
ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS

(1) Consider a graph G = (V, E), in which V = {v1, v2, . . . , vn} and E =
{(v1, v2), (v2, v3), . . . , (vD−1, vD)}⋃{(vD, vi)|i = D + 1, D + 2, . . . , n}.

In other words, the graph is a sequence of D vertices, which on of its
end vertices is connected to n − D vertices. (I would have placed a figure
have I figured out how to do it in LaTeX ;))

This graph holds: |V | = n, |E| = Θ(n) (we’ll solve sections (a) and (b)
together) and Diam(G) = D. Let’s analyze the message complexity when
invoking Dijkstra’s algorithm from vD:

• The first phase sends deg(vD) = n−D +1 DISCOVER messages, and
receives the same amount of replys. The spanning tree Γ1(G) contains
n − D + 2 vertices and n − D + 1 edges.

• Each additional phase will discover only one new vertex. So |V (Γi(G))| =
n−D+i edges for i ∈ {2, . . . , D}. The phase i uses n−D+i broadcast
and convergecast messages, one DISCOVER message and one reply for
it.

Since this algorithm runs for exactly D phases, the total message com-

plexity is
∑D

i=1
(n − D + i + Θ(1)) = Θ(n · D + |E|).

Note that this is not the case for every graph and each execution of
Dijkstra! For example, take the graph described above, with D = Θ(

√
n),

and invoke Dijkstra’s algorithm from v1. The resulting message complexity
will be only Θ(n + |E|).

(2) Consider the graph G = Kn: a clique of n vertices v1, v2, . . . vn. Invoke
Bellman-Ford from v1 and consider the following scenrio:

• v1 sends a message ”distance=1” to each v ∈ V except itself.
• v2 receives ”distance=1” from v1, updates its distance variable to 1

and sends ”distance=2” to each v ∈ V (except itself and maybe v1).
• v3 receives ”distance=2” from v2, updates its distance variable to 2

and sends ”distance=3” to each v ∈ V (except itself and maybe v2).
• · · ·
• vn receives ”distance=n− 1” from vn−1, updates its distance variable

to n − 1 and sends ”distance=n” to each v ∈ V (except itself and
maybe vn−1).

• v3 now receives the ”distance=1” message from v1. It updates its
distance variable to 1 and sends ”distance=2” to each v ∈ V (except
itself and maybe v1).

• v4 receives ”distance=2” from v3, updates its distance variable to 2
and sends ”distance=3” to each v ∈ V (except itself and maybe v3).

• · · ·
• and so on, until for each v ∈ V the distance variable equals 1

1

2 ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS

Each vertex sends n − 2 messages on each step; a vertex vi starts a se-
quence of n− i such steps. So the total amount of messages is:

∑n

i=1
((n−

2) · (n − i)) = Θ(n3).

Note that this is not the case for every graph and each execution of
Bellman-Ford ; for example, if the ”distance=1” messages would have been
received by all the vertices approximatly at the same time, the message
complexity of this execution would have been only Θ(n2).

(3) We’ll describe a β-like synchronizer; this synchronizer will use the existing
trees T ∈ T instead of creating a spanning tree for the graph G. Since
the synchronization problem can be reduced to the neighbours updating
problem, we’ll describe a solution to the latter.

We will perform a convergecast of the bv bits of each v ∈ V using all of
the trees T ∈ T , then broadcast allv messages on them. Each vertex v ∈ V

will toggle its allv bit only when it gets Overlapv(T) allv messages (i.e. it
gets a message from all of the trees it belongs to).

(Note that otherwise a vertex v might update its allv bit before all of
his neighbours w have updated their bw bits!)

• T imeinit = Comminit = 0, since the trees are already given and no
further preparations are needed.

• T imepulse = O(d), since this is the maximal diamater of a tree T ∈ T
- and hence the maximal time needed for a pulse counter to change in
the entire network.

• Commpulse = O(l ·n): a vertex v ∈ V sends Θ(Overlapv(T)) messages
on each pulse (Note that this number is not bounded by |E| - an
edge may be used more than once). Since there are n vertices with a
maximal Overlap of l, the total amount of messages sent is O(l · n).

• T imegap ≤ PulseDiff · T imepulse = 1 · O(d) = O(d).

(4) There are two common approaches to this problem. We’ll describe them
both:
(a) Use an α-like synchronizer, using the edges in U to pass messages. The

problem here is that (u, v) ∈ E does not imply that (u, v) ∈ U ; say
in other words, two neighbouring vertices in G may be up to k edges
away in G′. The implication is that when a vertex v sends a message
to its neighbours in G′, this message is received by vertices in G that
are up to k edges away from v’s immediate neighbours.
Therefore, if we use the α synchronizer as-is, a vertex v might update
its allv bit before all of his neighbours w have updated their bw bits.
To solve this, each vertex v ∈ V will hold a counter cv which is initial-
ized to 0. When its bv bit updates, it sends a message to its neighbours
in G′; when a vertex u ∈ V gets such message it increments its counter
cu by one and, if cu < k, sends this message to its neighbours in G′.

ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS 3

When cv = k, the vertex v knows that each of its original neighbours
in G have their b bits on.

• T imeinit = Θ(1): define the cv counter for each vertex and
initialize it.

• Comminit = 0
• T imepulse = O(k), since each vertex sends k messages to its

neighbours in G′; each of these messages requires O(1) time
steps.

• Commpulse = O(h · k), since each vertex v sends k messages to
its deg(v) neighbours in G′ (

∑
v∈V deg(v) = Θ(|U |)).

• T imegap ≤ PulseDiff · T imepulse = O(k) · O(k) = O(k2). An
explanation is needed here: two neighbouring vertices in G may
be up to k edges away in G′, therefore thet pulse difference
between them can be O(k).

(b) Use a β-like synchronizer using G′. This method requires finding a
spanning tree T of G′ before the execution.

• T imeinit = the time complexity of the spanning tree algorithm.
• Comminit = the communication complexity of the spanning tree

algorithm.
• T imepulse = Depth(T). If T is a MST, then T imepulse =

O(Diam(G′)).
• Commpulse = O(n), since the messages pass on the spanning

tree edges.
• T imegap ≤ PulseDiff ·T imepulse = O(1) ·Depth(T). Again, if

T is a MST then T imegap = O(Diam(G′)).

(5) (a) In the α synchronizer |Pv − Pu| ≤ 1 for (u, v) ∈ E, hence |Pv − Pu| ≤
distG(u, v)| for any u, v ∈ V .
In this case, |Pv′ − Pv| = |Pv′ − 27| ≤ dist(v11, v2) = 6. Hence,
pv′ ∈ {21, 22, . . . , 33}.

(b) In the β synchronizer |Pv −Pu| = Θ(1) for any u, v ∈ V , but note that
a vertex v will increment its pulse number before the vertices in its
rooted subtree.
Therefore, if v is the tree root, v′ is a leaf and pv = 27, there are two
possibilities:

• pv = pv′ = 27.
• pv = 27, and v has issued a broadcast for the new pulse number,

yet v′ have not received it yet; hence pv′ = 26.
To sum it up: pv′ ∈ {26, 27}.

(c) In this case, when both v and v′ are leaves, there are three possibilities:
• pv = pv′ = 27.
• prt = 27, and rt has issued a broadcast for the new pulse number.

v have got this message, so pv = 27, yet v′ have not received it
yet, hence pv′ = 26.

• prt = 28, and rt has issued a broadcast for the new pulse number.
v haven’t received this message yet, so pv = 27, but v′ have
received it, hence pv′ = 28.

4 ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS

To sum it up: pv′ ∈ {26, 27, 28}.

