returned by Procedure SC is not used by the
main algorithm; it is output by the procedure for the convenience of the analysis only.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

616 MICHAEL ELKIN AND DAVID PELEG

2)

S’ S’

S S

P
1 2

3 4

1)

Fig. 4. 1) The ground partition G is obtained by applying Procedure Down Part to the graph
G. 2) The two superclusters S′

1 and S′
2 were formed by an application of Procedure SC. The two

clusters S3 and S4 were not merged into a supercluster. Thus, the shortest path P between them
was inserted into the subgraph H.

3. Analysis. To begin with, it is not hard to see that Algorithm Sp Cons runs
in polynomial time. Indeed, each invocation of Procedure SC requires essentially at
most n BFS explorations of the graph, and the same is true regarding Procedure
Down Part. The precise analysis of its running time is deferred to section 4.

We proceed with an analysis of the properties of the algorithm.

3.1. Bounding the cluster diameters. We first bound the diameters of the
clusters and superclusters that are created in different iterations of Algorithm
Sp Cons. For a spanned partition C denote D̂(C) = max(v,S,T)∈C{diam(v, S, T)}
(for an empty spanned partition C = ∅, let D̂(C) = 0). Since the graph G remains
the same in all the invocations of Procedure SC, we henceforth omit it from its list
of parameters.

Lemma 3.1. Let C′ be spanned partition output by the invocation SC(C, σ, δ) of
Procedure SC. Then D̂(C′) ≤ 3D̂(C) + 2δ.

Proof. Consider some supercluster (v′, S′, T ′) ∈ C′. It was created at step 2(b)ii of
Procedure SC. Therefore, it has the form of a star, with a cluster (v′ = v0, S0, T0) ∈ C
in the middle, connected to some b ≥ σ clusters (v1, S1, T1), . . . , (vb, Sb, Tb) ∈ C by
shortest paths P1, . . . , Pb of length at most δ. Consider a pair of vertices zi ∈ Si,
zj ∈ Sj such that 1 ≤ i < j ≤ b. Let ui ∈ Si and wi ∈ S0 be the endpoints
of the path Pi, and let uj ∈ Sj and wj ∈ S0 be the endpoints of the path Pj .
Then

distG(T ′)(zi, zj) ≤ distG(T ′)(zi, ui) + distG(T ′)(ui, wi) + distG(T ′)(wi, wj)

+ distG(T ′)(wj , uj) + distG(T ′)(uj , zj) .

As by step 2(b)iiB of Procedure SC, E(T0), E(Ti), E(Tj) ⊆ E(T ′), and zi, ui ∈ V (Ti),
wi, wj ∈ V (T0) and uj , zj ∈ V (Tj), it follows that

distG(T ′)(zi, ui) ≤ distG(Ti)(zi, ui) ≤ diam(vi, Si, Ti) ,

distG(T ′)(wi, wj) ≤ distG(T0)(wi, wj) ≤ diam(v0, S0, T0) ,

distG(T ′)(uj , zj) ≤ distG(Tj)(uj , zj) ≤ diam(vj , Sj , Tj) .

Note that diam(vi, Si, Ti), diam(v0, S0, T0), diam(vj , Sj , Tj) ≤ D̂(C). Also, (by step
2(b)iiB of Procedure SC), E(Pi), E(Pj) ⊆ E(T ′), and ui, wi ∈ V (Pi), uj , wj ∈ V (Pj),

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 617

implying that

distG(T ′)(ui, wi) ≤ distG(Pi)(ui, wi) ≤ δ ,

distG(T ′)(uj , wj) ≤ distG(Pj)(uj , wj) ≤ δ .

To conclude

distG(T ′)(zi, zj) ≤ diam(vi, Si, Ti) + δ + diam(v0, S0, T0) + δ + diam(vj , Sj , Tj)

≤ 3D̂(C) + 2δ.

It is easy to see that this bound applies to the distance between any pair of vertices
zi, zj in S′.

For any 1 ≤ j ≤ J − 1, let Cj be the input partition of the jth invocation of
Procedure SC and let (C′

j , Hj ,Rj) be the output returned by this invocation. The
collection of clusters RJ is defined to be the set R created in step 4 of Algorithm
Sp Cons. We refer to clusters of Rj as the jth level clusters of the resulting partition.
Note that these clusters are never merged again in subsequent iterations.

By steps 1 and 3 of Procedure SC, and since after step 1 of Procedure SC no
cluster is inserted into the collection of uncovered spanners U , we have that for every
1 ≤ j ≤ J − 1,

Rj ⊆ Cj .(1)

Also, for every 1 ≤ j ≤ J − 1, since on the jth iteration of Algorithm Sp Cons,
Procedure SC is invoked with distance parameter δj , by Lemma 3.1

D̂(C′
j) ≤ 3D̂(Cj) + 2δj .(2)

Lemma 3.2. For every integer 0 ≤ j ≤ J − 2,

Rj+1 ⊆ Cj+1 = C′
j ∪

⋃
i∈τj+1

Ai(G).

Also, RJ ⊆ C′
J−1 ∪

⋃
i∈τJ

Ai(G).
Proof. The first statement of the lemma follows by step 3(a) of Algorithm

Sp Cons and using (1). The second statement follows from the definition of RJ

and step 4 of Algorithm Sp Cons.
Lemma 3.3. For every integer 1 ≤ j ≤ J − 1,

(a) D̂(C′
j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
,

(b) D̂(Cj) ≤ 2

(
3j−1κtJ−1 +

j−1∑
l=1

3j−1−lΥl/J

)
.

Proof. By induction on j. For the induction base for j = 1, note that the first
invocation of Procedure SC is with C =

⋃
i∈τ1

Ai(G). By definition of Ai(G) we have

D̂(C) < D̂(AtJ−1κ(G)) ≤ 2tJ−1κ, establishing claim (b). Claim (a) now follows by
inequality (2).

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

618 MICHAEL ELKIN AND DAVID PELEG

For the induction step, assume the claims for j between 1 and J − 2 and consider
j + 1. The parameter δ in the invocation of Procedure SC that formed the clusters
of C′

j+1 was equal to δj+1 = Υ(j+1)/J . By the induction hypothesis

D̂(C′
j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
.(3)

By step 3(a) of Algorithm Sp Cons, Cj+1 = C′
j ∪

⋃
i∈τj+1

Ai(G). Hence

D̂(Cj+1) ≤ max

⎧⎨
⎩D̂(C′

j), D̂

⎛
⎝ ⋃

i∈τj+1

Ai(G)

⎞
⎠
⎫⎬
⎭ .(4)

By definition of Ai(G) and tj

D̂(
⋃

i∈τj+1

Ai(G)) ≤ 2κtJ−(j+1) ≤ κ

2J−j−3
.

