ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS

(1) Consider a graph $G=(V, E)$, in which $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=$ $\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{D-1}, v_{D}\right)\right\} \bigcup\left\{\left(v_{D}, v_{i}\right) \mid i=D+1, D+2, \ldots, n\right\}$.

In other words, the graph is a sequence of D vertices, which on of its end vertices is connected to $n-D$ vertices. (I would have placed a figure have I figured out how to do it in $\mathrm{LaTeX} ;$))

This graph holds: $|V|=n,|E|=\Theta(n)$ (we'll solve sections (a) and (b) together) and $\operatorname{Diam}(G)=D$. Let's analyze the message complexity when invoking Dijkstra's algorithm from v_{D} :

- The first phase sends $\operatorname{deg}\left(v_{D}\right)=n-D+1$ DISCOVER messages, and receives the same amount of replys. The spanning tree $\Gamma_{1}(G)$ contains $n-D+2$ vertices and $n-D+1$ edges.
- Each additional phase will discover only one new vertex. So $\left|V\left(\Gamma_{i}(G)\right)\right|=$ $n-D+i$ edges for $i \in\{2, \ldots, D\}$. The phase i uses $n-D+i$ broadcast and convergecast messages, one DISCOVER message and one reply for it.
Since this algorithm runs for exactly D phases, the total message complexity is $\sum_{i=1}^{D}(n-D+i+\Theta(1))=\Theta(n \cdot D+|E|)$.

Note that this is not the case for every graph and each execution of Dijkstra! For example, take the graph described above, with $D=\Theta(\sqrt{n})$, and invoke Dijkstra's algorithm from v_{1}. The resulting message complexity will be only $\Theta(n+|E|)$.
(2) Consider the graph $G=K_{n}$: a clique of n vertices $v_{1}, v_{2}, \ldots v_{n}$. Invoke Bellman-Ford from v_{1} and consider the following scenrio:

- v_{1} sends a message "distance $=1$ " to each $v \in V$ except itself.
- v_{2} receives "distance $=1$ " from v_{1}, updates its distance variable to 1 and sends "distance $=2$ " to each $v \in V$ (except itself and maybe v_{1}).
- v_{3} receives "distance $=2$ " from v_{2}, updates its distance variable to 2 and sends "distance $=3$ " to each $v \in V$ (except itself and maybe v_{2}).
- ...
- v_{n} receives "distance $=n-1$ " from v_{n-1}, updates its distance variable to $n-1$ and sends "distance $=n$ " to each $v \in V$ (except itself and maybe v_{n-1}).
- v_{3} now receives the "distance $=1$ " message from v_{1}. It updates its distance variable to 1 and sends "distance $=2$ " to each $v \in V$ (except itself and maybe v_{1}).
- v_{4} receives "distance $=2$ " from v_{3}, updates its distance variable to 2 and sends "distance $=3$ " to each $v \in V$ (except itself and maybe $\left.v_{3}\right)$.
- ...
- and so on, until for each $v \in V$ the distance variable equals 1

Each vertex sends $n-2$ messages on each step; a vertex v_{i} starts a sequence of $n-i$ such steps. So the total amount of messages is: $\sum_{i=1}^{n}((n-$ $2) \cdot(n-i))=\Theta\left(n^{3}\right)$.

Note that this is not the case for every graph and each execution of Bellman-Ford; for example, if the "distance=1" messages would have been received by all the vertices approximatly at the same time, the message complexity of this execution would have been only $\Theta\left(n^{2}\right)$.
(3) We'll describe a β-like synchronizer; this synchronizer will use the existing trees $T \in \mathcal{T}$ instead of creating a spanning tree for the graph G. Since the synchronization problem can be reduced to the neighbours updating problem, we'll describe a solution to the latter.

We will perform a convergecast of the b_{v} bits of each $v \in V$ using all of the trees $T \in \mathcal{T}$, then broadcast all $_{v}$ messages on them. Each vertex $v \in V$ will toggle its $a l_{v}$ bit only when it gets $\operatorname{Overlap}_{v}(\mathcal{T})$ all l_{v} messages (i.e. it gets a message from all of the trees it belongs to).
(Note that otherwise a vertex v might update its allv bit before all of his neighbours w have updated their b_{w} bits!)

