ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS

(1) Consider a graph G = (V,E), in which V = {vj,v9,...,0,} and E =
{(v1,v2), (v2,v3),..., (vp_1,vp)} U{(vp,w)i =D+ 1,D+2,...,n}.

In other words, the graph is a sequence of D vertices, which on of its
end vertices is connected to n — D vertices. (I would have placed a figure
have I figured out how to do it in LaTeX ;))

This graph holds: |V| = n, |E| = ©(n) (we’ll solve sections (a) and (b)
together) and Diam(G) = D. Let’s analyze the message complexity when
invoking Dijkstra’s algorithm from vp:

e The first phase sends deg(vp) = n— D+ 1 DISCOVER messages, and

receives the same amount of replys. The spanning tree I'; (G) contains
n — D + 2 vertices and n — D + 1 edges.

e Each additional phase will discover only one new vertex. So |V (I';(G))| =
n—D+iedgesfori € {2,..., D}. The phase i uses n— D +1 broadcast
and convergecast messages, one DISCOVER message and one reply for
it.

Since this algorithm runs for exactly D phases, the total message com-

plexity is 322 (n — D +i+©0(1)) =O(n- D +|E|).

Note that this is not the case for every graph and each execution of
Dijkstra! For example, take the graph described above, with D = ©(y/n),
and invoke Dijkstra’s algorithm from v. The resulting message complexity
will be only ©(n + |E|).

(2) Consider the graph G = K,,: a clique of n vertices v1,vs,...v,. Invoke
Bellman-Ford from v; and consider the following scenrio:
e v; sends a message "distance=1" to each v € V except itself.
e vy receives "distance=1" from v, updates its distance variable to 1
and sends ”distance=2" to each v € V' (except itself and maybe vy).
e v3 receives "distance=2" from wve, updates its distance variable to 2
and sends ”distance=3" to each v € V' (except itself and maybe vs).

e v, receives "distance=n — 1” from v,,_1, updates its distance variable
to n — 1 and sends "distance=n” to each v € V (except itself and
maybe v,_1).

e v3 now receives the ”distance=1" message from v;. It updates its
distance variable to 1 and sends ”distance=2" to each v € V' (except
itself and maybe v1).

e v, receives "distance=2" from wvs, updates its distance variable to 2
and sends ”distance=3" to each v € V' (except itself and maybe v3).

e and so on, until for each v € V' the distance variable equals 1
1

(4)

ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS

Each vertex sends n — 2 messages on each step; a vertex v; starts a se-
quence of n — i such steps. So the total amount of messages is: Y., ((n —

2) - (n—1)) =O(n).

Note that this is not the case for every graph and each execution of
Bellman-Ford; for example, if the ”distance=1" messages would have been
received by all the vertices approximatly at the same time, the message
complexity of this execution would have been only ©(n?).

We’ll describe a (-like synchronizer; this synchronizer will use the existing
trees T € 7 instead of creating a spanning tree for the graph G. Since
the synchronization problem can be reduced to the neighbours updating
problem, we’ll describe a solution to the latter.

We will perform a convergecast of the b, bits of each v € V' using all of
the trees T' € T, then broadcast all, messages on them. Each vertex v € V
will toggle its all, bit only when it gets Overlap,(7) all, messages (i.e. it
gets a message from all of the trees it belongs to).

(Note that otherwise a vertex v might update its all, bit before all of
his neighbours w have updated their b,, bits!)

o Time;niy = Commy,;: = 0, since the trees are already given and no
further preparations are needed.

o Timepyise = O(d), since this is the maximal diamater of a tree T € T
- and hence the maximal time needed for a pulse counter to change in
the entire network.

o Commypyise = O(l-n): avertex v € V sends ©(Overlap, (7)) messages
on each pulse (Note that this number is not bounded by |E| - an
edge may be used more than once). Since there are n vertices with a
maximal Overlap of [, the total amount of messages sent is O(l - n).

o Timegqp < PulseDiff - Timepuise =1 - O(d) = O(d).

There are two common approaches to this problem. We’ll describe them
both:

(a) Use an a-like synchronizer, using the edges in U to pass messages. The
problem here is that (u,v) € E does not imply that (u,v) € U; say
in other words, two neighbouring vertices in G may be up to k edges
away in G’. The implication is that when a vertex v sends a message
to its neighbours in G’, this message is received by vertices in G that
are up to k edges away from v’s immediate neighbours.

Therefore, if we use the a synchronizer as-is, a vertex v might update
its all, bit before all of his neighbours w have updated their b, bits.
To solve this, each vertex v € V will hold a counter ¢, which is initial-
ized to 0. When its b,, bit updates, it sends a message to its neighbours
in G’; when a vertex u € V' gets such message it increments its counter
¢y, by one and, if ¢, < k, sends this message to its neighbours in G’.

ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS 3

When ¢, = k, the vertex v knows that each of its original neighbours
in G have their b bits on.

Timeini = O(1): define the ¢, counter for each vertex and
initialize it.

o Comminit =0
o Timepuse = O(k), since each vertex sends k messages to its

neighbours in G’; each of these messages requires O(1) time
steps.

Commpyise = O(h - k), since each vertex v sends k messages to
its deg(v) neighbours in G" (3, deg(v) = O(|U])).

Timegap < PulseDif f - Timepyse = O(k) - O(k) = O(k?). An
explanation is needed here: two neighbouring vertices in G may
be up to k edges away in G’, therefore thet pulse difference
between them can be O(k).

(b) Use a B-like synchronizer using G’. This method requires finding a
spanning tree T of G’ before the execution.

Time;n;s = the time complexity of the spanning tree algorithm.
Commy,;; = the communication complexity of the spanning tree
algorithm.

Timepyise = Depth(T). If T is a MST, then Timepyse =
O(Diam(G")).

Commpuse = O(n), since the messages pass on the spanning
tree edges.

Timegap < PulseDif f-Timepyse = O(1) - Depth(T). Again, if
T is a MST then Timegyq, = O(Diam(G)).

(5) (a) In the « synchronizer |P, — P,| <1 for (u,v) € E, hence |P, — P,| <
distg(u,v)| for any u,v € V.
In this case, |Py — P,| = |Py — 27| < dist(v11,v2) = 6. Hence,
por € {21,22,...,33}.

(b) In the 8 synchronizer |P, — P,| = ©(1) for any u,v € V, but note that
a vertex v will increment its pulse number before the vertices in its
rooted subtree.

Therefore, if v is the tree root, v’ is a leaf and p, = 27, there are two
possibilities:

® py =py = 27.

e p, = 27, and v has issued a broadcast for the new pulse number,

yet v’ have not received it yet; hence p,, = 26.

To sum it up: p, € {26,27}.
(c) In this case, when both v and v are leaves, there are three possibilities:
® py =py = 27.
e p,.; = 27, and rt has issued a broadcast for the new pulse number.

v have got this message, so p, = 27, yet v’ have not received it
yet, hence p,, = 26.

e p.+ = 28, and rt has issued a broadcast for the new pulse number.

v haven’t received this message yet, so p, = 27, but v’ have
received it, hence p,, = 28.

ASSIGNMENT 3 SOLUTIONS - DISTRIBUTED ALGORITHMS

To sum it up: p,» € {26,27,28}.