Recall that Υ1/J = Ω(κ/2J−3). Also, if Υ is set in such a way that Υ1/J is a
sufficiently large constant (e.g., Υ1/J ≥ 4), then 2j ≤ Υ(j−1)/J , and thus

D̂

⎛
⎝ ⋃

i∈τj+1

Ai(G)

⎞
⎠ ≤ κ

2J−j−3
≤ Υj/J ≤

j∑
l=1

3j−lΥl/J .(5)

Now using inequalities (3), (4), and (5), we get

D̂(Cj+1) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
,

yielding claim (b). Also by inequality (2),

D̂(C′
j+1) ≤ 3 · 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ 2Υ(j+1)/J

= 2

(
3j+1κtJ−1 +

j+1∑
l=1

3j+1−lΥl/J

)
,

yielding claim (a).
Corollary 3.4. For every integer 1 ≤ j ≤ J ,

D̂(Rj) ≤ 2

(
3j−1κtJ−1 +

j−1∑
l=1

3j−1−lΥl/J

)
.

Proof. For 1 ≤ j ≤ J − 1 the claim follows from Lemma 3.3 by (1). For j = J ,
we get by step 4 of Algorithm Sp Cons that

D̂(RJ) ≤ max{κ, D̂(C′
J−1)} ≤ 2

(
3J−1κtJ−1 +

J−1∑
l=1

3J−lΥl/J

)
.(6)

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 619

3.2. Bounding the construction size. In this section we bound the size of
the subgraph returned by Algorithm Sp Cons. First, by Lemma 2.2, the number
of edges inserted into the subgraph H by Procedure Down Part (i.e., by step 1 of
Algorithm Sp Cons) is O(n1+1/κ). Next, we analyze the number of edges inserted
into the subgraph H at step 3 of Algorithm Sp Cons.

As each of the superclusters created by Procedure SC contains at least σ (disjoint)
clusters of the input partition C, we have the following.

Lemma 3.5. Let C′ denote the spanned partition output by an invocation SC(C, σ,
δ) of Procedure SC. Then Š(C′) ≥ σ · Š(C).

Lemma 3.6. Let H denote the subgraph output by an invocation of Procedure
SC(C, σ, δ). Then |E(H)| = O(nσδ/Š(C)).

Proof. Note that by definition of spanned partition, C is a collection of disjoint
clusters. Hence |C| ≤ n/Š(C).

Consider the supergraph G′ in which every vertex represents a cluster of C and
there is an edge between two vertices if and only if the corresponding two clusters
are at distance of at most δ in G. Step 2 of Procedure SC creates a forest F of
disjoint star-like trees covering a subset of vertices of G′. It then inserts into H the
spanning trees of all the clusters of C corresponding to the vertices of G′ covered by
F (summing up to O(n) edges) and the paths in G corresponding to the edges of F .
As F is a forest,

|E(F)| ≤ |V (F)| ≤ |C| ≤ n/Š(C) .

Also each path represented by an edge of F has length of at most δ. Hence step 2 of
Procedure SC inserts at most nδ/Š(C) edges into H.

Note that after removing from G′ the vertices covered by F , the removed super-
graph has maximal degree of at most σ. Hence the number of remaining edges is at
most |C|σ ≤ nσ/Š(C). Step 4 inserts into H all the paths corresponding to the edges
left in G′. Hence it inserts at most nσδ/Š(C) edges.

It follows that overall, the number of edges inserted by Procedure SC is at most

nσδ/Š(C) + nδ/Š(C) + n = O(nσδ/Š(C)).

Lemma 3.7. For any 1 ≤ j ≤ J − 1, Š(Cj) ≥ ntJ−j+1 .
Proof. The proof is by induction on j. The induction base is j = 1. Recall that

G is the ground partition returned by Procedure Down Part. In iteration 1,

Š(C1) = Š

(⋃
i∈τ1

Ai(G)

)
= Š(AtJκ(G)) ≥ ntJ

by Lemma 2.1.
For the induction step, let 1 < j < J−1, and assume (by the inductive hypothesis)

that Š(Cj) ≥ ntJ−j+1 . Since σj = ntJ−j−tJ+1−j , Lemma 3.5 implies that

Š(C′
j) ≥ Š(C) · σj ≥ ntJ+1−j · ntJ−j−tJ+1−j = ntJ−j .

Also Cj+1 = Cj ∪
⋃

i∈τj+1
Ai(G). Hence Š(Cj+1) ≥ min{Š(C′

j), Š(
⋃

i∈τj+1
Ai(G))}.

Since by Lemma 2.1, Š(
⋃

i∈τj+1
Ai(G)) ≥ ntJ−j , the lemma follows.

Lemma 3.8. At the end of step 3 of Algorithm Sp Cons, |E(H)| = O(Υn1+1/κ).

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

620 MICHAEL ELKIN AND DAVID PELEG

Proof. By Lemma 3.7, |Cj | ≤ n/Š(Cj) ≤ n1−tJ−j+1 . Hence by Lemma 3.6, in
the jth iteration, Procedure SC inserts into the output subgraph Hj no more than
δjn

1−tJ−j+1σj edges. Hence

|E(Hj)| ≤ n1−tJ−j+1ntJ−j−tJ−j+1δj = n1+tJ−j−2tJ−j+1δj .(7)

Observe that the exponent is

1 + tJ−j − 2tJ−j+1 = 1 +
κ− (2J−j−1 − 1)

2J−j−1κ
− 2 · κ− (2J−j − 1)

2J−jκ
=

κ + 1

κ
.

Thus |E(Hj)| = O(n1+1/κΥj/J). Hence the size of the subgraph H generated at the
end of step 3 of Algorithm Sp Cons can be bounded by

|E(H)| ≤
J∑

j=1

|E(Hj)| = O(n1+1/κ)

J∑
j=1

(Υ1/J)j = O(Υn1+1/κ) .

Lemma 3.9. Step 5 of Algorithm Sp Cons inserts at most O(Υn2/κ) additional
edges to the subgraph H.

Proof. By Lemma 3.2,

RJ ⊆ C′
J−1 ∪

⋃
i∈τJ

Ai(G) ,

and thus

Š(RJ) ≥ min

{
Š(C′

J−1), Š

(⋃
i∈τJ

Ai(G)

)}
= min

{
Š(C′

J−1), min
i≥κt1

Š(Ai(G))

}
.

