ASSIGNMENT 4 SOLUTIONS - DISTRIBUTED ALGORITHMS

(1) A tree can be colored in 2 colors, by assigning the color ¢; to nodes with even
depth, and the color ¢, to nodes with odd depth. Yet, this color assignment
takes Q(Depth(T)) time steps (2(n) in the worst case), as proven in class!.

To get the minimal possible coloring for a tree, we must use Cole-
Wishkin’s algorithm, as described in class, until we iterate 7 times or get
6 colors or less. Then, we’ll peform the shift down algorithm, as described
in class, until we get 3 colors or the time counter gets to 7.

The correctness of this algorithm can be proven by combining the cor-
rectness proofs of Cole- Wishkin and the shift down algorithms, both proved
in class.

Time complexity is exactly 7 time steps. Message complexity: on each
time step a vertex should know the colors of its parent, using ©(1) messages
on each edge. Total: O(|E|) = O(n) messages.

(2) We'll use the given algorithm IT to produce 3-coloring of the path p, which
contains n vertices. We will build a graph G = (V, E), in which V =
V(p) UU, where {u;]1 < i < n}, and E = E(p) U {(v;,u;)|v; € V}. In
other words, for each vertex of the original path we’ll add a new vertex and
connect them by an edge. Note that U is a MIS of the graph G.

Now we’ll invoke the II algorithm on our graph, and receive a 3-coloring
of G. If we discard the vertices in U, we get a legal 3-coloring of the original
path p.

Time complexity: building G takes O(n) time units, invoking II takes
Time,nIl and discarding the extra vertices takes O(n) time units. Total:
O(n + Time,II) time units.

Some of you have proven that Time(findM 1S) > Time(3col) = Q(log*(n)),
hence even if Time,Il = O(1) we still can use Cole-Wishkin’s algorithm
with the same results.

(3) (a) The lemma is correct.
We'll represent the road as a graph G = (V,E) in which the ver-
tices v; € {vg,v1,...,Vn—1} represent the gas pumps and an edge
(us,uj), ¢ — j| = 1 means that the pumps u and v are connected. De-
note by f(v;) the amount of fuel at the pump v;, and by w((u;, u;) € E)
the amount of fuel required to pass the road segment between u; and
Uj-

Lthis can be implemented using distributed BFS from the tree root, for example
1

ASSIGNMENT 4 SOLUTIONS - DISTRIBUTED ALGORITHMS

Denote by X (i,j) the amount of fuel required to get from wu; to wu;
(’LLZ',UJ‘ € V) 2,

j-1

X(i,5) =Y (f(ui) + wlus, uir))

t=i

It is easy to prove the following;:
Vi, j: X(i,5) = =X (5,1)
Vi:X(i,i) =0

Vi, g,k X(i,7) = X(i, k) + X (k, j)
Denote kpin as an integer for which Vi : X (0, kpin) < X(0,14).
Lemma 0.1. For each i € {0,1,...,n —1}: X (kmin,i) > 0.

This means that every gas pump in the road is reachable from the
pump ug

min)

Proof. Assume towards contradiction that there exist an integer ¢ such
that X (kmin,t) < 0. There are two options:

o If u; is on the path from wug to ug,,,,, then:
0= X(0,0) = X(0, kmin) + X (kmin,0) = X(0,t) + X (¢, kmin) +
X (kmin,0) > X(0, kmin) + X (¢, kmin) + X (kmin, 0) = X (¢, kmin)-
Hence X (t, kmin) < 0, 80 X (Kmin,t) > 0, in contradiction to the
assumption.

e Otherwise:
0= X(Oa 0) = X(O, kmin)+X(kmina 0) = X(O; kmin)+X(kmin> t)+
X(t, 0) S X(O, kmin) + X(kmin; t) + X(kmin; 0) = X(kmim t)-
Hence X (kmin,t) <0, in contradiction to the assumption.

|

(b) To find a starting point, we should simply find ks, We can do it by

using Broadcast and Convergecast over the ring, in O(n) time units
and messages.

(4) A simple solution is to set one vertex color to ¢;, then color the rest of

the vertices with alternating colors ¢y and c3, sending messages along the
perimeter of the ring. However, this solution requires O(n) time steps which
is not the most efficient method.

A better solution is to use Cole- Wishkin’s algorithm that colors a general
graph with maximal degree of A in A + 1 colors. This algorithm takes
O(log*n+ A®) time units, and in the case of a ring with A = 2, it performs
a 3-coloring in O(log*n) time units.

2Note that all the calculations are in modn

ASSIGNMENT 4 SOLUTIONS - DISTRIBUTED ALGORITHMS 3

(5) Proof. For each v and p: Let x be the absolute time unit in which the

vertex v enters the pulse p. In this time unit, each vertex u € V holds:
Du S P — Smazx-

In the absolute time x + T'imepyse, all the vertices u € V' should hold
Pu < P—Smaz + 1, and each Timepyse time steps will increment this value
by one.

Hence, in time z + Timepyise - (Smaz + 1), all the vertices u € V' - among
them the vertex v, will hold p, < p+ 1.

Hence the maximal amount of time steps a vertex can stay in the same
pulse number is: Timegqp < Timepuise - (Smaz + 1)- a