- Time $_{\text {init }}=$ Comm $_{\text {init }}=0$, since the trees are already given and no further preparations are needed.
- Time $_{\text {pulse }}=O(d)$, since this is the maximal diamater of a tree $T \in \mathcal{T}$ - and hence the maximal time needed for a pulse counter to change in the entire network.
- $\operatorname{Comm}_{\text {pulse }}=O(l \cdot n)$: a vertex $v \in V$ sends $\Theta\left(\operatorname{Overlap}_{v}(\mathcal{T})\right)$ messages on each pulse (Note that this number is not bounded by $|E|$ - an edge may be used more than once). Since there are n vertices with a maximal Overlap of l, the total amount of messages sent is $O(l \cdot n)$.
- Time ${ }_{\text {gap }} \leq$ PulseDiff. Time ${ }_{\text {pulse }}=1 \cdot O(d)=O(d)$.
(4) There are two common approaches to this problem. We'll describe them both:
(a) Use an α-like synchronizer, using the edges in U to pass messages. The problem here is that $(u, v) \in E$ does not imply that $(u, v) \in U$; say in other words, two neighbouring vertices in G may be up to k edges away in G^{\prime}. The implication is that when a vertex v sends a message to its neighbours in G^{\prime}, this message is received by vertices in G that are up to k edges away from v 's immediate neighbours.
Therefore, if we use the α synchronizer as-is, a vertex v might update its $a l l_{v}$ bit before all of his neighbours w have updated their b_{w} bits. To solve this, each vertex $v \in V$ will hold a counter c_{v} which is initialized to 0 . When its b_{v} bit updates, it sends a message to its neighbours in G^{\prime}; when a vertex $u \in V$ gets such message it increments its counter c_{u} by one and, if $c_{u}<k$, sends this message to its neighbours in G^{\prime}.

When $c_{v}=k$, the vertex v knows that each of its original neighbours in G have their b bits on.

- Time $_{\text {init }}=\Theta(1)$: define the c_{v} counter for each vertex and initialize it.
- Comm $_{\text {init }}=0$
- Time $_{\text {pulse }}=O(k)$, since each vertex sends k messages to its neighbours in G^{\prime}; each of these messages requires $O(1)$ time steps.
- Comm pulse $=O(h \cdot k)$, since each vertex v sends k messages to its $\operatorname{deg}(v)$ neighbours in $G^{\prime}\left(\sum_{v \in V} \operatorname{deg}(v)=\Theta(|U|)\right)$.
- Time ${ }_{\text {gap }} \leq$ PulseDiff. Time pulse $=O(k) \cdot O(k)=O\left(k^{2}\right)$. An explanation is needed here: two neighbouring vertices in G may be up to k edges away in G^{\prime}, therefore thet pulse difference between them can be $O(k)$.
(b) Use a β-like synchronizer using G^{\prime}. This method requires finding a spanning tree T of G^{\prime} before the execution.
- Time $_{\text {init }}=$ the time complexity of the spanning tree algorithm.
- Comm $_{\text {init }}=$ the communication complexity of the spanning tree algorithm.
- Time $_{\text {pulse }}=\operatorname{Depth}(T)$. If T is a MST, then Time $_{\text {pulse }}=$ $O\left(\operatorname{Diam}\left(G^{\prime}\right)\right)$.
- Comm ${ }_{\text {pulse }}=O(n)$, since the messages pass on the spanning tree edges.
- Time $_{\text {gap }} \leq$ PulseDiff \cdot Time $_{\text {pulse }}=O(1) \cdot \operatorname{Depth}(T)$. Again, if T is a MST then Time $_{g a p}=O\left(\operatorname{Diam}\left(G^{\prime}\right)\right)$.
(5) (a) In the α synchronizer $\left|P_{v}-P_{u}\right| \leq 1$ for $(u, v) \in E$, hence $\left|P_{v}-P_{u}\right| \leq$ $\operatorname{dist}_{G}(u, v) \mid$ for any $u, v \in V$.
In this case, $\left|P_{v^{\prime}}-P_{v}\right|=\left|P_{v^{\prime}}-27\right| \leq \operatorname{dist}\left(v_{11}, v_{2}\right)=6$. Hence, $p_{v^{\prime}} \in\{21,22, \ldots, 33\}$.
(b) In the β synchronizer $\left|P_{v}-P_{u}\right|=\Theta(1)$ for any $u, v \in V$, but note that a vertex v will increment its pulse number before the vertices in its rooted subtree.
Therefore, if v is the tree root, v^{\prime} is a leaf and $p_{v}=27$, there are two possibilities:
- $p_{v}=p_{v^{\prime}}=27$.
- $p_{v}=27$, and v has issued a broadcast for the new pulse number, yet v^{\prime} have not received it yet; hence $p_{v^{\prime}}=26$.
To sum it up: $p_{v^{\prime}} \in\{26,27\}$.
(c) In this case, when both v and v^{\prime} are leaves, there are three possibilities:
- $p_{v}=p_{v^{\prime}}=27$.
- $p_{r t}=27$, and $r t$ has issued a broadcast for the new pulse number. v have got this message, so $p_{v}=27$, yet v^{\prime} have not received it yet, hence $p_{v^{\prime}}=26$.
- $p_{r t}=28$, and $r t$ has issued a broadcast for the new pulse number. v haven't received this message yet, so $p_{v}=27$, but v^{\prime} have received it, hence $p_{v^{\prime}}=28$.

To sum it up: $p_{v^{\prime}} \in\{26,27,28\}$.