By Lemma 3.5, Š(C′
J−1) ≥ nt2nt1−t2 = nt1 . By Lemma 2.1, mini≥κt1{Š(Ai(G))} ≥

nt1 . Hence Š(RJ) ≥ nt1 . Thus the number of pairs of such clusters is no greater than
n2−2t1 = n2/κ. Since the path inserted into the output subgraph between each pair is
of length at most 2 ·Υ, the total number of edges inserted is at most O(Υn2/κ).

Combining Lemmas 3.8 and 3.9, we have the following.
Corollary 3.10. The size of the subgraph output by Algorithm Sp Cons is

O(Υn1+1/κ).

3.3. Stretch analysis. In this section we bound the stretch of the spanner H
output by Algorithm Sp Cons. This is done by considering a pair of nodes u,w ∈ V ,
and one of the shortest paths P between u and w in G. This path is partitioned to
segments of length no longer than ΥJ . It is convenient to visualize this path as going
from left to right, from u to w (see Figure 5).

Consider some segment P ′ and let u′ (resp., w′) be its left (resp., right) endpoint.
For a set X of clusters, a node u (resp., a path P) is said to be X-clustered if u ∈ C
(resp., V (P) ⊆ C) for some cluster C of X. Let uJ (resp., wJ) be the leftmost
(resp., rightmost) RJ -clustered node of P ′, and let CuJ

and CwJ
be the clusters

such that uJ ∈ CuJ
and wJ ∈ CwJ

. Since distG(CuJ
, CwJ

) ≤ distG(uJ , wJ) ≤ Υ,
there is a path of length distG(CuJ

, CwJ
) between some nodes u′′ ∈ CuJ

and w′′ ∈
CwJ

in the spanner H. It follows that there is a path of length no longer than
distG(uJ , wJ) + diam(CuJ

) + diam(CwJ
) between uJ and wJ in H.

Next, we consider the subpaths from u to uJ , and from wJ from w for every
segment of P , and observe that these subpaths are (Z ∪

⋃J−1
i=1 Ri)-clustered. We

partition these subpaths into subsegments of length Υ(J−1)/J , on each subsegment

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 621

2

u

SS =3 4
S1

S0

SS =6 7

u,vP

0 1 2 3 4 5 6 7u =w

S S5

u=u u u u u u

Fig. 5. The path Pu,w and the clusters along it.

find the leftmost and the rightmost RJ−1-clustered nodes and use the “short” paths
between their clusters in the spanner. This argument is repeated recursively J times,
until we are left with Z-clustered subpaths, whose stretch can be easily bounded.

We next present a rigorous argument formalizing the above intuitive description.
First, the following lemma can be proved using Lemmas 2.4 and 2.5 by a straightfor-
ward induction on the number of iterations of the algorithm.

Lemma 3.11. All the spanned partitions created throughout Algorithm Sp Cons

are adjacency-preserving with respect to the resulting subgraph H returned by the al-
gorithm.

Next, we establish the following property of adjacency-preserving partitions that
will be later used in the stretch analysis.

Lemma 3.12. Let u,w ∈ V be a pair of nodes in the graph G = (V,E), and let
Pu,w = (u = u0, u1, . . . , ux = w) ⊆ E be one of the shortest paths between them. Let
H be a subgraph of G with E(H) ⊆ E, and let S be an adjacency-preserving spanned
partition with respect to H, such that V (Pu,w) ⊆

⋃
(v,S,T)∈S S. For i = 0, 1, . . . , x,

let (vi, Si, Ti) ∈ S be spanned clusters such that ui ∈ Si. (This is well-defined, since
V (Pu,w) ⊆

⋃
(v,S,T)∈S S, and the clusters of S are disjoint, by definition of spanned

partition.) Finally, let u′
0 ∈ S0, u

′
x ∈ Sx be some nodes. Then

distH(u′
0, u

′
x) ≤

x∑
i=0

(diam(vi, Si, Ti) + 1) − 1 .

Proof. The proof is by induction on x. The induction base is x = 0. Then
{S0, . . . , Sx} = {S0}, and u = w ∈ S0. Let u′

0, u
′
x ∈ S0 be some arbitrary nodes in

this cluster. Since T0 ⊆ H, distH(u′
0, u

′
x) ≤ diam(v0, S0, T0), as required.

For the induction step, assume that the statement of the lemma is true for some
x ≥ 0. Consider the pair of neighboring clusters Sx, Sx+1. The edge (ux, ux+1)
between them is spanned either through Sx or through Sx+1. In the former case,
there exists a node u′

x ∈ Sx such that the edge (u′
x, ux+1) is in H. In the latter case,

there exists a node u′
x+1 such that the edge (ux, u

′
x+1) is in H.

Consider some pair of nodes u′′
0 ∈ S0, u

′′
x+1 ∈ Sx+1. In the case when the edge

(ux, ux+1) is spanned through Sx, using the induction hypothesis for the pair of nodes
u′′

0 ∈ S0 and u′
x ∈ Sx, it follows that

distH(u′′
0 , u

′′
x+1) ≤ distH(u′′

0 , u
′
x) + distH(u′

x, ux+1) + distH(ux+1, u
′′
x+1)

≤
(

x∑
i=0

(diam(vi, Si, Ti) + 1) − 1

)
+ 1 + diam(vx+1, Sx+1, Tx+1)

=

x+1∑
i=0

(diam(vi, Si, Ti) + 1) − 1 .

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

622 MICHAEL ELKIN AND DAVID PELEG

The case when the edge (ux, ux+1) is spanned through Sx+1 follows symmetri-
cally.

We use the following notions. For 0 ≤ j ≤ J , a path P in G is called a class-j
path if it contains only (Z ∪

⋃j
i=1 Ri)-clustered vertices (in particular, P is a class-0

path if all its vertices are Z-clustered). A pair of vertices u,w is j-reachable if there
is a shortest path between them that is a class-j path.

For every 1 ≤ j ≤ J denote

γj =

j∑
i=1

2i · D̂(Rj−i+1).

For a real r, let down(r) = �r − 1.
Lemma 3.13. For every integer 1 ≤ j ≤ J , and for every j-reachable pair of

vertices u′
j , u

′′
j ,

distH(u′
j , u

′′
j) ≤ distG(u′

j , u
′′
j)

(
2 · down(tJκ) + 1 +

j∑
i=1

γi
Υi/J

)
+ γj .

Proof. Let P be a class-j path in G between u′
j and u′′

j . It is convenient to
visualize the path P as going from left to right, with the vertex u′

j at the leftmost
end and the vertex u′′

j the rightmost end. We prove by induction on j a claim that
is slightly stronger than the statement of the lemma. Specifically, let S′

j , S
′′
j be the

clusters such that u′
j ∈ S′

j , u
′′
j ∈ S′′

j . Let v′j ∈ S′
j , v

′′
j ∈ S′′

j be arbitrary nodes. Then

distH(v′j , v
′′
j) ≤ distG(u′

j , u
′′
j)

(
2 · down(tJκ) + 1 +

j∑
i=1

γi
Υi/J

)
+ γj .

Induction base (j = 1): We claim that

distH(v′1, v
′′
1) ≤ distG(u′

1, u
′′
1)

(
2 · down(tJκ) + 1 +

γ1

Υ1/J

)
+ γ1(8)

for a pair of 1-reachable vertices u′
1 ∈ S′

1, u
′′
1 ∈ S′′

1 and any pair of nodes v′1 ∈ S′
1,

v′′1 ∈ S′′
1 .

We separate the discussion to two cases.
Case 1. distG(u′

1, u
′′
1) ≤ 2Υ1/J .

Case 1.1. If the path P is a class-0 path, then it contains only Z-clustered

vertices. Note that Z =
⋃

i<tJκ
Ai(G) =

⋃down(tJκ)
i=0 Ai(G). Denote

z = down(tJκ). By Lemmas 3.11 and 3.12,

distH(v′1, v
′′
1) ≤ (distG(u′

1, u
′′
1) + 1)

(
D̂(Z) + 1

)
− 1

≤ distG(u′
1, u

′′
1)(2z + 1) + 2z .

Case 1.2. If the path P contains only one R1-clustered vertex, then by
Lemmas 3.11 and 3.12,

distH(v′1, v
′′
1) ≤ distG(u′

1, u
′′
1)(2z + 1) + D̂(R1) ,

and, again, we are done.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 623

Case 1.3. It therefore remains to consider only the case where at least
two vertices in the path P are R1-clustered. Let l2 be the distance
between the leftmost R1-clustered vertex, w′

1 ∈ S′
1, and the rightmost

R1-clustered vertex, w′′
1 ∈ S′′

1 , of P . Hence the two subpaths, from v′1
to w′

1 and from w′′
1 to v′′1 , are spanned with multiplicative stretch of at

most (D̂(Z) + 1). The distance between S′
1 and S′′

1 in G is at most
2Υ1/J = 2δ1(Υ, J). Since at iteration 1 of Algorithm Sp Cons, at step
4 of Procedure SC the shortest paths between all the pairs of clusters
from R1 that are at distance at most 2δ1(Υ, J) one from another were
inserted into the subgraph H, it follows that there exist nodes z′1 ∈ S′

1,
z′′1 ∈ S′′

1 such that distH(z′1, z
′′
1) = distG(w′

1, w
′′
1) = l2. By Lemmas 3.11

and 3.12,

distH(v′1, z
′
1) ≤ distG(u′

1, w
′
1)(2z + 1) + D̂(R1) ,

distH(z′′1 , v
′′
1) ≤ distG(w′′

1 , u
′′
1)(2z + 1) + D̂(R1) .

Hence

distH(v′1, v
′′
1) ≤ (distG(u′

1, u
′′
1) − l2)(2z + 1) + 2D̂(R1) + l2

≤ distG(u′
1, u

′′
1)(2z + 1) + 2D̂(R1) .(9)

Case 2. distG(u′
1, u

′′
1) > 2Υ1/J . By partitioning the path P into segments of length

Υ1/J , we get distG(u′
1, u

′′
1) = (a−1)Υ1/J +Υ′, where Υ1/J < Υ′ < 2Υ1/J and

a = �distG(u′
1, u

′′
1)/Υ1/J�. Applying the previous argument to each segment

separately, it follows that

distH(v′1, v
′′
1) ≤ (a− 1)

(
Υ1/J(2z + 1) + 2D̂(R1)

)
+ Υ′(2z + 1) + 2D̂(R1)

= distG(u′
1, u

′′
1)(2z + 1) + 2a · D̂(R1)

≤ distG(u′
1, u

′′
1)(2z + 1) +

distG(u′
1, u

′′
1) · 2D̂(R1)

Υ1/J

= distG(u′
1, u

′′
1)

(
2z + 1 +

γ1

Υ1/J

)
.(10)

As γ1 = 2D̂(R1), the expression (8) dominates both (9) and (10), completing
the proof of the induction base.

Induction step: Assume the induction hypothesis for some integer 1 < j ≤ J − 1.
Consider a class-(j + 1) path P connecting u′ and u′′ in G. Let v′ (resp., v′′) be an
arbitrary node in the same cluster as u′ (resp., u′′).

Case 1. P is of length no greater than Υ(j+1)/J .
We break the discussion into three subcases.
Case 1.1. If no Rj+1-clustered vertex appears in the path P , we apply the

induction hypothesis and we are done.
Case 1.2. Exactly one Rj+1-clustered vertex w appears on P . Let w′ be

the left-hand neighbor of w and let w′′ be the right-hand neighbor of
w. Denote by S (resp., S′; S′′) the cluster that contains w (resp., w′;
w′′). Let P ′ (resp., P ′′) be the path between u′ and w′ (resp., w′′ and
u′′). Note that both subpaths P ′ and P ′′ are class-j paths (see Figure
6). Hence, the induction hypothesis is applicable to these subpaths.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

624 MICHAEL ELKIN AND DAVID PELEG

v’ u’ w’ w w’’ u’’ v’’P’’P’

S’
S

S’’

Fig. 6. The solid lines represent class-j paths P ′ and P ′′. The cluster S is in Rj+1.

Therefore,

distH(v′, v′′) ≤ distH(v′, w′) + distH(w′, w′′) + distH(w′′, v′′)

≤ (distG(u′, u′′) − 2)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)

+2γj + distH(w′, w′′) .

The analysis decomposes again to three subsubcases.
Case 1.2.1. The first is that both edges (w′, w) and (w,w′′) are spanned

through the cluster S, i.e., there exist nodes z, y ∈ S such that the
edges (w′, z) and (y, w′′) are in H. Then

distH(w′, w′′) ≤ distH(w′, z) + distH(z, y) + distH(y, w′′)

≤ 2 + D̂(Rj+1) .

Case 1.2.2. The edge (w′, w) is spanned through the cluster S′, and
the edge (w,w′′) is spanned through the cluster S′′. In this sit-
uation there exist nodes z′ ∈ S′, z′′ ∈ S′′ such that the edges
(z′, w) and (w, z′′) are in H. Thus distH(w′, w′′) ≤ distH(w′, z′) +
distH(z′, z′′) + distH(z′′, w′′). However, we observe that the induc-
tion hypothesis is applicable to the pairs of nodes v′, z′ and z′′, v′′

as well. Note also that distH(z′, z′′) = 2. Hence

distH(v′, v′′) ≤ distH(v′, z′) + distH(z′, z′′) + distH(z′′, v′′)

≤ (distG(u′, u′′) − 2)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ 2γj + 2 .

Case 1.2.3. The edge (w′, w) is spanned through the cluster S′, and
the edge (w,w′′) is spanned through the cluster S (the situation
when the edge (w′, w) is spanned through the cluster S, and the
edge (w,w′′) is spanned through the cluster S′′ is symmetrical to
this one). In this subcase there exist nodes z′ ∈ S′, z ∈ S such that
the edges (z′, w) and (z, w′′) are in H. Hence we may apply the
induction hypothesis to the pairs v′, z′ and w′′, v′′, and get

distH(v′, v′′) ≤ (distG(u′, u′′) − 2)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)

+2γj + 2 + D̂(Rj+1) .

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 625

In all these three subsubcases,

distH(v′, v′′) ≤ distG(u′, u′′)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ 2γj + D̂(Rj+1) .

This expression is smaller than the bound in Lemma 3.13 with j + 1
substituted for j, and so we are done in Case 1.2 too.

Case 1.3. There are at least two Rj+1-clustered vertices in P . Let w (resp.,
z) be the leftmost (resp., rightmost) such vertex. Again, let w′ (resp., z′′)
denote the left-hand (resp., right-hand) neighbor of w (resp., z). Denote
by Sw, Sz, S

′, and S′′ the clusters such that w ∈ Sw, z ∈ Sz, w
′ ∈ S′,

and z′′ ∈ S′′. Observe that H contains a path of length distG(Sw, Sz) ≤
distG(w, z) between Sw and Sz. Similarly to the analysis of Case 1.2,
where there was only one Rj-clustered node in P , we decompose the
analysis to subcases depending on whether the edge (w′, w) is spanned
through Sw or S′, and on whether the edge (z, z′′) is spanned through Sz

or S′′. Like in that situation, we apply the induction hypothesis on the
subpaths between v′ and w′ (or some other appropriate node in S′) and
between z′′ (or some other appropriate node in S′′) and v′′. Recall that
distG(Sw, Sz) ≤ 2Υ(j+1)/J = 2δj+1(Υ, J). Also, at (j + 1)st iteration of
Algorithm Sp Cons, at step 4 of Procedure SC (if j < J−1; if j = J−1
then at step 4 of Algorithm Sp Cons) one of the shortest paths between
Sw and Sz in G was inserted into H. Thus

distH(v′, v′′) ≤ (distG(u′, u′′) − distG(w, z))

(
2z + 1 +

j∑
i=1

γi
Υi/J

)

+ 2γj + 2D̂(Rj+1) + distG(w, z)

≤ distG(u′, u′′)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ γj+1 .(11)

Case 2. distG(u′, u′′) > 2Υ(j+1)/J . In this situation, we partition the path into
segments of length Υ(j+1)/J each, except the last segment which may be of
length between Υ(j+1)/J and 2Υ(j+1)/J . We next show that in this situation
γj+1 divided by Υ(j+1)/J is introduced into the multiplicative term. Formally,
distG(u′, u′′) = (a − 1)Υ(j+1)/J + Υ′, where Υ(j+1)/J < Υ′ < 2Υ(j+1)/J and
a = �distG(u′

1, u
′′
1)/Υ1/J�. Then

distH(v′, v′′) ≤ (a− 1)

((
2z + 1 +

j∑
i=1

γi
Υi/J

)
Υ(j+1)/J + γj+1

)

+

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
Υ′ + γj+1

=

(
2z + 1 +

j∑
i=1

γi
Υi/J

)(
(a− 1)Υ(j+1)/J + Υ′

)
+ γj+1a

≤ distG(u′, u′′)

(
2z + 1 +

j∑
i=1

γi
Υi/J

)
+ γj+1

distG(u′, u′′)

Υ(j+1)/J

= distG(u′, u′′)

(
2z + 1 +

j+1∑
i=1

γi
Υi/J

)
.(12)

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

626 MICHAEL ELKIN AND DAVID PELEG

In summary, for any (j + 1)-reachable pair of vertices u′ ∈ S′, u′′ ∈ S′′,
and for any pair of nodes v′ ∈ S′, v′′ ∈ S′′ the bound distH(v′, v′′) ≤
distG(u′, u′′)(2z+1+

∑j+1
i=1

γi

Υi/J)+ γj+1 dominates both former bounds (11)
and (12) on distH(v′, v′′).

Observe that any path in G is a class-J path. Hence by Lemma 3.13 we have the
following corollary.

Corollary 3.14. For any pair of vertices u′, u′′, distH(u′, u′′) ≤ α·distG(u′, u′′)

+ β for α = 2 · down(tJκ) + 1 +
∑J

i=1
γi

Υi/J and β = γJ .

Lemma 3.15. For Υ and J such that Υ1/J ≥ 6 and for any 1 ≤ j ≤ J , γj =
O(tJ−1κ · 3j + Υ(j−1)/J).

Proof. By the definition of γj , γj =
∑j−1

i=0 2j−iD̂(Ri+1) for any 1 ≤ j ≤ J . Next

substitute the explicit formula for D̂(Rj) given in Corollary 3.4 and get (dividing the
expression by 4 for convenience)

γj
4

≤ 2j−1tJ−1κ+ 2j−2
(
3tJ−1κ+ Υ1/J

)
+ · · ·+ 20

(
3j−1κtJ−1 +

j−1∑
i=1

3j−1−iΥi/J

)

= tJ−1κ

j−1∑
i=0

3i2j−1−i +

j−1∑
l=1

(
Υl/J

j−l−1∑
i=0

3i2j−l−1−i

)
.(13)

Note that for any integer p ≥ 1,
∑p

i=0 3i2p−i < 3p 1
1−2/3 = 3p+1. Since Υ1/J ≥ 6,

γj/4 ≤ tJ−1κ3j +

j−1∑
i=1

Υi/J3j−i ≤ tJ−1κ3j + Υ(j−1)/J3

j−2∑
i=0

(
3

Υ1/J

)i

< tJ−1κ3j + 6Υ(j−1)/J .

Lemma 3.16. For Υ and J such that Υ1/J ≥ 6,
1. the additive term is β = O(tJ−1κ · 3J + Υ(J−1)/J),

2. the multiplicative factor is bounded by α = 1 + 2 · down(tJκ) + O(J+tJ−1κ

Υ1/J).
Proof. By Corollary 3.14 and substituting j = J in Lemma 3.15, we get

α ≤ 1 + 2 · down(tJκ) +

J∑
j=1

γj
Υj/J

≤ 1 + 2 · down(tJκ) + O

(
J

Υ1/J

)
+ O

⎛
⎝tJ−1κ

J∑
j=1

3j

Υj/J

⎞
⎠

≤ 1 + 2 · down(tJκ) + O

(
J

Υ1/J

)
+ O

(
tJ−1κ · 1

Υ1/J
· 1

1 − 3/Υ1/J

)

= 1 + 2 · down(tJκ) + O

(
J + tJ−1κ

Υ1/J

)

and β = O(tJ−1κ3J + Υ(J−1)/J). This completes the proof of Lemma 3.16.
Theorem 3.17. For any fixed 0 < ε < 1 and fixed integer 2 ≤ κ = O(log n) there

exists a fixed β = β(κ, ε) = κmax{log log κ−log ε,3} such that for any graph G, running
Algorithm Sp Cons on G, κ, J = log κ and β yields a (1 + ε, β)-spanner of G with
O(βn1+1/κ) edges.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 627

Proof. Since ti = (κ−2i−1) / (2i−1κ), it is sufficient to set J = �log κ in order to
ensure tJκ ≤ 1, i.e., down(tJκ) = 0. Therefore, substituting J = �log κ into Lemma

3.16 implies that the multiplicative factor of the stretch is α = 1 + O(log κ
Υ1/ log κ) and

the additive term is β = O(Υ(log κ−1)/ log κ + κlog 3). To get a multiplicative stretch
of 1 + ε for any fixed 0 < ε < 1 and to ensure that Υ1/J ≥ κ/2J−3 = 8, we set
Υ1/ log κ = max{ε−1 log κ, 8}, or Υ = κmax{log log κ−log ε,3}. The theorem now follows
by Corollary 3.10.

Note that for κ = Θ(logn) the size of the spanner becomes O(β(κ, ε)n) = o(n1+ν)
for any ν > 0, and so there is no reason to consider values of κ greater than
O(log n).

Corollary 3.18. For any constant ε > 0, λ > 0 there exists a constant β′(ε, λ)
such that for any n-vertex graph G = (V,E) there exists a polynomial time con-
structible subgraph H, E(H) ⊆ E, with O(n1+λ) edges, such that for every pair of
vertices u,w ∈ V with distG(u,w) ≥ β′(ε, λ), distH(u,w) ≤ (1 + ε)distG(u,w).

Proof. By Theorem 3.17 there exists a constant β(ε/2, �1/λ) such that there
exists a polynomial time constructible (1+ ε/2, β(ε/2, �1/λ))-spanner H, E(H) ⊆ E,
with O(n1+λ) edges. Set β′(ε, λ) = 2β(ε/2, �1/λ) / ε and observe that for any pair
of vertices u,w ∈ V with distG(u,w) ≥ β′(ε, λ),

distH(u,w) ≤ (1 + ε/2)distG(u,w) + β(ε/2, �1/λ) ≤ (1 + ε)distG(u,w) .

In order to get a multiplicative stretch factor asymptotically close to 1 we just
substitute ε = 1/ logb n for any constant b in Theorem 3.17.

Corollary 3.19. For any fixed integer 2 ≤ κ = O(log n) and constant b > 0 and
for any graph G, running Algorithm Sp Cons with G, κ, β(κ, n) = κlog log κ logb log κ n
and J = log κ yields a (1 + 1/ logb n, β(κ, n))-spanner of G with O(β(κ, n) · n1+1/κ)
edges.

Again, for any constant κ ≥ 2 this yields a (1 + 1/polylogn,polylogn)-spanner
with Õ(n1+1/κ) edges.

In order to get an almost linear number of edges (or formally, o(n1+ν) for any

ν > 0) we substitute ε = (logn)log
(3) n and κ = log n in Theorem 3.17, and get the

following.

Corollary 3.20. For any graph G, running Algorithm Sp Cons with G, κ =

log n, β(n) = (logn)O(log(2) n log(3) n) and J = log κ yields a (1+1/(log n)log
(3) n, β(n))-

spanner of G with O(β(n)n) edges.

Theorem 3.17 also enables us to decrease the multiplicative stretch to 1 +

2− logn/ log(b) n while not significantly increasing the other parameters. Specifically,
we obtain the following.

Corollary 3.21. For any fixed 2 ≤ κ = O(log n), constant b ≥ 2 and graph
G, running Algorithm Sp Cons with G, κ, J = log κ and β(κ, n) = κlog log κ ·
2log κ logn/log(b) n yields a (1 + 2− logn/ log(b) n, β(κ, n))-spanner of G with O(β(κ,

n)n1+ 1
κ) edges.

In particular, for κ = log n this yields a (1 + 2− log n/ log(b) n, 2O(log n/ log(b) n))-

spanner with 2O(log n/log(b) n)n edges.

Finally, we remark that for some specific small values of κ, tighter bounds on
ε and β parameters of the spanner that is constructed by Algorithm Sp Cons, can
be obtained (see the preliminary versions of this paper [9, 10] for the details). In
particular, the following statements hold.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

628 MICHAEL ELKIN AND DAVID PELEG

Theorem 3.22.

1. Algorithm Sp Cons, when run with parameter κ = 2, yields a construction
of an additive 2-spanner with O(n3/2) edges.

2. Algorithm Sp Cons, when run with parameter κ = 3, yields a construction
of a (1 + ε, 4)-spanner with O(ε−1n4/3) edges for any ε > 0.

The first result improves by a logarithmic factor the result of [7] and it is tight
up to constant factors due to an Ω(n3/2) lower bound of [16]. However, the running
time of Algorithm Sp Cons with parameter κ = 2 is O(n5/2), which is significantly
larger than the running time of the algorithm of [7], which is Õ(n2). The second result
significantly improves the previously known construction of 5-spanner with O(n4/3)
edges, due to [1].

4. Running time. In this section we analyze the running time of Algorithm
Sp Cons. We then show that it can be modified to run in time Õ(n2+µ), for arbitrarily
small µ > 0, while maintaining α, β and the size of the generated spanner as before.

4.1. Time complexity of Algorithm SP CONS. We start by analyzing the
running time of Algorithm Sp Cons as described above, without modifications.

Lemma 4.1. The running time of Procedure Down Part is O(|E|+n1+1/κ log n).

Proof. Procedure Down Part starts by picking a vertex and running a depth-
limited version of the unweighted BFS algorithm from this vertex. The BFS algorithm
continues adding new layers until the next iteration increases the size of the cluster by
a factor smaller than n1/κ. Let S be some cluster of the spanned partition G built by
the procedure. By using appropriate data structures, the operation of counting the
number of vertices at the next layer that joins the cluster takes O(|S|n1/κ log(|S|n1/κ))
time, since the total number of vertices involved in this process is O(|S|n1/κ). Hence
summing over all the cluster constructions, the running time invested in deciding
whether to terminate the construction of the current cluster and to start the con-
struction of the next cluster is

∑
S∈G

O(|S|n1/κ log(|S|n1/κ)) = O

(
n1/κ log n

∑
S∈G

|S|
)

= O(log n · n1+1/κ) .

Note that when constructing a new cluster, Procedure Down Part might touch
the vertices of the shell of an already built cluster S, but it will never explore again the
edges that have at least one endpoint in S. Note also that the edges connecting two
vertices of the shell of S were not explored during the construction of the cluster S.
Thus Procedure Down Part never re-explores edges that were previously explored.

For a cluster Si ∈ G, let E′(Si) be the set of edges explored during the construction
of the cluster Si. By the above considerations, E′(Si)∩E′(Sj) = ∅ for any two clusters
Si, Sj ∈ G. Also ∪S∈GE

′(S) ⊆ E. The depth-limited unweighted BFS algorithm that
explores m′ edges and n′ vertices requires O(m′ + n′ log n′) time. Hence the total
running time of all invocations of the depth-limited unweighted BFS algorithm by
Procedure Down Part is

∑
S∈G |E′(S)| + O(n1+1/κ log n) = O(|E| + n1+1/κ log n).

Hence the overall running time of the procedure is O(|E| + n1+1/κ log n).

Note that the problem is interesting mainly when |E| is greater than O(n1+1/κ),
since otherwise the graph itself may serve as its own sparse 1-spanner, with O(n1+1/κ)
edges.

Lemma 4.2. Procedure SC can be executed on an input spanned partition C in
O(|E|n/Š(C)) time.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 629

Proof. It is easy to see that the most expensive parts of Procedure SC are
steps 2(b)iiA and 4, which are concerned with computing the shortest paths between
clusters. This task can be performed by running BFS algorithm separately from every
cluster. Note that BFS algorithm enables computing all the distances from a single
source, where this source need not be a single vertex but may be a subset of vertices
as well. Recall that for a subset of vertices U and a vertex v, the distance between
U and v is min{distG(u, v) | u ∈ U}. Each invocation of BFS algorithm requires
O(|E| + n · log n) = O(|E|) time. The number of clusters is O(n/Š(C)). Hence the
running time of the procedure is O(|E|n/Š(C)).

Lemma 4.3. The running time of Algorithm Sp Cons is O(|E|n(κ−1)/κ).
Proof. The dominant term in the time complexity of the algorithm is the running

time of the very first invocation of Procedure SC. In this invocation, Š(G) ≥ n1/κ,
and so by Lemma 4.2 it requires O(|E|n(κ−1)/κ) time. The running time of all later
invocations of SC is significantly smaller, as those are applied to spanned partitions
C with Š(C) ≥ n2/κ. The complexity of step 5 can be analyzed along the same lines
as in the proof of Lemma 4.2 and shown to be at most O(|E|n1/κ). The running
time of Procedure Down Part is at most O(|E| + n1+1/κ log n). Thus, the overall
complexity of Algorithm Sp Cons is O(|E|n(κ−1)/κ).

4.2. Speeding up algorithm SP CONS. In this section we present a modifi-
cation of Algorithm Sp Cons that has smaller time complexity, but α, β and size
parameters similar to those of section 3.3.

The main idea is to save time by finding almost shortest paths instead of shortest
ones. Specifically, the modified algorithm receives an additional parameter t ≥ 1.
It starts with invoking an all pairs almost shortest path algorithm APASPt due to
[7]. This algorithm runs for Õ(n2+1/t) time and for every pair of vertices u,w ∈ V
computes a path of length dist ′(u,w) ≤ distG(u,w) + t. Next, the algorithm sorts
the obtained n2 distances in O(n2 log n) time and for each pair maintains the index
in the sorted array (i.e., a pair of closer vertices will have a smaller index). Next, it
runs Algorithm Sp Cons as is, except that whenever it needs to compute a shortest
path between two clusters it uses the precomputed array. Specifically, for two clusters
Si and Sj it takes |Si| · |Sj | time to find the pair of vertices ui ∈ Si, uj ∈ Sj such
that dist ′(ui, uj) = min{dist ′(u,w) | u ∈ Si, w ∈ Sj}. Hence, overall, the approximate
computation of all the distances between clusters of some partition C and all the paths
between close cluster pairs (i.e., at distance bounded by Υi/J for some 1 ≤ i ≤ J)
takes time bounded by

O

⎛
⎝ ∑

Si,Sj∈C
Υ|Si| · |Sj |

⎞
⎠ ≤ O

⎛
⎝Υ

(∑
Si∈C

|Si|
)2

⎞
⎠ = O(Υn2) .

Since there are O(J) iterations, the distances and paths for different partitions are
computed O(J) times, i.e., the total running time of computing the distances and
paths is O(JΥn2). Hence, the overall running time of the modified algorithm is
Õ(n2+1/t + JΥn2), and setting J = log κ = O(log log n) and Υ = O(κlog κ) =
O((log n)log log n), the resulting time bound is Õ(n2+1/t).

It remains to analyze the α, β and size parameters of the spanner obtained by
the above modification of Algorithm Sp Cons. First, instead of Lemma 3.1 we now
get

D̂(C′) ≤ 3D̂(C) + 2δ + 2t.(14)

Next, Lemma 3.3 is replaced by the following.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

630 MICHAEL ELKIN AND DAVID PELEG

Lemma 4.4. For every integer 1 ≤ j ≤ J − 1,

(a) D̂(C′
j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ t(3j − 1) ,

(b) D̂(Rj) ≤ 2

(
3j−1κtJ−1 +

j−1∑
l=1

3j−1−lΥl/J

)
+ t(3j−1 − 1) .

Proof. The induction base holds since D̂(R1) ≤ D̂(C1) ≤ 2tJ−1κ + t(30 − 1) =
2tJ−1κ and D̂(C1) ≤ 2(31tJ−1κ+Υ1/J)+t(31−1), by Lemma 3.3 and inequality (14).

The induction hypothesis changes to

D̂(C′
j) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ t(3j − 1) .

The inequalities (4) and (5) are unchanged, and hence

D̂(Rj+1) ≤ D̂(Cj+1) ≤ 2

(
3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ t(3j − 1) .

So by inequality (14), it follows that

D̂(Cj+1) ≤ 3 · 2
(

3jκtJ−1 +

j∑
l=1

3j−lΥl/J

)
+ 3t(3j − 1) + 2Υ(j+1)/J + 2t

= 2

(
3j+1κtJ−1 +

j+1∑
l=1

3j+1−lΥl/J

)
+ t(3j+1 − 1) .

Analogously to inequality (6), it follows that

D̂(RJ) ≤ 2

(
3J−1κtJ−1 +

J−1∑
l=1

3J−l−1Υl/J

)
+ t(3J−1 − 1) .

Next, it is easy to see that inequality (7) becomes

|E(Hj)| = O(n1+tJ−j−2tJ−j+1(δJ+1−j + t)) .

Hence

|E(H)| =

J−1∑
j=1

|E(Hj)| = O(n1+1/κ(Υ + tJ)) .

Lemmas 3.13 and 3.14 are unchanged. However, since the expression for D̂(Rj) is
modified, inequality (13) becomes

γj/4 ≤ 2j−1tJ−1κ + 2j−2
(
3tJ−1κ + Υ1/J + 2t

)
+ · · ·

+ 20

(
3j−1tJ−1κ +

j−1∑
i=1

3j−1−iΥi/J + t(3j−1 − 1)

)

= tJ−1κ

j−1∑
i=0

3i2j−1−i +

j−1∑
l=1

(
Υl/J

j−l−1∑
i=0

3i2j−l−i−1

)
+ t

j−1∑
i=1

2j−1−i(3i − 1)

≤ tJ−1κ3j + 6Υ(j−1)/J + t3j = 3j(tJ−1κ + t) + 6Υ(j−1)/J .

Hence the multiplicative factor is at most 1+2tJκ+O(J+tJ−1κ+t

Υ1/J), the additive term is

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(1 + ε, β)-SPANNER CONSTRUCTIONS 631

O((tJ−1κ+ t)3J +Υ(J−1)/J) and the size of the constructed spanner is O(n1+1/κ(Υ+
tJ)), and we have the following.

Theorem 4.5. For any fixed 0 < ε < 1 and fixed integers t ≥ 1 and κ ≥ 2
there exist fixed β̄ = β̄(κ, ε, t) = κmax{log log κ−log ε,3} + t log κ and β̃ = β̃(κ, ε, t) =
κmax{log log κ−log ε,log t,3} such that every n-vertex graph has a (1+ ε, β̃)-spanner of size
bounded by O(n1+1/κβ̄) that can be built in time Õ(n2+1/t).

In particular, setting t = O(log κ) we obtain results analogous to Theorem 3.17
and Corollaries 3.18–3.20 by an algorithm of time complexity Õ(n2+1/ log κ). Getting
a running time of Õ(n2+1/κ) requires raising the additive term to O(κmax{log κ,− log ε}),
which is, nonetheless, still constant for constant κ and ε. This enables us to generalize
Corollary 3.18 and get the following.

Corollary 4.6. For any constant ε > 0, λ > 0, µ > 0 there exists a constant
β′′(ε, λ, µ) such that for any n-vertex graph G = (V,E) there exists a subgraph H,
E(H) ⊆ E, that satisfies the following properties

1. For every pair of vertices u,w ∈ V with distG(u,w) ≥ β′′(ε, λ, µ),
distH(u,w) ≤ (1 + ε)distG(u,w).

2. |E(H)| = O(n1+λ).
3. H can be constructed in Õ(n2+µ) time.

Acknowledgments. We thank Uri Zwick for his helpful comments, corrections
and suggestions of improvements, and an anonymous referee for helpful remarks.

REFERENCES

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted
graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100.

[2] B. Awerbuch and D. Peleg, Sparse partitions, in Proceedings of the 31st Annual IEEE
Symposium on Foundations of Computer Science, 1990, pp. 503–513.

[3] B. Bollobas, D. Coppersmith, and M. L. Elkin, Sparse subgraphs that preserve long dis-
tances and additive spanners, in Proceedings of the 14th Annual ACM-SIAM Symposium
on Discrete Algorithms, Baltimore, MD, 2003.

[4] B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on graph
spanners, in Proceedings of the 8th Annual ACM Symposium on Computational Geometry,
Berlin, 1992, pp. 192–201.

[5] L. P. Chew, There is a planar graph almost as good as the complete graph, in Proceedings of
the 2nd Annual Symposium on Computational Geometry, 1986, pp. 169–177.

[6] D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as good as
complete graphs, in Proceedings of the 31st Annual IEEE Symposium on Foundations of
Computer Science, 1987, pp. 20–26.

[7] D. Dor, S. Halperin, and U. Zwick, All pairs almost shortest paths, SIAM J. Comput., 29
(2000), pp. 1740–1759.

[8] M. L. Elkin, Computing Almost Shortest Paths, in Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, Newport, RI, 2001, pp. 53–63.

[9] M. L. Elkin and D. Peleg, (1 + ε, β)-Spanner Constructions for General Graphs, Technical
Report MCS00-17, Weizmann Institute of Science, Rehovot, Israel, 2000.

[10] M. L. Elkin and D. Peleg, (1+ε, β)-Spanner constructions for general graphs, in Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing, Crete, Greece, 2001.

[11] A. L. Liestman and T. C. Shermer, Additive Graph Spanners, Tech. Report 91-5, Simon
Fraser University, Burnaby, BC, Canada, 1991.

[12] A. L. Liestman and T. C. Shermer, Grid spanners, Networks, 23 (1993), pp. 123–133.
[13] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, PA,

2000.
[14] D. Peleg and A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[15] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput.,

18 (1989), pp. 740–747.
[16] R. Wenger, Extremal graphs with no C4’s, C6’s and C10’s, J. Combin. Theory Ser. B, 52

(1991), pp. 113–116.

D
ow

nl
oa

de
d

11
/1

2/
18

 to
 1

32
.7

2.
42

.3
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

